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We investigate a new mechanism for phase transitions between topological magnon phases on the breathing
kagome lattice ferromagnets with Dzyaloshinskii-Moriya interaction, which is induced by the lattice deforma-
tion. With the linear spin-wave theory, we calculate the magnonic Chern number, topological phase diagram and
magnon thermal Hall conductivity at low temperature with tunable modulated exchange interactions due to the
lattice deformation. We show that the modulated exchange interactions and Dzyaloshinskii-Moriya interaction
strength determine the band topology of magnons. We find a sign reversal of the thermal Hall conductivity dur-
ing topological phase transitions explained in terms of topological edge modes and their propagation directions.
We also discuss candidate materials to realize our ideas.

I. INTRODUCTION

In condensed matter physics, the theoretical proposal and
experimental discovery of the topological insulators in elec-
tronic systems are the subject of extensive interest in the last
decade [1–5]. Physically, the essential concept in topological
band theory is the topological invariants linked to the topolog-
ical protected edge states, when the spin-orbit coupling (SOC)
is present and opens a topological nontrivial gap [6, 7]. As
the band topology is independent of the statistical regularity
of (quasi)particles, such ideas can be realized in bosonic sys-
tems such as photons [8–12], phonons [13–15], and magnons
[16–21]. Different from electronic charge particles, magnons
are electrically neutral bosonic quasiparticles, thus they can
propagate over long distances without experiencing a Lorentz
force and incuring Joule heating in magnetic insulators. Con-
sequently, magnonic devices offer better prospects to realize
next generation low-dissipation memory devices [22–24].

A thermal version of the Hall effect—magnon thermal Hall
effect (THE) induced by a temperature gradient has been
experimentally observed in insulating pyrochlore ferromag-
nets [17, 25] and kagome ferromagnets [26, 27]. The fi-
nite THE is brought about by an effective SOC derived from
the Dzyaloshinskii-Moriya interaction (DMI) [28–30], which
tends to cant neighboring spins away from each other and in-
duces nonzero Berry curvatures in momentum space as an
effective Lorentz force [16, 31]. Similarly, the band topol-
ogy and the THE are also predicted theoretically in an in-
sulating ferromagnet with the dipolar interaction [18, 32],
honeycomb ferromagnets [33, 34], triangular lattice antiferro-
magnets [35], noncollinear or noncoplanar kagome antiferro-
magnets [36–39] and skyrmion crystals [40–42]. In addition,
when the topological system has two or more distinct topolog-
ical phases, a topological phase transition may arise with a gap
alternating between closing and reopening [43, 44]. Hereto-
fore topological phase transitions among magnonic topolog-
ical phase have been reported with the variation of mag-
netic field [35–38, 45], magnon-phonon coupling [46–48],
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magnon-magnon interaction [49] and variation of nearest-
neighboring (NN) or next-nearest-neighbor (NNN) exchange
interactions [50–53].

Recent theoretical and experimental quantum
matter research on a vanadium-based material —
[NH4]2[C7H14N][V7O6F18], or diammonium quinucli-
dinium vanadium(III,IV) oxyfluoride (DQVOF), as well as
the materials Li2In1−xScxMo3O8 have opened an alternative
route for the study of quantum spin liquids on the breathing
kagome lattice in the absence of inversion symmetry [54–60].
Moreover, topological properties, especially on higher-order
topological insulators, have been widely investigated on the
breathing kagome lattice in electronics [61–64], photonics
[65, 66], acoustic metamaterials [67, 68], electric circuits
[69–71], magnetic solitons [72] and mechanical metama-
terials [73]. More interestingly, a skyrmion crystal phase
with large topological Hall effect was also experimentally
observed in Gd3Ru4Al12 with a Gd-based breathing kagome
lattice [74]. Meanwhile, the topological transport of magnons
in breathing kagome lattice ferromagnets has recently at-
tracted increasing interests. Magnonic flat bands coexisting
with Dirac nodes at the Γ point have been demonstrated when
the system holds particle-hole symmetry [75] and first and
second order topological magnon insulator (TMI) phases
have been identified [76]. However, the topological properties
of magnons in breathing kagome lattice ferromagnets remain
largely unaddressed.

In this paper, we study the magnon band topology and the
topological magnon THE in a breathing kagome ferromagnet
with DMI as illustrated in Fig. 1. The unit cell is formed by
three spin sublattices A, B and C represented by hollow cir-
cles in the green dashed diamond. A nonuniform strain field
results a lattice deformation δ such that three sublattices fur-
ther away (positive perturbation δ > 0) or get closer (negative
perturbation δ < 0) from their shared corner of the honey-
comb lattice as shown in Fig. 1(b). By increasing the strength
of δ in a breathing kagome ferromagnet, we find a topolog-
ical phase transition between a TMI with coupled nontrivial
edge modes and a trivial magnon insulator with trivial edge
modes. The phase transition is accompanied by the evolution
of magnon bands that the nontrivial band gap closes and re-
opens. Furthermore, the evolution of topological phases can
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be experimentally detected by the change of the thermal Hall
conductivity. We also demonstrate sign changes of the ther-
mal Hall conductivity with respect to the lattice deformation,
which can be explained in terms of the correspondence be-
tween the thermal Hall conductivity and the propagation di-
rection of the nontrivial edge modes. Different from Refs.
[75, 76], the present work investigates how lattice deformation
due to nonuniform strain fields influences the band topology
and associated thermal transport of magnons via the modifica-
tion of NN ferromagnetic interactions and DMI [see Eq. (2)].
We also show how the magnonic thermal Hall conductivity
reflects the topological phase transitions.

The paper is organized as follows. In Sec. II we introduce
our theoretical model and method. Results are presented in
Sec. III including the topological phase diagram, topologi-
cal magnon band tructures, magnonic edge modes, the ther-
mal Hall conductivity, and material consideration. Finally, we
conclude with Sec. IV.

II. MODEL AND METHOD

A. Spin model Hamiltonian for magnons

In this paper, we consider the following anisotropic spin
model on a 2D breathing kagome lattice, whose Hamiltonian
reads

H =−
∑
〈ij〉

JijSi · Sj − J2
∑
〈〈ij〉〉

Si · Sj

+
∑
〈ij〉

Dij · (Si × Sj) ,
(1)

where Si is the vector of spin operators at site i. The first two
terms represent the NN and NNN ferromagnetic couplings
(Jij , J2 > 0), respectively. The third term is the out-of-plane
NN DMI, whereDij is the DMI vector whose orientation de-
pends on the chirality of the triangles in the kagome lattice.
In the breathing kagome lattice, the values of the exchange
interactions are modulated by the small displacements of the
spins. Following the same methodology as in Refs. [77, 78],
we expand the intracell/intercell NN ferromagnetic coupling
and DMI (blue/red lines shown in Fig. 1) around its equilib-
rium value J1 and D to linear order

J± =
(

1∓
√

3ηδ
)
J1,

D± =
(

1∓
√

3ηδ
)
D,

(2)

where subscript + (−) indicates intracell (intercell) NN inter-
actions, and η is a parameter that describes the response of
the couplings to the displacements of sublattices. Here, we
neglect the modulation of the NNN ferromagnetic couplings
since they are the higher-order terms. However, this simul-
taneous changes of NN ferromagnetic interaction and DMI
will preserve the collinear ferromagnetic ground state, as dis-
cussed in Appendix A.
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Figure 1. Schematics for the breathing kagome ferromagnet. (a)
Unstrained case with δ = 0. The gray dashed line is a guide to
show the hexagonal symmetry. The blue/red solid lines represent the
intracell/intercell NN bonds. a represents the lattice constant. (b)
Straining induced perturbations are considered by putting the sublat-
tice postion further away (δ > 0) or closer (δ < 0) to each other,
represented by the red arrows. (c) The first Brillouin zone of the
reciprocal lattice.

We now turn to a linear spin-wave theory, within which
we obtain the tight-binding magnon Hamiltonian in the mo-
mentum space. Starting from the spin model Hamiltonian Eq.
(1), we express the spin operators in terms of magnon cre-
ation operator b̂†i and annihilation operator b̂i by applying the
Holstein-Primakoff (HP) transformations [79]

S+
i '

√
2Sbi, S+

i '
√

2Sb†i , Szi = S − b†i bi, (3)

where the magnon ladder operators are S±i = Sxi ±iS
y
i . Here,

we neglect the magnon-magnon interactions in the low tem-
perature limit, 2S �

〈
b†i bi

〉
, which gives the higher-order

terms in the magnon operators. After a Fourier transforma-
tion, we obtain the bilinear magnon Hamiltonian in the mo-
mentum space

H = S
∑
k

Ψ†kHm (k) Ψk, (4)

with the tight-binding magnon Hamiltonian in a matrix
form Hm (k) = H0 +HNN

J +HNNN
J +HD and the magnon

operator basis Ψ†k =
(
b†A, b

†
B , b
†
C

)
. The submatrices of the
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Figure 2. Topological phase diagram of the breathing kagome lat-
tice. Each topological phase is characterized by sets of Chern num-
bers (C1, C2, C3).

magnon Hamilton matrix read

H0 = 4 (J1 + J2) I3×3, (5a)

HNN
J = −

 0 γ1 γ∗3
γ∗1 0 γ2
γ3 γ∗2 0

 , (5b)

HD = −i

 0 d1 −d∗3
−d∗1 0 d2
d3 −d∗2 0

 , (5c)

HNNN
J = −

 0 µ1 µ2

µ∗1 0 µ3

µ∗2 µ∗3 0

 , (5d)

where I3×3 is the 3×3 identity matrix. The elements of the
above matrices read: γi ≡ J+e

ik·(1+δ)αi + J−e
−ik·(1−δ)αi

and di ≡ D+e
ik·(1+δ)αi + D−e

−ik·(1−δ)αi with α ={(√
3
2 , 0

)
,
(
−
√
3
4 ,

3
4

)
,
(
−
√
3
4 ,−

3
4

)}
a being the three un-

strained NN vectors, µi ≡ J2 cos (k · βi) with β ={(
0, 32
)
,
(

3
√
3

4 ,− 3
4

)
,
(
− 3
√
3

4 ,− 3
4

)}
a being the three un-

strained NNN vectors as shown in Fig. 1(a).

B. Chern numbers and thermal Hall conductivity

The particular configuration of the DMI vectors induces
textured fluxes in a kagome lattice, which lead to a geomet-
rical phase of the magnon Bloch state [16]. Thus, a nonzero
Berry curvature arises and reads

Ωzλk = −2
∑
λ′ 6=λ

Im
〈ψλk |∂kxHm|ψλ′k〉

〈
ψλ′k

∣∣∂kyHm

∣∣ψλk〉
(ελk − ελ′k)

2 ,

(6)
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Figure 3. Topological phase transitions of magnon band structures
in kagome ferromagnets with selected lattice deformation parameter
δ = 0 (a), δ = 0.05 (b), δ = 0.1 (c), δ = 0.2 (d). In all panels: the
equilibrium value of NN DMI D = 0.3 and the NNN ferromagnetic
coupling J2 = 0. Topological phase is distinguished by its set of
Chern numbers (C1, C2, C3).

where ψλk and ελk are the eigenvectors and eigenvalues of
Hm (k) with band index λ, respectively. The Chern number
of the band λ is defined as the integration of the Berry curva-
ture over the Brillouin zone (BZ) shown in Fig. 1(c),

Cλ =
1

2π

∫
BZ

Ωzλkd
2k. (7)

The topological phase is specified by the set of Chern num-
bers (C1, C2, C3) of the lower, middle and upper magnon bulk
bands, as shown in Fig. 3. To investigate the bulk-boundary
correspondence of magnons, the winding number of the topo-
logically protected edge modes in band gap ζ = 1, 2 is defined
as [51, 80]

νζ =
∑
λ≤ζ

Cλ. (8)

The winding number indicates that |νζ | pairs of topologically
nontrivial edge modes can be found in ζth band gap and their
propagation direction is given by the sign of νζ .

The existence of nontrivial topological magnon edge modes
can be detected by measuring of the transverse thermal Hall
response. From the linear response theory, the thermal Hall
conductivity connected to the Berry curvature can be ex-
pressed as [32]

κxy = − k2BT

(2π)
2 ~

3∑
λ=1

∫
BZ

c2
[
ρB (ελk)

]
Ωzλkd

2k, (9)

where ρB (ελk) =
(
eελk/kBT − 1

)−1
is the Bose distribu-

tion function. The weighting function is defined as c2 =
(1 + x) ln2 1+x

x − ln2 x − 2Li2 (−x) and Li2 is the diloga-
rithm.
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Figure 4. Chiral magnonic edge modes in a kagome lattice. (a)
δ = 0. (b) δ = 0.1. (c) δ = 0.18. The black lines are the bulk bands
and the blue/red lines are the edge modes. Other parameters are the
same as Fig. 3.

III. RESULTS AND DISCUSSION

To simplify our discussion, we adopt the dimensionless pa-
rameters that J1 = S = a = 1 and other quantities are ex-
pressed with respect to these parameters. In the following nu-
merical calculations, unless otherwise specified, we set η = 2
and J2 = 0 whereas D and δ are tunable parameters. We cal-
culate Chern numbers using the algorithm of Fukui et al. with
1000×1000 points in momentum space [81].

A. Topological phase diagram

As we mentioned above, the lattice deformation parameter
δ provides a handle to tune topological phase transitions in
breathing kagome ferromagnets. The topological phase dia-
gram as a function of δ and the NN DMI strength D is shown
in Fig. 2. Three different topological phases are found with
Chern numbers: (−1, 0, 1), (0,−1, 1) and (0, 0, 0). Since
δ > 0 and δ < 0 are equivalent, which can be directly un-
derstood with the mirror symmetry of the two cases to the x
axis in Fig. 1(a), we will adopt δ > 0 in our following dis-
cussion without loss of generality. As the nonzero winding
numbers in phase I are ν1 = ν2 = −1, two equivalent pairs of
topologically protected edge modes will be found in band gap
1 and 2. In phase II, ν1 = 0 and ν2 = −1 show only one pair
of topologically protected edge modes appear in gap 2. As δ
increased further, the system has two trivial band gap with all
three Chern numbers being zero in phase III. In other words,
the system can undergo topological phase transitions between
two kinds of TMI with chiral nontrivial edge modes (phase I
and II) and a trivial magnon insulator without any nontrivial
edge modes (phase III) by varying the value of δ and D.

B. Band topology and magnonic edge modes

Next, we investigate these topological phase transitions
though the evolution of the magnon band structures with
varying δ when D = 0.3. The magnon bands along the
Γ − K − M − Γ line with high-symmetry points in the
Brillouin zone are given in Fig. 3. In the equilibrium case
(δ = 0), three well separated magnon bands with Chern num-
bers (−1, 0, 1) as shown in Fig. 3(a), consistent with pre-
vious results [51]. When the lattice deformation parameter
reaches the phase transformation line between phase I and
II, i.e. δ = 0.05, a linear band crossing of the two acoustic
magnon branches occurs at the K point in Fig. 3(b). Fig. 3(c)
plots the magnon bands at δ = 0.1 in phase II. The band gap
between the two acoustic magnon branches reopens, while the
edge modes transfer from topologically nontrivial modes to
trival ones. For comparison, the magnon bands under the in-
fluence of a large lattice deformation parameter δ = 0.2 are
also shown in Fig. 3(d). The system turns out to be a trivial
magnon insulator in phase III. The underlying physics can be
well understood with the behaviors approaching limiting case
δ → 0.5, where the positions of three sublattices almost over-
lap. As the intercell NN exchange interactions are turned off
(i.e. J− = D− = 0) in this limit, the system is reduced to an
array of isolated trimers on a honeycomb lattice. Since neigh-
boring trimers do not "talk" to each other, the magnon bands
degenerate into three flat bands separated by two large trivial
gaps.

Furthermore, to better visualize the magnonic edge modes,
we have computed the edge modes by solving the eigenvalue
problem of a nanoribbon geometry with open boundary condi-
tions in Fig. 4. As shown in Fig. 4(a), two crossed chiral edge
modes are clearly found in each band gap, which has been
discussed in Ref. [51]. The edge modes are topologically
protected and connect the lower and the upper bulk bands.
Moreover, the edge modes labeled by blue and red lines have
opposite propagation directions (clockwise and anticlockwise
rotation). In Fig. 4(b) and Fig. 4(c), the gapped trivial edge
modes are observed in trivial band gaps, since the edge modes
cannot overcome the increasing width of band gaps due to the
increase of lattice deformations [82].

C. Topological thermal Hall effect

In this section, we turn to the discussion of topological
properties of the magnon THE. In electronic systems, the
transverse electrical conductivity is quantized and directly re-
lated to the integer values of Chern number, because the Fermi
surface can be easily localized in the band gap by doping the
system. In contrast, there is no Fermi surface or completely
filled bands in magnonic system due to the bosonic statistics.
However, the existence of nontrivial topological phases and
phase transitions can still be probed by the measurement of
the thermal Hall response in inelastic neutron scattering ex-
periments.

In Fig. 5(a), the magnon thermal Hall conductivity κxy is
plotted as a function of temperature in three different topolog-
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Figure 5. (a) The magnon thermal Hall conductivity as a function of temperature at different lattice deformation parameter in low temperature
regime. The magnon thermal Hall conductivity (κxy) and its band contributions (κλxy) as a function of temperature when δ takes the values (b)
0, (c) 0.1 and (d) 0.2.

ical phases with different δ (Fig. 2) in low temperature regime.
They all show a monotonically rising behavior. From Eq. (7)
and Eq. (9), we find that the Chern number and κxy differ
by a constant factor 1 and the weighting function c2 in the in-
tegrand. To verify the correlation between κxy and Cλ, the
temperature dependence of the total conductivity and the con-
tribution from each band κλxy with κxy =

∑3
λ=1κ

λ
xy in dif-

ferent topological phases are plotted in Fig. 5(b)-(d). We find
that the significant contributions come from the bands with
nonzero Chern numbers (+1 or −1). In addition, the band
with a zero Chern number also has a nonzero small contribu-
tion to the thermal Hall conductivity, and there is a nonzero

small thermal Hall conductivity in a trivial magnon insulator
[see Fig. 5(d)]. Fig. 5 also shows that the dominant contri-
bution of the thermal Hall conductivity comes from the low-
est band at low temperatures, since the lowest band is more
occupied due to the weighting effect of c2 function with the
bosonic nature of magnons. On the contrary, the contributions
from upper bands have larger occupation and become signifi-
cant as the temperature increasing [31].

The magnon thermal Hall conductivity as a function of δ
for four different temperatures is depicted in Fig. 6. Signif-
icantly, the NNN ferromagnetic coupling is set to J2 = 1
rather than zero in the previous discussions. Three topological



6

0 0.1 0.2 0.3
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Figure 6. Thermal Hall conductivity versus lattice deformation pa-
rameter at different temperatures with the NN DMI D = 0.3 and
NNN ferromagnetic coupling J2 = 1 in low temperature regime.
The critical points of phase transition are shown as vertical dashed
lines.

phases are found in the range 0 ≤ δ ≤ 0.3, which were sep-
arated by the critical points of phase transition represented by
the dotted black lines. As the lattice deformation is tuned be-
tween the topological phases (1,−2, 1) and (0,−1, 1), a sign
reversal of κxy occurs accompanied by the topological phase
transition. However, this sign reversal can be understood ex-
plicitly in terms of the propagation direction of chiral edge
modes. As mentioned above, the winding number indexs the
number and propagation direction of edge modes, which are
given as ν1 = 1, ν2 = −1 in the phase (1,−2, 1) and ν1 = 0,
ν2 = −1 in the phase (1,−2, 1). Although the former has the
nontrivial edge modes with opposite propagating direction in
the nontrivial gap 1 and gap 2, the edge modes in the lowest
gap (ν1 = 1) give the dominant contribution to the thermal
Hall conductivity at low temperatures. By contrast, the latter
shows nontrivial edge modes only in the upper gap (ν2 = −1).
It also explians why κxy in the phase (0,−1, 1) is much lower
than in the phase (1,−2, 1). Thus the sign of κxy depends on
the propagation direction of nontrivial edge modes as well as
the occupation probability of the edge magnons, that is, tem-
peratures.

D. Material consideration

Before concluding, we shall briefly comment on the can-
didate materials for an experimental realization of the above
topological phase transition in magnonic system. As men-
tioned above, a skyrmion crystal phase was experimen-
tally observed in the centrosymmetric breathing kagome lat-
tice Gd3Ru4Al12 under a field-aligned ferromagnetic phase
[74]. This material is insensitive to thermal fluctuations
due to the large local spin moments, which makes it an
excellent candidate for experiments. The thermal Hall re-

sponses are commonly experimentally observed in a number
of three-dimensional (3D) ferromagnetic pyrochlore oxides:
Lu2V2O7, In2Mn2O7, as well as Ho2V2O7 [17, 25]. Here,
instead of considering a real 3D system, we can realize our
ideas by treating it as a stack of non-interacting or weakly-
interacting kagome layers. On the other hand, the thermal
Hall effect was also reported in the quasi-2D kagome ferro-
magnet in Cu(1-3,bdc) [26, 27] or the mineral haydeeite, α-
MgCu3(OD)6Cl2 [83], which will also be an interesting plat-
form to investigate the topological phase transition. Since the
NN interactions depend sensitively on the atomic distances, a
sizable variation of the NN interactions can be achieved from
the lattice distortion by applying external perturbation such as
strain or pressure in experiments [84–86]. Therefore, the de-
tailed first-principles calculations and experiments are highly
anticipated to investigate the TMI in the future.

IV. CONCLUSION

We have theoretically demonstrated topological phase tran-
sitions due to the lattice deformation in the 2D breathing
kagome-lattice ferromagnets with DMI. Having analyzed in
detail the band topology of magnons, we show the system
can undergo a transition between a TMI with chiral nontrivial
edge modes and a trivial magnon insulator without any non-
trivial edge modes by tuning the lattice deformation. More-
over, we also calculate the magnon thermal Hall conductivity
and expound its relevance to the topological phase and phase
transition. We find the reversal of the sign for the thermal Hall
conductivity during topological phase transitions. This sign
reversal can be applied in the field of thermal micro-sensors
in the future, because of its special thermal isolation perfor-
mance and advantages in technology.

However, the linear spin-wave theory becomes inaccurate
at high temperatures, as magnon-magnon interactions and
magnon-phonon interactions need to be taken into account
[46–49]. Furthermore, tuning the lattice deformation across
the wide range is also a practical challenge [53]. We look
forward to addressing these issues in our future studies.
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APPENDIX A: SPIN TEXTURE IN THE GROUND STATE

Our theoretical work is built on the classical ground state
with ferromagnetic ordering. To verify the stability of this

ferromagnetic ground state, we estimate the critical value
of D/J1 by using atomistic spin simulations with the Spirit
framework [87], at which there exists a transition from the
ferromagnetic order to other magnetic order. In our numeri-
cal simulations, we start with a random spin configuration at
t = 0. Then local spin moments quickly evolve into their
stable states in a sufficient time after relaxing with Gilbert
damping. In Fig. 7 we draw the phase diagram of the magnetic
ground state on theD/J1−δ/a plane, where the other param-
eters are fixed to the ones we used in the main text: J2 = 0
and η = 2. We see that the critical value D/J1 ∼ 1.6 is
entirely unrelated to the lattice deformation parameter δ, con-
sistent with the findings in normal kagome lattices as in Ref.
[31]. Above the critical value, the spin spiral is formed instead
of the ferromagnetic order. It can be understood in terms of
the unaltered total energy under the lattice deformation. These
numerical results indicate that the system holds the stable fer-
romagnetic ground state for a wide range of parameters in-
cluding the ones we chose in our work.
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