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A general model of binary opinions updating

Alexis Poindron∗

October 6, 2020

Abstract

We generalise Grabisch and Rusinowska (2013) to non-conformist societies. Agents in a
network are iteratively picking a yes/no opinion, where updating stems from mutual influence.
We introduce a notion of groups based on the signs of influence. We examine a few canonical
societies, namely, conformist, communitarian, with leaders, with anti-conformist agents. We in-
vestigate stability issues. Any kind of opinion updating model can be hosted by our formalism,
provided that: (i) alternatives are binary; (ii) opinion adoption is reversible and independent
among agents; (iii) the process is Markovian and stationary; (iv) the number of agents is finite;
(v) time is discrete.

Key words: influence graphs, opinion dynamics, groups, stability, synchronism, asynchronism

JEL classification: C7, D7, D85

1 Introduction

We consider a society N of agents invited to express a yes/no opinion. The state of the world
S ⊆ N is defined as the set of agents saying yes. Agents update their opinions simultaneously
(or synchronously) at each period of time, as follows: (i) each agent aggregates the opinions
S of the society on the basis of the influences that are exerted on him, which influences can
be positive, negative or null; (ii) the aggregate pi(S) is his probability to say yes at the next
period. Dynamics of opinions are described by the transition graph B. The aim of this paper
is to relate the properties of p = (pi)i∈N with the dynamics obtained.

Prior to votes, where profiles are aggregated to produce a social preference (see, e.g., Arrow
(1963), Suzumura (1983)), agents interact with each other during debates, discussions, adver-
tisements, etc. This process, called opinion formation, is the one studied in the present paper. It
is embedded into the literature on opinion formation, diffusion and dynamics in social networks,
and into the literature of Ising-like models. This literature is particularly fertile in physics, where
agents are particles and where, for this reason, the framework is typically anonymous and the
approach statistic. In economics, however, the framework is often non-anonymous, as well as in
biology, where Boolean networks are used to model neuronal activity or interactions between
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genes and proteins. Grabisch and Rusinowska (2013) proposed a non-anonymous model of in-
fluence where agents are conformist, meaning that all influences are positive. However, in order
to generate rich and various opinion dynamics, and therefore, to better match the dynamics
of the real world, it is essential to allow for negative influence. In Grabisch et al. (2019a), a
population is composed of a mixture of conformist and anti-conformist agents, in an anonymous
framework though. As compared with Förster et al. (2013), an anonymous model of influence
with conformist agents only, the presence of anti-conformist agents enormously enriches the
landscape of dynamics. We now lack a model which would be both non-anonymous and with
negative influence, not only anti-conformism but also as heterogeneous influences as desired:
agents would be positively influenced by some neighbours, and negatively by some others.

The present paper fills this gap. Our contribution is mostly to clarify the mechanisms
of a vast literature and propose a tractable and unifying formalism to serve as a basis for
further investigations. Consistently with this intention, we evidence bridges between some
canonical societies that have been studied separately in the literature, namely, conformist, with
leaders, communitarian (anti-coordination) and mixed (with anti-conformist agents). In the
vein of Grabisch and Rusinowska (2013), Förster et al. (2013) and Grabisch et al. (2019a), we
investigate the reachable dynamics and evidence several channels of stability. Not surprisingly,
coordination plays in favour of stability, but also anonymity and autonomy (independence from
other agents opinions). We evidence similar dynamics for the conformist and the communitarian
societies. The mixed society and societies with leaders have the same dynamics too. Besides
these clarifying contributions, which pursue the concerns of the above-mentioned papers, our
paper examines the utility foundations of the model and the updating scheme. In particular,
we briefly discuss its asynchronous version, suggesting that the asynchronous scheme produces
more intuitive dynamics.

The paper is structured as follows. Section 2 exposes the model. A summary is proposed in
Section 2.9 to ease the reading. Section 3 discusses some particular restrictions on p that one
might want to impose or not. Section 4 introduces a notion of groups based on the influence
graph and examines a few canonical societies. Section 5 investigate stability issues. Related
literature is relegated to Section 6. Section 7 concludes. Appendix A provides the proofs of
the propositions. Appendix B relaxes the assumption of synchronous updating by investigating
asynchronous and correlated updating. Appendix C discusses the utility foundations of the
model, in particular, the myopic behaviour of agents. Appendix D provides algebraic consid-
erations of an important tool of our model, along with further connections with Grabisch and
Rusinowska (2013). A technical discussion concerning the connections between influences and
opinion dynamics can be found in Appendix E.

2 Description of the model

We consider a set N := {1, . . . , n} of agents iteratively picking an opinion in a binary alternative
set (yes or no, to adopt or not to adopt, being active or inactive, choose the first or the second
candidate, accept or reject the null hypothesis, etc.). Each agent starts from an initial opinion
and updates it due to mutual influence. Opinions are picked simultaneously1 by agents on the
basis of the current state of the world S, simply called state, being the set of agents whose
opinion is yes. We use the following convention: ‘Yes’ is coded by 1 and ‘No’ by 0. There is no
‘Maybe’ opinion. When the set S must be explicited, we index agents by numbers. A common

1We relax this assumption in Appendix B.
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convention ignores the curly brackets and commas. For example, {1, 2, 3} can be written 123.
The notations S ∈ 2N and S ⊆ N are equivalent.

2.1 A few notations relative to sets

For two sets A ⊆ B in 2N , we write [A,B] := {S | A ⊆ S ⊆ B}; in particular, [A,B] is empty if
A * B. A collection of sets of this form is called an interval. The cardinality of a set is denoted
by the corresponding lower case, e.g., s = |S|. The symmetric difference ∆ on sets S1 and S2

is defined by S1∆S2 := (S1 ∪ S2) \ (S1 ∩ S2) = (S1 \ S2) ∪ (S2 \ S1). The complement set of
S is written Sc. If P := {S1, . . . , Sk} is a collection of sets, we write P(c) := {Sc1, . . . , Sck} and
Pc := 2N \ P. We also write P∆Z := {S1∆Z, . . . Sk∆Z}.

2.2 The transition graph

Opinion formation is entirely described by the probability vector p := (pi)i∈N defined as follows.
When the state of the society is S, the probability for agent i to say yes at the next period,
that is, the probability that agent i belongs to the next state, is pi(S). The next state is
therefore given by the realisation of n Bernoulli random variables of parameters pi(S), like in
Asavathiratham (2000) and Grabisch and Rusinowska (2013).2

Given the state S of the society, the probability that the next state is T is written by bS,T .
Assuming that the process iterates, we obtain a stochastic process, called an influence process.
The process is assumed to be: (i) Markovian, i.e, bS,T only depends on S and T , and not on
the whole history of the process; (ii) stationary, i.e., time does not appear in the computation
of bS,T ; in particular, p is fixed. If the probabilities pi(S) are independent among agents, as it
is assumed in this paper, and since agents update at the same time, we have:

bS,T =
∏
i∈T

pi(S)
∏
i 6∈T

(1− pi(S)). (2.1)

We propose a qualitative description of the process described by the 2n × 2n row-stochastic
transition matrix B := [bS,T ]S,T⊆N ; more precisely, we are interested in the absorbing classes
and their type (for example, whether they are periodic or not). For this reason, we define the
reduced matrix B̃, where:

b̃S,T =

{
1 if bS,T > 0
0 if bS,T = 0

(2.2)

When bS,T > 0, we also write S → T . If bS,T = 1, we write S
1→ T . The reduced matrix can

be equivalently represented by a transition graph Γ̃ = (2N , E), where E is the set of directed
arcs (S, T ), and an arc exists if and only if b̃S,T = 1. It is obtained from the weighted transition
graph Γ = (2N , E,B) by ignoring the weights bS,T on the arcs.

The shape of transitions is given by Property 1 (see Appendix B for a more general exposure):

Property 1. All transitions are of the form S
1→ [T, T ∪K].

2This approach allows to bypass a utility-based approach, by working directly with best responses. Let us make
a few technical remarks. Firstly, we may think that S must be common knowledge, but actually we need not such a
strong requirement: there is no impediment to encompassing the misobservations of agents into pi. Note the difference
of this approach with DeGroot (1974): the aggregate pi gives a probability distribution of agent i opinions at the next
period, whereas in the DeGroot model, the aggregate itself is the new opinion of the agent. Moreover, in the DeGroot
model, updating is synchronous, while this assumption can be relaxed in our approach.
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In (2.1), B is obtained from p. Conversely, we can recover p from B, as stated by the
following property:

Property 2. p and B are isomorphic.

We will refer to the pi as aggregation functions, that is, functions which aggregates a vector
into a single number:

Definition 1. An aggregation function is a mapping from {0, 1}n to [0, 1]. An aggregation
function taking values in {0, 1} is called Boolean.

Definition 1 is not standard: an aggregation function is usually assumed to be increasing
with respect to the inclusion set order, e.g, in the voter model or in Grabisch and Rusinowska
(2013). However, our model aims precisely at dealing also with negative influence; hence our
more general definition. When needed, we will mention the vector of aggregation functions in
superscript, e.g., Γp. When all the pi are Boolean, all the transitions are with probability 1; in
this case, the transition graph and the society are said to be deterministic3.

Remark 1. If pi(S) = 1 − pi(Sc) for all S, agent i treats in the same way the ‘yes’ and ‘no’
opinions, i.e., it is unbiased toward the word ‘yes’ or the word ‘no’ (otherwise, it is called ‘bi-
ased’). Assuming that aggregation functions are unbiased can be relevant to model elections for
a candidate, but not to model adoption of a new technology, in which case there is an investment
cost. Aggregation functions representing majority influence, for example, are unbiased.

2.3 Absorbing classes and dynamics

We first recall some basic notions of Markov chains. Let C be a non-empty collection of states.
C is strongly connected if either it is of the form C = {S}, or for every distinct S, T ∈ C, there is
a path in C from S to T . Moreover, C is a class if it is strongly connected and maximal for this
property, i.e., if no super-collection of C is strongly connected. It is absorbing if there is no arc

from some S ∈ C to some T /∈ C. An absorbing state S is one such that S
1→ S. An absorbing

class is periodic if for some k ≥ 2 there exists a partition {P1, . . . , Pk} of C such that when the
process is at a state belonging to Pi at time t, then it will be in a state of Pi+1 at time t + 1,
with Pk+1 := P1. When each Pi reduces to a single state, we refer to the periodic class as a
cycle.4

Theorem 1 below gives the shape of absorbing classes. This theorem does not involve any
assumption on aggregation functions.

Theorem 1. (Grabisch and Rusinowska, 2013)
Consider an influence process based on aggregation functions p. Absorbing classes are:

(i) either singletons (absorbing states) {S}, S ∈ 2N ,

(ii) or cycles: S1
1→ S2

1→ . . .
1→ Sk

1→ S1,

3In this case we recover the literature on Boolean networks. The next state T is obtained by operating a global
transition function on the current state S: T = f(S), as in Richard (2018). However, our Property 7 in Appendix B
shows that a similar formalism can be produced even in non-deterministic frameworks.

4Some authors like Remy et al. (2008) refer to cycles as sequences of transitions, not necessarily sure ones, which
we rather call “loops” (this notion of loops is used only in Appendix B). Our notion of cycles (always attractive, by
definition) corresponds to their notion of attractive cycle. In order to make the distinction between cycles of states
and cycles in the influence graph (Definition 5), some authors rather refer to latter ones as “circuits”, but we are not
investigating this notion in the current paper.
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(iii) or collections C = C1 ∪ · · · ∪ Cp, where each collection Cj is an interval [Sj , Sj ∪Kj ] with at
least one non-empty Kj .

When the society is deterministic, absorbing classes are states or cycles. Collections Ci in
absorbing classes of the third kind are not necessarily pairwise disjoint, but they must be so if
the transitions are sure from one Ci to another (periodic classes). In the sequel, we will refer
to the dynamics of a society as being the kind of absorbing classes reached: (i), (ii) or (iii).
The last category is actually extremely various; see, e.g., Grabisch et al. (2019a) where a finer
classification is undertaken. Appendix B adapts Theorem 1 to the asynchronous framework.

Figures 1 and 2 show two examples of transition graphs Γ̃ (in yellow, at the bottom right)
producing different kinds of dynamics in societies with three agents. Their pi are represented
with coloured lattices. In the transition graph, we represent in orange the states belonging to
an absorbing class.

Agent 1 Agent 2

Agent 3

1 12 2 33

13 1323 12

123 123

12 23

∅ ∅

1 12 23 3

13 1323 12

123 123

12 23

∅ ∅

pi(S) = 1 at green states. pi(S) = 2
3
at blue states.

pi(S) = 1
3
at cyan states. pi(S) = 0 at red states.

Figure 1: From the aggregation functions to the transition graph (boxed). 12 is an absorbing state

(12
1→ 12). The probabilities of transitions can be computed from (2.1). For example: b23,12 =

1 · 2
3
· (1− 0) = 2

3
. Monotonicity collections (Definition 3) are B1 = {2}, B2 = {123} and B3 = [∅, 1],

that is, Agent 2 is conformist and Agent 3 is anti-conformist (see Example 1). Agent 1 is neither
conformist nor anti-conformist. p1 and p3 are Boolean.

At this stage, our concern is to know where the probabilities pi come from. This concern is
the subject of Section 2.5; but we need before to introduce a tool which is specific to our paper,
concerned with encompassing negative influence. This being done, we will be in a position to
wisely restrict the pi, which in turn will allow us to pursue our investigations on the transition
graph.
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Agent 1 Agent 2

Agent 3

1 12 2 33

13 1323 12

123 123

12 23

∅ ∅

1 12 23 3

13 1323 12

123 123

12 23

∅ ∅
pi(S) = 1 at green states. pi(S) = 0 at red states.

Figure 2: From the aggregation functions to the transition graph (boxed). 1
1→ 23

1→ 1 is a cycle. All
the pi are Boolean; hence, all the transitions are deterministic. In this example, B2 = B3 = {∅} and
B1 = {123}. Agent 1 is conformist and Agents 2 and 3 are anti-conformist. It is therefore a mixed
society (see Section 4.2: N1 = 1 and N2 = 23) with distance-based aggregation functions (Section
3.1). In this example, the mixed society produces a cycle which is made of blocks (Section 4).

2.4 The partial order 4B and related notions

As compared with Grabisch and Rusinowska (2013), the main difficulty of our generalisation is
not the negative influence per se, but rather the heterogeneity of influences received from one
agent to another. Each agent aggregates differently the opinions of the society. In order to
model such heterogeneity, we first need to introduce a collection of partial orders, in Definition
2.

Definition 2. (Partial order 4B)
Let S1, S2, B ∈ 2N . We define the 4B partial order (or simply the 4B order) on sets by:

S1 4B S2 ⇔
{
S1 ∩B ⊆ S2 ∩B
S1 ∩Bc ⊇ S2 ∩Bc (2.3)

and S1 ≺B S2 if at least one of these two inclusions is strict.

That is, S1 4B S2 if S1 is a subset of S2 within B, and a superset of S2 outside B (Figure
3). 4N is the usual set order ⊆, while 4∅ is the reverse set order ⊇. More details about the
algebraic structures of 4B can be found in Appendix D.

2.5 Monotonicity collections

At this stage, we did not impose any constraint on p. Our concern is now to impose meaningful
restrictions to our very general framework. In order to lighten the exposure of the model, the
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BBc

S2S1

Figure 3: Illustration of S1 4B S2: S2 is more engaged into B than S1.

utility foundations of p have been relegated in Appendix C, which explains in particular why
our model is myopic and how it does relate with the restrictions that we impose on p in this
section.

Definition 3. (Monotonicity collection) The collection Bi := {B ∈ 2N such that S1 4B S2 ⇒
pi(S1) ≤ pi(S2)} is called the monotonicity collection of agent i.

An agent i such that B ∈ Bi says yes with a higher probability when more agents in B say
yes, and less agents outside B say yes. Let us see two important particular cases.

Example 1. (Conformism, Anti-conformism).

• (Conformism). An agent i is said to be conformist if N ∈ Bi, that is, if for all S1, S2

with S1 4N S2 (i.e., S1 ⊆ S2), it holds that pi(S1) ≤ pi(S2) (i.e., pi is non decreasing).
Conformist agents are those who say “yes” when more agents say “yes” (“more” in the
inclusion sense).

• (Anti-conformism). An agent i is said to be anti-conformist if ∅ ∈ Bi, that is, if for all
S1, S2 with S1 4∅ S2 (i.e., S1 ⊇ S2), it holds that pi(S1) ≤ pi(S2) (i.e., pi is non increasing).
Anti-conformist agents are those who say “yes” when more agents say “no” (“more” in
the inclusion sense).

Conformism is also called agoraphily and anti-conformism is also called “agoraphoby” or “coun-
terconformism”5. Conformism can be justified, e.g., by benefits from coordination, like in Rohlfs
(1974) and Katz and Shapiro (1985). An interesting example of anti-conformism is an attempt
to beat the market, called ‘contrarian investing’ (Dreman, 2007). In Figure 2, Agents 2 and 3
are anti-conformist, while Agent 1 is conformist.

Example 2. (Monotonicity collections) In Figure 1, B1 = {2} (though p1(123) = 1, Agent 1
is not conformist!), B2 = {123} (conformist agent) and B3 = [∅, 1] (anti-conformist agent). In
Figure 2, B2 = B3 = {∅} and B1 = {123}. In Figure 4, Bi = [3, 123].

Definition 4. The polarisation of p (or the ‘polarisation of the society’) is the collection
(Bi)i∈N .

A conformist polarisation is such that all agents in the society are conformists. This is
the framework of Grabisch and Rusinowska (2013), to which we refer as being the “conformist
model”. A mixture of conformist and anti-conformist agents is call a mixed polarisation. As

5We sometimes meet the term “nonconformism”, which is slightly more general since it may also refer to indepen-
dence.
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shown in Property 3, when Bi 6= ∅, agent i can split all agents into two categories: his friends
and his enemies6, independently on the state of the world (no congestion, no satiation). The
more of its friends say yes, the more inclined is agent i to say yes. Example 3 exposes some
examples where Bi = ∅, which situations will be dismissed by the subsequent Fundamental
Assumption. Note that Bi = ∅ (Example 3) is different from Bi = {∅} (which represents a
particular case of anti-conformism).

Property 3. The following statements are equivalent:

(i) Bi 6= ∅.
(ii) For any j ∈ N , either pi(S ∪ j) ≥ pi(S) for all S ∈ 2N , or pi(S ∪ j) ≤ pi(S) for all S ∈ 2N .

Example 3. (Bi = ∅: congestion, saturation)
Let pi(S) = s(n− s) for all S. Then for any j, pi(S ∪ j) ≥ pi(S) for s ≤ n

2 − 1 and pi(S ∪ j) ≤
pi(S) for s ≥ n

2 . This corresponds to situations like the frequentation of a restaurant. When
there are not too many people in the restaurant, the dominant effect is the herd behaviour,
since agents extract information on the quality of the restaurant from the number of clients.
But when there are too many people, the congestion effect dominates. Another example is the
following: agent i is such that Bi = ∅ is an agent having a low self-esteem. It is positively
influenced by himelf when a lot of people share his opinion and negatively influenced by himself
when few people share his opinion. One can think also of diplomatic situations, where peers can
be friends in some states of the world, and enemies in other states of the world. For example,
mafias or nations which compete over small pieces of territory can unite against a common
bigger enemy. Let us mention also the “mixed aggregation rule” (Grabisch et al., 2019a) where
the agent randomises to pick an aggregation function before aggregating. Finally, the swarming
rule describes the incentive for agents to cluster, though they must observe physical distances
to avoid collisions.

In the light of the previous example, where situations exposed are quite subtle, it seems rea-
sonable to impose the following Fundamental Assumption. Relaxing it would ask for a totally
different mathematical treatment. The utility foundations of this assumption can be found in
Appendix C.

Fundamental Assumption. Bi 6= ∅ for all i ∈ N .

2.6 The influence index

Having imposed the non-emptiness of the Bi in the previous subsection, point (ii) of Property
3 becomes a property of our model. As a consequence, we are incentivised to introduce the
influence index in Definition 5. Since all the terms (pi(S ∪ j) − pi(S)) of the sum are of the
same sign (in the large sense) and since only the sign of the sum is of interest for us, we do not
need to put any coefficients in front of the terms.

6To fix ideas, we refer to interactions in terms of friendship and negative influence in terms of enmity. This
terminology is informal and only for the purpose of easing the exposure. There are no moral connotations in these
terms. For example, an anti-coordination games is one where agents exert negative influence on each other, though it
can simply be for management purposes. Go shopping or not? Sharing the tasks is optimal: in a couple, if one of the
two goes shopping, then the other one should not. One can think also of excludable goods. Also, in gene networks,
inhibition is described by negative influence (Paulevé et al., 2020).
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Definition 5. We define the influence index of j on i as follows:

φ(j → i) :=
∑

S⊆N\j

(pi(S ∪ j)− pi(S)). (2.4)

If φ(j → i) > 0 (respectively <, =), we say that j has a positive (respectively negative, null)
influence on i. The influence graph is G := (N, E) where E is the disjoint union of E+ and E−,
respectively the set of positive influence arcs and the set of negative influence arcs, where there
is a positive (resp. negative) influence arc from j to i if φ(j → i) > 0 (resp. < 0). An agent
exerting a null influence on i is also called irrelevant for i.

An influence (positive or negative) is obtained when at least one S ⊆ N \ j is such that
pi(S ∪ j) 6= pi(S), but not necessarily all of them7. Figure 6 shows an example of influence
graph.

2.7 Shape of the monotonicity collections

Theorem 2 below is used throughout the paper. It states that the collection Bi is an interval
which can be expressed with the influence index. Agents in Bi exert a strict positive influence
on i. Agents in (Bi)

c exert a strict negative influence on i. Agents in Bi \Bi are irrelevant for
i. In other words, the baseline set of Bi is Bi and we can add some irrelevant agents to Bi.

Theorem 2. Bi = [Bi, Bi], where:

Bi :=
⋂
B∈Bi

B = {j ∈ N | φ(j → i) > 0} (2.5)

Bi :=
⋃
B∈Bi

B = {j ∈ N | φ(j → i) ≥ 0} (2.6)

Theorem 2 implies this important remark: the influence graph is entirely characterised by
Bi and vice versa. This means that the structure of interactions is entirely contained in Bi.
Since Bi is very handy, we prefer in the sequel to work with Bi. To illustrate this theorem, we
can characterise conformism and anti-conformism (see Example 1) as follows:

i is a conformist agent⇔ N ∈ Bi ⇔ Bi = N (2.7)

i is an anti-conformist agent⇔ ∅ ∈ Bi ⇔ Bi = ∅ (2.8)

That is, an agent is conformist (resp. anti-conformist) if and only if no agent has a strictly
negative (resp. strictly positive) influence on him.

The presence of irrelevant agents, that is, agents that we do not see, is the reason why our
model is embedded into the literature on social networks. Since these agents play no role in the
opinion formation of agent i, some flexibility is allowed in the choice of B ∈ Bi. This flexibility,
illustrated by Figure 4, is the key of our notion of groups introduced in Section 4.

Example 4. (Bipartite graphs) If the influence graph is bipartite, meaning that N is the disjoint
union of some sets N1 and N2 such that φ(j → i) 6= 0 ⇒ i ∈ N1 and j ∈ N2 or i ∈ N2 and
j ∈ N1, then: Bi ∪ (Bi)

c ⊆ N2 for all i ∈ N1 and Bi ∪ (Bi)
c ⊆ N1 for all i ∈ N2

8. In particular
if all agents are conformist: Bi ⊇ [N2, N ] for all i ∈ N1 and Bi ⊇ [N1, N ] for all i ∈ N2.

7This fact is at the root of the wall between the influence graph and the opinion dynamics, as discussed in Appendix
E. This is why the literature on Boolean networks (with variations in the terminology) resorts to the notion of influence
at a given state: see for instance Chevalier et al. (2019). We use a similar notion in Appendix B, namely the set of
dissatisfied agents at a given set.

8Note that N1 and N2 are not necessarily groups in the sense of Section 4.
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Increasing values of piIncreasing values of pi

123 ∈ Bi 23 ∈ Bi

1 122 13 ∅3

13 223 123

123 23

12 3

∅ 1

pi(S) = 1 at green states. pi(S) = 0 at red states.

Figure 4: Theorem 2: from left to right, the lattice is simply rearranged. Any B ∈ Bi = [3,123]
induces a partial order 4B for pi. Agents in {1, 2, 3} \ {3} = {1, 2} are irrelevant on i; by removing
or adding any irrelevant agent, pi is left unchanged. Graphically, any path from the bottom to the
top is going “from the red to the green”.

2.8 Non-anonymous thresholds: the P1 and P0 collections

We end the general presentation of the model with the key tools to study the process qualita-
tively.

Definition 6. Let i ∈ N .
P1
i := {S | pi(S) = 1}. (2.9)

P0
i := {S | pi(S) = 0}. (2.10)

P∗i := 2N \ (P0
i ∪ P1

i ) = {S | 0 < pi(S) < 1}. (2.11)

Assumption BC (‘boundary conditions’) naturally completes the assumption on the non-
emptiness of the B: it equivalently says that the P1 and P0 collections are non-empty. It is not
assumed by default in this paper; in particular, it was not required in Theorem 2.

Assumption BC. For any i and B ∈ Bi:

• pi(B) = 1,

• pi(B
c) = 0.

The P1 and P0 collections, which are such that the agent i says yes or no for sure can
be regarded as some kinds of ‘non-anonymous thresholds’. We can check that pi is Boolean
if and only if P∗i = ∅ and that Boolean aggregation functions are entirely defined with P1

i

(or P0
i ). Under Assumption BC, we have in particular Bi ⊆ P1

i and B(c)
i ⊆ P0

i . Moreover,
in the case where aggregation functions are Boolean, equalities hold if and only if P1

i is an
interval (see Section 3.2 on boss sets for more details). One important remark to bear in mind
is that (P0

i ,P1
i )i∈N (not the polarisation (Bi)i∈N of the society) is key to describing the opinion

dynamics. This is the main insight of the following straightforward property.

Property 4. B̃ and (P0
i ,P1

i )i∈N are isomorphic.

10



It stems from Property 4 that (P0
i ,P1

i )i∈N contain as much information as the transition
graph. In particular, it suffices to compute the absorbing classes. The converse, however, is
wrong. Figure 5 at the end of the summary subsection below helps visualising the articulations
between these objects.

At this stage of the paper, let us summarise the notions introduced. The reader how would
like to read more about the algebra behind the model is referred to Appendix D; he will find
also more connections with Grabisch and Rusinowska (2013), along with more details about the
transition and the influence graphs.

2.9 Summary of the notions introduced

The following summary can be read keeping an eye on Figure 5.

(0) The primitive of the model is p. Utility foundations of p ((ui)i∈N on Figure 5) are exposed
in Appendix C.

(i) From p, we extract the transition graph B = (bS,T )S,T∈2N :

bS,T =
∏
i∈T

pi(S)
∏
i 6∈T

(1− pi(S)).

p and B are isomorphic.

(ii) Absorbing classes are obtained from B̃.

(iii) We define the 4B order and the influence index φ:

φ(j → i) =
∑

S⊆N\j

[pi(S ∪ j)− pi(S)].

(iv) The monotonicity collections Bi are extracted from the aggregation functions pi:

B ∈ Bi if and only if for any S1, S2 ∈ 2N , S1 4B S2 ⇒ pi(S1) ≤ pi(S2).

We assume that Bi 6= ∅ for all i (hence, all the terms in the expression of φ are of the same
sign).

(v) We relate the interval Bi with the influence indexes: Bi = [Bi, Bi], where:

Bi :=
⋂
B∈Bi

B = {j ∈ N | φ(j → i) > 0} and Bi := Bi ∪Ki,

with Ki the set of irrelevant agents on i.

(vi) (P0
i ,P1

i )i∈N are obtained from pi:

P1
i := {S | pi(S) = 1}

and
P0
i := {S | pi(S) = 0}.

B̃ and (P0
i ,P1

i )i∈N are isomorphic.

11



sign(φ(j → i))i,j∈N

(Bi)i∈N p

(ui)i∈NInfluences Dynamics

B B̃

(P0
i ,P1

i )i∈N

absorbing classes

Figure 5: Summary and relations between the introduced notions.

It is essential to note that Figure 5 is composed of two hermetic sides. On the right, the
dynamical side is described by absorbing classes and related notions; on the left, the influence
side, where signs of influence and monotonicity collections appear; they are related by Theorem
2. In this paper, there will be no bridge between the two sides and indeed, surprisingly, we
cannot characterise the dynamics of opinions with the influence graph (and vice versa). Only
a statistical approach can break the wall, which will be done in a future paper; the reader is
referred to Appendix E for more details on this issue. If the analysis is restricted to a purely
algebraic approach then, besides (P0

i ,P1
i )i∈N , the appropriate notion to characterise the opinion

dynamics is the one of influential coalitions, exposed in Appendix D.

Remark 2. That updating scheme (synchronous or asynchronous) does not affect the notions
introduced. The only exception is (i). Indeed, the identity bS,T =

∏
i∈T pi(S)

∏
i 6∈T (1 − pi(S))

enlists all agents to update simultaneously. See Appendix B for more general updating schemes.

3 Some particular p

3.1 Distance-based aggregation functions and Generalised Weighted
Means

One important class of aggregation functions is the anonymous ones. We say that pi is anony-
mous when pi(S) can be written only with the cardinality of S, that is, when there exists a
function q from R to R such that pi(S) = q(s) for all S ∈ 2N (in this case we rather write
pi(S) ≡ pi(s) by an abuse of notation). The distance-based aggregation functions generalise the
notion of anonymous influence.

Definition 7. pi is said to be distance-based if there exists a state T such that: |S1∆T | =
|S2∆T | ⇒ pi(S1) = pi(S2).

A distance-based aggregation function is anonymous if and only if the agent is conformist or
anti-conformist; in both cases we can either take T = N or T = ∅. The aggregation functions
of Figure 2 are anonymous, and therefore distance-based. Let us introduce the neighborhood of
T (of radius r) as follows:

Vr(T ) := {S : |S∆T | ≤ r}. (3.1)

Distance-based aggregation functions have P0
i and P1

i of the form P1
i = Vr1(T ) and P0

i =
Vr0(T c). We generalise below the weighted means introduced in Grabisch and Rusinowska

12



(2013)9 and we relate them with distance-based aggregation functions in Proposition 1.(3).

Definition 8. The family of Generalised Weighted Means (GWM) is defined by aggregation

functions pi(S) = 1
2

(
1 + f−1

(∑n
j=1w

j
i f(xj)

))
where f is a continuous automorphism on

[−1, 1], xj = −1 if j /∈ S, xj = 1 if j ∈ S and w1
i , . . . , w

n
i ∈ [−1, 1], called the weights, are

such that
∑n

i=1 |w
j
i | = 1. Such aggregation functions are called GWM aggregation functions,

and a society where all agents aggregate according to a GWM function is called a GWM society.

The GWM aggregation function of an agent i is unbiased (see Remark 1) if and only if f is
an odd function. Proposition 1 gives some precisions about the GWM aggregation functions.

Proposition 1. Assume that i is an agent who aggregates opinions according to a GWM
aggregation function with weights (wji )j=1,··· ,n. Then:

(1) Bi 6= ∅ for all i and Assumption BC holds.

(2) φ(j → i) > 0 (resp. <, = 0) if and only if wji > 0 (resp. <, = 0).

(3) pi is a distance-based aggregation if and only if |wji | =
1
n for all j.

3.2 Boss sets

Boss sets (Hu and Shapley, 2003a,b) are key to describing aggregation functions of agents exert-
ing a strong discrimination in their opinion formation. They capture extremely non-anonymous
influences; as such, they can be seen as the opposite of distance-based aggregation functions.

3.2.1 Definition

Definition 9. (Boss sets) Assume that pi is Boolean. We say that K is a boss set for i if and
only if i,K verify one of the following situations:

(i) P1
i = [K,N ] =↑ K.

i says yes for sure if and only if all agents of K say yes. In other words, K ⊆ S ⇔ pi(S) = 1.

(ii) P1
i = [∅,K] =↓ K.

i says yes for sure if and only if no agent outside K says yes. In other words, S ⊆ K ⇔
pi(S) = 1.

(iii) P0
i = [K,N ] =↑ K.

i says no for sure if and only if all agents of K say yes. In other words, S ⊆ K ⇔ pi(S) = 0.

(iv) P0
i = [∅,K] =↓ K.

i says no for sure if and only if no agent outside K says yes. In other words, K ⊆ S ⇔
pi(S) = 0.

If K = {j}, we say that j is a boss for i.

Example 5. (Star influence graph) Assume that the pi are Boolean and non-constant, and
that the influence graph is a star, meaning that there exists i ∈ N such that φ(j → k) 6= 0 ⇒
i ∈ {j, k}. Then i is a boss for all agents j ∈ N \ i.

9Aracena et al. (2006) used a similar function, called the Heaviside step function H, to model opinion updating
(gene activation/inhibition), with the difference that H is a 0-1 valued threshold function, which are of a special
interest to model genes or nervous activity, while the GWM functions are built with an automorphism f .
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3.2.2 Application of boss sets to time-varying influence graphs

Boss sets can be be used to model time-varying influence graphs. Let us assume to simplify that
aggregation functions are Boolean and that all agents are conformist. We want to formalise the
idea that when i gets linked to j, i.e., when φ(i → j) gets strictly positive, then j becomes a
bit closer to taking i as a boss.

Let p1, . . . , pm be m aggregation functions. We define the convex hull of {p1, . . . , pm},
denoted by Conv(p1, . . . , pm), as the collection of aggregation functions p verifying the following
condition: there exists no S ∈ 2N such that p1(S) = . . . = pm(S) 6= p(S). Now, let pj be the
aggregation function of agent j. If j gets connected to agent i (receives influence from him),
then it should be that its new aggregation function p′j is such that p′j ∈ Conv(pj , p(i)), where p(i)

is such that P1 =↑ i. The loss of a link from agent i would be formalised by p′j ∈ Conv(pj , p(i)c),

where p(i)c is such that P1 =↓ (N \ i).
This is not the only way of modeling a new or a lost link. Instead of adopting the opinion

of agent i, i.e., being closer to adopting i as a boss, one could imagine that agent j adopts
the behaviour of agent i, that is, agent j gets closer to adopting the aggregation function of
agent i: p′j ∈ Conv(pj , pi). The mere comparison of the two approaches would deserve a whole
paper. More generally, mimicry is not only adopting an opinion, but also the behaviour that
produces this opinion. One might argue that there is no reason why we should treat the two
aspects in a different manner and, in some situations, it not even clear whether we can actually
distinguish them. This is the case for example when the opinion is choosing an influence graph
of friendships: not only agents choose their opinion, but also they choose who will influence
them: in this case (and in this case only) sharing the same behaviour is some kind of guarantee
to share the same beliefs. Therefore, the aggregation function should be endogenous in the
following sense: that the choice of pi and the choice of the opinion should obey to the same
rules. This suggests a model of influence where we would restrict our analysis to a collection of
exogenous aggregation functions, as many as opinions. In our binary opinions models, at each
step, not only agents would revise their opinion, but also they would revise their aggregation
function, picking it from the alternative (pA, pB), using the same aggregation function at the
current period.

3.3 Discussion on the self-influence

A natural idea is that agents positively weigh their own opinion, i.e., they “agree with them-
selves”. Assumption SI formalises this idea, but is not assumed by default in this paper.

Assumption SI: i ∈ Bi for all i.

Assumption SI means that all agents exert a strict positive influence on themselves. Equiv-
alently (by Property 3), for all i, there exists S ⊆ N \ i such that pi(S) < pi(S ∪ i)10. Though
Assumption SI sounds very natural, it might be relevant, in some contexts, to assume that
φ(i→ i) < 0. Here are a few examples.

• Like in SIR models, ‘saying yes’ can be seen as ‘being infected’. Stating φ(i → i) < 0
allows to model a recovery from the disease. More generally, it can model an excitation
which calls for a subsequent inhibition in a biologic cycle.

10One might prefer, as a weaker assumption, to state Assumption SI as i ∈ Bi for all i (agents do not have a strict
negative influence on themselves), but our formulation is easier to work with in Proposition 3.
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• ‘Saying yes’ can be ‘passing on a piece of information’. If there is a cost for passing the
information, then the agent will convey the information for one or a few periods, until
enough people received it. Then, he will stop.

• From a psychological point of view, a vote can be the acquisition of an object, and failure
of Assumption SI would model, either a state-varying passive utility function11, or an
active utility function12 expressing the idea that utility for a given object decreases once
we acquire it, that is, that desire is exacerbated by privation. For the anthropological
foundations of this idea, see Girard (1966), Girard (1977).

• From a managerial point of view, a vote can be a check of the quality of a product in
the manufacturing process. An agent probing the product at time t is less inclined to
probe it again at time t+ 1 since he gains from spreading his checks over time rather than
concentrating them on a contained period.

• The mixed and the leadership model in Section 4.2 are other examples where Assumption
SI does not hold.

We expect Assumption SI to be involved in stability issues, which are of particular interest
for us. This is the case indeed; see Proposition 3 in Section 5.

4 Behaviour groups: a non-topological approach to

distance in networks

We tend to think of distances in networks in terms of topology: distance between nodes, cliques,
conventions (Jackson and Storms, 2018), etc. But distance can also be regarded on a behavioural
point of view: agents are close when they similarly react to their environment. In large commu-
nitarian groups, e.g., cultural, political, religious, etc. agents have similar aggregation functions
though they might not know each others and might not even share the same friends. We expose
in this section a non-topological notion of groups that brings together agents who are ‘on the
same wavelength’, that is, whose opinions tend to move comonotonically.

4.1 Definition, characterisation, particular cases

Definition 10. Let (N1, . . . , Ng) be a partition of N into g blocks of agents. These blocks are

called behaviour groups, or simply groups, if
⋂
i∈Nk

Bi 6= ∅ for all k ∈ {1, . . . , g}. We write N(i) for

the group that agent i belongs to.

Example 6. B1 = [13, 123]; B2 = [12, 123]. Then, B1∩B2 = {123}, which is non-empty: hence,
agents 1 and 2 can belong to the same group.

Members of a group need not influence each other but are similar in respect to who influences
them. Agents belong to the same group if their aggregation functions can be polarised in the
same direction, meaning that there exists a common 4B for all agents of the group. A partition
into groups always exists since {{1}, . . . , {n}} is a possible one, but it might be not unique, as
Example 7 shows:

11See Appendix C. The vector (ui(S))S∈2N itself depends on the current state of the world (no stationarity anymore).
12See Appendix C.
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Example 7. (Non-uniqueness of the partition) Assume that N = {1, 2, 3}. Let B1 := [∅, 1],
B2 := [1, 123] and B3 := [23, 123]. We can partition N into {12, 3} or into {1, 23}. Irrelevant
agents are the key of the non-uniqueness of the partition. This flexibility is arguably a strength
of our definition, since it allows to incorporate additional criteria, e.g., topological ones, to
choose among several partitions.

It is important to note that agents of the same group do not necessarily exert a positive
influence on each other (nor any kind of influence). Indeed, in Example 7, φ(2 → 1) < 0.
However, {12, 3} is a possible partition into groups. Figure 6 helps visualising the notion of
groups: agents of the same group receive the same influences in the large sense: the only
forbidden situation for two agents a, b of the same group is φ(c→ a) > 0 and φ(c→ b) < 0 for
some c ∈ N , as stated by Property 5:

Property 5. (Characterisation of groups) A partition (N1, . . . , Ng) is a possible partition into
groups if and only if for any a, b belonging to any same block Nk and for any c ∈ N , φ(c →
a) > 0⇔ ¬(φ(c→ b) < 0).

Property 5 can be seen as a “no-veto” characterisation of groups: a friend of an agent of
the group cannot be the enemy of another. This being imposed, a flexible space remains in
the notion of groups, thanks to the irrelevant agents. Indeed, the non-emptiness of

⋂
i∈Nk

Bi in
Definition 10 does not impose that agents in the same group Nk should be strictly influenced
by the same people, as the next example shows.

Example 8. Assume that B = {a, b, c, d} ∈ B1 ∩ B2. The nonemptiness of B1 ∩ B2 implies
that agents 1 and 2 can form a group together. Agents a, b, c, d (and only them) are exerting a
positive or null influence on agents 1 and 2. It could be that agents b, c and d are irrelevant on
1 (only a exerting a strict positive influence on him) and that agent a is irrelevant on 2 (only b,
c and d exerting a strict positive influence on him). In this case, Agents 1 and 2 would belong
to the same group while not sharing the same friends.

The following constraint, not assumed by default in this paper, requires that no coarser
partition exists. It is very natural, but in some circumstances, it is convenient not to impose it.

Assumption C: For all j, k ∈ {1, . . . , g},
⋂

i∈Nj∪Nk

Bi = ∅.

Definition 11. Let N = N1 ∪ . . . ∪ Ng be a partition into groups of N . We say that a state
S is made of blocks if there exists J ⊆ [1, g], called the indices of S, such that S is a union of

groups: S =
⋃
j∈J

Nj . We say that a class C is made of blocks if C is a singleton made of blocks,

or a cycle where each state is made of blocks, or a union of intervals where each Sj ,Kj is made
of blocks (with the notations of Theorem 1.(iii)).

Recall that Theorem 2 states that Bi is an interval, i.e., of the form [Bi, Bi]. Assumption
BA (“blocks assumption”) states that the set of agents influencing a given agent is made of
blocks. This means that all agents have perceptions of groups as a whole (it can be interpreted
as a society where everyone exerts a gender, racial, etc. discrimination). It is not assumed by
default in this paper. See Figure 6 for an influence graph where Assumption BA does not hold.
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Figure 6: Influence graph. One group boxed in brown, the other group in grey. Positive (rep.
negative) arrows of the influence graph are represented in green (rep. red) . Assumption BA does
not hold, since x and y, which belong to the same group, receive positive influence from some agents
of the brown group (m) and negative influence from some others (j). Agents can a priori exert
negative influence on agents of their own group (red arrows within the brown group). The topology
of the influence graph plays no role in the definition of groups. For example, neither t nor x is linked
with any agent of his group, while they receive influences agents of the other group.

Assumption BA: There exists a partition into groups such that for all i = 1, . . . , n,
Bi and Bi are made of blocks.

It can be shown that under Assumptions SI and BA, agents of the same group exert non-
negative influences on each other13. A particular case is the one of communitarian groups, i.e.,
communities of agents who not only have a positive perception of agents from their group, but
also a negative perception from agents outside. Example 9 introduces this notion.

Example 9. A communitarian group is a group N ′ such that N ′ ∈ Bi for all i ∈ N ′. When all
groups are communitarian, we say that the society is communitarian. The agent says yes when
the state of the society is ‘not too far’ from his group. The particular case of two communitarian
groups is referred to in the literature as an ‘anti-coordination model’14.

As we mentioned in introduction, and as we can see from the definition of groups, the
topology of the influence graph plays no role. Appendix B provides a notion of correlated
updating which hits two birds with one stone: (i) it extends our model to correlated updating
(which relaxes the synchronous updating assumption); (ii) it restitutes a role to the topology
by arguing that agents who closely interact with each other should update their opinion at the
same time.

13Imposing these assumptions gives a more natural notion of groups, of agents as ‘friends’.
14Bramoullé et al. (2004) present the first anti-coordination model embedding this game in a network formation

game. Links are costly and the cost is the same across all players. On the contrary, in López-Pintado (2009), the cost
of forming links is shared among individuals. Finally, Bramoullé (2007) compares the network effects on coordination
games and anti-coordination games.
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4.2 Analysis of the case g = 2

This subsection is devoted to the analysis of the case of two groups N1 and N2. It is convenient
not to impose Assumption C here. However we impose Assumption BA. By a slight abuse of
notation, we denote:

B1 :=
⋂
i∈N1

Bi (4.1)

B2 :=
⋂
i∈N2

Bi. (4.2)

Up to relabelling, four among the sixteen possible types of polarisations call for particular
interest: the conformist, mixed, leadership and communitarian polarisations, which we define
in Table 1. Under Assumption BC, some important transitions are given in Table 2.

Conformist polarisation C
N ∈ Bi for all i ∈ N

Mixed polarisation M1

N ∈ Bi for i ∈ N1

∅ ∈ Bi for i ∈ N2

Leadership polarisation L1

N1 ∈ Bi for all i ∈ N

Communitarian polarisation R1

N1 ∈ Bi for i ∈ N1

N2 ∈ Bi for i ∈ N2

Table 1: The C, M1, L1 and R1 polarisations.

Conformist polarisation C

∅ 1→ ∅
N

1→ N

Mixed polarisation M1

∅ 1→ N2

N
1→ N1

Leadership polarisation L1

N2
1→ ∅

N1
1→ N

Communitarian polarisation R1

N1
1→ N1

N2
1→ N2

Table 2: Some important transitions (Assumption BC must hold)

(C) Conformist polarisations have already been defined in the sequel of Example 1. It is such
that N ∈ Bi for all i ∈ N .

(R1) Communitarian polarisations have been defined in Example 9. The case of two groups
translates into N1 ⊆ B1, N2 ⊆ B2, N2 ⊆ B

c
1 and N1 ⊆ B

c
2. Influences are reciprocal in

the large sense: φ(i→ j) ≥ 0⇔ φ(j → i) ≥ 0 and φ(i→ j) ≤ 0⇔ φ(j → i) ≤ 0. We note
that E ∩N1 ⊆ E+, E ∩N2 ⊆ E+ and that φ(i→ j) < 0 implies that i, j belong to different
groups. In particular, the number of negative arcs in a cycle of the influence graph must be
even; hence the influence graph is a balanced signed graph in the sense of Harary (1953).
The two groups play an anti-coordination game. In accordance with Altafini (2012, 2013),
showing that balanced influence graphs result in opinion polarisation, we evidence that
this configuration is involved in conditions of stability (Section 5).
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(M1) Mixed polarisations.

It holds that N1 ⊆ B1, N2 ⊆ B1, N1 ⊆ B
c
2 and N2 ⊆ B

c
2. A mixed polarisation is

one where agents in N1 are conformists (B1 = N) and agents in N2 are anti-conformists
(B2 = ∅). Grabisch et al. (2019a) investigates the dynamics of mixed polarisations.

(L1) Leadership polarisations.

It holds that N1 ⊆ B1, N2 ⊆ B
c
1, N1 ⊆ B2 and N2 ⊆ B

c
2. Hence, B1 = B2 = N1.

Thus,
⋂
i∈N
Bi 6= ∅: a partition into a single group is possible. Taking B ∈

⋂
i∈N Bi, the

society can be split into B and Bc: those who are unanimously followed (B), those who are

unanimously disesteemed, including by themselves (Bc). Writing
⋂
i∈N
Bi = [B,B], where

B :=
n⋃
i=1

Bi and B :=
n⋂
i=1

Bi, we have B ∩
n⋃
i=1

B
c
i = ∅ and B

c ∩
n⋃
i=1

Bi = ∅, from which we

infer that agents in B are weighted strictly negatively by no agents, and agents outside B
are weighted strictly positively by no agents.

Polarisations M2, L2 and R2 are defined by exchanging the roles of N1 and N2. For M2

and L2, this is a mere relabelling, but R2 is of a new kind of society, which we may call ‘anti-
communitarianism’: agents weight positively agents outside their group, and negatively agents
of their group.

We now investigate isomorphisms between the four important classes of polarisations, C,
M, R and L. To do this, we introduce the following transformations on the weighted transition
graphs:

Definition 12. Consider the transition S
p→ T and Z ⊆ N .

• The Z-right transformation of the transition S
p→ T is defined by S

p→ T∆Z.

• The Z-left transformation of the transition S
p→ T is defined by S∆Z

p→ T .

• The Z-left-right transformation of the transition S
p→ T is defined by S∆Z

p→ T∆Z.

A vector of aggregation functions p’ is said to be obtained from p by a right/left/left-right
transformation when a right/left/left-right transformation is operated on all transitions of Γp

to produce Γp’. The Z-left-right transformation is a graph homomorphism (but the Z-left and
the Z-right are not). A consequence of this fact is stated in Proposition 2.

We now expose three related propositions in a row. Theorem 3 expresses the monotonicity
collections obtained from the ∆ transformations. Corollary 1 applies this theorem to the four
particular polarisations we are particularly interested in. Finally, Proposition 2 focuses on the
absorbing classes obtained from a left-right transformation; in particular, switching from the
absorbing classes of C to the ones of R, or from the ones of M to the ones of L (and vice versa),
is extremely simple.

Theorem 3. (Transformations on transition graphs and B)
Assume that p’ is obtained from p by :

(i) a Z-left transformation.

Then, Bp’i = Bpi ∆Z for all i ∈ N .
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(ii) a Z-right transformation.

Then: Bp’i = Bpi for all i /∈ Z, and Bp’i = (Bpi )(c) for all i ∈ Z.

(iii) a Z-left-right transformation.

Then: Bp’i = Bpi ∆Z for all i /∈ Z, and Bp’i = Bpi ∆Zc for all i ∈ Z.

Corollary 1. (Relations between the polarisations C, M, L and R) Assume that the society is
split into the groups N1 and N2.

(i) Let p’ be the aggregation function obtained from the aggregation function p with the
N2-right transformation. Then:

(a) The polarisation of p is conformist if and only if the polarisation of p’ is mixed.

(b) The polarisation of p is leadership if and only if the polarisation p’ is communitarian.

(ii) Let p’ be the aggregation function obtained from the aggregation function p with the
N2-left-right transformation. Then:

(a) The polarisation of p is conformist if and only if the polarisation of p’ is communi-
tarian.

(b) The polarisation of p is leadership if and only if the polarisation of p’ is mixed.

(iii) Let p’ be the aggregation function obtained from the aggregation function p with the
N2-left transformation. Then:

(a) The polarisation of p is conformist if and only if the polarisation of p’ is leadership.

(b) The polarisation of p is mixed if and only if the polarisation p’ is communitarian.

Proposition 2. (Left-right transformation) If p’ is the aggregation function obtained from p
by a Z−left-right transformation of its weighted transition graph, then C is an absorbing class
of p if and only if C∆Z is an absorbing class of p’. In particular, if the polarisation of p is
conformist or communitarian, then there exists no periodic class of length k >

(
n

[n/2]

)
.

C M

L R

∆-left ∆-left

∆-right

∆-right

∆-left-right

Figure 7: Corollary 1 and Proposition 2: polarisations C and R on the one hand, and M and L on
the other hand, have the same dynamics.

It follows from Corollary 1.(ii) and the first part of Proposition 2 that the dynamics of
communitarian and the conformist polarisations are the same15 in other words opinions in a
communautarian society tend to separate like in a decantation of oil from vinegar, and that the

15As noticed also by Altafini (2013) using the notion of gauge transformation.
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dynamics of leadership and the mixed polarisations are the same16. It is essential to note that
in general, even though weighted transition graphs are isomorphic under a left-transformation,
or under a right-transformation, absorbing classes are entirely reshuffled17.

5 Stability

It is not surprising that a high proportion of anti-conformist agents results in cycling opinions
(see Figure 2, where two agents are anti-conformist); but it is more surprising that conformist
societies can produce cycles as well, as evidenced in Grabisch and Rusinowska (2013). The fact
that all agents would like to coordinate does not ensure convergence towards an absorbing state!
This phenomenon has two main sources:

• A behavioural origin for instability. The influence graph is a complex system of
hierarchies where interactions fail to coordinate. This happens particularly in “very non-
anonymous” cases, i.e., when agents have boss sets (Section 3.2). We can show also (not
exposed in this article) using an index of entropy that the notion of natural dynamic can
be rigorously defined, giving a justification to the fact that conformist societies tend to end
in an absorbing state, even though we can design tricky conformist societies with cycling
opinions.

• A synchronism origin for instability. The surprising fact that conformist agents
may sometimes fail to coordinate is inherent to the synchronous framework. We show
in Appendix B that conformist societies updating asynchronously always end up in an
absorbing state: asynchronism produces more intuitive dynamics.

In this section, we focus on the behavioural determinants of instability. We refer to opinions
(or the society itself) as being stable when an absorbing state is reached18. In biology, contra-
dictory impulsions resulting in cycles are not necessarily an undesirable phenomenon: we can
think of hormonal cycles. In ethology, competing drives are standard, e.g., agression or escape,
or on the occasion of courtship displays, resulting in behavioral cycles (Lorenz, 1969). On the
contrary, in social choice theory, unstable societies are such that the outcome of the vote de-
pends on the voting day, resulting in difficult and unreliable predictions. This remark motivates
investigating influence processes which does not converge towards an absorbing state, i.e., by
Theorem 1, which reach a cycle or an interval collection. In this section, we focus on cycles and
we leave aside the absorbing classes of the third kind, whose analysis is more complex. Other
results related to stability issues are given in Appendix B, by the investigating synchronous
singularities, and in Appendix D where we characterise absorbing states and intervals using the

16That leadership societies are prone to opinion fluctuations might seem more surprising but it has already been
observed by Acemoglu et al. (2010), in a different context though, since it considers two sources of leadership.

17To figure it out, we can consider Proposition 2, which states that lengths of cycles in polarisations C and R do
not exceed

(
n

[n/2]

)
; however we can show that there exists leadership and mixed societies with cycle lengths exceeding(

n
[n/2]

)
. The reader is referred to Aracena et al. (2004) for the connection between the length of cycles with the topology

of the influence graph in an influence model with m ≥ 2 states.
18Admittedly, this definition of stability is strong. We could also define quantitative notions of stability, e.g., we

could study the invariants I(C) :=
(⋂

S∈C S
)
∪
(⋃

S∈C S
)c

of the absorbing class C, which are the agents who never
change their opinion in C. Another approach to stability could be to compute the average cardinality of states in C,
and its variance. Another argument why absorbing states deserve special interest is that they are robust to passing
from a synchronous to an asynchronous scheme, as shown in Appendix B by the equivalence of the points (i) and (ii)
of Proposition 4.
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notion influential of coalitions19.

At this level of generality, delivering necessary and sufficient conditions to forbid cycles
seems to be out of reach. We only propose a few sufficient conditions.

Proposition 3. (Stability of opinions) If one of the following statements holds, then there is
no cycle.

(i) The society is GWM and Assumption SI holds.

(ii) There exists i ∈ N such that φ(i→ i) ≥ 0 and such that P0
i and P1

i are singletons.

(iii) (Autonomous opinions)

All aggregation functions are Boolean, agents of the same group have the same aggregation
function, P1

i = Vri(N(i)) for all i and there exists i such that min(ri, n−ri) ≤ min
nj 6= nl

|nj−

nl|.
(iv) All agents have distance-based aggregation functions, the polarisation is conformist or

made of two communitarian groups.

(v) Each P∗i can be partitioned into P∗i = Pi∪P ′i such that the vector of Boolean aggregation
functions p’ verifies one of the previous statements, where p′i is determined by P ′1i :=
P1
i ∪ Pi and P ′0i := P0

i ∪ P ′i.

We can group the ‘ingredients of stability’ of Proposition 3 into four main groups. More or
less, they all seem obvious; but the interesting point is that combinations of several ingredients
are needed to get a sufficient receipt to dodge out cycling opinions. Typically, none of them is
sufficient on its own. Besides the take-home message aspect of the following list, its interest is
to evidence that qualities which a priori look different, actually all play in favour of stability
when combined with each others.

(1) Enough self-confidence. Assumption SI, its weaker version (φ(i → i) ≥ 0 for all i, or
for at least one agent i), are involved in all points (i) to (iv), either explicitly or implicitly.
Though it is not a necessary condition for reaching an absorbing state, it is hard to
bypass it when designing sufficient conditions. Another aspect of self confidence is having
small thresholds (small P1/P0 collections; this is also the insight of Theorems 7 and 8 in
Appendix D), like in (ii): when agents are little inclined to adopt sure strategies (say yes
or no for sure) then obviously this is an impediment to cycles.

(2) Enough anonymity. Anonymity plays a role in favour of stability in points (i), (iii)
and (iv). Indeed, GWM (see Section 3.1, Definition 8) is some kind of ‘semi-anonymous’
aggregation function: all agents are equally considered, but maybe with different signs.
Distance-based aggregation functions, in points (iii) and (iv), form a particular case of
GWM aggregation functions (Proposition 1.3). Essentially, cycles are incapacities of agents
to coordinate themselves. A boss structure of interactions, as opposed to anonymity, typ-
ically causes coordination failure, resulting in cycles. Anonymity, as opposed to discrimi-
nation, can be seen as tolerance, or apathie, lack of responsiveness, viscosity, inertia, etc.

19The connection between influences the dynamics is quite active in the network literature applied to biology, as
they can model interaction and regulation among genes or their products. See, e.g., Thomas (1981); Aracena et al.
(2006); Paulevé et al. (2020), whose approach are close to ours. A concise review of the different connections, in the
deterministic framework, between the circuits in the the influence graph and the existence and/or unicity of absorbing
states, called the Thomas’ conjectures (Thomas, 1981), can be found in Richard (2011).
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since agents do not harmonise their opinion on the one of some specific agents (leadership
tends to be unstable, as discussed in Section 4.2) but rather peg it on the opinion of the
mass. Lack of discrimination results in stable opinions.

(3) Enough autonomy. This point interestingly balances the previous idea that anonymity
results in stable opinions. Indeed, an opinion is very autonomous when the agent has
a large biais for yes or for no: since he strongly stays on its position, many agents are
required to weight in the opposite direction to finally convince him to switch his opinion.
This inertia plays against cycles. Even though following the mass can stabilise opinions,
on the contrary, not listening to the mass can make the same job! Opinions pegged on the
mass can be unstable; this phenomenon, well-known in politics and history, occurs when
information circulates freely, opinion updating is fast and agents are unbiased.

(4) Enough coordination. Let us put it with different words: having a common objective
plays in favour of stability. By “common objective”, we do not mean that agents should
have the willingness to share the same opinion. For example, two enemies have the same
willingness to anti-coordinate: in this case, where they form a balanced graph, it is quite
intuitive that their interaction should result in more stable opinions than in unbalanced
ones. This is what (iv) confirms since conformist and communitarian configurations are
balanced.

Since deterministic societies end up either in absorbing states or cycles, the absence of cycles
ensures the stability of opinions; this is what Corollary 2 states.

Corollary 2. If all aggregation functions are Boolean and if one of the statements of Proposition
3 holds, then the society converges towards an absorbing state.

6 Related literature

The literature on binary opinions updating is active is various fields. In biology the determin-
istic framework, where the influence graphs are called Boolean networks, receives a particular
consideration (Remy et al., 2008; Paulevé and Richard, 2012; Comet et al., 2013; Richard,
2018): they are used to model neuronal activity or interactions between genes and proteins
(McCulloch and Pitts, 1943; Aracena et al., 2006). This literature is also particularly active on
the border of physics and economics, where the concerns of the two disciplines are actually so
close that this hybrid field, which belongs to the literature of agent-based models whose focus
is to explain macroscopic features from the microscopic ones, deserved a name: Galam (2008)
coined the word ‘sociophysics’. Nyczka and Sznajd-Weron (2013) label the agents ‘spinson’, a
portmanteau combining ‘spin’ and ‘person’. Historically, the first agent-based model is actu-
ally a spin-based model, namely the Ising model, introduced by Lenz and Ising (1925). In the
Ising model, spins can be either ‘up’ or ‘down’. Interactions take place between the nearest
neighbours; updating is reversible, symmetric, local and asynchronous. The Ising model can be
formulated with two kinds of interactions: ferromagnetic (conformism) and anti-ferromagnetic
(anti-conformism). The cellular automata, originally synchronous, have been introduced by
Ulam (1960) and von Neumann (1966): each cell updates its state depending on its current
state and the states of its neighbours, whose Conway’s game of life is the most famous one
(Gardner, 1970). The voter model (Liggett, 1985, 1999) has been introduced by Clifford and
Sudbury (1973) to model the competition of species over a spatial territory: agents may swap
their positions or unify their opinions when they meet (invasion process). Many variants have
been investigated, like voter models with inflexible agents, with memory, and voter models in
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networks Berenbrink et al. (2016). Among the other notable variants, the q-voter model is
such that agents adopt the opinion of q neighbours chosen randomly (Castellano et al., 2009).
Nyczka and Sznajd-Weron (2013) and Nyczka et al. (2012) study the q-voter model with anti-
conformist and inflexible/independent agents. They show that the two kinds of agents can be
qualitatively indistinguishable at the macroscopic level in some circumstances. This finding is
confirmed in Grabisch et al. (2019a), in which model some agents are not chosen conformist
or anti-conformist once for all, but they randomly draw their type. The latter agents, called
the mixed agents, can be regarded as some kind of independent agents. In the list of twenty
possible dynamics, characterised with the cardinalities in conformist, anti-conformist and mixed
agents, we see that in some cases there is one degree of freedom: agents of one type can be
converted into another type without altering the global dynamics. In Galam (2004), contrar-
ian (anti-conformist) agents are incorporated to the original Galam model (Galam, 1986), a
multi-layer voting system where the population is refined by successive votes until the president
is elected. In Galam and Jacobs (2007), inflexible agents are incorporated and their impact
on the outcome is found to be close to the one of the anti-conformist agents. The effect of
static (baseline) opinions are also investigated in Taylor (1968); Acemoglu et al. (2010). Instead
of assuming that agents are influenced by their neighbours, Sznajd-Weron and Sznajd (2001)
proposed a model where agents are influenced by their agreeing neighbours. The CODA model
of continuous opinions with discrete actions is studied in Martins (2007, 2008). The workhorse
model of continuous opinions in network updating is French (1956) and DeGroot (1974), where
agents simply average the opinions of their neighbours in a linear way, simultaneously. Many
linear models have been developed in the sequel, among which Abelson (1964), Taylor (1968),
Friedkin and Johnsen (1990) and Buechel et al. (2014). Granovetter (1978) introduces a thresh-
old model of riots, where opinions are irreversible. Cascades are revisited by Watts (2002) in
networks. Morris (2000) studies a local game investigating contagion in a network where agents
have an interest to coordinate. Models with anti-conformist agents are particularly interesting
in a dynamical framework, since they tend to cause fluctuations of opinions. For this reason,
opinions are typically assumed to be reversible. Jull and Porter (2019), however, is an exception:
in the vein of Granovetter (1978) and Watts (2002), this article presents a threshold model that
accounts for cascades of adoptions from seeds of innovators. Adoption is irreversible and agents
can be either conformist or anti-conformist, with some probability. Similarly, Touboul mixes
conformist and anti-conformist agents (hipsters), but time in this model flows continuously and
there are information delays. An adaptation of the Granovetter model including anti-conformist
agents is proposed by Grabisch and Li (2019). In the previous models, anti-conformism is choos-
ing the opposite of the prevailing opinion; in Buechel et al. (2015), however, conformism and
anti-conformism receive a different interpretation: agents have true opinions which differ from
the opinions they claim to have. The stated opinion is distorted from the true opinion by the
level of conformity of the agent: disagreeing with people is regarded as discomfortable by con-
formist agents. If the agent is anti-conformist, he exaggerates his true opinion, and if the agent
is honest, he reports his true opinion truthfully.

7 Concluding remarks

Grabisch and Rusinowska (2013) approach to iterated updating with aggregation functions is
a convenient approach to bypass utility functions, by directly resorting to best responses. This
approach is naturally non-linear and non-anonymous, which meets the needs of economists. The
contribution of our paper, as compared with Grabisch and Rusinowska (2013) is to encompass
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negative and heterogeneous influences. We imposed the following assumptions: (i) alternatives
are binary; (ii) opinion adoption is reversible and independent among agents; (iii) the process is
Markovian and stationary; (iv) the number of agents is finite; (v) time is discrete. The previous
constraints are not all on an equal footing. The stationarity constraint could be relaxed in
a strategic version of the model20. The point (iv) is relaxed in Grabisch et al. (2019b). A
model of influence with iterated updating with m variables has been proposed by Aracena et al.
(2004). However, continuous opinions would require a different approach. The point (ii) also
is clearly essential, along with the Markovian framework and the discrete time. Putting them
into question would require a different mathematical treatment.

Our handy formalism allows to treat positive and negative influence in the same manner,
using appropriate partial orders on the states of the world. We evidenced the similar structure of
the conformist societies with the communitarian societies with two groups (anti-coordination),
along with the similar structure of the mixed societies (with anti-conformist agents) with the
society with leaders, meaning that they result is similar patterns of opinion dynamics. We listed
a few conditions ensuring stability of opinions. In particular, we evidenced that coordination
plays in favour of stability. But also, anonymity and autonomy, though being contradicting
features, both tend to play in favour of stability, which suggests that more investigation is
needed to clarify how these two aspects interact with each others. We discussed the utility
foundations of the model along with the updating scheme. Paradoxical situations, like the
possible existence of cycles in the conformist model, disappear in the asynchronous scheme,
which suggests that paradoxical situations are mostly synchronous singularities. We distinguish
between two notions of groups, based on two different ways of considering the distance between
agents: distance can be a topological notion, or it can refer to the behaviour of agents in terms
of signs of influence. Our notion of behaviour groups (or simply groups) is based on the latter,
while our notion of updating groups is based on the former.

Besides the obvious motivation for a non-binary and/or multivariate version of the model,
issues related to prediction and information extraction call for a specific treatment. The predic-
tive potential of the model is promising and applications are expected, for example, in opinions
forecasting. At this stage of the research, there is a wall between dynamics and influences: a
statistical approach is needed to navigate between the two worlds. A more technical discussion
of this question is exposed in Appendix E.
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A Proofs

Proof. (Property 1) For any S ∈ 2N , p(S) is of the form p(S) = (1T ,xK ,0(T∪K)c) with xK ∈
(0, 1)K . (This means that agents in T will say yes for sure, that agents in K might say yes or
no, while agents in (T ∪K)c will say no for sure.) We obtain from (2.1) that the states Q such

that bS,Q > 0 are exactly the ones of the collection [T, T ∪K], that is, S
1→ [T, T ∪K].

Proof. (Property 2) pi(S) is the probability that the next state contains i. Hence, using Property

1: pi(S) =
∑
T ′3i

T ′∈[T,T∪K]

bS,T ′ .

(This property can be found in Grabisch and Rusinowska (2010).)

Proof. (Property 3) (⇒) Let B ∈ Bi. Let j ∈ N . (i) Either j /∈ B, that is, j ∈ Bc, in which
case we have S ≺Bc S ∪ j, which can also be written S ∪ j ≺B S (that is, 4Bc is the dual
order of 4B). As a consequence, pi(S ∪ j) ≤ pi(S) for all S ∈ 2N ; (ii) or j ∈ B and then
pi(S) ≤ pi(S ∪ j) for all S ∈ 2N . (⇐) Assume that there exists j ∈ N such that (a) there exists
S such that pi(S ∪ j) ≥ pi(S), and that: (b) there exists S′ such that pi(S

′ ∪ j) < pi(S
′). If

there exists B ∈ Bi, then either j ∈ B, which contradicts (b), or j /∈ B, which contradicts (a).

Proof. (Theorem 1) This is Theorem 2 in the conformist context of Grabisch and Rusinowska
(2013). It suffices to note that the proof involves the conformist monotonicity conditions only
for the precisions given on the maximal length of cycles and the intersection of the interval
collections with ∅ andN (which precisions, however, cannot be exported to the general case), but
not for to establish the list of three dynamics, which remains correct in our general framework.

Proof. (Theorem 2) For any sets A,B ∈ 2N , we write [[A,B]] := [A ∩B,A ∪B].

Step 1. Assume that B1, B2 ∈ Bi. Then, [[B1, B2]] ⊆ Bi.

S
S ′

F5

F6F1

F3

F2

F4

T B1

B2

Figure A.1: T ∈ [[B1, B2]]

Let T ∈ [[B1, B2]]. Assume that S 4T S′ and let:

26



• S1 := S ∪ F1 with F1 = (S∆S′) ∩ (T \B2)

• S2 := S1 ∪ F2 with F2 = (S∆S′) ∩ (B1 ∩B2)

• S3 := S2 ∪ F3 with F3 = (S∆S′) ∩ (T \B1)

• S4 := S3 \ F4 with F4 = (S∆S′) ∩ (B2 \ T )

• S5 := S4 \ F5 with F5 = (S∆S′) ∩ (B1 ∪B2)c

• S′ = S5 \ F6 with F6 = (S∆S′) ∩ (B1 \ T )

Noticing respectively that: F1 ∈ B1; F2 ∈ B1; F3 ∈ B2; F4 ∈ Bc
1; F5 ∈ Bc

1 and F6 ∈ Bc
2, we

deduce the following inequalities: pi(S) ≤ pi(S1) ≤ pi(S2) ≤ pi(S3) ≤ pi(S4) ≤ pi(S5) ≤
pi(S

′).

Step 2. Bi = [Bi, Bi].
The previous step shows that Bi is an interval. From the definition of Bi and Bi, we
actually have Bi = [Bi, Bi].

Step 3. φ(j → i) = 0 ⇔ [B \ j ∈ Bi ⇔ B ∪ j ∈ Bi].
If φ(j → i) = 0, then by Property 3: for all S ∈ 2N : pi(S \ j) = pi(S ∪ j). In particular:
B \ j ∈ Bi ⇔ B ∪ j ∈ Bi. Converse: Assume that φ(j → i) 6= 0 (without loss of generality,
φ(j → i) > 0). We want to show that the equivalence [B \ j ∈ Bi ⇔ B ∪ j ∈ Bi]
does not hold. By Property 3, pi(S \ j) ≤ pi(S ∪ j) for all S, and exists S∗ such that
pi(S

∗ \ j) < pi(S
∗ ∪ j). Let B ∈ Bi; let us show that necessarily j ∈ B (and therefore, that

there is no B ∈ Bi such that B \ j ∈ Bi). Assume that j ∈ Bc. Then pi(S ∪ j) ≤ pi(S \ j)
for all S. In particular for S = S∗, then pi(S

∗ ∪ j) ≤ pi(S∗ \ j), a contradiction.

Step 4. Assume that B1, B2 ∈ Bi. For all j ∈ B1∆B2: φ(j → i) = 0. Conversely, if φ(j → i) = 0,
there exists B1, B2 ∈ Bi: j ∈ B1∆B2.
(⇐) Let B1, B2 ∈ Bi. By the Step 1: [[B1, B2]] ⊆ Bi. Let j ∈ (B1 ∪ Bi) \ (B1 ∩ B2):
then for any B ∈ [[B1, B2]]: [B \ j ∈ Bi ⇔ B ∪ j ∈ Bi]. Result follows from the converse
direction of the previous step. (⇒) If φ(j → i) = 0, then for any B ∈ Bi, by Step 3: either
B 3 j, and therefore: B \ j ∈ Bi, or j /∈ B, and therefore B ∪ j ∈ Bi. In both cases we
have found B1, B2 ∈ Bi such that j ∈ B1∆B2.

Step 5. φ(j → i) = 0 if and only if j ∈ Bi \Bi.
From Bi \Bi = Bi∆Bi = {j | ∃B1, B2 ∈ Bi : j ∈ B1∆B2} and the previous step.

Step 6. Bi = {j : φ(j → i) ≥ 0} and Bi = {j : φ(j → i) > 0}.
If φ(j → i) < 0 and j ∈ B ∈ Bi, then there exists S∗ such that pi(S

∗ ∪ j) < pi(S
∗). By

j ∈ B ∈ Bi, it holds that S ≺B S ∪ j for and all S. In particular S∗ ≺B S∗ ∪ j, which
implies pi(S

∗) ≤ pi(S
∗ ∪ j), a contradiction. If φ(j → i) > 0, then by the same argument

as in Step 3, j ∈
⋂
B∈Bi B = Bi. If φ(j → i) = 0, then j ∈ Bi \Bi.

Proof. (Proposition 1) The first two points are obvious. For the third, note that if there exists
j, k with |wji | 6= |wki |, then pi(T∆j) 6= pi(T∆k).

Proof. (Property 5) We recall that for any interval collections [A,B], [C,D], it holds that [A,B]∩
[C,D] = [A ∪ C,B ∩ D]. Property 5 is an application of Theorem 2.(⇒) Assume that φ(c →
a) < 0 and φ(c → b) > 0. Then, c ∈ B

c
a ∩ Bb. If it was also that a, b belong to the same

group, i.e., that Ba ∪ Bb ⊆ Ba ∩ Bb, then we would have in particular Bb ⊆ Ba. But then,
B
c
a ∩ Bb would be empty; hence the contradiction. (⇐) For any block Nk and any c ∈ N ,

either φ(c → i) ≥ 0 for any i ∈ Nk, or φ(c → i) ≤ 0 for any i ∈ Nk. This means that either
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c ∈
⋂
i∈Nk Bi, or c ∈

⋂
i∈Nk

Bc
i = (

⋃
i∈Nk

Bi)
c, that is, either c exerts a positive influence on

all agents of Nk, or it exerts a negative influence on all agents of Nk. Writing K+ :=
⋂
i∈Nk

Bi

and K− := (
⋃
i∈Nk

Bi)
c, we thus have K− ∪K+ = N , which implies that (K−)c ⊆ K+. This

means that
⋃
i∈Nk

Bi ⊆
⋂
i∈Nk

Bi, which means precisely that
⋂
i∈Nk

Bi 6= ∅.

Proof. (Theorem 3) We will use the following straightforward property:

Property 6. For any S1, S2, B, Z ∈ 2N , S1 4B S2 ⇔ S1∆Z 4B∆Z S2∆Z.

(i) Let S1, S2 be any two states in the weighted transition graph characterised by p. Let
B ∈ Bpi . Then, in the weighted transition graph characterised by p’ obtained from p by
a left transformation: S1∆Z 4B S2∆Z ⇒ p′i(S1) ≤ p′i(S2). By Property 6, S1 4B∆Z

S2 ⇒ p′i(S1) ≤ p′i(S2). Therefore, B∆Z ∈ Bp’i . We have established Bp’i ⊇ B
p
i ∆Z; the

left-transformation being a symmetry, the same reasoning establishes the reverse inclusion.

(ii) Recall that for any sets A,B ∈ 2N , we denote [[A,B]] := [A ∩B,A ∪B].

For any S ∈ 2N , there exists T,K such that S
1→
p

[T, T ∪K]. By Property 2:

ppi (S) =
∑
T ′3i

T ′∈[T,T∪K]

bpS,T ′ (A.1)

Let p’ obtained by a Z-right transformation. By definition, for all S, T ∈ 2N : bpS,T =

bp’S,T∆Z . That is:

S
1→
p’

[[T∆Z, (T ∪K)∆Z]] (A.2)

with:
pp’i (S) =

∑
T ′3i

T ′∈[[T∆Z,(T∪K)∆Z]]

bp’S,T ′ . (A.3)

We write Dp(S, i) the collection of sets T ′ ∈ [T, T ∪K] containing i, for a given transition

S
1→
p

[T, T ∪K]. We rewrite:

ppi (S) =
∑

T ′∈Dp(S,i)

bpS,T ′ (A.4)

Noticing that:

Dp’(S, i) =

{
(Dp(S, i)) ∆Z if i /∈ Z
([T, T ∪K] \ Dp(S, i))∆Z if i ∈ Z , (A.5)

we rewrite:

pp’i (S) =


∑

T ′∈(Dp(S,i))∆Z

bp’S,T ′ if i /∈ Z∑
T ′∈([T,T∪K]\Dp(S,i))∆Z

bp’S,T ′ if i ∈ Z
(A.6)

If i /∈ Z, then pp’i = ppi . If i ∈ Z, then pp’i = 1− ppi .
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We get that finally for all i and B ∈ Bpi :

S 4B S′ ⇒

{
pp’i (S) ≤ pp’i (S′) if i /∈ Z
pp’i (S) ≥ pp’i (S′) if i ∈ Z

(A.7)

Therefore, B ∈ Bp’i for i /∈ Z and Bc ∈ Bp’i for i ∈ Z. That is, Bp’i ⊇ B
p
i for all i /∈ Z, and

Bp’i ⊇ (Bpi )(c) for all i ∈ Z. As in the previous point, the reverse inclusions hold too.

(iii) A left-right transformation is a (commutative) composition of a left and a right-transformation.

Proof. (Corollary 1)
It is a direct application of Theorem 3. For example, let us prove that the transformation of a
polarisation M1 by a N2-right transformation is a polarisation R1. A polarisation M1 is such
that N ∈ Bi for i ∈ N1 and ∅ ∈ Bi for i ∈ N2. Apply a N2 right transformation on the weighted
transition graph determined by p (Property 2): from Theorem 3, for i ∈ N1: N∆N2 = N1 ∈ Bp’i
and for i ∈ N2: ∅∆N2 = N2 ∈ Bp’i , i.e., the polarisation obtained is a communitarian one.

Proof. (Proposition 2)
The left-right transformation is a graph homomorphism. Therefore, C in an absorbing class in
Γp if and only if C∆Z in an absorbing class in Γp’. Let us now establish the precision concerning
the conformist and communitarian polarisations. Assume that p is the aggregation vector of
communitarian polarisation where the two groups are N1 and N2. Let the periodic class:

[T1, T1 ∪H1]
1→ [T2, T2 ∪H2]

1→ . . .
1→ [Tk, Tk ∪Hk]

1→ [T1, T1 ∪H1], where some Hp are possibly
empty. Let p’ obtained from p with a N2-left-right transformation. Then the polarisation of
p’ is conformist and by the first part of Corollary 1, we may consider without loss of generality

the following periodic class in a conformist model: [S1, S1 ∪ K1]
1→ [S2, S2 ∪ K2]

1→ . . .
1→

[Sk, Sk ∪ Kk]
1→ [S1, S1 ∪ K1]. Sperner’s theorem states that the upper bound of the length

of an antichain with the set order is
(

n
[n/2]

)
. Therefore if we show that S1, S2, . . . , Sk must be

incomparable with the order ⊂, then we will have proved that
(

n
[n/2]

)
is an upper-bound on the

length of the periodic classes. Assume that Sp ⊂ Sq for some p and q such that p ≡ q[k] does

not hold. Then Sp
1→ [Sp+1, Sp+1 ∪Kp+1] and Sq

1→ [Sq+1, Sq+1 ∪Kq+1] with Sp+1 ⊆ Sq+1 and
Kp+1, Kq+1 possibly empty (where actually Sp+1 ⊂ Sq+1 because cycles are taken minimal).
Iterating q − p times: Sq ⊂ S2q−p. In the ring of integers modulo k, Z/kZ = {0, 1, . . . , k − 1},
for any m ∈ Z, we identify m with Sm. Hence our previous argument proved that for any p,m
such that m ≡ p[q − p], we have Sp ⊂ Sm. Calling d be the period of q − p, i.e., the smallest

positive integer such that d(q − p) = 0 (Lang, 2002), we get Sp ⊂ Sp+d(q−p) = Sp, which is
absurd.

Proof. (Proposition 3)

In all these points, we assume that S1
1→ S2

1→ . . .
1→ Sk

1→ S1 with k ≥ 2.

(i) Let Wj := {i | wij = 0}, so that φ(i → j) = 0 ⇔ i ∈ Wj (Proposition 1.(2)). Let the

transition Sp
1→ Sp+1. In a GWM model (from Proposition 1.(1)+(2)), we have for all

j ∈ Sp+1: Sp \Wj =
⋃
wq

j>0

q and for all j /∈ Sp+1: Sp \Wj =
⋃
wq

j<0

q. By assumption SI,
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wjj > 0 for all j ∈ N . Therefore Sp+1 ⊆ Sp \Wj for all j ∈ Sp+1, which implies that
Sp+1 ⊆ Sp, where the inclusion is actually strict, since the transition is embedded into a
cycle. Finally, S1 ⊂ S2 ⊂ . . . ⊂ Sk ⊂ S1, which is impossible.

(This is an adaptation of Proposition 1.(iii) in Grabisch and Rusinowska (2013)).

(ii) Under these assumptions, Bi necessarily contains a single set Bi. Therefore, pi(S) ∈ {0, 1}
if and only if S ∈ {Bi, Bc

i }. There is only one candidate cycle to examine: Bi
1→ Bc

i
1→ Bi.

Since φ(i → i) ≥ 0, i /∈ Bc
i . Since Bi

1→ Bc
i , we have: pi(Bi) = 0. Since Bi = {Bi}, this

implies pi(S) = 0 for all S ∈ 2N , contradicting the non-emptiness of P1
i .

(This is an adaptation of Proposition 1.(ii) in Grabisch and Rusinowska (2013).)

(iii) Under these assumptions, agents of the same group have the same aggregation function
(pi = pj when i and j belong to the same group). Therefore the following cycle is made

of blocks: S1
1→ S2

1→ . . .
1→ Sp

1→ S1, and we call J1, . . . , Jp the indices of the (Sq)q=1..p.
This succession of p transitions imposes the following conditions:{

Sq ∈ Vri(N(i)) for all i ∈ Sq+1

Sq /∈ Vri(N(i)) for all i /∈ Sq+1
(A.8)

Since i ∈ Sq if and only if the index of the group that i belong to belongs to Jq (which we
write (i) ∈ Jq), the previous conditions translate into:

∑
j∈Jq

nj − n(i) ≤ ri for all i such that (i) ∈ Jq+1∑
j∈Jq

nj + n(i) > ri for all i such that (i) /∈ Jq+1

(A.9)

Hence S1
1→ S2

1→ . . .
1→ Sk

1→ S1 is a cycle if and only if for all i ∈ N :

ri ∈

max
q∈[1,k]

∑
j∈Jq

nj − min
j∈Jq+1

nj

 ; min
q∈[1,k]

∑
j∈Jq

nj + min
j /∈Jq+1

nj

− 1

 . (A.10)

(where the interval [a, b] is empty if b < a).
If there exists some ri falling outside the interval, then cycles are impossible. By noticing
that we have:

ri ≥ min
q∈[1,k]

∑
j∈Jq

nj + min
j /∈Jq+1

nj


if and only if we have:

n− ri ≤ max
q∈[1,k]

n− (
∑
j∈Jq

nj + min
j /∈Jq+1

nj)

 = max
q∈[1,k]

∑
j /∈Jq

nj − min
j /∈Jq+1

nj

 ,
we get that there is no cycle if there exists i such that either:

ri ≤ max
q∈[1,k]

∑
j∈Jq

nj − min
j∈Jq+1

nj


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or:

n− ri ≤ max
q∈[1,k]

∑
j /∈Jq

nj − min
j /∈Jq+1

nj

 .
Noticing that there exists at least two consecutive states with decreasing cardinalities in
the large sense, and at least two consecutive states with increasing cardinalities in the

large sense, we respectively get that min
nj 6= nl

|nj − nl| ≤ max
q∈[1,k]

[∑
j∈Jq nj − min

j∈Jq+1

nj

]
and

min
nj 6= nl

|nj − nl| ≤ max
q∈[1,k]

[∑
j /∈Jq nj − min

j /∈Jq+1

nj

]
the condition stated in (iii) ensures that

at least one i is such that (A.10) is not verified.

(iv) Let us show it for conformist polarisations; by Proposition 2, this holds in communitarian
polarisations too.

In a society where agents have distance-based aggregation functions, |S| = |S′| and S
1→ T

implies S′
1→ T . Therefore states must be of different cardinality within a cycle; hence

there exists Si, Sj such that |Si| < |Sj |. But this implies |Si+1| ≤ |Sj+1|, because all
agents are conformist. Iterating k times and using a similar argument as in the proof of
Proposition 2, we get |Si| < |Si|, which is absurd.

(This result was established in Förster et al. (2013), Proposition 3).

(v) If there is no cycle in a society where the set of sure transitions is larger, then there is no
cycle in the primitive society.

Proof. (Corollary 2) When aggregation functions are Boolean, absorbing classes are either cycles
or absorbing states. Therefore, if there are no cycles, there are only absorbing states.

B Correlated updating: a topological ingredient of

the model

In physics and in biology, most models are asynchronous. Besides the need to relate our approach
to the natural sciences literature, the main reason why we should tell a word on asynchronous
updating is the serious issue of the so-called “synchronous singularities”, i.e., dynamics which
are specific to the synchronous updating. Robustness issues are well-studied in the literature,
e.g., D. Cornforth and Newth (2005). Fatès and Morvan (2004) discusses small perturbations to
the synchronous updating in cellular automata. The synchronous and asynchronous updating
dynamics are compared by Blok and Bergersen (1999) in the game of life and in Paulevé and
Richard (2012) in Boolean networks21. A notion correlated updating (also called intermediate
level of asynchronism) using a synchrony rate, has been proposed by Bouré et al. (2013) in the
context of lattice-gas models and by Grilo and Correia (2011) in 2-player evolutionary games,
showing that, in general, asynchronism plays in favour of cooperation.

While there is only one way of being synchronous, there are many ways of being asyn-
chronous; our approach to asynchronous updating is that agents spontaneously update their

21In Paulevé and Richard (2012), the notion of “generalised iteration graphs” is also investigated: it corresponds in
our model to the union of all correlated updating graphs.
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status. However, we want also to allow for correlated updating: agents influencing each others
a lot should be inclined to update their opinion at the same time. This appendix hits two birds
with one stone. Not only it does relax the assumption that agents all update at the same time,
but also it is the opportunity to make a use of an importance source of information which we
neglected so far, namely the topology of the influence graph. In network theory, distance issues
receive a lot of consideration. But in fact, there are (at least) two ways of defining the distance
between two individuals. By “close agents”, we may: (a) stick to the very topological meaning
of distance, meaning that agents know each others, for example because they belong to a same
clique, or at least they are separated by few nodes; or: (b) we rely on what the common language
means by “being close”, that is, agents who share similar beliefs and/or behaviour, no matter
how far they can be from each other in the network. Point (b) corresponds to the notion of
groups introduced in Section 4, which was based on the behaviour. Point (a) introduces another
notion of groups: it is based on a classical notion of distance: agents reshaping their opinions at
the same time should be closely interacting agents, no matter how “friends” or “enemies” they
can be; they will form a so-called “updating group”. Disentangling the two notions of distance
comes down to consider separately the arcs of the influence graph from their signs, where the
arcs determine the updating scheme and their signs the (behaviour) groups. In this appendix,
our point is not to discuss how the updating groups are obtained: we can import any existing
result or model from the literature on the topology of networks to determine a partition R of
groups of closely interacting agents. Of course our approach to correlated opinion updating us-
ing a fixed partition partition R is over-simplifying. It would be more realistic to allow strongly
connected component of the influence graph to update at the same time, in which case the
updating scheme is not driven by a partition R anymore, but by a cover. The insight, however,
would be unchanged: the network should determine the updating scheme that structures the
process. In this view time can be seen, not as a canevas, but as a variable emerging from the
activity of the network, in some sense, its temperature, the quantity of information exchanged,
the tightness of interactions.

The society N is partitioned as follows: R := {N1, . . . , Np}, where a block Nk, k ∈ [1, p], is
called an updating group. R is called the updating partition; it expresses the updating scheme
of the process. Agents of the same updating group update at the same time when invited to
update. When p = 1, i.e., when there is only one updating group, R = {N} =: R�: this is the
synchronous scheme studied in this paper. When p = n, i.e., when R = {{1}, . . . , {n}} =: R♦,
the model is called asynchronous22. We distinguish a primitive time, which is continuous and
flows continuously. At each point of this primitive time, an updating group can be invited
to update. This invitation occurs according to an instantaneous probability: there exists for
each updating group a strictly positive parameter λi, called the rate, similar to decay constant
in radioactivity23. The rates of invitation to update are assumed to be independent across
updating groups; as a consequence, the probability that any two updating groups are invited to
update their opinion at the same time is zero. In particular, in the asynchronous model, no two
agents can update at the same time, which implies that any two consecutive states can differ of
at most one agent.

We first notice that most tools introduced in this paper are unchanged. The monotonic-
ity collection, the influence index, the influential coalitions, etc. and all notions derived from

22The set of all partitions can be ordered with a coarsening order relation (Grabisch, 2016), defining a lattice whose
R♦ and R� are respectively the bottom and the top.

23In a qualitative model, the value of the λi plays no role.
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a single pi, which are not implicated into the updating process. Transitions however are dif-
ferent, and therefore, the dynamics also. Indeed, they not described by the identity bS,T =∏
i∈T pi(S)

∏
i 6∈T (1 − pi(S)) anymore, since not all agents are invited to update at the same

time. Nevertheless, notions of absorbing states and cycles remain unchanged. While the notion
of loop played no role in the synchronous framework, we are now lead to define a loop as a
sequence of k transitions S1 → S2 → . . . ,→ S1. (A cycle is a loop with sure transitions.) For
example in Figure B.1, 1→ 13→ 3→ ∅ → 1 is a loop.

Example 10. (Asynchronous updating: R = R♦) Figures B.1 and B.2 are the asynchronous
versions (R = R♦) of Figures 1 and 2 (where R = R�). There exists a link from S ⊆ N \ i to
S ∪ i if and only if S ∈ P1

i ∪ P∗i and there exists a transition from S 3 i to S \ i if and only if
S ∈ P0

i ∪ P∗i . There exists a self-loop at S if and only if there exists i ∈ S such that pi(S) > 0
or i /∈ S such that pi(S) < 1. We recover the notion of asynchronism exposed in Remy et al.
(2008), Comet et al. (2013) and Paulevé et al. (2020).

Agent 1 Agent 2

Agent 3

1 12 2 33

13 1323 12

123 123

12 23

∅ ∅

1 12 23 3

13 1323 12

123 123

12 23

∅ ∅

pi(S) = 1 at green states. pi(S) = 2
3
at blue states.

pi(S) = 1
3
at cyan states. pi(S) = 0 at red states.

Figure B.1: Asynchronous version of the society represented in Figure 1 in the synchronous case. 12
remains an absorbing state, in accordance with Proposition 4.(i)+(ii).

Let us now investigate the dynamics. First of all, we need to examine the shape of transitions.
We are lead to introduce the notion of “dissatisfied agent”, namely, agents who are inclined to
reverse their opinion if invited to do so. They are the agents currently saying yes (resp. no),
but who have a probability pi(S) < 1 (resp. > 0) to say yes if invited to update. We define Π
to be the following correspondance:

Π :

{
2N × 2N → 2N

(S,K) 7→ S∆[Φ(S,K),Φ(S,K)]
, (B.1)
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Agent 1 Agent 2

Agent 3

1 12 2 33

13 1323 12

123 123

12 23

∅ ∅

1 12 23 3

13 1323 12

123 123

12 23

∅ ∅

pi(S) = 1 at green states. pi(S) = 0 at red states.

Figure B.2: Asynchronous version of the society represented in Figure 2 in the synchronous case. As

compared with Figure 2, the cycle 1
1→ 23

1→ 1 has disappeared. Instead, 2N is absorbing.

where:
Φ(S,K) = K ∩ {i : i ∈ S ∈ P0

i or i /∈ S ∈ P1
i },

Φ(S,K) = K ∩ {i : i ∈ S ∈ P0
i ∪ P∗i or i /∈ S ∈ P1

i ∪ P∗i }.

Φ(S,N) is called the set of dissatisfied agents at S24. We note that for any Φ ∈ [Φ,Φ], Φ(S,K) =
Φ(S,Φ(S,K)); therefore, Φ is a projection with respect to its second entry. By interpreting
Π(S,K) as the output of a composition law, we introduce � to be such that Π(S,K) ≡ S �K.
The shape of transitions is given by Property 7. Recall that S �K is a collection of sets and
that the union

⋃
Nk∈R S �Nk is to be heard at the collection level.

Property 7. Transitions are of the form S
1→ S �R.

(That is, of the form S
1→
⋃
Nk∈R S �Nk.)

Example 11. When R = R�, all transitions are of the form S
1→ [T, T ∪ V ], where Φ(S,N) =

T = {i : pi(S) = 1} and Φ(S,N) = T ∪ V = {i : pi(S) > 0}, that is, we recover Property 1 of

the synchronous scheme. When R = R♦, transitions are of the form S
1→ S �K, where K is

the set of agents i such that either i /∈ S and pi(S) > 0 or i ∈ S and pi(S) < 1. Property 7
allows to write transitions in a functional form, despite that the process is non-deterministic;

indeed, writing F(S) = S �R, we have S
1→ F(S), which notation is familiar in the literature

on Boolean networks.

24The set of dissatisfied agents is analogous to the derivative in analysis, since it expresses to inclination of the
current state to evolve. Knowing the initial state and the dissatisfied agents at each point of the process suffices to
compute the transitions, just like in the theory of ordinary differential equations where, under some conditions, the
initial condition and the derivative suffice to recover the entire function.
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It is straightforward to characterise an absorbing state with the notions introduced. Not
surprisingly, a state is absorbing when no agent is dissatisfied.

Proposition 4. (Absorbing states) The following properties are equivalent:

(i) S is absorbing (S
1→ S) for some R.

(ii) S is absorbing (S
1→ S) for all R.

(iii) Φ(S,N) = ∅ (no agent is dissatisfied at S).

(iv) S �R = S � ∅ (= S).

Proof. Only the implication (iii) ⇒ (iv) is not obvious. It comes from the observation that if
R′ coincides with R on the set Φ(S,N) of dissatisfied agents, then S �R = S �R′.

Theorem 4 adapts Theorem 1 to any R:

Theorem 4. (Absorbing classes with any updating scheme) Consider an influence process based
on aggregation functions p and any updating scheme R. Absorbing classes are:

(i) either singletons (absorbing states) {S}, S ∈ 2N ,

(ii) or collections C = L1 ∪ · · · ∪ Lp, where each collection Lj is a loop.

Proof. Absorbing classes can be singletons: for example, ∅ and N are absorbing in a conformist
model. Now, let C be an absorbing class which is not a singleton, and let S1 ∈ C. Since C
is absorbing, there exists a sequence S1 → S2 → . . . → S1. We call L1 this sequence and,
by assumption, L1 ∈ C. If there exists S′1 ∈ L1 such that S′1 → S′2 /∈ L1, then there exists a
sequence S′1 → S′2 → . . .→ S′1. We call L2 this sequence. Pursuing the process with the states
of L1∪L2, and so on, we get a union of loops

⋃
k=1···p Lk such that, finally (because of the finite

number of states), there exists no S ∈
⋃
k=1···p Lk and T /∈

⋃
k=1···p Lk with S → T . This means

that
⋃
k=1···p Lk is an absorbing class. (If p = 1, L1 is a cycle.)

Proposition 4 stated that the fact that S is an absorbing state does not depend on R. This
convenient result does not hold in general for other dynamics. Since cycles can induce jumps in
the cardinality of states, they are typically destroyed when switching from the synchronous to
the asynchronous framework. As for the third kind of dynamics (Theorem 1), namely unions of
intervals, which is more various, nothing can be said in general. However intervals (not unions
of intervals) roughly speaking are robust in the asynchronous model, as stated by Proposition
5. This is not surprising since absorbing intervals are some kind of blurry absorbing states

Proposition 5. If [S, S ∪ K] is an absorbing class in pR for some R, then for any R′ there
exists a non-empty sub-collection of [S, S ∪K] which is absorbing in pR

′
.

Proof. It suffices to show that in (N,p,R), no arc of the transition graph goes from some state
of [S, S ∪K] outside [S, S ∪K]. Since [S, S ∪K] is absorbing in R, pi(T ) = 1 for all i ∈ S and
T ∈ [S, S ∪ K], pi(T ) = 0 for all i /∈ S ∪ K and T ∈ [S, S ∪ K]. These necessary conditions
are still valid in R′. As a consequence, a process starting from S0 ∈ [S, S ∪K] ends up in an
absorbing class which is a sub-collection of [S, S ∪K].

35



Example 12. In general, absorbing intervals shrink when switching to any other R. Assume
that:

P∗i =

{
{S} for all i ∈ K
∅ for i ∈ Kc and P1

i =

{
[S, S ∪K] for all i ∈ S
[S, S ∪K]c for all i ∈ Sc .

In the synchronous framework [S, S ∪ K] is absorbing (more precisely, S
1→ [S, S ∪ K]

1→ S),
while in the asynchronous framework, {S, S ∪ i1, . . . , S ∪ ik} is an absorbing class, where K =
{i1, . . . , ik}.

The right and left transformations do not make sense anymore in the non-synchronous
framework: only the left-right one remains. Theorem 5, stated in any updating partition R,
is proved similarly as Theorem 3, except that we must treat the left and the right together,
whereas in Theorem 3 we decomposed the left-right as the composition of the left and the right.
It also generalises Proposition 2.

Theorem 5. Assume that p’ is obtained from p by a Z-left-right transformation. Then:

• C is an absorbing class of p if and only if C∆Z is an absorbing class of p’.

• Bp’i = Bpi ∆Z for all i /∈ Z, and Bp’i = Bpi ∆Zc for all i ∈ Z.

Proof. The Z-transformation is a graph homomorphism (preservation of the structure); hence
the first statement. Let us establish the second one. For any S ∈ 2N , there exists T,K such

that S
1→
p
S �R. The probabilities for agents to say yes can be recovered from the transition

graph as follows:

ppi (S) =
∑
T ′3i

T ′∈S�R

bpS,T ′ (B.2)

Let p’ obtained by a Z-left-right transformation. By definition, for all S, T ∈ 2N : bpS,T =

bp’S∆Z,T∆Z . That is:

S∆Z
1→
p’

(S∆Z)�R (B.3)

with:
pp’i (S∆Z) =

∑
T ′3i

T ′∈(S∆Z)�R

bp’S∆Z,T ′ . (B.4)

By the same argument as in the proof of Theorem 3, Dp(S, i) being the collection of sets

T ′ ∈ S �R containing i, for the transition S
1→
p
S �R:

pp’i (S∆Z) =


∑

T ′∈Z∆Dp(S∆Z,i)

bp’S∆Z,T ′ if i /∈ Z∑
T ′∈Z∆[(S�R)\Dp(S∆Z,i)]

bp’S∆Z,T ′ if i ∈ Z
(B.5)

If i /∈ Z, then pp’i = ppi . If i ∈ Z, then pp’i = 1− ppi .
We get that finally for all i and B ∈ Bpi :

S 4B S′ ⇔ S∆Z 4B∆Z S
′∆Z ⇒

{
pp’i (S∆Z) ≤ pp’i (S′∆Z) if i /∈ Z
pp’i (S∆Z) ≥ pp’i (S′∆Z) if i ∈ Z

(B.6)
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Therefore, B∆Z ∈ Bp’i for i /∈ Z and (B∆Z)c ∈ Bp’i for i ∈ Z (then, note that (B∆Z)c =
B∆Zc). The reverse inclusions work the same way.

Proposition 6 states that in the asynchronous scheme, the process always reaches an absorb-
ing state when all agents are conformist. This was wrong in the synchronous framework; hence,
an asynchronous framework plays in favour of intuition.

Proposition 6. (Conformist and asynchronous model) Assume that R = R♦, that all agents
are conformist and that Assumption BC holds. Then the process ends up in an absorbing state.

Proof. By Assumption BC, and since all agents are conformist, ∅ 1→ ∅ and N
1→ N . Assume

that there exists an absorbing class of the second type: C = L1 ∪ · · · ∪Lk, where each collection

Lj is a loop. Let S be a set of maximal cardinality in C. Since ∅ 1→ ∅, S 6= ∅. Since R = R♦,
transitions between two distinct sets differ by only one agent. We distinguish between two cases:

• Case (i): S 9 S. This implies that pi(S) = 0 for all i ∈ S, otherwise, an agent i ∈ S such
that pi(S) > 0, if invited to update, could maintain its opinion, which would imply that
S → S. Since S is of maximal cardinality in C, we also have pi(S) = 0 for all i /∈ S. But
then, if S 6= N , the existence of an agent j ∈ Sc who would say no if invited to update

implies that S → S, a contradiction. This implies that S = N . Since, N
1→ N , we get a

contradiction with S 9 S. Hence this case can be eliminated.

• Case (ii): S → S. Since S is of maximal cardinality in C, pi(S) = 0 for all i /∈ S. Since
by assumption S is not absorbing, there exists i ∈ S such that pi(S) = 0. Since i is
conformist, pi(T ) = 0 for all T ∈↓ S. Therefore there exists T1 63 i and a loop L ∈ C
containing the transition T1 → T1 ∪ i 6= S, and necessarily T1 * S. Consider a walk W
from T1 to S: T1 → . . .→ S \k → S. We call T2 the last state of the walk, from T1, which
does not belong to ↓ S, so that T2 → T3 → . . . → Tk → S with T3 → . . . → S a walk of
states in ↓ S. Since T2 /∈↓ T3 (otherwise it would belong to ↓ S), we can write T2 = T3 ∪ j
for some j. But then, since all agents are conformist, T2 = T3 ∪ j → . . .→ Tk ∪ j → S ∪ j,
contradicting that S is of maximal cardinality in C. This case can therefore be eliminated
too.

We proved that unions of loops cannot be absorbing. But then, Theorem 4 ensures that all
absorbing classes are actually states.

The specificities of the asynchronous framework, as compared with the synchronous one,
evidence the crucial interest of investigating the spectrums of dynamics indexed by the updating
schemes R from R� to R♦.

C Utility foundations of p

The aim of this appendix is to provide a utility justification to the fundamental assumption of
the present paper, namely, Bi 6= ∅ for all i ∈ N , which can be reformulated as follows:

For any i ∈ N , there exists B such that S1 4B S2 ⇒ pi(S1) ≤ pi(S2). (C.1)

We are going to redefine the monotonicity collection with utilities, denoting this collection
Bu, which will happen to be a subset of B. There are no technicalities in this appendix: it
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simply aims at evidencing the articulations between each assumption. In particular, we point
out where exactly one can insert psychological and cognitive considerations.

C.1. Active/Passive utility functions

We distinguish between two kinds of utility functions. The passive utility function only at-
tributes to the agent a level of satisfaction at each state of the world. The active one, as
compared with the passive one, evaluates the utility of an opinion adoption at a given state of
the world. Since no confusion is possible, we use the same letter to designate the two.

Definition 13. (Active and passive utility functions)

• A passive utility function ui is a function: 2N → R which attributes to agent i a utility
ui(S) at a state of the world S ∈ 2N .

• An active utility function is a function ui: {0, 1} × 2N → R which attributes to agent i a
utility ui(x, S) for an opinion x ∈ {0, 1} at a state of the world S ∈ 2N .

The articulation between the active to the passive utility function is the flexible space where
we can impose psychological, intellectual or informational assumptions, as discussed in Examples
13 and 14. To remain general, our model is built with active utility functions.

Example 13. The identification:

ui(x, S) ≡
{
ui(S ∪ i) if x = 1
ui(S \ i) if x = 0

comes down to assuming that agent i only takes into account its deviation into its new passive
utility function, either because the impact of his adoption on the rest of the population is
neglectable, or because he cannot compute the effect of his adoption on the adoption of his
neighbours. It is a specific kind of myopic behaviour. It can be shown that this agent cannot
exert negative influence on itself, an option which in some circumstances can be defensible, as
explained in Section 3.3.

Example 14. (Consistent utility) If for any S ∈ 2N it holds that u(0, S \ i) = u(0, S) and
u(1, S ∪ i) = u(1, S), the agent i is said to be consistent ; this notion captures some idea of
stability in decision making, or in the utility conferred to the possession on object (Girard,
1966, 1977). If the identification of Example 13 holds, then the agent is consistent.

C.2. Opinion adoption under a myopic behaviour

The model which we now expose the foundations is embedded into a myopic framework. This
is be heard in two aspects:

(1) Agents are more inclined to adopt the opinion of their friends. At first sight,
it might be hard to see why it is a myopic behaviour. This is because this assumption
suppresses any kind of strategic aspect and, in particular, any kind of manipulation. In
this sense, our model is close to the concerns of physicists, who study particles rather than
clever agents. This assumption is essential, e.g, in mean-field games Guéant et al. (2010),
or in financial networks (Yang, 2013), where agents cannot observe the entire structure
of interactions. Sometimes also, our neighbours are simply agents that we see, be on
an aggregate or statistical scale only. For example, reading the newspapers with opinion
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surveys on presidential elections connects the whole country to us; hence the number of
“neighbours” is typically huge. In some circumstances, the network is complete, like in
Grabisch et al. (2019a).

(2) With regard to the fact that utility functions are stochastic. Not only agents
cannot compute the effect of their opinion adoption on the adoption of their neighbours,
in particular do not know what the next state will be, but even if they knew it, their
utility at this state would remain stochastic. Strzalecki (2017) lists a few reasons why
utility may be stochastic, among which: fluctuating tastes, noisy signals (in our model,
imperfect observation of the state of the world), trembling hands, experimentation. The
idea of noisy signals or imperfect observation traces back to the experiments by Fechner
(1860). For more details on stochastic utility functions, the reader is referred, e.g., to
Camerer (1989) or Blavatskyy (2007).

We denote ũ ≤ ṽ when ṽ first-order stochastically dominates ũ.

Definition 14. The utility monotonicity collection Bυi is the collection of sets B such that:

S1 4B S2 ⇒
{
ũi(1, S1) ≤ ũi(1, S2)
ũi(0, S1) ≥ ũi(0, S2)

.

Proposition 7 formalises the idea that if we prefer to choose a given opinion even when a
friend does not choose it, then a fortiori we still prefer to choose this opinion when this friend
chooses it, ceteris paribus.

Proposition 7. The following assertions are equivalent:

(1) Bυi 6= ∅.
(2) For any j ∈ N :

– either ũi(1, S ∪ j) ≥ ũi(1, S \ j) and ũi(0, S ∪ j) ≤ ũi(0, S \ j) for all S
(in which case j is said to have a positive utility-influence on i, and a strictly positive
utility-influence on i if at least one inequality at some state S is strict),

– or ũi(0, S ∪ j) ≥ ũi(0, S \ j) and ũi(1, S ∪ j) ≤ ũi(1, S \ j) for all S
(in which case j is said to have a negative utility-influence on i, and a strictly negative
utility-influence on i if at least one inequality at some state S is strict).

A positive and negative utility-influence is called null. An agent exerting a null utility-
influence on a given agent is also said to be irrelevant for him.

Proof. (Proposition 7)
(⇒) Since Bυi 6= ∅, there exists B ∈ Bυi . Let j ∈ N . Either j ∈ B, and then ũi(1, S \ j) ≤

ũi(1, S ∪ j) for all S ∈ 2N and ũi(0, S \ j) ≥ ũi(0, S ∪ j) for all S ∈ 2N ; or j /∈ B, and then
ũi(1, S \ j) ≥ ũi(1, S ∪ j) for all S ∈ 2N and ũi(0, S \ j) ≤ ũi(0, S ∪ j) for all S ∈ 2N .

(⇐) Assume that there exists j ∈ N such that the following two assertions hold:

(a) there exists S such that:

ũi(1, S ∪ j) < ũi(1, S \ j) or ũi(0, S ∪ j) > ũi(0, S \ j)

(b) there exists S′ such that:

ũi(0, S
′ ∪ j) < ũi(0, S

′ \ j) or ũi(1, S
′ ∪ j) > ũi(1, S

′ \ j).
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If there exists B ∈ Bυi , then either j ∈ B, which contradicts (a), or j /∈ B, which contradicts
(b).

The point (2) states that any given agent is either a friend or an enemy, independently on
the state of the world. This sounds reasonable in many circumstances. As a consequence, we
are in a position to admit the following Fundamental Assumption I:

Fundamental Assumption I. Bυi 6= ∅ for all i ∈ N .

Example 15. Let 1S be the indicator function of S, i.e., 1S(i) = 1 if i ∈ S and 0 otherwise.
The following utility function for agent i:

ui(S) := |{j ∈ N, 1S(i) = 1S(j)}| − |{j ∈ N, 1S(i) 6= 1S(j)}|,

is increasing in the number of agents sharing his opinion. In particular, ui(N) = ui(∅) ≥ ui(S)
for any S ⊆ N . This aggregation function is the one a conformist agent, i.e., an agent who like
sharing the opinion of as many as possible agents25.

By a strategy x̃, we mean a random variable which takes values in {0, 1}. Let pi(S) be the
probability for agent i to say yes at the next period when the current state is S. :

pi(S) := P(x̃ = 1 at state S). (C.2)

We now fill the gap between ũi and pi. The following second fondamental assumption is a
praxeological axiom.

Fundamental Assumption II.

{
ũi(1, S1) ≤ ũi(1, S2)
ũi(0, S1) ≥ ũi(0, S2)

⇒ pi(S1) ≤ pi(S2).

Since first-order stochastic dominance implies expected utility domination, the Fundamental
Assumption II is weaker that the maximum expected utility axiom. This means that we are
not imposing a priori that agents should choose their opinion according to expected utilities (a
challenging and strong axiom; consider, e.g., the St. Petersburg paradox), but only that they
should abide by a minimal consistency in their decision making.

25In our model, there is neither any strategic aspect nor distinction between opinion and communication, since agents
opinions are well-observable. However it would be possible to frame the model in a signalling framework. There is no
impediment to encompass imperfect observation, either of the true state of the world that agents would try to extract,
or of the decision of agents, which latter case comes down to considering votes and communication separately. In the
synchronous updating framework with perfect observation, like in Example 15, the only way an agent could possibly
manipulate its vote would be by creating a cascade of opinion in its favour. Grabisch et al. (2019a) evidences that such
cascades can be triggered by the presence of anti-conformist agents, in a non-strategic setting though. The literature
on herd behaviour, fads and fashion was initiated by Banerjee (1992) and Bikhchandani et al. (1992), in which papers
the updating is sequential (a special kind of asynchronism in one shot). Other models of herds and cascades are
gathered in Chamley (2004). There exists an important literature on deliberation and voting encompassing strategic
behaviour, e.g., Austen-Smith and Banks (1996) which challenges the role of the sincerity assumption in the Condorcet
Jury theorem, and models of jury decision making (Feddersen and Pesendorfer, 1998; Coughlan, 2000; Gerardi and
Yariv, 2007). In the literature of information extraction from signals, Nitzan and Paroush (1982) and Shapley and
Grofman (1984) are concerned with the optimal weighted voting rule aggregating the choices of agents receiving signals
about the true state of the world; based on which optimal weights Buechel and Mechtenberg (2019) proposes a one
round setting with common interest of agents, where the influence graph induces correlated information among voters.
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Remark 3. If the utility function of the agent is deterministic, then its aggregation function is
Boolean, but that the reverse might not hold.

From Assumption II, we get the following property:

Property 8. Bυi ⊆ Bi.
(That is, for any B ∈ Bυi , we have the implication S1 4B S2 ⇒ pi(S1) ≤ pi(S2).)

Since the Fundamental Assumption I states that Bυi 6= ∅, the non-emptiness of Bi is implied
by Property 8. As a consequence, we have established (C.1). Note that the inclusion can
actually be strict. In general, for a given u := (ui)i∈N , there exists many (pi)i∈N which do not
violate Assumptions I and II. The p chosen can result in a “loss of information” in the following
sense:

Corollary 3. If j exerts a strictly positive utility-influence on i, then it exerts a positive or
null influence on i (in the sense of Definition 5). If j exerts a strictly negative utility-influence
on i, then it exerts a negative or null influence on i.

Proof. Bu = [Bu, B
u
] ⊆ B = [B,B] if and only if B ⊆ Bu ⊆ B

u ⊆ B. In particular, Bu ⊆ B
and (B

u
)c ⊆ Bc.

In general, these inclusions can be strict. In other words, an agent j exerting a strict positive
utility-influence on i, can very well be an irrelevant agent in pi

26. The following example
enlightens the behavioural assumptions which one might enclose in the articulation from u to
p.

Example 16. An agent i such that pi(S) = 1 (resp. 0) if and only if ũi(1, S) ≥ ũi(0, S) (resp.
≤) is an agent which chooses an opinion for sure, yes or no, when and only when one of the
two opinion first-order stochastically dominates the other. First-order stochastic dominance
is a rather strong requirement but not over-demanding. We call this agent reasonable; this
notion is involved in Proposition 8. Another assumption that we could impose is the following:
pi(S) > 0 ⇔ P[ũi(1, S) > ũi(0, S)] 6= 0 and pi(S) < 1 ⇔ P[ũi(1, S) < ũi(0, S)] 6= 0. Under this
assumption, the agent never dodges entirely an opinion as long as it could possibly grant him
with higher utility ex post. This captures some kind of extreme prudence; hence such an agent
is call prudent. In Example 17, the agent is assumed to be prudent.

Of course, cognitive, psychological, etc. behaviours, by shaping the ui which in turn deter-
mine the pi, have a central role in the process. But since the link from the ui to the pi induces a
loss of information, we can imagine some behaviours to be undistinguishable from one another
or to disappear at the aggregation function scale. More generally, some behaviours could be
absorbed into the successive losses of information: from the ui to the pi, from the pi to B̃,
from B̃ to the absorbing classes, thus, it is reasonable to argue that some behaviours would not
perturb the dynamics and that various behaviours could produce the same opinion dynamics.

Example 17. In this example, we make the following assumptions on agent i:

(i) he is conformist;

(ii) he aggregates anonymously (only the cardinality of the states enters into its utility function
so that ũ(x, S) ≡ ũ(x, s) and pi(S) ≡ pi(s));

26On a practical point of view, this remark can be borne in mind as a criterium to discriminate among several
possible partitions into groups.
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(iii) he is prudent (see Example 16);

The first two assumptions translate into:

s1 ≤ s2 ⇒ ũi(1, s1) ≤ ũi(1, s2) and ũi(0, s1) ≥ ũi(1, s2). (C.3)

Let:

ui(x, s) := inf{ui(x, s) | fũi(x,s) 6= 0}. (C.4)

ui(x, s) := sup{ui(x, s) | fũi(x,s) 6= 0}, (C.5)

where fũi(x,s) is the density probability function of ũi(x, s). In other words, the inter-
vals [ui(0, s), ui(0, s)] and [ui(1, s), ui(1, s)] are the smallest intervals containing the support
of density of ũ(0, s) and ũ(1, s). Roughly speaking, it is a stochastic version of Example
15. The functions ui(0, s) and ui(0, s) are represented in red. The functions ui(1, s) and
ui(1, s) are represented in green. Because of (C.3), ui(1, s) and ui(1, s) are increasing in s
and ui(0, s) and ui(0, s) are decreasing in s. The prudence assumption operates when drawing
pi: pi(s) = 1 ⇔ ui(1, s) ≥ ui(0, s) and pi(s) = 0 ⇔ ui(0, s) ≥ ui(1, s). A similar example
can be found in Grabisch et al. (2019a). Incidentally, this example evidences the connection
of our model with fuzzy hypothesis testing; see, e.g., Chukhrova and Johannssen (2020). To
fix ideas, we have represented the intermediate part of pi(s) as a linear function, but it only
has to be increasing. The sigmoid function capturing phase-transitions by allowing mixed de-
cisions/compositions is familiar to natural sciences, e.g., the Doppler effect when the vehicle
passes nearby the observer, or the titration curves in chemistry.

C.3. Connection between absorbing states and Nash equilibria

The absorbing states correspond to stable opinions: agents in S say yes forever, agents outside
S say no forever. The connection with Nash equilibria in clarified in Proposition 8. The notion
of reasonability is introduced in Example 16.

Definition 15. We say that S is a Nash equilibrium if ũi(1, S) ≥ ũi(0, S) for all i ∈ S and
ũi(1, S) ≤ ũi(0, S) for all i /∈ S.

Proposition 8. Assume that all agents are reasonable. Then, S is an absorbing state if and
only if it is a Nash equilibrium.

D Algebraic considerations on 4B and the analysis

of coalitions

Let fB :

{
2N → 2N

S 7→ S∆Bc.
It is a bijection from 2N onto itself. Note that fN = id and that f∅

transforms each set into its complement. Importantly, 2N endowed with the partial order 4B is
a lattice LB := (2N ,4B), with top element and bottom elements B and Bc, and with infimum
and supremum ∧B, ∨B given for any S, T ∈ 2N by:

S ∧B T := [(S ∩ T ) ∩B] ∪ [(S ∪ T ) ∩Bc] (D.1)

S ∨B T := [(S ∪ T ) ∩B] ∪ [(S ∩ T ) ∩Bc]. (D.2)
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Figure C.1: Opinion adoption for a prudent agent

For ∧B, we take the intersection within B and the union outside B. For ∨B, we take the
union within B and the intersection outside B (see Figure D.1). ∧B and ∨B coincide with ∩
and ∪ when B = N . We can also define the upset and downset of a given set S under the
partial order 4B, by ↑B S := {S′ | S 4B S′} and ↓B:= {S′ | S′ 4B S}. If B = N , we simply
denote them by ↑ S (= [S,N ]) and ↓ S (= [∅, S]).

fB is a lattice isomorphism from LN = (2N ,⊆) to LB = (2N ,4B). Indeed, for any S, S′ ∈
2N :

fB(S ∩ S′) = fB(S) ∧B fB(S′) (D.3)

and
fB(S ∪ S′) = fB(S) ∨B fB(S′). (D.4)

Note that: (i) fB(∅) = Bc; (ii) fB(N) = B (bounded-lattice properties) and that we can
write

S1 4B S2 ⇔ f−1
B (S1) ⊆ f−1

B (S2)⇔ fB(S1) ⊆ fB(S2) (D.5)
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Figure D.1: Infimum and supremum

where the first equivalence comes from the fact that fB is a lattice isomorphism and the
second equivalence comes from the fact that fB is an involution: fB ◦ fB = id. In particular,
we recover Property 6 exposed in the proof of Theorem 3. Note also that fBc(S) = fB(Sc).

We now define the notion of yes and no influential coalitions, introduced in Grabisch and
Rusinowska (2013) in the conformist society, which can be generalised in our heterogeneous
setting using fB:

Definition 16. (Yes/No influential coalitions) Let i ∈ N with its monotonicity collection
Bi = [Bi, Bi]:

A set S is a yes-influential coalition on i ∈ N if:

• pi(fBi
(S)) > 0,

• pi(fBi
(S′)) = 0 for all S′ ⊂ S.

A set S is a no-influential coalition on i ∈ N if:

• pi(fBc
i
(S)) < 1,

• pi(fBc
i
(S′)) = 1 for all S′ ⊂ S.

The collections of yes and no-influential coalitions on i are denoted by Yi and Ni. Note that Yi
and Ni are left unchanged by the operation fB on states (relabelling).

Example 18. If Bi = N (conformist agent), then fBi
(S) = S∆∅ = S. Hence, S is a yes-

influential coalition on i ∈ N if pi(S) > 0 and pi(S
′) = 0 for all S′ ⊂ S. Hence, our definition of

Yi indeed embraces Grabisch and Rusinowska (2013) (same reasoning for Ni). See Figure D.2.

Stating the definition with Bi rather than with any other B ∈ Bi is a matter of taste since
the yes and no-influential coalitions contain no irrelevant agents. Indeed, we can easily show
that: ⋃

Yi ∪
⋃
Ni ⊆ {j | φ(j → i) 6= 0} (= Bi ∪B

c
i ). (D.6)

In general this inclusion is strict but we can prove that equality holds when pi is Boolean.

Theorem 6 generalises the first theorem of Grabisch and Rusinowska (2013) on the transition
graph.

Theorem 6. Assume that Assumption BC holds.

(1) (From B̃ to (Yi,Ni)i∈N )

For all S, T ∈ 2N , b̃S,T = 1 if and only if:
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– For each i /∈ T , there exists a non-empty M ⊆ fBi(S
c) (where Bi ∈ Bi) such that M

is no-influential on i.

– For each i ∈ T , there exists a non-empty Y ⊆ fBi(S) (where Bi ∈ Bi) such that Y is
yes-influential on i and

(2) (From B to (Yi,Ni)i∈N )

Suppose that S
1→ T . Then, there cannot be a yes-influential coalition Y ⊆ fBi(S) on i

(where Bi ∈ Bi) if i /∈ T , or a no-influential coalition M ⊆ fBc
i
(S) on i (where Bi ∈ Bi) if

i ∈ T .

Proof. (1) S → T if and only if pi(S) > 0 for all i ∈ T and pi(S) < 1 for all i /∈ T . For Bi ∈ Bi,
from the monotonicity of pi with respect to the 4Bi order and (from Assumption BC) the
fact that pi(B

c
i ) = 0, we deduce that pi(S) > 0 if and only if there exists a yes-influential

coalition Y on i with Y ⊆ S∆Bc
i = fBi(S). On the other hand, since pi is monotonous with

respect to the 4Bi order and (from Assumption BC) pi(Bi) = 1; therefore, pi(S) < 1 if and
only if there exists a no-influential coalition M on i with M ⊆ S∆Bi = fBc

i
(S) = fBi(S

c).

(2) S
1→ T is equivalent to pi(S) = 1 if i ∈ T and pi(S) = 0 if i /∈ T . If Y ⊆ S∆Bc

i (by (D.5),
this is equivalent to Y∆Bc

i 4Bi S) is yes-influential on i /∈ T , 0 < pi(Y∆Bc
i ) ≤ pi(S) =

0, a contradiction. By the same token, if M ⊆ S∆Bi (by (D.5), this is equivalent to
M∆Bi 4Bc

i
S, i.e., M∆Bi <Bi S) is no-influential on i ∈ T , 1 = pi(S) ≤ pi(M∆Bi) < 1,

a contradiction.

We can use Theorem 6 to establish the useful Property 9, namely that the yes and no-
influential coalitions contain all the information on B̃ (i.e., on (P0

i ,P1
i )i∈N ), and vice versa.

In particular, knowing them suffices to compute the absorbing classes. Figure D.3 completes
Figure 5 by adding (Yi,Ni)i∈N .

Property 9. Yi (respectively Ni) and P0
i (respectively P1

i ) correspond bijectively.

Proof. It is useful to keep an eye on Figure D.2. Assume that the agent is conformist; since
the yes and no-influential coalitions are invariant under a fB transformation, this is without
loss of generality. By definition, P0

i (resp. P1
i ) uniquely determines Yi (resp. Ni). We must

show, conversely, that Yi (resp. Ni) uniquely determines P0
i (resp. P1

i ). Let us show that:
P∗i ∪ P1

i =
⋃
Y ∈Yi ↑ Y and P∗i ∪ P0

i =
⋃
M∈Ni

↓ (N \M). We have P∗i ∪ P1
i ⊇

⋃
Y ∈Yi ↑ Y ,

otherwise the monotonicity conditions would be violated. Conversely, P∗i ∪ P1
i ⊆

⋃
Y ∈Yi ↑ Y ;

indeed, if there existed S /∈
⋃
Y ∈Yi ↑ Y such that pi(S) > 0, by Theorem 6.(1) there would exists

Y ∈ ↓ S such that Y ∈ Yi, i.e., S ∈ ↑ Y , which is absurd. (Similar argument for no-influential
coalitions.)

To see why the influence coalitions, and not the topology of the influence graph, are the
appropriate tool to characterise opinion dynamics, let us have a look on Figure D.3. The
influence graph, as captured with the signs of φ, is clearly separated from the absorbing classes:
neither its topology nor the signs of its arcs can be exploited. We further discuss this problem
in Appendix E. However the same figure clearly shows that the influential coalitions (Yi,Ni)i∈N
are the proper tool. This can be seen also in (D.6), where we see that agents involved in
influential coalitions on i form a subset of agents exerting influence on him; in short, this means
that the influence graph is too rough. Theorems 7 and 8 below generalise Theorem 3 and
4 of Grabisch and Rusinowska (2013) by characterising absorbing states and intervals using
influential coalitions.
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Figure D.3: Figure 5 completed with (Yi,Ni)i∈N

Theorem 7. Consider an influence process B based on aggregation functions p. A subset
S ⊆ N is an absorbing state if and only if the following two conditions hold:

(i) For any i ∈ S and Bi ∈ Bi, there exists no M ∈ Ni such that M ⊆ fBi(S
c).

(ii) For any i /∈ S and Bi ∈ Bi, there exists no Y ∈ Yi such that Y ⊆ fBi(S).

Proof. S is absorbing if and only if S ∈ P0
i for all i /∈ S and S ∈ P1

i for all i ∈ S. We note that
M ⊆ fBc

i
(S)⇔ S 4Bi M∆Bi ⇔ S /∈ P1

i and Y ∈ Yi such that Y ⊆ fBi
(S)⇔ Y∆Bc

i 4Bi S ⇔
S /∈ P0

i .

Example 19. Assume that that the society is conformist. By Theorem 7, S is an absorbing
state if and only if the following two conditions hold:

(i) For any i ∈ S, there exists no M ∈ Ni such that M ⊆ Sc.
(ii) For any i /∈ S, there exists no Y ∈ Yi such that Y ⊆ S.

Let us moreover assume that all influential coalitions are actually singletons (in which case we
refer to the influential coalitions as “influential agents”). Let the graph of yes-influence to be
the directed graph Gyes := (N, E) whose set of nodes is N and such that there is an arc (j, i)
from j to i if j is yes-influential on i; we define the graph of no-influence similarly. We write
(G)∗ the graph G with all arcs inverted. Corollary 2.(iii) in Grabisch and Rusinowska (2013)
states that if there is an absorbing state S /∈ {∅, N} if and only if G := (Gyes)∗ ∪ Gno is not
strongly connected.
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Theorem 8. Consider an influence process B based on aggregation functions p and assume
that [S, S ∪K] is strongly connected. This interval is an absorbing interval if and only if the
following two conditions hold:

(i) There exists no i ∈ S and M ∈ Ni such that M ⊆ fBi

(∨
Bi

[(S ∪K)c, Sc]
)
, for some

Bi ∈ Bi.
(ii) There exists no i ∈ (S ∪ K)c and Y ∈ Yi such that Y ⊆ fBi

(∨
Bi

[S, S ∪K]
)
, for some

Bi ∈ Bi.

Proof. Since it is assumed to be connected, [S, S ∪K] is an absorbing interval if and only if the
following two conditions hold:

(i) There exists no i ∈ S and T ∈ [S, S ∪K] such that T ∈ P0
i ∪ P∗i .

(ii) There exists no i ∈ (S ∪K)c and T ∈ [S, S ∪K] such that T ∈ P1
i ∪ P∗i .

By Property 9, it is equivalent to say that [S, S ∪K] is an absorbing interval if and only if the
following two conditions hold:

(i) There exists no T ∈ [S, S ∪ K] and i ∈ S with some Bi ∈ Bi and M ∈ Ni such that
T 4Bi M∆Bi. (That is, M ⊆ T∆Bi = fBc

i
(T ) by Property 6.)

(ii) There exists no T ∈ [S, S ∪K] and i ∈ (S ∪K)c with some Bi ∈ Bi and Y ∈ Yi such that
such that Y∆Bc

i 4Bi T . (That is, Y ⊆ T∆Bc
i = fBi(T ) by Property 6.)

By noticing that {fBi(T ) | T ∈ [S, S ∪K]} is an interval, we obtain to write the conditions as
follows:

(i) There exists no i ∈ S and M ∈ Ni such that M ⊆
⋃

T∈[S,S∪K]

fBc
i
(T ), for some Bi ∈ Bi.

(ii) there exists no i ∈ (S ∪ K)c and Y ∈ Yi such that such that Y ⊆
⋃

T∈[S,S∪K]

fBi(T ), for

some Bi ∈ Bi.
Since fBi is an involution, we obtain from (D.4), S ← fBi(S) and S′ ← fBi(S

′) that fBi(S) ∪

fBi(S
′) = fi(S ∨Bi S

′). Moreover, fBc
i

 ∨
Bc

i

T∈[S,S∪K]

T

 = fBi

( ∨
Bi

T∈[S,S∪K]

T c

)
and the conditions

can be written at the collection level as stated in the theorem. (In these conditions, we can take
any Bi ∈ Bi since the yes and no influential coalitions contain no irrelevant agents.)

When K = ∅, the absorbing interval [S, S ∪K] degenerates into an absorbing state and we
recover the conditions of Theorem 7. Interpreting the intervals [S, S ∪K] as blurry absorbing
states, we can say that stability of opinions is reached when yes and no-influential coalitions are
large enough, which means that sizeable coalitions are necessary to displace agent’s opinions.
Since the influential coalitions can be regarded as the boundaries of the P0 and P1 collections,
sizeable influential coalitions are tantamount to large thresholds in anonymous models, which
is indeed some guarantee of stability (Grabisch et al., 2019a).

E Influence and dynamics: two worlds apart?

In this appendix, we provide a technical discussion concerning the relations between influences
and dynamics. By influences, we may refer, either to the influence graph (Definition 5) based on
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the influence index (2.4), or to the influential coalitions (Definition 16). Appendix D explains
why opinion dynamics are better characterised by influential coalitions than by the influence
graph.

Nevertheless, would it be possible to impose restrictions on pi so that all terms in (2.4) are
strictly positive, or all strictly negative, or all null ? The only way to obtain this convenient
property would be to build the model by letting Wi := {j : pi(S \ j) = pi(S ∪ j) ∀S ∈ 2N} the
set of irrelevant agents on i and then to define Bwi := {B ∈ 2N such that S1 \Wi ≺B S2 \Wi ⇒
pi(S1) < pi(S2)}. Then we would impose Bwi 6= ∅ for all i. In this case, the yes and no influential
coalitions would be Yi = Ni = {{j} | j ∈ Bi ∪ (Bi)

c}, where Bi and Bi are the ones of our
paper. This means that the pi are decomposable and symmetric in the sense of Definition 7
in Grabisch and Rusinowska (2013) and we can show that their Theorem 7 can be generalised
to our setting: such pi are qualitatively equivalent to the GWM functions presented in Section
3.1. In particular we would get that the P1 and P0 collections are intervals, and actually quite
special ones: P1

i = Bi and P0
i = (Bi)c; in particular they would capture the influence graph.

This means that in our summary figure, we could draw a double arrow between (P0
i ,P1

i ) and
(Bi)i∈N to express a bijective relation: the wall between influences and dynamics would be
broken.

Back to our unrestricted model, we leave as an open problem the relation between the influ-
ence graph and the dynamics at a statistical level, using, e.g., a maximal likelihood estimation.
We would like to be able to answer the following questions: is there some kind of “natural
absorbing class” associated with a given influence graph ? Conversely, can we recover a rea-
sonable influence graph when observing an absorbing class ? Let us remember also that in this
paper we made no use of the absolute value of the influences φ(j → i))i,j∈N . Allied with the
influential coalitions, this neglected source of information seems to indicate that a connection
with cooperative game theory remains to be uncovered.

sign(φ(j → i))i,j∈N

(Bi)i∈N p

Statistical tools needed

B B̃

(P0
i ,P1

i )i∈N

absorbing classes

Influences Dynamics

Figure E.1: A wall between influences and dynamics
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