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Abstract

Bi-level optimization has gained a lot of interest during the last decade. This framework is suitable to model several real-life situa-
tions. Bi-level optimization problems refer to two related optimization tasks, each one is assigned to a decision level (i.e., upper and
lower levels). In this way, the evaluation of an upper level solution requires the evaluation of the lower level. This hierarchical deci-
sion making necessitates the execution of a significant number of Function Evaluations (FEs). When dealing with a multi-objective
optimization context, new complexities are added and imposed by the conflicting objectives and their evaluation techniques. In this
paper, we aim to reduce the induced complexity using approximation techniques in order to obtain the lower level optimality. To
this end, ideas from multi-objective optimization have been extracted, improved, and hybridized with evolutionary methods to build
an efficient approach for Multi-objective Bi-Level Optimization Problems (MBLOPs). In this work, three techniques are suggested:
(1) a complete lower level approximation Pareto front procedure, (2) a reference-based approximation selection procedure, and (3)
a sub-set reference-based approximation selection one. The proposed variants are applied to a new multi-objective formulation of
a well-known combinatorial problem integrating two systems in the supply chain management, namely, the Bi-level Multi Depot
Vehicle Routing Problem (Bi-MDVRP). The statistical analysis demonstrates the efficiency of each algorithm according to a set of
metrics. Indeed, a large number of savings are detected which confirms the efficiency of our proposals for solving combinatorial
optimization problems.
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1. Introduction

Bi-level optimization problems involve two interactive decision making tasks to be optimized. These processes are
integrated into a nested structure which makes the principle problem (i.e., the problem at the upper level) sequentially
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dependent on the secondary optimization problem (i.e., the problem at the lower level). Generally, two Decision Mak-
ers DMs (the leader and the follower) are collaborating to ensure the whole optimization process. This hierarchical
design of optimization is suitable to model a large number of real-life applications [3, 17, 4]. However, bi-level opti-
mization is characterized by an inherent NP-hard complexity even in the simplest case of linear bi-level programming
[10]. Furthermore, the presence of a related lower level optimization problem in the Bi-Level Optimization Prob-
lems (BLOPs) brings other struggles of disconnectedness and non-convexity. In fact, the evaluation depends on the
follower’s reaction. In this regard, each upper level solution is passed to the lower level task to perform the lower
optimization using a search algorithm to find a near-optimal solution. The interaction between both optimization lev-
els is generally complex, and thus increases the computational cost of the evaluation process. This complexity leads
frequently to NP-hard problems [16]. It is important to note that the evaluation step consumes the majority of the
needed effort to achieve the convergence of such algorithm.
In the context of MBLOPs, the lower level optimization problem has a set of trade-off optimal solutions. These trade-
off solutions should be considered all as optimized reactions taken into consideration to evaluate one upper solution.
This fact complicates the task for the leader, which performs its search for solutions that are fixed as parameters for
optimal trade-off solutions of the follower.
A variety of classical and evolutionary methods have been conducted on bi-level optimization research area. In the
field of classical optimization, we observe the presence of intensive studies using approximate solution techniques
solving bi-level problems. Although the efficiency of these methods, they still restricted to small instances of BLOPs.
Besides, most of these works are limited to a set of regularity properties such as linearity, convexity, differentiability
or smoothness assumptions [13]. This fact makes them inapplicable for complex non-convex, non-linear or large di-
mensional bi-level problems. Regarding Evolutionary Algorithms (EAs), there exists a panoply of solution methods
that have shown their effectiveness to solve such problems [1, 7]. However, these population based-algorithms are
computationally expensive since they necessitate a huge number of FEs. For instance, if we have 100 individuals at
the upper level, and the population is evolved for 50 generations, 50 individuals at the lower level with 50 generations,
the total number of FEs of a nested evolutionary algorithm will be 12.5 million (50*100*50*50) FEs. To cope with
this high computational cost, several research studies have been investigated in the literature. In this context, we cite
the work of Sinha et al. (2013) where the authors proposed a quadratic approximation to find a near-optimal lower
solution consuming a small number of FEs. Another attempt to reduce the number of FEs is the study of Chaabani
et al. (2018) who proposed a co-evolutionary decomposition-based scheme. The majority of these works deal with
single objective bi-level optimization problems. In the context of MBLOPs, we find only the work Deb and Sinha
(2009), Ankhili (2018), etc. These approaches have proven their efficiency on several test problems. However, they
are restricted to the continuous research area. In this paper, we are working in the context of discrete decision variables
since the majority of real situations can be modelled as combinatorial optimization problems. The idea of this paper
is inspired by multi-objective optimization ideas and evolutionary algorithms to solve efficiently such kind of prob-
lems. We are motivated by evolutionary algorithms within the nested scheme since they present: (1) the high-quality
solutions in the upper level [15]. (2) the upkeep of the structure of BLOPs to provide the most appropriate solution.
(3) the powerful features of EAs which are unfortunately limited to small size problems. Thus, we plan to extend their
strengths to solve efficiently MBLOPs with large size decision variables. Particularly, we aim in this paper to optimize
the bi-level multi-objective optimization evaluation step, allowing then the scalability of such solution approach to
high dimensional problems.
The key contributions of this work are:

• Proposing a new approach for solving bi-level multi-objective optimization with three variants able to (1)
neutralize the lower multi-objective effect in the upper evaluation step which is the most computational
complexity consuming part in EAs. (2) Reduce the complexity of bi-level multi-objective optimization solution
method by reducing the required number of FEs.

• Proposing a new multi-objective formulation of the Bi-MDVRP, which is a well-studied problem in operation
research [3].

• Reporting a statistical analysis of our approaches for solving the multi-objective Bi-MDVRP.



2. Basic definition and related work

Bi-level optimization problems contain two tasks of optimization with two decision levels. The upper optimization
problem is known as the leader (upper level) and the lower optimization problem is referred to as the follower (lower
level). The bi-level framework includes two types of decision vectors, namely, the upper level decision vector xu and
the lower level one xl. The leader acts as a fixed parameter for the follower. Besides, each level has its own objectives
and constraints. Considering the number of objectives, the multi-objective bi-level optimization is a natural extension
of single objective bi-level optimization where at least one problem is presented as a multi-objective optimization
problem. MBLOPs require the optimization of more than one objective at a single decision level. This type of opti-
mization problem includes three variants: (1) multiple conflicting objectives are only handled by the upper level, (2)
multiple conflicting objectives are only handled by the lower level, and (3) multiple conflicting objectives are handled
by both levels. In this work, we deal with bi-level multi-objective optimization problems with a single upper level
objective. Figure 1 illustrates a general sketch of this variant’s structure necessitating interlinked optimization at both
levels. The Figure shows that for each upper solution (marked with blue point) there corresponds a set of possible
obtained Pareto fronts (curves in red color). The solving algorithm aims to approximate the lower level Pareto front
to be returned to the upper level. To this end, a general mathematical formulation of the problem can be presented as
follows:

Min F(xu, xl)g f f f f cvvvvvvvvvvvvvvvvvvvvv f f f f f f f f

s.t G(xu, xl) ≤ 0

xl ∈ argmin
xl

f (xu, xl) = f1(xu, xl), ..., fn(xu, xl)

s.t g (xu, xl) ≤ 0

(1)

Where the optimization of the upper objective function F(xu, xl) depends on the lower optimal Pareto front for
f1(xu, xl), ..., fn(xu, xl) (which are the lower objective functions constrained by g (xu, xl)).
Existing bi-level solution methods are classified into two main categories of groups: (1) classical methods and (2) evo-
lutionary ones. The first family includes mainly the trust region function methods [6], descent methods [16], penalty
functions methods [2] etc. Despite the significant progress made in classical optimization, the main shortcoming of
these techniques is that they depend on the mathematical properties of the BLOP. This makes them unadaptable to
handle real-world problems difficulties such as non-linearity, non-convexity, and large dimensionality. The second
family which includes EAs has been successfully applied to solve BLOPs. In this way, attempts have been made to
solve BLOPs using these methods, we cite [7] [8] [1]. However, the advantages come with a trade-off that most of the
evolutionary bi-level algorithms are computationally very intensive due to the nested structure imposed by the prob-
lem. To address this problem researches have been investigated to reduce the computational expense of evolutionary
bi-level optimization algorithms by utilizing meta-modelling-based principles such as the quadratic approximations
based algorithm of [14] and the kriging approximations based approach of [13]. In fact, these proposed techniques
are suggested to the continuous single BLOPs. Similarly, regarding the multi-objective bi-level optimization there
exists a number of works solving the multi BLOPs in the continuous research area. However little has been done
on MBLOPs in the combinatorial case. This topic remains relatively less explored and we acknowledge the need for
methodological improvements.

3. Proposed method

As we mentioned before, the main shortcoming of the nested solution methods is their computationally cost which
makes them not viable for large scale bi-level combinatorial optimization problems [15]. Besides, solving BLOPs
associated with multiple objective conflicts remains a challenging issue. Based on the above observations, we design
a new bi-level framework that applies lower level approximations to reduce the total required number of FEs for
MBLOPs. Figure 2 illustrates the general scheme of our proposed approach incorporating our three suggested types
of interaction between the two levels: When the variation step at the upper level is terminated, an upper offspring
population Qu is formed. Now, for each upper child solution, the upper decision variable xu is passed as a fixed



Fig. 1. Bi-level multi-objective optimization nested scheme.

parameter to the lower level to execute the lower optimization task for Tl generations. After that, the lower level
response becomes ready to be transferred for the leader. To this end, the upper algorithm is able now to perform the
evaluation step on the complete solutions. At this stage, we model the lower reaction using three alternatives: (1)
return the whole lower Pareto front for the upper evaluation as performed in the classical scheme which is described
in part ”c” from Figure 2, (2) send the best solution presenting the maximum compromise between lower level Pareto
solutions (part ”b” in Fig. 2), (3) consider the best trade-off solutions (part ”a” in Fig. 2), as a surrogate sub-set of
the whole Pareto lower level front. We note that all the mentioned classical and improved variants share the same
classical upper level environmental selection procedure. This can be done while filling the next upper population with
all the lower obtained non-dominated solutions saved in an archive Ar. It is important to note that we use the Genetic
Algorithm (GA) to evolve the upper level population for Tu generations. The upper level step by step procedure used
for all the above mentioned variants can be summarized as follows:

• Step 1 (Initialization): Randomly generate the upper level initial population of size Nu. Then, the lower level
algorithm is executed to optimize the lower level objectives for each upper individual.

• Step 2 (Upper level parent selection): Choose (Nu/2) best members from the parent population using the
binary tournament selection operator.

• Step 3 (Upper level Variation): Perform the upper evolution through the crossover and mutation operators.
• Step 4 (Offspring upgrading and evaluation): Execute the corresponding lower level approximation technique

for each xu. Then, the lower level vectors are combined with their corresponding upper level ones to form the
entire offspring solutions. The algorithm is able now to perform the evaluation step on the complete solutions.

• Step 5 (Environmental selection): Fill the new upper population with the best Nu solutions. If the leader uses
an alternative described in section 3.2 or 3.3, then, all the lower level stored solutions in Ar need to be combined
with their upper level decision vectors. The process is repeated from Step 2 until the stopping criteria is met.

3.1. Classical complete lower level evaluation technique

The traditional bi-level framework appeals the complete Pareto front obtained at the lower level for the upper level to
continue the upper evaluation procedure. The lower level may use the GA on the lower population of size Nl and the
overall process can be described as follows:

• Step 1 (Initialization): Randomly generate the initial population based on the fixed upper level solution.
• Step 2 (Lower level parent selection): Select (Nl/2) promising solutions that can participate in the lower

mating pool using the binary tournament selection operator.
• Step 3 (Lower level variation): Perform crossover and mutation operators to create the offspring population.



• Step 4 (Offspring evaluation): Evaluate the lower obtained offspring solutions using the lower level objective
functions and constraints.

• Step 5 (Environmental selection): Append the new population with the best Nl individuals based on the Non-
Dominated Sorting Algorithm (NDSA) and the crowding Distance (CD) measure of [7]. The overall process is
repeated from Step 2 until reaching the stopping criteria.

 

Fig. 2. General scheme of the multi-objective bi-level optimization interaction using: sub-set lower approximation technique (a), lower level single
solution approximation technique (b), and classical complete lower level evaluation technique (c).

3.2. Lower level single solution approximation technique

In this section, we aim to provide a new variant of the nested multi-objective resolving method. The main motivation
behind this proposal is to cope with the high computational cost spent by the traditional nested approach. Thus, we
propose to proceed with a reduction-based evaluation technique aiming to identify a single solution presenting the
best compromise lower Pareto front. In this context, a crucial issue that should be considered is whether this solution
is cooperative or non-cooperative. A cooperative solution is obtained under an optimistic cooperative follower’s be-
haviour to send the best lower solution. However, in pessimistic bi-level optimization a non-cooperative solution is
obtained when the follower selects the worst reaction for the leader [15]. In this work we address the optimistic case.
Therefore, we can use an explicit formulation to evaluate a multi-objective bi-level solution using a single lower level
surrogate one that we note xs

l (equation 2).

(xui, (xl j.1, xl j.2, xl j.3
xl j

))...(xui, (xln.1, xln.2, xln.3
xln

)) i ∈ I, j ∈ n becomes (xui, xls) (2)

Where I is the upper level dimension and n is the lower level one. The step by step procedure is as follows:
• Step 1 (Initialization): Randomly generate the initial population based on the sent upper level solution.
• Step 2 (Lower level parent selection): Select the best solutions to participate in the lower mating pool.
• Step 3 (Lower level variation): Perform the lower evolution through the crossover and mutation operators.
• Step 4 (Offspring evaluation): Evaluate the lower obtained offspring solutions using the lower level objective

functions and the constraints.
• Step 5 (Environmental selection): Choose the best Nl solutions, using NDSA and CD measure, to obtain a

new lower level population.
• Step 6 (Archive updating): Fill the archive with the complete obtained approximate Pareto front to be com-

bined with the new best upper Nu solutions during the replacement step.



• Step 7 (Best lower level representative compromise technique): Identify a Real Surrogate Point (RSP) which
is passed to the leader. We note here that the identification of the RSP solution is detailed in subsection 3.4.

3.3. Sub-set lower approximation technique

The challenge when trying to reduce the computational effort needed in multi-objective optimization is to maintain the
initial basic structure of the problem. Therefore, we opt to keep the fundamental dominance structure combining the
previously stated complete lower approximate Pareto front based-evaluation and single objective lower level reduction.
Moreover, the target of this strategy is to find a compromise between reducing the number of generated FEs and the
number of returned lower decision variables, while preserving the original structure of the multi-objective optimization
problem. In this regard, the lower level optimization procedure generates a subset of Pareto optimal solutions that will
be used in the upper level evaluation. However, the entire lower level Pareto front is always saved in the archive Ar to
be injected in the new parent population via new upper population replacement step. The step by step procedure is as
follows:

• Step 1 (Initialization): Randomly generate the initial population.
• Step 2 (Lower level parent selection): Select the candidate solutions to participate in the lower mating pool.
• Step 3 (Lower level variation): Perform the lower level evolution through the crossover and mutation operators.
• Step 4 (Offspring evaluation): Evaluate the obtained lower offspring solutions using the lower level objective

functions and constraints.
• Step 5 (Environmental selection): Fill the new population based on NDSA and CD replacement strategies.
• Step 6 (Archive updating): Fill the archive with the complete obtained approximate Pareto front.
• Step 7 (Surrogate sub-best compromise set): The upper level decision maker selects the compromise solution

from the obtained lower Pareto front using Algorithm 1. This solution is deleted from the Pareto Front to repeat
the extraction procedure and obtain a new one.

3.4. New reference point extraction technique for the best compromise situations

The idea of extracting the best compromise solution is inspired by the work of [9, 12]. Besides, we are inspired
by the ideal point generation, which employs a single objective optimization to construct the best objective values
over the search space. However, we propose to reach our Reference Point (RP) considering the best objective values
over the objective space. Thus, the RP allows the upkeep of: (1) the non-dominance structure of the multi-objective
optimization and (2) the Pareto optimality feature. Indeed, a strictly based similarity ranking procedure is used to find
the closest feasible existing solution to the RP. Figure 3 illustrates the construction of this reference solution: first we
identify the best reached fitness value for each objective function over the objective space. Each identified solution
is marked with its reached minimum fitness as min fm the mth objective function. Then, we generate the reference
point combining coordination using these fitness values. Equation 3 describes the formulation of the RP by combining
the coordination of these extreme solutions from the generated approximate Pareto front. Similarly to the concept of
the ideal point, the RP is an unfeasible constructed point used only to guide the process of the algorithm to the best
compromise solution. For this reason, the purpose here is to achieve the highest level of similarity between the RP
and the non-dominated obtained solution to find the real surrogate delegate solution that represents the Pareto front.
This process is detailed in Algorithm 1.

RP = min
x∈PF

fm(x) ∀ m = 1...M, x is Pareto optimal (3)

4. Application to the Multi-objective Bi-level Multi-Depot Vehicle Routing Problem

The Multi-objective Bi-level Multi-Depot Vehicle Routing Problem (M-Bi-MDVRP) is a variant of the Bi-MDVRP.
In this variant, we refer to the proposed model in [11], where the leader minimizes the distance between retailers and
depots at the upper level. In contrast, the follower minimizes two costs: (1) the direct transport between plants and
depots and (2) the production cost aiming to find an approximation of the Pareto front at the lower level. Thus the
problem can be formulated as follows:



RP 

 

Fig. 3. Reference point for an approximate Pareto front.

Min F(xv
i j, yp,d) =
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E∑
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i j = 1, ∀ 1 ≤ j ≤ Rtrccgg (5)

E∑
i=1\{ j}

xv
i j =

E∑
i=1\{ j}

xv
ji, ∀ j ≤ E, ∀ v ∈ V (6)
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dr xv
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i + 1(|R| − 1) (1 − ys
i j), ∀ i, j ∈ R, ∀ s ∈ S (8)

given {xv
i j}, {yp,d} solves : min f (xv

i j, yp,d) = ( f1, f2), f1 =

P∑
p=1
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p,d yp,d, f2 =

D∑
d=1

cc
p,d yp,d (9)

s.t
D∑

d=1

P∑
p=1

yp,d = 1trvcvccgg (10)
D∑

d=1

qp yp,d ≤ PCp, ∀ 1 ≤ p ≤ Pvccgg (11)

P∑
p=1

qp yp,d ≥

V∑
v=1

R∑
r=1

dr, 1 ≤ d ≤ D trvcvccgg (12)

Where P,D,R, and V design the set of plants, depots, retailers, and vehicles, respectively. xv
i j and yp,d denote the upper

and the lower decision variables, respectively. E is the edge set between retailers and depots, dr represents the demand
of retailer r and PCp is the production capacity of plant p. qp is the quantity of goods manufactured at p. We note
that ca

i, j, cb
p,d, and cc

p,d design the cost of transporting goods from node i to j for the leader, the cost of manufacturing
a product at plant p for depot d, and the cost of transporting goods from p to d, respectively. u is the upper bound
of a node reachability indexation. The objective function of the upper problem is defined by (4). According to (5)
each retailer is visited exactly once by one assigned vehicle. Constraint (6) implies flow conservation. (7) asserts that
the total demand of all retailers on one particular route must not exceed the capacity of the vehicle assigned to this
route. Constraint (8) ensures sub-tours elimination. The objective functions of the lower level are defined by (9). (10)
imposes variable binary requirements. Constraint (11) guarantees that the total demands of assigned depots should not
exceed the production availability of plant p. Constraint (12) ensures that the demands of retailers should be satisfied
by associating a part of plant production to depots.



Algorithm 1 Reference point generation algorithm
Input: Pareto non-dominated solutions Pf, Objective functions set f.
Output: Reference Point RP, Real Surrogate Point RS P.

1: Begin
2: min← ∞
3: For each fm in P f do
4: While ( fm < min) do
5: min← fm
6: End While
7: End For
8: RP← Buildcoord(min( f1)...min( fm)) /∗ Build the reference coordinates with minimum obtained fitness values in P f .
9: RS P←MaxSim(RP,P f ) /∗ Select a solution from P f with high rate of similarity with RP.

10: End

5. Experimental study

In this section, we conduct an empirical study to evaluate the efficiency and the limits of each of the proposed variants.
We perform 31 runs for each instance from the pr suite inspired by Legillon et al. (2013). The nature of stochastic
processes imposes sometimes the convergence to the same set of solutions. To cope with this dilemma, the well known
Wilcoxon’s rank-sum test is used to determine if there is a significant difference between the algorithms’ behaviours.
These results at level α = 0.05 are presented in the form of (-: no significance) and (+: significance) in the order on
which the algorithms appear.
To investigate the performance of the proposed variants, we use the new multi- bi-level multi-depot vehicle routing
problem formulated in section 4. Then, we compare the results against the classical nested approach to show the merit
of the injected techniques regarding the traditional one.

5.1. Experimental settings

Since the lower level optimization procedure is executed interacting with the upper level one, we choose a fewer
number of generation and smaller population size at the lower level. We set the parameter values through preliminary
experiments as follows: Nu = 40, Nl = 30, Tu = 50, Tl = 40. The variation operators are inspired from the baseline
model (Bi-MDVRP) of [11] for both levels and their probabilities are fixed to: sequence-based-crossover probability
= 0.9, uniform mutation probability = 0.1.

5.2. Results and Discussion

In this section, we aim to assess the performance of the proposed algorithms conducting a set of computational
experiments. We used in this statistical experiments the following criteria: (1) upper level solution quality, (2) number
of FEs, and (3) the consumed CPU time.

1) Solution Quality: The solution qualities are summarized in Table 1 in terms of best and averaged upper fitness value
obtained by the Lower level Single Solution Approximation based variant (LSSA), Sub-set Lower Approximation
based variant (SLA), and the Classical complete Lower level Evaluation based variant (CLE), across 31 independent
runs, on all the used benchmarks. For each from the used instance, we highlight the best performance in bold. We
observe from this Table that the used LSSA algorithm achieves superior performance compared to the classical and
the lower subset reduction variants in 6 over 10 used instances in terms of best fitness value. This fact can be explained
by the focus on the upper level decision variables in the evaluation step, and the efficiency of considering most similar
solution among the candidate ones to the ideal lower level point. For the best fitness evaluation, this variant achieves
also a reasonable performance with best results, especially for high dimensional used benchmarks (e.g. M-bipr07,
M-bipr08, M-bipr10). The subset approximation variant succeeds as the second best performing algorithm to obtain
4 best results in terms of best fitness.
2) Number of FEs: As shown in Figure 4 the best performance is obtained by the proposed variant that incorporates
the surrogate approximation extraction technique. This can be attributed to the reference point that allows saving the



number of FEs by summarizing all the lower vector solution i.e., the lower obtained pareto front, in one representative
solution. Indeed, the green curve which denotes the LSSA algorithm obtains usually the less FEs on all progress of the

Table 1. Upper level average and best distance obtained by SLA, LSSA, and CLE based algorithms on the M-bipr instances.

Average Fitness Distance Best Fitness Distance

Instance LSSA SLA CLE LSSA SLA CLE

M-bipr01 3310.17 ++ 3250.16 ++ 3415.36 ++ 2992.47++ 3076.84 ++ 3057.25 ++

M-bipr02 5910.33 ++ 5940.64 ++ 5980.17 ++ 5890.16 ++ 5884.25 ++ 5884.58 ++

M-bipr03 11647.12 –+ 11778.42 –+ 11644.35 ++ 10968.25 ++ 11558.36 ++ 11578.25 ++

M-bipr04 12940.51 ++ 12976.15 ++ 12996.47 ++ 12899.32 ++ 12446.26 ++ 12548.36 ++

M-bipr05 11918.63 ++ 11870.16 ++ 11864.23 ++ 11621.24 ++ 11351.80 ++ 11411.14 ++

M-bipr06 18024.71 ++ 17998.35 ++ 17991.19 ++ 17105.43 ++ 17091.31 ++ 17029.65 ++

M-bipr07 5160.86 ++ 5317.74 ++ 5203.14 ++ 4970.18 ++ 4980.93 ++ 4992.15 ++

M-bipr08 9917.65 ++ 10233.42 ++ 10193.15 ++ 9320.11 ++ 9340.27 ++ 9354.21 ++

M-bipr09 13632.21 ++ 13524.04 ++ 13740.59 ++ 13051.16 ++ 13000.76 ++ 13291.56 ++

M-bipr10 20714.32 ++ 20940.98 ++ 20862.45 ++ 20576.19 ++ 20580.13 ++ 20681.38 ++

number of generations. For instance, it takes only 106 FEs for 50 upper generations, while the SLA variant consumes
more than 2.4 ∗ 107 FEs, and the classical approach requires 4 ∗ 107 FEs for the same number of generations (cf. Fig.
4) for bi-pr04. The same observation is confirmed on the other number of generations. We note that we choose the
Bi-pr04 instance as a comparison based benchmark because it represents a medium dimension test problem. These
results may also characterize the same behaviour of the used algorithm from a computational time viewpoint.
3) CPU time comparison: Box plots in Figure 5 illustrate the CPU time consumed for small, medium and large size
instances. These box plots reveal a detailed view of the algorithms’ performances with the first quartile, the third one,
the median, and the outliers. These results remain valid according to our selected combinatorial optimization problem
and obviously, the suitable configuration is the reference point based approximation technique variant.

Fig. 4. Numbers of FEs obtained by SLA, LSSA, and CLE at the upper levels on the Bi-pr04 problem.
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Fig. 5. CPU time consumed for small dimension instance M-bipr01, medium dimension instance M-bipr03, and large dimension instance M-bipr10.

6. Conclusion

In this paper, we tackle combinatorial multi-objective bi-level optimization problems by proposing new approximation
techniques with the nested approach, that we named LSSA and SLA. The main interest of this work is to incorporate
ideas from multi-objective optimization (e.g. ideal point) with the evolutionary process to make the proposed variants
efficient in solving combinatorial MBLOP. The experimental results revealed the efficiency of LSSA and SLA when
compared to traditional bi-level multi-objective EAs. As future works, we wish firstly to extract a set of recommenda-
tions that can be useful for the decision maker while choosing an approximation variant. Secondly, the obtained results
are promising, thus it would be a challenging perspective to apply our variants to other real-world bi-level problems.
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