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Abstract

The ability of artificial agents to increment their capabilities when confronted with new data is
challenge in artificial intelligence. The main challenge faced in such cases is catastrophic for
i.e., the tendency of neural networks to underfit past data when new ones are ingested. A firs
of approaches tackles forgetting by increasing deep model capacity to accommodate new know
A second type of approaches fix the deep model size and introduce a mechanism whose ob
is to ensure a good compromise between stability and plasticity of the model. While the fi
of algorithms were compared thoroughly, this is not the case for methods which exploit a fix
model. Here, we focus on the latter, place them in a common conceptual and experimental fram
and propose the following contributions: (1) define six desirable properties of incremental l
algorithms and analyze them according to these properties, (2) introduce a unified formaliza
the class-incremental learning problem, (3) propose a common evaluation framework which
thorough than existing ones in terms of number of datasets, size of datasets, size of bounded m
and number of incremental states, (4) investigate the usefulness of herding for past exemplar
tion, (5) provide experimental evidence that it is possible to obtain competitive performance
the use of knowledge distillation to tackle catastrophic forgetting and (6) facilitate reproducib
integrating all tested methods in a common open-source repository. The main experimental
is that none of the existing algorithms achieves the best results in all evaluated settings. Im
differences arise notably if a bounded memory of past classes is allowed or not.

uction
al agents which evolve in dynamic environments
able to update their capabilities in order to inte-
data. Depending on the work hypotheses made,
h as continual learning [62, 67], lifelong learn-
or incremental learning (IL) [6, 14, 25, 56] are

scribe associated works. The challenge faced in
catastrophic forgetting [44], i.e., the tendency

l network to underfit past data when new ones
d. The effect of catastrophic forgetting is allevi-
by increasing the model capacity to accommo-

nowledge or by storing exemplars of past classes
ed memory and replaying them in each new state.
and lifelong learning algorithms usually increase
acity and are tested in a setting in which a new
ed in each new state of the system. Recent com-
udies [35, 48] provide good coverage of these
of approaches but give little room to incremen-
g algorithms. We focus on class IL algorithms
ide the most interesting results in recent works
ture [7, 8, 14, 23, 24, 28, 56, 75]. Their study
ng because one early example of such work [56]

outperform continual learning approaches when
common experimental setting [35]. More recent
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works [7, 8, 14, 28, 75] have provided strong improve
compared to [56]. We propose a series of contributio
better understand and evaluate existing class IL algor
as well as interesting combinations of their componen

We first define a common analysis framework ma
six desirable properties of incremental learning algori
This set of properties builds on the one proposed in
which already includes three of them (marked with
low):

1. Complexity (C)* - capacity to integrate new
mation with a minimal change in terms of the m
structure. For a deep neural network, only the s
the classification layer should grow. Otherwis
total number of parameters of the model is lik
increase strongly, especially at large scale.

2. Memory (M)* - ability to work with or with
fixed-size memory of past classes. Naturally,
rithms that do not require past data are preferab
their performance is likely to be lower, especi
complexity growth is minimized.

3. Accuracy (A)* - performance for past and
classes should approach that of a non-increm
learning process that has access to all data at all

4. Timeliness (T) - delay needed between the o
rence of new data and their integration in the
mental models.

5. Plasticity (P) - capacity to deal with new classe
are significantly different from the ones that
learned in the past [69].
ah et al.: Preprint submitted to Elsevier Page 1 of 18
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ability (S) - the aptitude to learn a large number
asses, typically up to tens of thousands, and en-
usability in complex real-world applications.

, we propose a unified formalization of the class
l learning problem and use it to analyze algo-
results. Focus is put on the components which
e algorithms one from another in order to facili-
erstanding of advantages and limitations brought
e of them. Moreover, we introduce promising
ns of components from different algorithms and

r merits experimentally.
we propose a thorough evaluation framework.
c datasets designed for different visual tasks are
t performance variability. Three splits in terms
ber of incremental states and three sizes for past
re tested to assess performance robustness for
rameters, which were previously identified as be-
st important [14, 56]. We also propose an evalu-
e case when no past memory is allowed because
has a strong influence on algorithm performance.

, we examine the role of herding-based exem-
ion for past classes. Introduced in [74] and first

IL context by [56], its usefulness was ques-
4, 29, 37] where it was reported to provide only
provement compared to random selection. We

ve experiments with the two selection algorithms
de that herding is useful for all methods tested.
e show that it is possible to obtain interesting

ce without the widely used knowledge distilla-
nent [14, 28, 29, 37, 56, 75]. Instead, we use
-tuning as a backbone for class IL with memory
the problem as a case of imbalanced learning.

nown thresholding method [12] is used to reduce
cation bias between past and new classes.
t not least, we integrate the tested methods into
open-source repository. We notably modify the

ations to make inputs and outputs uniform. These
ill facilitate future experiments in the existing set-
ill allow an easy extension to other datasets.
ain experimental finding here is that none of the
ass IL algorithms is better than the others in all
tal configurations. We find that both memory and
l state sizes influence the relative performance
ms. However, the most significant performance
pear when testing IL with and without a memory
ses. These findings indicate that class incremen-
remains an open research problem, and further

forts should be dedicated to it.

ed work
s a strong regain of interest for incremental learn-
the proposal of different deep learning based al-
We categorize recent approaches in three main
map each group to the six IL properties from

n Table 1. We discuss the advantages and/or chal-
ted to each group-property pair to facilitate their

comparison. We also provide a global assessment w
focus on the application contexts in which each type
proach could be deployed.

Model-Growth (MG) based methods increase th
of deep models to include new knowledge. Wang et a
introduced Growing a Brain, a method based on in
ing representational capacity by widening or deepenin
network. Progressive Neural Networks [61] are an al
tive approach that exploits several models during tra
to preserve knowledge from past tasks. Lateral conne
between all models are learned to leverage prior know
of past features and thus reduce the effect of catastr
forgetting. Recently, [59] propose an adaptive networ
enables self-growth in a tree-like manner. It is based o
tures hierarchy reorganization whenever new tasks arr

Aljundi et al. [3] present a lifelong learning archit
based on a network of experts. A gating mechanism
training samples to decide which expert to transfer k
edge from for each task. Deep Adaptation Network
is another model-growth based approach which adds
tional parameters for each new task. The architect
importantly augmented if a large number of new tas
rives. The approach presented in [55] is based on s
neural networks that share the majority of parameter
add modular adapters to connect the networks and sp
ize each one of them for a specific task.

PackNet [41] is based on a pruning techniqu
identifies redundant parameters and uses them to tra
network on new tasks. The approach is not able to
a large number of tasks since the network can n
strongly compressed without significant performance
P iggyback [40] is a modified version of PackNet th
ploits network quantization to propose masks for indiv
weights. It thus learns a large number of tasks with
gle base network. The approach increases the model
plexity as extra parameters are added to include new
Alternately, Memory Aware Synapses (MAS) [2] dep
mechanism that identifies the most important weig
the model by looking at the sensitivity of the output
tion instead of the loss. When a new task arrives, ch
to important weights are penalized. This method is
cally designed to work with unlabeled datasets, but wa
adapted for usage with unlabeled datasets [4]. This us
is very interesting but, for now, limited to specific task
as face recognition.

Self-Organizing Maps (SOMs) are online unsupe
learning algorithms that rely on approximate stochasti
dient technique, and can be adapted to Incremental L
ing. Neural Gas (NG) networks [43] and its gro
NG variant [18] are related to SOMs which are ofte
ploited for incremental learning. PROjection-PREd
(PROPRE) [21] is an incremental learner based on N
SOMs, which implements an extra supervised read-out
implemented as a linear regression, as well as a concep
detection mechanism in order to make the SOM usua
IL context. Neural Gas with local Principal Comp
Analysis (NGPCA) [1] is an online incremental learn
ah et al.: Preprint submitted to Elsevier Page 2 of 18
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E. Belouad
odel-Growth based Fixed-Representation based Fine-Tuning based

he model evolves by adding pa-
ameters and weights to interconnect
em [55, 61, 73] or small networks [3] to
clude new knowledge. The challenge
to optimize the effect of model growth

n performance [35, 55].

The model is fixed after the first non-
incremental step. In a basic setting [6,
54], the only parameters added are
those needed for new classes weights.
In a more advanced setting [31], ad-
ditional parameters are needed to im-
prove past classes performance.

This group of IL methods are desig
to work with a fixed structure of
backbone model. The number of par
eters is only marginally affected by
modifications of the classification la
designed to reduce imbalance betw
past and new classes [14, 28, 75].

he model growth allows for the de-
loyment of these methods without the
se of an exemplar memory. Memory
allocated to additional model param-

ters and weights instead of raw data
r past classes, which is a more parsi-
onious way to store information about
ast classes [2, 3, 59].

Fixed-representations do not update the
model during the incremental learn-
ing process and thus have a very low
dependency on the memory of past
classes [6]. Class weights are learned
when they are first encountered and can
be used throughout all subsequent in-
cremental states.

Performance of these methods is he
ily dependent on the size of the p
memory. However, storing a la
amount of past exemplars is contra
tory to IL objectives. Memory needs
reduced by exploiting knowledge dist
tion [14, 28, 29, 75] or by exploiting
tistical properties of past states [7, 8

erformance is correlated to the amount
f model growth allowed. If growth is
mited, MG-based methods have lower
erformance compared to that of FT-
ased ones [35]. If significant growth is
llowed significantly [59], performance
omes close to that of classical learning,
ut this is somewhat contradictory to the
equirement to keep models complexity
lose to constant.

Accuracy is lower compared to FT-
based methods because the model is
not updated incrementally. High per-
formance can be obtained with fixed-
representations if the initial model is
learned with a large dataset [6], but the
existence of such a dataset is a strong
assumption in an incremental setting.

Recent approaches report strong
formance gain compared to previ
work such as [14, 29, 56] either thro
more sophisticated definitions of kno
edge distillation [28] or through
casting of IL as an imbalanced lea
ing problem [7, 8] or a combination
both [75]. The gap with classical lea
ing is narrowed if enough memory
past classes is allowed [28, 75].

he complexity of model growth is gen-
rally similar to that of FT-based meth-
ds since retraining is needed for each
cremental update [35].

Only the classifier weights layer needs
to be trained and new knowledge is in-
tegrated in a timely manner [24].

New classes are not recognizable
til retraining is finished to include th
in the model. If applications are ti
sensitive, an acceleration of the tr
ing process can be envisioned at the
pense of result suboptimality.

G-based methods are specifically de-
igned to cope with different visual
sks [2, 40]. The challenge is to min-
ize the amount of additional parame-
rs needed to accommodate each new
sk [35].

Plasticity is limited since the representa-
tion is learned in the first state and then
fixed. Performance drops significantly if
the incremental tasks change a lot and
the initial representation is not transfer-
able anymore [53].

The model updates enable adapta
to new data as they are streamed
the system. If no memory is allow
plasticity is too important and this s
is controlled through knowledge dist
tion or imbalance handling.

hese methods scale well to new
lasses or tasks as long as the systems

which they are deployed have suffi-
ient resources to support the underly-
g model growth for training and infer-
nce phases, as well as for its storage.

The dependence on the bounded mem-
ory is limited and FR-based methods
can include a very large number of
classes. This is possible because class
weights are learned in their initial state
and reused later.

The size of the bounded memory
termines the number of past clas
for which exemplars can be stored
which are still recognizable when n
ones are integrated. If the memory c
straints allow for this, the memory
be increased to keep the number of
emplars per class constant [28].

pproaches in this group cope well with
ew data, are not or weakly dependent
n a memory of the past, and are scal-
ble to a large number of classes. How-
ver, complexity is a disadvantage since
e model has to grow in order to in-
grate new knowledge. They also re-

uire retraining when new classes are
dded, and timeliness is not optimal.
hey are usable when: model complex-
y can grow during the incremental pro-
ess, streamed data vary a lot between
cremental states, no storage is avail-
ble for past data and immediate use of
pdated models is not essential.

Fixed-representation methods inherit
the advantages and disadvantages of
transfer learning schemes. Model com-
plexity is constant and they can be up-
dated in a timely manner since only the
classification layer is retrained. They
have a low dependency on past mem-
ory and can scale up to a large number
of classes. However, these algorithms
are heavily dependant on the quality of
the initial representation and have a low
plasticity. They are usable when: model
complexity should stay constant, data
variability is low, no storage is avail-
able for past memory and updates are
needed in a timely manner.

Fine-tuning based methods are a
quate when we try to optimize the
chitecture complexity and the plas
ity [69] of representations. Howe
since they require network retrain
when new classes are added, their ti
liness is not optimal. Equally import
the bounded memory constraint ma
it hard to scale because the memory
eventually become too small to re
sent past classes adequately. They
usable when: model complexity sho
stay constant, streamed data vary a
between incremental states, storag
available for past data and immed
use of updated models is not essent

Table 1
Analysis of the main groups of incremental learning algorithms with respect to their de-
sirable properties. A global assessment with recommended use cases is also provided.
ah et al.: Preprint submitted to Elsevier Page 3 of 18
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E. Belouad
obot platform for object manipulation tasks. It
e classical NG algorithm to extend nodes to el-
etter match the data distribution. Dynamic On-

ng Neural Gas (DYNG) [10] is an online clas-
pproach that controls the growing speed of the
rk in such a way to speed up learning for new
while slowing down the growth for the already

owledge. NGPCA and DYNG are very inter-
hods but not directly comparable to the methods
ere since they do not exploit deep learning back-
and SOM are growing networks that were widely

cremental semi-supervised clustering [19], multi-
e classification problems [5], and online semi-
vector quantization learning [66].
e that SOM and NG are originally designed for
ed learning and an adaptation to a supervised
needed for comparability with the approaches

in focus here. TOpology-Preserving knowledge
er (TOPIC) [71] is a very recent such work
pts NG to class incremental learning for visual
ith focus on few-shot learning, with a method
CIL, but experiments are also run for the stan-
rio. First, TOPIC introduces an NG network to
re space topologies for knowledge representation.
rk grows to learn new classes while also dealing
es in the feature space due to deep model up-

is achieved using a Min-Max loss that pushes new
t share the same label to a new NG node, while
new nodes of different labels away from each

ond, TOPIC preserves past knowledge by stabi-
opology of the NG network using an Anchor Loss
e TOPIC focuses on the feature space which en-

semantic information than the raw classification
s less affected by the bias induced by high new

scores. A topology-preserving network named
introduced in [70] to handle catastrophic forget-
etwork models the feature space using an Elas-

n Graph, and the topology is maintained using a
reserving loss that constrains the neighborhood
ps in the graph when learning new classes. This
ugments the Hebbian graph by inserting vertices
w class. The addition of nodes in TOPIC and

radually increases the complexity of the architec-

ental Learning Vector Quantization
78] is a prototype-based classifier that does
prior knowledge of the number of prototypes

itial value. Instead, it uses a threshold-based
cheme, based on training data distribution to
the number of required prototypes for each class.
drawback of this approach is the continuously
architecture to store the learned patterns in order
in an IL setting.

Representation (FR) based methods do not up-
eep representation for each incremental state
ss present in literature. They can be seen as
riant of fine-tuning based methods. A fixed-

representation method is briefly described in [56]. T
sults reported with it are poor, and this is due to a subop
usage of the method. In particular, the classification
for past classes is needlessly relearned in each incre
tal state using only the exemplars of each class. Sinc
rely on a fixed representation, the stronger classifier w
learned initially with all past class data are reusable.
Shallow Incremental Learning (DeeSIL) [6] is a m
which applies a simple transfer learning scheme [33
The approach makes use of a deep fixed representat
learn the first batch of classes and a battery of Su
Vector Machines (SVMs) [11] to incrementally learn
classes.

FearNet [31] is a biologically inspired such me
Separate networks are used for long and short term
ories to represent past and new classes. A decision m
anism is implemented to decide which network shou
used for each test example. FearNet is interestin
its memory increases significantly with time since the
rithm needs to store detailed statistics for each class lea

Deep Streaming Linear Discriminant Analysis (D
SLDA) [24] is an online approach based on SLDA [4
gorithm. The Network is trained on the first batch of c
and is frozen afterwards. During training, a class-sp
running mean vector and a shared covariance matrix a
dated, while the prediction is done by assigning the la
the closest Gaussian in feature space defined by the
mean vectors and covariance matrix.

REplay using Memory INDexing (REMIND) [
brain inspired by the hippocampal indexing theory.
method is also based on an initial representation wh
only partially updated afterwards. The approach u
vector quantization technique to stores compressed
mediate representations of images, which are more
pact than images. The stored vectors are reconstructe
replayed for memory consolidation. Vector quanti
is widely used in unsupervised incremental learning
Here, the authors combine the Adaptive Resonance T
(ART) with variant of vector quantization to balanc
trade-off between plasticity and stability during incre
tal online learning. This approach was designed to h
two- and high-dimensional data within image classifi
framework. We tackle in this paper supervised learnin
this approach is not compatible with our experimenta
tocol.

Fine-Tuning (FT) based methods form a group
often uses a distillation [27] term to reduce catastroph
getting [44]. The use of knowledge distillation in
context is similar to self-distillation [20, 79] in that it
ates with the same network architecture for the teache
the student. However, a notable difference arises fro
fact that new data are progressively incorporated. L
ing without Forgetting (LwF ) [36] is a pioneering
that does not require a memory of past classes. It leve
knowledge distillation [27] to minimize the discrepan
tween representations of past classes from the previou
current IL states. LwF first performs a warm-up ste
ah et al.: Preprint submitted to Elsevier Page 4 of 18
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E. Belouad
past parameters and trains only the new ones and
trains all network parameters until convergence.

ental Classifier and Representation Learning
56] is a popular IL method that combines the use
nd of a memory for past class exemplars stor-
sification is performed with a nearest-mean-of-
method instead of the raw scores predicted by
k. This external classifier is deployed to reduce
ion bias in favor of new classes, which occurs
a imbalance between past and new classes. An
lysis [29] concludes that its most important com-
e the fixed-size memory and the distillation loss.
g mechanism and the nearest-mean-of-exemplars
on seem to matter less. The authors of [14]
IL algorithm which differs from iCaRL mainly
e way prediction bias is reduced. The external

replaced by a balanced fine-tuning step, which
me number of samples for past and new classes.
onent has an important impact on performance
o a strong improvement compared to iCaRL. So-
data augmentation is also used and has a small

fluence on results.
ng without Memorizing (LwM) [16] is a distil-
d approach that does not need memory for past
stead, the authors propose an information pre-
alty using attention distillation loss that captures

s in the classifier attention maps in order to pre-
knowledge. In [82], another distillation based
roposed, it trains two separate networks, one for
s and one for past classes, and then combines
double distillation loss. A deep memory con-

is also performed using unlabeled auxiliary data
past class memory.
of recent IL approaches focuses on a more so-
tackling of catastrophic forgetting. The au-

ulti-model and Multi-level Knowledge Distilla-
D) [85] propose a loss that distills knowledge

om the previous model but from all the past mod-
the classes have been learned for the first time.
propose an additional distillation term that oper-
intermediate layers of the CNN in addition to the
onnected one. In [77], knowledge distillation is
ned with a fixed-size memory of the past. The au-
y an algorithm to set a dynamic vector which cor-
as induced by distillation loss among past classes
es the representativeness of past image features.

[28] present Learning a Unified Classifier Incre-
a Rebalancing (LUCIR), a method which gains
ction. LUCIR is based on three main compo-
cosine normalization balances the magnitudes of
ew class probabilities, (2) less-forget constraint
e usual distillation loss to handle feature vectors

raw scores and (3) inter-class separation encour-
twork to separate past and new class embeddings
ly implements a theoretical finding from [52].
urther improvement of IL with distillation could
by adapting recent theoretical and empirical ad-

vances such as those described in [49] and [52].
nately, PODNet [17] relies on a spacial-based distil
loss that constrains the evolution of the model’s repre
tion, and multiple proxy vectors to flexibly represent le
classes. This approach is more adequate with long ru
small incremental tasks.

Another recent stream of research focuses on m
ing IL as an imbalanced learning problem. Bias C
tion (BiC) [75] is a recent approach that uses a cla
knowledge distillation term and adds a linear layer aft
prediction layer of the deep model to reduce the bias
vor of new classes. The layer needs a validation set to
parameters and is effective as long as the size of the v
tion set is sufficient. Class Incremental Learning with
Memory (IL2M) [7] advocates for the use of vanilla
tuning as a backbone for IL. A very compact memor
stores classification statistics from the initial state of
classifier is added. Its content is leveraged to rectify s
of past classes and make them more comparable to
of new classes. Maintaining Discrimination and Fa
(MDF ) [84] is very similar to IL2M . The main diffe
is that MDF keeps the distillation loss to maintain dis
ination between past classes. In MDF , the rectificat
class scores is done by aligning new class weights to
of past classes by multiplying each new class weight b
mean norm of past class weights and dividing it by the
norm of new class weights, before to finally compu
prediction scores.

Classifier Weights Scailing for Class Incremental L
ing (ScaIL) [8] is motivated by the same hypo
as IL2M [7], MDF [84] and BiC [75]. Inspir
fixed-representation methods, bias reduction is achiev
reusing the classifier weights learned initially with all
The experimental results indicate that, while the m
evolves throughout incremental states, initial classifie
still usable after a scaling operation, which makes
comparable to classifiers learned for new data. Stan
ization of Initial Weights (SIW) [9] is also based on
weights replay in a memoryless IL setting. The weigh
play is followed by standardization of all class weig
smooth weights distribution in order to tackle catastr
forgetting.

Mnemonics Training [38] is built on top of he
based approaches such as iCaRL, BiC and LUCI
modify the herding procedure by parameterizing exem
and making them optimizable. The network is then
mized in two manners: model-level and exemplar-leve
memory is thus adjusted incrementally to match the
distribution in an effective way, leading mnemonic
plars to yield separation between classes. In embeddin
tems, Semantic Drift Compensation (SDC) [80] wa
posed to estimate the semantic drift of past knowledge
learning new knowledge to compensate for it, to furth
prove performance. The drift is computed at the class-m
embedding level, which means that this approach is
on NCM classifier that does not need exemplars sto
since the past class-mean embeddings are estimated
ah et al.: Preprint submitted to Elsevier Page 5 of 18
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E. Belouad
nly. In [68], authors propose an approach that
ctivation maps of the CNN in order to accommo-
nowledge. Calibration is done using spatial and
ise calibration modules, and only the calibration

are trained at each new incremental state. This
es not require a past-class memory. However, the
parameters grow instead.
enerative Adversarial Networks (GANs) to gen-

data holds promise since it reduces the mem-
int of algorithms. However, despite recent
2], generated images are still sub-optimal for IL.
tional GAN models need to be created, the com-
he number of parameters is fair but not optimal.
s of [76] use a GAN to create artificial images for
s. Generated and real examples are mixed to ob-
y better performance than that of iCaRL [56].
the performance significantly drops when rely-
vely on artificially generated images. Alternately,
ory with No Forgetting [15] is based on sequential
lations to represent the past memory by forming
l targeted generative models. Here, the memory
igned as a form of lifelong learning.
per is focused on a scenario that requires a con-
lexity of deep models and investigate the effect of
fixed-size memory or not. Consequently, exper-
conducted with approaches that are fit to work

e conditions, namely those based on fine tuning
epresentations.

em formalization
pose a formalization of class incremental learn-

builds on those introduced in [7, 8, 14, 54]. Given
on-incremental state S0, a model M0 is trained
h on a dataset D0 = {(X

j
0, Y

j
0 ); j = 1, 2, ..., P0}.

are respectively the set of images and labels for
s in S0, N0 = P0 is the number of classes in the
cremental state.
te T the total number of states, including the
e and T − 1 incremental states. A new batch

classes is streamed in each incremental state
objective is to learn a model Mt which recog-
= P0 + P1 + ... + Pt classes. This model is
ng the previous state model Mt−1 on a dataset
j , Y t0 ); j = 1, 2, ..., Pt} ∪ K. Note that all data of
classes are available with only a bounded exem-
K of data from the Nt−1 = P0 + P1 + ... + Pt−1

s. An imbalance in favor of new classes appears
throughout incremental states since the bounded
needs to be allocated to a larger number of past

h time.
cussed in Section 2, recent class incremental
gorithms were implemented using deep convolu-
orks (DNNs) as a backbone. While DNNs are
classification approaches, a part of the IL al-

se a separate classifier layer. In such cases, the

tor Ft and a classification component Ct.
The feature extractor Ft is defined as:

Ft ∶ Xt → ℝd

x ↦ Ft(x) = f x
t

where f x
t is a d-dimensional compact vectorial

sentation of the image x.
The classifier Ct is usually defined as:

Ct ∶ ℝd → ℝNt

f x
t ↦ Ct(f x

t ) = f x
t ×W t + bt = ot

where:

• ot = (o1t , o
2
t , ..., o

Nt
t ) is the vector of raw scores o

Nt providing the individual prediction scores fo
class j = 1, 2, ..., Nt.

• W t and bt are the weights matrix and bias vec
the last fully connected layer of size (d,Nt) a
respectively. The size d of the feature vector de
on the CNN architecture used.

In an end-to-end DNN [26], a softmax function
plied to transform raw scores ot = (o1t , o

2
t , ..., o

Nt
t ) to p

bilities pt = (p1t , p
2
t , ..., p

Nt
t ). This is the case for appro

such as [7, 14, 28]. Ct can also be implemented using
ternal classifier. For instance, [56] and a variant of [28]
Nearest-Class-Mean (NCM) as a classifier to compute
prediction based on the similarity of each test image
average class feature computed from the available ima
each state. Yet another choice [6] is to exploit a fixed
representation to extract features for all incremental
and a battery of linear SVMs to implement C.

3.1. Loss function
A majority of existing IL algorithms [14, 28, 29

alleviate the effects of catastrophic forgetting [44] by
ducing a distillation term in the loss function [14, 56
general, this function takes the following form:

L = � × Lc + (1 − �) × Ld

where Lc and Ld are classical cross-entropy and
lation terms, respectively. � ∈ [0, 1] is a hyper-para
that provides the weight of each loss term.

Cross-Entropy Loss in the state St is computed f
past and new classes and is given by :

Lct (x) =
∑

(x,y) ∈ Dt∪K

Nt∑
j=1

−1y=j log[p
j
t (x)]

where 1 is the indicator function.

includes two main components: a feature extrac-

ah et al.: Preprint submitted to Elsevier Page 6 of 18
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tion Loss in the state St is computed for past
is given by:

) =
∑

(x,y) ∈ Dt∪K

Nt−1∑
j=1

−Φjt−1(x) log[Φ
j
t (x)] (5)

Φ is the softened softmax applied on the raw
icted by the network. The softened score of the
state St is:

) = eo
j
t (x)∕T

∑Nt
l=1 e

olt(x)∕T
(6)

T is a temperature scalar. Ld was originally in-
improve performance when no memory of past

vailable [36]. The authors of [54] adapted it for
hen a bounded memory K is allowed. Different
istillation were later proposed in [14, 28, 29, 75].

e bias correction
works [7, 8, 75] hypothesize that due to the lim-
ry of the past, IL is akin to imbalanced learning
network is trained with enough images for the
s but only a few ones for past classes.

orks handle catastrophic forgetting as an imbal-
and thus make use of an additional bias removal
the end of the model Mt. The layer takes the raw
redicted by the classifier Ct and multiply those of
s by a reducing factor to make them more com-
those of past classes, giving a chance to the latter
ted during inference.

ℝNt → ℝNt

ot ↦ Rt(ot) = [r(o1t ), .., r(o
j
t ), .., r(o

Nt
t )]

(7)

=
{

ojt if 1 ≤ j ≤ Nt−1
�ojt + � if Nt−1 < j ≤ Nt

(8)

� are scaling factors. They differ from an ap-
another. BiC [75] learns them using a valida-
ter fine-tuning the model. IL2M [7] uses past
tistics to set the value of � while zeroing �, and

ation aims to increase past classes’ scores instead
ng those of new classes. MDF [84] aligns new
eights with those of past classes by setting � to
orm of past class weights divided by the mean
w class weights. Finally, ScaIL [8] normalizes

s matrix of Ct leading to an implicit change in the
e scores ot.

3.3. Past memory management
The bounded memory K, which stores a partial

of past classes, is a central component of existing
gorithms. Regardless of the state St, the same num
images |Kj

t | = |K|∕Nt is kept for each class . Becau
memory capacity is bounded, the number of images fo
past class is reduced at the end of each state to accomm
images from new classes. The representation of past c
is thus degraded since the number of images per cl
progressively reduced. Consequently, the model is b
toward new classes and underfits past classes, a well-k
effect of catastrophic forgetting [44].

The role of exemplar selection techniques is deba
literature [14, 37, 54, 75]. Notably, the authors of [1
report similar results with herding-based and random
tion of exemplars. We run extensive experiments with
methods and reach a different conclusion. This is a
of a different interpretation of herding definition. Bot
and [37] select exemplars statically using their simila
the mean embedding of the class. We follow the or
definition from [74], also exploited in [56], and selec
exemplar based on a dynamic mean computed at eac
based on the exemplars which were already selected
advantage of the original definition is that it provides
ter approximation of the actual class center compare
static selection. It consists in taking, for each class, t
of images having the closest mean to the real class
Exemplar means are computed on feature vectors ext
from the penultimate layer of the CNN. We also trie
emplar selection techniques inspired from active lea
approaches such as: entropy [65], min margin [64],
set [63], k-means [81]. Initial experiments showed tha
of these techniques provide better performance than
ing. Consequently, we do not report such results.

4. Fine-Tuning based IL algorithms
We compare recent class incremental algorithm

also adaptations of them, which combine components
different algorithms. An overview of the tested algor
and of their characteristics is presented in Table 2.
model update for each incremental state is widely u
existing approaches. Distillation is also used by a ma
of algorithms from literature to counter the effect of
trophic forgetting. Bias removal aims at balancing p
tions for past and new classes. It is deployed eithe
complement to distillation [14, 56, 75] or to replace it
Memory usage is compulsory for methods that rely
ily on exemplars of past classes. The dominant appro
based on model updating via fine-tuning to integrat
knowledge [7, 8, 14, 28, 75]. The performance of
algorithms depends heavily on the existence of a bo
memory of the past. We also present results with
representation based algorithms [6, 23, 24, 56], whi
not update the model but are also less dependent on
ory.

LwF [36] uses distillation loss to encourage the m
ah et al.: Preprint submitted to Elsevier Page 7 of 18
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cs LwF
[36]

LwF init
∗

[9]
iCaRL

[56]
LUCIR

[28]
FT

[7, 8, 56]
FTNEM

[7, 8]
FT BAL
[7, 8]

BiC
[75]

ScaIL
[8]

IL2M
[7]

FT tℎ
[12]

FT init∗
[9]

FR
[56]

DeeSIL
[6]

REMIND
[23]

Deep-
[2

e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ×
✓ ✓ ✓ ✓ × × × ✓ × × × × × × ×

l × ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ×
e NC NC C NC NC C C C C C C NC NC NC NC N

Table 2
Main characteristics of tested approaches: model update - indicates if the model is
trained for each incremental state; distillation - if this part of the loss is exploited to con-
trol catastrophic forgetting; bias removal - is a separate component which is specifically
dedicated to balancing results between past and new classes, and memory usage - if
this component is compulsory (C) or not (NC). * refers to all methods built on top of init.

ict the same scores for past classes in the current
an in the previous one. LwF was designed to
ut a memory of past classes. LwF constitutes the
for all class IL algorithms [14, 28, 29, 75].

[56] exploits fine-tuning with distillation loss Ld

catastrophic forgetting and a variant of Nearest-
n [45] to counter imbalance between past and
s. The main difference with LwF is the intro-
a bounded memory to enable efficient replay.

[28] is based on fine-tuning with an integrated
unction. Authors propose the following contri-
) cosine normalization to balance magnitudes of
w classifiers (2) less forget constraint to preserve
ry of past classes and (3) inter-class separation to
the distances between past and new classes. The
n of these contributions constitutes a more so-
take at countering catastrophic forgetting com-

e use of knowledge distillation from [14, 29, 56].
ent with two versions of this approach:

IRNCM - the original definition proposed by
uthors where a Nearest-Class-Mean classifier is
. This version is functional in presence of a mem-
only, due to the need for exemplars to compute
class-mean..

IRCNN - the network outputs are used for clas-
ation. This version can be deployed with or with-

memory for the past.

8, 56] is the plain use of vanilla fine-tuning. The
is initialized with the weights of the previous
1 and only the cross-entropy loss Lc is used. FT
the simplest way to update models in incremen-
. It is heavily affected by catastrophic forgetting

ed memory is not available [56] but becomes an
baseline if a memory is available [7].

[7, 8] is a version of FT which replaces the
t by a NEM classifier from [56]. FTNEM is
version of iCaRL in which the distillation loss

ted. FTNEM can only be deployed if a bounded
allowed to alleviate catastrophic forgetting.

[7, 8] is inspired by [14]. A vanilla FT is first

aims to reduce bias between past and new classes by
ing on a version of Dt, which stores the same number
ages for past and new classes to obtain similar magn
for them. FTBAL is also tributary to the fixed memory
cause past exemplars are needed for the balancing ste
the absence of memory, this approach becomes equi
to FT and is heavily affected by catastrophic forgettin

BiC [75] adds a linear layer for bias removal wh
trained separately from the rest of the model learned
cross-entropy and distillation losses. The objective
supplementary layer is to reduce the magnitudes of p
tions for new classes to make them more compara
those of past classes. Since a validation set is need
optimize the bias removal layer, BiC can only functio
memory K is available. We note that K needs to be
enough to obtain reliable parameter estimations.

ScaIL [8] hypothesizes that the classification lay
learned when classes were first streamed and learned
all data can be reused later. The main challenge is tha
models M are updated between incremental states. No
ization of the initial Ct is proposed to mitigate the eff
model updates and make past and new classes’ predi
comparable. ScaIL needs a bounded memory to keep
of past classes in the embeddings.

IL2M [7] uses past classes’ statistics to reduce th
diction bias in favor of new classes. Past classes’ scor
modified using the ratio between their mean classifi
score when learned initially in the state Si and in the c
state St. Furthermore, the ratio between the mean cl
cation score over all classes in St and Si is also used.
approach is also prone to catastrophic forgetting if no
ory is allowed.

FTtℎ, inspired by imbalanced learning [12], it i
ments fine tuning followed by threshold calibration
known as threshold moving or post scaling). Thresho
adjusts the decision threshold of the model by adding
ibration layer at the end of the model during inferen
compensate the prediction bias in favor of new classes

pjt
′ = pjt ×

|Dt|
|Xj

t |
j tℎ
, followed by a balanced FT . This second step where |Xt | is the number of samples for the j class

ah et al.: Preprint submitted to Elsevier Page 8 of 18
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s the total number of training examples in the
memory of the past is needed to rectify past

ores. This method is also heavily dependant on
d memory.

[8], FTinitL2 [8], FTinitL2+mc [8, 9], FTinitsiw+mc [9],
], LwFinitL2 [9], and LwFinitsiw [9], are methods built
T and LwF , in order to reduce the bias of the

wards new classes, where:

- replaces the weights of past classes in the cur-
state with their initial weights learned in the ini-
tate with all available data.

normalization that makes classifier weights more
parable across states.

- standardization of last layer weights, in order to
e them comparable.

state mean calibration defined as:

pjt
′ = pjt ×

�(Mt)
�(Mj

i )
(10)

t) and �(Mj
i ) - means of top-1 predictions of

els learned in the current state and the initial state
e jtℎ class computed over their training sets.

ur components can be combined together, where
applied, followed either by L2 or siw normaliza-
nally followed by the state mean calibration mc.
hods are mostly interesting for IL without mem-
e they do not require the use of a past exemplars

-Representation based IL algorithms
Representation (FR) [56] exploits the initial
trained on the classes of S0 and freezes all its lay-
the classification one in later incremental states.
model is a limitation but also an advantage in

ws the reuse of initial classifier layers, learned
ages, throughout the entire incremental process.
ely, the reuse of initial layers, is not done in [56]
are suboptimal. The method does not need a

emory for the update.
[6] is a variant of FR in which the classifica-

f DNNs is replaced by linear SVMs. DeeSIL is
rward application of a transfer learning [33, 53]

an incremental context. The use of external clas-
oposed because they are faster to optimize com-
end-to-end FR.
LDA [24] defines the model as Mt ≡ F (G(⋅))
the fixed upper part of the network and F (⋅) is
layer. Only F (⋅) is trained across incremental

streaming manner, while G(⋅) serves as a feature

class-specific running mean vector and a running shar
variance matrix among classes. During inference, it a
an image to the closest Gaussian in feature space d
by the class mean vectors and the covariance matrix. D
SLDA does not need to store past class data and it i
functional in absence of memory.

REMIND [23] shares the same definition of M

Deep-SLDA, where G(⋅) is the first fifteen convolu
and three down sampling layers, and F (⋅) is the re
ing two convolutional and one fully connected layer
ResNet-18 [26]. REMIND relies on Product Qua
(PQ) [30] algorithm to store intermediate representati
images as compressed vectors for fast learning. The
pact vectors are then reconstructed and replayed for me
consolidation. Note that compact vectors allow us to
much more past data than with raw images (for instan
ILSVRC can fit in the memory when |K| = 20000).

6. Experimental setup
Experiments are done with all IL approaches pres

in Sections 4 and 5. We also provide results with
a classical non-incremental training from scratch whe
classes are learned with all their data. This algorithm
upper bound for all class incremental approaches.

6.1. Datasets
Four datasets designed for object, face, and land

recognition are used here. The choice of significantl
ferent tasks is important to study the adaptability an
bustness of the tested methods. The main dataset sta
are provided in Table 3.

• ILSVRC [60] is a subset of 1000 ImageNet c
used in the ImagenetLSV RC challenges. It i
stituted of leaves of the ImageNet hierarchy
most often depicts specific visual concepts.

• VGGFACE2 [13] is designed for face recogn
We selected 1000 classes having the largest nu
of associated images. Face cropping is done
MTCNN [83] before further processing.

• Google Landmarks [46] (LANDMARKS bel
built for landmark recognition, and we selected
classes having the largest number of associate
ages.

• CIFAR100 [34] is designed for object recog
and includes 100 basic level classes [57].

6.2. Experimental protocol
The experimental protocol is inspired by the one

posed in iCaRL [56]. The most important paramet
IL are the number of states T , and the size of the me
K, and we test three values for each one of them.
we fix the number of states T = 10 and vary the me
t each incremental state,Deep-SLDA updates a to include approximately 2%, 1%, 0.5% of the full training

ah et al.: Preprint submitted to Elsevier Page 9 of 18
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et train test �(train) �(train)
C 1,231,167 50,000 1231.16 70.18

CE2 491,746 50,000 491.74 49.37
RKS 374,367 20,000 374.36 103.82

100 50,000 10,000 500.00 0.00

tics for the evaluation datasets, � is the mean
images per class; and � is the standard deviation
ibution of the number of images per class.

ory sizes are thus |K| = {20000, 10000, 5000}
C, |K| = {10000, 5000, 2500} for VGGFACE2,
00, 4000, 2000} for LANDMARKS and |K| =
, 250} for CIFAR100. Second, we fix the mem-
| to include 0.5% of the full training sets and

mber of states T = {20, 50}. Here, we chose the
emory size because it represents the most chal-
se when a memory is allowed. This is also the
sting in practice since it requires a reduced re-
tore past data. We report results with |K| = 0
since the absence of memory renders some of

hms completely inoperable while others are still

lementation details
et-18 architecture [26] with an SGD optimizer is
ackbone for all the methods. REMIND [23],
A [24], BiC [75] and LUCIR [28] are run us-

timal parameters of the public implementations
the original papers. iCaRL [56] is run using the

[28] since it provides better performance than the
plementation. LwF [36] is run using the code
The SVMs in DeeSIL [6] are implemented us-

SVC solver from Scikit-Learn toolbox [51]. The
re optimized using classical grid search as de-
the original paper.

its derivatives are based on the same fine-tuning
and are implemented in Pytorch [50]. Training

processed using randomly resized 224 × 224
izontal flipping, and are normalized afterward.
difference in scale and the number of images be-
AR100 and the other datasets, we found that a
arametrization was needed for this dataset. Note
rameters’ values presented below are largely in-
he original ones given in [26].
AR100, the first non-incremental state and Full
300 epochs with batcℎ size = 128, momentum =
igℎt decay = 0.0005. The lr is set to 0.1 and is
10 when the error plateaus for 60 consecutive

he incremental states of FT and FR are trained
chs with batcℎ size = 128, momentum = 0.9
t decay = 0.0005. The learning rate is set to
at the beginning of each incremental state St and
by 10 when the error plateaus for 15 consecutive

VRC, VGGFACE2 and LANDMARKS, the first

non-incremental state and Full are run for 120 epoch
batcℎ size = 256, momentum = 0.9 and weigℎt dec
0.0001. The lr is set to 0.1 and is divided by 10 whe
error plateaus for 10 consecutive epochs. The incre
tal states of FT and FR are trained for 35 epochs
batcℎ size = 256, momentum = 0.9 and weigℎt dec
0.0001. The learning rate is set to lr = 0.1∕t at the b
ning of each incremental state St and is divided by 10
the error plateaus for 5 consecutive epochs.

Dataset details and the code of all tested approache
their adaptations are publicly available to facilitate
ducibility. 1

6.4. Evaluation measures
The main evaluation measure used here is the po

top-5 accuracy [60]. Following [14], accuracy is ave
only for incremental states (i.e., excluding the initial
incremental state), which is not of interest from an IL
spective. The sizes of the past memory K and the num
states T are varied to evaluate the robustness of algori

Since a relatively large number of configuratio
tested, it is convenient also to use a global measure
use the incremental learning gap measure (GIL) [8],
computes the average performance gap between a cla
learning and each IL configuration for each algorithm
is defined as:

GIL =
1
Z
×

Z∑
z=1

accz − accFull
accMax − accFull

where: Z is the number of tested configurations; a
the top-5 score for each configuration; accFull is the u
bound accuracy of the dataset (Full accuracy); accM
the maximum theoretical value obtainable for the me
(accMax = 100 here).

Following [69], the denominator is introduced in
to ensure that no individual configuration has an exa
ated influence on the global score. Note that GIL is r
to the forgetting rate proposed in [37], which is actual
numerator of individual configurations from Equation

7. Results and discussion
7.1. Incremental learning with memory

Table 4 presents the performance of all algorithms
in all experimental configurations when using herdin
exemplar selection. Both the number of incremental
T and the bounded memory size |K| have a strong
ence on results. The easiest configurations for all
tasks are those including a large memory (|K| = 2%
a small number of states (T = 10). Inversely, the mo
ficult configuration combines a low memory (|K| =
and a large number of states (T = 50). This finding
tuitive insofar more exemplars for past classes enhan

1https://github.com/EdenBelouadah/
class-incremental-learning
ah et al.: Preprint submitted to Elsevier Page 10 of 18



States
GILDataset

|K|
iCaRL -7.36

LUCIRCNN -4.13
LUCIRNEM -4.33

FT -5.19
FTNEM -4.28
FT BAL -4.70
BiC -4.03
ScaIL -3.70
IL2M -4.95
FT tℎ -3.62
FT initL2 -4.43
FR -7.62

DeeSIL -6.92
REMIND -6.02

Full -
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GILDataset

|K|
iCaRL -9.51

LUCIRCNN -4.36
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T = 10 |K| = 0.5%
ILSVRC VGGFACE2 LANDMARKS CIFAR100 ILSVRC VGGFACE2 LANDMARKS CIFAR100

2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% T=20 T=50 T=20 T=50 T=20 T=50 T=20 T=50
79.3 76.5 71.0 96.0 95.3 93.9 95.1 94.0 91.8 66.5 56.1 47.9 55.9 45.0 88.5 78.2 86.8 82.4 35.5 35.4
79.9 76.4 72.6 97.2 96.9 96.5 97.2 96.6 96.1 79.8 75.4 69.9 63.9 55.3 93.5 88.3 93.7 90.5 53.5 47.9
80.5 80.0 79.4 96.2 96.0 95.7 95.4 94.9 94.4 82.6 80.8 78.8 73.6 66.3 92.7 87.9 91.9 89.8 69.0 63.0
79.4 74.4 65.9 96.4 94.5 91.3 96.6 94.7 91.4 82.4 77.9 70.7 69.4 64.3 91.6 89.2 90.9 89.0 64.3 54.8
81.4 79.0 75.0 96.4 95.4 94.0 96.1 94.6 92.6 85.1 81.7 76.0 76.5 69.0 94.0 91.1 91.9 89.9 68.8 55.9
84.0 80.9 76.5 97.0 95.7 92.4 96.9 95.3 92.2 80.0 74.0 69.0 75.9 67.1 92.3 89.5 91.2 88.9 62.9 54.2
85.5 82.8 79.7 97.3 96.6 95.7 97.9 97.3 96.6 88.8 87.6 83.5 74.6 63.9 92.3 85.3 94.7 90.5 50.5 19.6
82.0 79.8 76.6 96.5 95.8 95.2 97.3 96.0 94.0 85.6 83.2 79.1 76.6 70.9 95.0 92.4 92.6 90.4 69.8 51.0
80.9 78.1 73.9 96.7 95.4 93.4 96.5 94.7 92.5 81.8 77.0 71.2 70.9 60.6 92.5 88.4 90.8 88.1 61.5 51.0
84.3 82.1 78.3 97.2 96.3 94.8 97.2 95.8 94.0 86.4 83.9 79.1 78.6 71.2 94.3 91.6 92.9 90.7 71.4 57.9
79.2 76.5 73.0 95.9 95.2 94.6 97.0 95.5 92.7 83.4 80.5 75.2 73.6 67.3 94.6 91.4 91.2 88.5 63.6 44.1
76.7 76.6 76.4 91.7 91.5 89.7 93.8 93.5 93.5 79.5 79.4 78.7 69.2 58.2 85.8 75.2 89.3 82.8 62.3 33.5
75.5 75.1 74.3 92.7 92.5 92.2 94.0 93.7 93.2 66.9 65.8 64.2 73.0 58.1 87.2 80.0 90.5 85.1 63.9 44.0
80.9 80.7 78.2 94.7 93.2 93.0 96.3 95.8 94.7 60.7 60.7 60.7 73.9 65.0 87.4 80.1 92.8 88.6 52.8 46.4

92.3 99.2 99.1 91.2 92.3 99.2 99.1 91.2

Table 4
Top-5 average incremental accuracy (%) for IL methods with herding using different
memory sizes and numbers of IL states. Best results are in bold.

T = 10 |K| = 0.5%
ILSVRC VGGFACE2 LANDMARKS CIFAR100 ILSVRC VGGFACE2 LANDMARKS CIFAR100

2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% T=20 T=50 T=20 T=50 T=20 T=50 T=20 T=50
77.9 73.0 65.3 95.3 93.8 91.1 93.9 91.4 87.4 64.5 53.4 43.9 51.3 40.9 84.3 73.2 81.9 76.4 32.6 33.4
79.8 75.9 72.2 97.3 97.0 96.6 97.1 96.4 96.0 78.6 73.9 67.5 62.4 52.9 93.5 87.8 93.2 89.2 50.4 44.3
77.0 70.1 60.0 96.0 94.1 90.7 95.8 93.2 89.1 80.0 73.7 63.3 64.5 59.2 90.8 86.5 87.8 85.5 59.9 49.4
85.0 82.4 78.6 97.3 96.8 96.1 97.8 97.2 96.4 88.2 86.5 82.6 72.1 59.9 92.0 82.9 93.8 88.1 54.2 18.1
81.0 78.2 75.1 96.4 95.6 94.5 96.9 95.3 92.7 84.6 81.1 74.9 73.9 68.3 94.5 90.5 90.7 88.2 67.9 47.7
78.3 75.2 71.2 96.2 94.9 92.2 95.8 93.6 90.1 79.0 73.9 64.7 66.1 55.6 91.1 85.3 87.6 84.3 58.1 46.3
82.0 78.6 74.1 96.7 95.6 93.4 96.6 94.7 91.9 84.2 79.9 72.7 73.8 66.4 92.9 88.8 90.0 87.3 67.1 52.7
74.4 74.3 74.3 83.3 83.3 83.2 93.1 93.1 92.6 78.6 78.6 78.0 66.9 54.4 76.2 49.5 84.4 71.8 58.8 28.8
74.5 74.3 74.2 92.6 92.5 92.2 93.9 93.6 92.9 66.5 65.2 63.7 69.0 58.0 87.2 78.9 90.6 84.8 63.4 42.5

92.3 99.2 99.1 91.2 92.3 99.2 99.1 91.2

Table 5
Top-5 average incremental accuracy (%) for the main methods with random selection of
exemplars for different memory sizes and numbers of IL states. Best results are in bold.

he replay for them, and a larger number of states
ore prone to catastrophic forgetting. However,

ance drop is more marked for the object recogni-
(ILSVRC and CIFAR100) compared to face and
recognition (VGGFACE2 and LANDMARKS).
e, with T = 10, the ILSVRC’s accuracy drop
of 5.8 points when moving from |K| = 2% to
while the corresponding drop for VGGFACE2
.6 points and the one for LANDMARKS is only
ts. The latter two tasks are simpler, and a smaller
exemplars can thus represent past classes.
rease of T , the number of incremental states, also
mental effect on performance. For fine-tuning

hods, the performance drop is explained by the
larger number of retraining steps causes more in-
oss, and the effect of catastrophic forgetting is in-
lso important, for methods like BiC , which need
n set, the size of the latter becomes insufficient
creases. This insufficiency is clearly illustrated
sults for |K| = 0.5% and T = 50. In this con-
BiC performance drops more significantly than
peting methods. The loss is most striking for

, the smallest of all datasets tested, where a per-
f only 19.6% is obtained compared to 50.5% for
and T = 20. For fixed-representation methods,

es of T decrease performance because the size
non-incremental state becomes smaller. Conse-

e fixed representation obtained from this state has

lower generalization power and is less transferable to
states.

None of the methods is best in all configurations t
On aggregate, the best results are obtained with FT tℎ
a GIL = −3.62 points loss compared to Full, the cla
learning upper-bound. The other methods with stron
formance were all proposed recently: ScaIL [8] (G
−3.7), BiC [75] (GIL = −4.03) and LUCIRCNN
(GIL = −4.13). The analysis of individual configur
shows that BiC has good performance in many of
This method is best or second-best for the largest me
tested (|K| = 2%) and the smallest number of incre
tal states (T = 10). However, its performance drops
for the other values of |K| and T . This is explained
dependency on a validation set whose size becomes in
cient when |K| is low, and T is high.

The two LUCIR variants have similar overal
formance, with LUCIRCNN being globally better
LUCIRNEM . This result confirms the original findin
ported in [28]. The iCaRL implementation from the
paper [28] has significantly lower performance than th
versions of LUCIR. The positive influence of inter
separation and cosine normalization introduced in ad
to standard knowledge distillation is thus confirmed.

Vanilla FT has lower performance than more
methods but still much better than iCaRL, contrary
comparison presented in [56]. However, the original
parison in that paper was biased since iCaRL used
ah et al.: Preprint submitted to Elsevier Page 11 of 18
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their version of FT was implemented without
All bias reduction methods applied to FT are
with FT tℎ being the best one followed closely

. FTNEM , which exploits the external classifier
lso has interesting performance and outperforms
d IL2M . The lower performance of the last two
an effect of the fact that they are the most sen-

emory reduction (|K| = 0.5%) and the growth of
r of states (T = 50).
d DeeSIL, the fixed-representation based meth-
e worse than most FT -based approaches, with
xception being that DeeSIL is globally better
L. However, it is interesting to note that FR and
ave a low dependency on memory size, and their

ce becomes competitive for |K| = 0.5%. In this
g, fine-tuning based methods suffer more from
c forgetting since memory becomes insufficient
ient replay of past classes. Globally, DeeSIL

r behavior compared to FR, especially for large
ets, and this confirms that the optimization of

l classifier is easier than that of the classification
eep model. REMIND performs better than FR
L for large datasets and has a better global score
.02 VS. GIL = −7.62 and GIL = −6.92 respec-
wever, its performance drops significantly com-
eeSIL when the number of states is increased
0 to T = 20 and T = 50.

SVRC, REMIND clearly outperforms many
pproaches such as iCaRL, LUCIR, IL2M and
ts except FT tℎ and FT BAL. Streaming based ap-
ke REMIND have the advantage to run much
class incremental based approaches, since they
training example only once. However, the com-

cost of DeeSIL is still comparable to that of
since the SVMs training is fast. Equally im-

EMIND allows immediate evaluation since it
dataset images one by one. It is still usable in
mental context since we can evaluate the model
f all training samples of each incremental state.

of exemplar selection
mentioned, there is an ongoing debate concern-
ctiveness of herding-based versus random exem-

ion in IL [8, 14, 37]. We compare the two se-
thods by providing results with random selection
in algorithms evaluated here in Table 5. The ob-
lts indicate that herding has a positive effect on

ce for most of algorithms, albeit with a variable
with respect to random selection. The best re-
le 5 are obtained withLUCIRCNN , ScaIL and
have very close GIL performance. Among fine-
d methods, LUCIRCNN and BiC are the meth-
are least affected by the switch from herding to
emplar selection. Both of these methods imple-
d-to-end IL approach. iCaRL has a more sig-

rformance drop because it makes use of a NEM
assifier. This is a consequence of the fact that the

exemplars.
Vanilla FT is more affected by the use of random

tion than LUCIRCNN and BiC . The use of distillati
past data partly compensates a poorer class represen
with random exemplars. Since vanilla FT has a lowe
formance, algorithms which build on it are also nega
affected. Among them, ScaIL is the least affected be
it exploits the initial classifiers of past classes. FT tℎ p
mance falls behind that of LUCIRCNN , ScaIL, and
with random exemplar selection because exemplars h
more prominent role for learning past classes’ repre
tions. Thresholding with prior class probabilities is le
ficient on poorer past class models.

The use of random selection has a small effect o
and DeeSIL because the exemplars are only used a
atives when new classifiers are trained. Their presenc
a positive effect in that it allows a slightly better sepa
between new and past classes across IL states. Acco
to the authors of REMIND, many herding strategies
deployed based on distance from current example, nu
of times a sample has been replayed, and the time si
was last replayed, but all of the tested methods perfo
nearly the same as random selection, with higher com
tional time.

7.3. Incremental learning without memory
In many applications, no memory of past classes is

able. For instance, in medical data processing [72]
is often due to privacy issues. We study the behav
the main algorithms which can be deployed in the ab
of memory here. The following algorithms cannot b
ployed: (1) all variants which exploit an external N
classifier since exemplars are not available to build the
sifiers for past classes; (2) BiC because it requires a v
tion set; (3) ScaIL because it requires past exempla
normalization; (4) IL2M because the mean scores o
classes cannot be computed in the current state.

Without memory, iCaRL becomes LwF , the m
which inspired more recent works using distillation
LwF init, LwF initL2 , and LwF initsiw test if the basic hyp
sis of ScaIL regarding the reuse of initial classifier w
applies to a method which integrates distillation. This
initial weight leads to a 3 points GIL gain compared to
sical LwF . Further L2 normalization in LwF initL2 is n
ficient. However, standardization of weights in LwF insi
proves the results of LwF init with 3.9 points. LUCIR
implements a more sophisticated scheme to counter
trophic forgetting by adding cosine normalization and
class separation on top of knowledge distillation. Th
additional components have a significant decisive role
they provide a 10 points gain compared to LwF . V
FT has no component to counter catastrophic forgettin
it has the worst overall performance. The use of initia
sifiers of past classes in FT init provides a very conse
gain over simple FT . The application of init is much
efficient for FT compared to LwF and even gives n
the same results thanLwF init, the best variant ofLwF
are computed directly on the randomly selected siw

ah et al.: Preprint submitted to Elsevier Page 12 of 18
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ataset ILSVRC VGGFACE2 LANDMARKS CIFAR100 GILStates T=10 T=20 T=50 T=10 T=20 T=50 T=10 T=20 T=50 T=10 T=20 T=50
LwF 45.3 37.6 27.1 53.3 42.6 30.8 58.8 49.2 35.2 79.5 65.3 39.0 -34.72
wF init 47.1 39.9 32.2 58.1 50.8 40.5 55.7 50.2 39.8 79.4 67.9 42.8 -31.97
wF init

L2 24.5 39.7 32.0 57.1 50.7 40.5 52.1 50.5 40.0 79.5 68.1 43.3 -32.60
wF init

siw 54.0 45.8 35.1 70.4 59.3 45.2 61.0 53.8 42.2 80.0 68.8 44.6 -28.06
CIRCNN 57.6 39.4 21.9 91.4 68.2 32.2 87.8 63.7 32.3 57.5 35.3 21.0 -24.75
FT 20.6 13.4 7.1 21.3 13.6 7.1 21.3 13.6 7.1 21.3 13.7 17.4 -54.91
FT init 61.0 44.9 23.8 90.9 64.4 33.1 68.8 49.4 22.2 55.1 40.8 19.9 -28.99
FT initL2 51.6 43.3 34.5 76.8 66.8 55.1 61.4 52.5 39.2 47.5 39.3 22.5 -26.80
T initL2+mc 53.6 42.7 35.6 86.9 71.4 53.6 66.2 52.6 37.9 52.6 43.1 18.2 -25.02
T initsiw+mc 64.4 54.3 41.4 88.6 84.1 62.6 79.5 64.5 43.2 59.7 44.3 18.4 -19.38
FR 74.0 66.9 49.2 88.7 83.0 54.4 93.6 88.1 71.2 73.1 54.8 27.4 -16.30
eeSIL 73.9 67.5 53.9 92.3 87.5 75.1 93.6 91.1 82.1 65.2 63.4 32.3 -9.22
MIND 62.2 56.3 44.4 86.8 81.4 69.2 84.5 79.6 69.0 52.7 40.5 25.7 -22.00
ep-SLDA 70.3 64.5 56.0 90.2 85.4 78.2 89.3 86.4 81.3 68.9 64.4 54.5 -15.40
Full 92.3 99.2 99.1 91.2 -

Table 6
Top-5 average incremental accuracy (%) for IL methods without memory for past classes
and different numbers of IL states. Best results are in bold.

normalization in FT initL2 improves the results of
h 2 GIL points, while adding the mean state cal-

in FT initL2+mc further gains another 1 GIL points
it. The best fine tuning based approach without
FT initsiw+mc from [9]. This approach outperforms
ethods with a large margin.

l, the best results are obtained with the fixed-
ion methods because their dependence on past
is much lower compared to fine-tuning based
In order, the best global score is obtained by
Deep-SLDA, FR and REMIND. As we men-
eSIL is easier to optimize compared to FR and
arable accuracy variation with Deep-SLDA for
configurations. However, DeeSIL provides the

mance when no memory is allowed. The per-
of fixed-representation methods drops when the
incremental states increases because the initial

des a lower number of classes. This is notably
r CIFAR100, the smallest dataset tested, where
presentations have lower performance compared
nts of LwF for all tested T values. However,
IND, Deep-SLDA and DeeSIL have con-

better performance for ILSVRC, VGGFACE2,
MARKS where their initial representations are

h at least 20 classes.
alysis of individual datasets shows that LwF

ave a strong performance for CIFAR100, the
e among the four tested. LwF scales worse than
N , which is better for the three larger datasets.

mance inversion is probably explained by the
f inter-class separation in LUCIR. This indi-
knowledge distillation alone does not scale well
hen the number of past classes increases, the
between them hamper the performance of the

urther analysis of this point is provided in Sub-
.

7.4. Role of knowledge distillation
In [26], authors hypothesize that distillation is

when the teacher model is trained with a large and
anced dataset. This is not the case in IL due to the fac
the dataset progressively includes knowledge about
classes and that there is an imbalance between pas
new classes. In spite of this observation, knowledg
tillation is commonly used to tackle catastrophic f
ting [14, 25, 29, 32, 48, 54, 85]. Its use in IL with
ory was encouraged by the experimental results pres
in the influential iCaRL paper [54]. There, the or
comparison between FT and iCaRL was not fair sin
first method is implemented without memory, while th
ond exploits a memory of the past. The results rep
in Table 4 for vanilla FT and methods built on top
challenge the assumption that distillation loss Ld is
essary in IL with memory. These experiments show
FT is globally better since the GIL score is over 2
smaller than that of iCaRL. iCaRL is more effecti
ILSVRC and VGGFACE2 datasets only for a small
ber of incremental states (T = 10) and the smallest me
(|K| = {1%, 0.5%}). FTNEM is a version of iCaRL
out distillation. The results from Table 4 show that the
the NEM classification layer further improves perform
compared to vanilla fine-tuning.

When no memory is allowed for past classes, the e
iments reported in Table 6 confirm those presented in
There, LwF is clearly better than vanilla FT , and th
fulness of distillation is confirmed. Even without me
the reuse of the weights of past classes from their
states in FT init is better than the sole use of knowledg
tillation in LwF [36]. Only a more sophisticated sc
which combines distillation and an inter-class sepa
component in LUCIRCNN [28] outperforms FT in
stays way below FT initsiw+mc that does not need distill
Instead, it makes use of initial weights combined with
dardization of all weights and mean state calibration.
ah et al.: Preprint submitted to Elsevier Page 13 of 18
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states S1 S2 S3 S4 S5 S6 S7 S8 S9

ILSVRC

) 62.4 46.2 36.7 29.1 23.1 18.8 15.8 14.2 13.1
p) 3.8 9.6 16.2 21.3 23.6 25.2 26.0 30.2 27.9
n) 33.7 44.3 47.1 49.6 53.3 56.0 58.2 55.7 59.0
) 77.9 79.2 75.2 75.2 77.9 79.4 76.9 80.5 77.7
n) 17.6 15.7 19.1 17.7 16.5 15.2 16.7 13.9 15.5
p) 4.5 5.1 5.6 7.0 5.5 5.4 6.4 5.6 6.8

) 5.4 17.1 15.6 16.6 15.3 16.6 13.7 13.1 14.9
p) 0.6 12.8 10.5 28.2 20.8 47.0 27.6 28.5 55.0
n) 94.0 70.1 73.9 55.2 63.8 36.4 58.8 58.4 30.1
) 83.7 85.5 81.2 79.9 82.4 78.5 80.9 82.3 74.4
n) 16.1 11.1 16.5 12.0 13.6 7.2 11.9 10.9 5.9
p) 0.2 3.4 2.3 8.1 4.0 14.4 7.2 6.7 19.7

) 13.7 11.7 10.6 8.6 6.3 5.6 5.0 4.6 4.4
p) 6.8 17.8 25.4 25.2 27.1 28.1 32.1 33.9 33.8
n) 79.6 70.5 64.0 66.1 66.6 66.4 62.9 61.5 61.7
) 70.7 73.4 68.9 70.0 72.7 74.1 70.4 73.7 71.2
n) 23.2 17.5 19.6 18.0 15.5 15.4 17.1 13.7 14.4
p) 6.1 9.0 11.4 12.1 11.7 10.5 12.5 12.6 14.4

CIFAR100

) 56.7 39.4 25.7 16.8 14.4 14.5 9.4 9.8 6.7
p) 2.1 10.9 12.8 9.7 20.4 24.5 17.1 23.0 20.0
n) 41.2 49.6 61.4 73.5 65.1 61.0 73.6 67.2 73.4
) 78.9 84.4 86.9 86.3 86.5 85.3 85.0 85.2 88.2
n) 13.0 11.2 11.4 11.8 11.4 9.5 11.0 10.3 8.7
p) 8.1 4.4 1.7 1.9 2.1 5.2 4.0 4.5 3.1

) 0.8 6.7 9.9 8.5 8.1 5.4 7.8 7.5 5.8
p) 0.0 4.8 9.4 10.6 25.6 12.3 23.2 38.5 19.2
n) 99.2 88.5 80.7 80.9 66.3 82.3 69.0 54.0 75.0
) 86.7 89.2 87.8 88.2 85.2 88.1 84.0 85.3 90.7
n) 13.2 9.5 9.2 9.1 8.9 10.2 8.9 6.1 4.6
p) 0.1 1.3 3.0 2.7 5.9 1.7 7.1 8.6 4.7

) 57.3 47.5 40.3 31.1 28.7 26.6 23.8 22.0 17.7
p) 8.0 22.6 26.2 32.1 39.8 45.5 46.5 48.5 46.0
n) 34.7 29.9 33.5 36.8 31.6 27.9 29.7 29.5 36.2
) 72.7 76.4 74.4 74.9 72.6 75.4 70.6 74.6 82.3
n) 9.9 5.1 3.9 6.9 5.0 4.0 5.6 3.2 2.4
p) 17.4 18.5 21.7 18.2 22.4 20.6 23.8 22.2 15.3

ct and wrong classification for LUCIRCNN , FT initL2
for ILSVRC and CIFAR100 with T = 10 and
c(p) and c(n) are the correct classification for

lasses. e(p, p) and e(p, n) are erroneous classifi-
test samples of past classes mistaken for other
s and new classes respectively. e(n, p) and e(n, n)
us classifications for test samples of new classes

or past classes and other new classes respec-
ce the number of test images varies across IL
entages are calculated separately for test images
new classes in each St to get a quick view of the
ortance of each type of errors. c(p), e(p, p), and
to 100% on each column, as do c(n), e(n, n), and

le 7, we present the distribution of correct and
predictions across incremental states to have a
erstanding of the behavior of distillation in IL.

given for LwF [36], LUCIRCNN [28] and
which implement classical distillation, features-
llation plus inter-class separation and the reuse of
ized initial classifier weights, respectively. The
[29] noted that distillation induces a bias among
s, which leads to confusion between their pre-
his finding is confirmed by the large number of
lass confusions e(p, p) associated to LwF in Ta-
en advancing in incremental states, the number

of past classes increases. If an error is made while tra
the model M1 using the activations of M0 as soft targ
will be passed on to all the subsequent incremental s
Consequently, the percentage of e(p, p) errors in Table
creases in later incremental states. However, the perce
of e(p, p) errors is smaller for LwF and LUCIRCNN
pared to FT initL2 indicating that distillation has a positi
fect of past classes. The addition of the interclass sepa
inLUCIRCNN removes a part of e(p, p), and the over
creases significantly c(p), the number of correct predi
for past classes. We note that, since distillation op
on past class scores, the bias in favor of new classes
handled by LwF and LUCIRCNN . Consequently, e
is the main type of error for the distillation-based me
This is explained in [7, 8, 75] by the fact that the mo
biased towards new classes, leading to predict past im
as belonging to new classes. This bias is caused by th
that new classes are well learned with all their data.

In Table 6, the comparison of LwF , LUCIRCNN
FT initL2 for T = 10 shows that LwF has the lowest and
est performance for ILSVRC and CIFAR100 respec
The detailed view in Table 7 gives further insights in
structure of results. c(p) is higher and e(p, p) is low
CIFAR100 compared to ILSVRC, indicating that di
tion is much more efficient at a smaller scale. We con
that distillation is not always useful in IL. The perform
of distilled networks depends on the size of the datase
number of incremental states, and the presence or not
bounded memory of the past. It should be used only
the incremental task is known to be characterized by
vorable combination of these parameters.

7.5. Additional experiment
We present a supplementary experiment which

pares the performance of a very recent Neural Gas
based approach to that of other methods. TOpo
Preserving knowledge InCrementer [71] relies on th
network to preserve the feature space topology using a
bian learning [42]. Two variants of TOPIC are teste
TOPIC-AL - uses an Anchor Loss to stabilize the NG
work in order to preserve past knowledge and (2) TO
AL-MML - uses an Anchor Loss and also a Min-Max L
control the network growth while adapting it to new k
edge. They are compared to FT , FT tℎ, iCaRL,
LUCIRCNN , and LUCIRNCM . Note that we use
gle dataset because the authors of [71] did not provide
complete code and, while we tried to reproduce their r
independently, that was not possible.2 Following [71
use IMAGENET100 [60], a subset of 100 classes ext
from the ILSVRC dataset, where each class contain
training images and 100 test images. To start with a
data representation, the first model M0 is trained on P0
initial classes. The remaining 40 classes are divided in
cremental states containing each Pt = 5 new classes
past classes’ memory is set to |Kt>0| = 400+4× (Nt

2We hope that the code will be made available and, in that c
will incorporate results obtained with TOPIC in the full experime
ah et al.: Preprint submitted to Elsevier Page 14 of 18
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thod FT FT tℎ iCaRL BiC LUCIRCNN LUCIRNCM TOPIC-AL TOPIC-AL-MML
dom 23.0 32.1 48.6 49.5 55.2 61.5 49.6 49.5ding 27.7 38.5 51.6 52.5 55.6 62.6

Table 8
Top-1 average incremental accuracy for IL methods for IMAGENET100 with 60 initial
classes and 8 incremental states containing each 5 classes (T = 9, P0 = 60, Pt=1..8 = 5).
The best result is in bold.

images are divided equally between the first state
d 4 images per class are used for the classes that
ng to the first state.
provides top-1 accuracy of classical class IL ap-
T , FT tℎ, iCaRL, LUCIR and BiC , and also
OPIC , the NG-based incremental learner, for

T100. Results indicate that LUCIRNCM is the
ach, followed by LUCIRCNN , BiC , iCaRL,
T tℎ and FT . The two variants of TOPIC pro-

imilar performances with TOPIC − AL being
better. These results are different from those re-
1], where TOPIC was found to have better per-
This difference is probably explained in part by

rametrization choices and in part by the fact that
s not exploited for LUCIR, BiC and iCaRL.
e original parameters for the methods compared
in Table 8. The use of herding is beneficial for

s compared to TOPIC , with important impact
iCaRL and BiC and lower impact for LUCIR
OPIC is not affected by the use of herding since
on is done by the neural gas component. Glob-
sults from Table 8 show that, while interesting,
adaptation of neural gas approaches to class IL
ehind the best methods tested in this work.

lusion and perspectives
sented a comparison of class IL algorithms. An
sed on six desirable properties shows that none
ied groups is best adapted in all applications.

roposed a formalization of methods that are de-
cope with constant model complexity and with
r no memory of past classes. A selection of re-
osed algorithms is then presented and evaluated
. The evaluation confirms that no algorithm is
onfigurations.
memory is allowed, the best global result is ob-

n incremental learning is cast as a kind of imbal-
ing. This type of approach implements a vanilla

one followed by a bias rectification layer. It is
useful in the most challenging conditions (low
d many incremental states). If enough memory
, and the number of incremental states is low, dis-
sed approaches become competitive. The choice
od will thus depend on the computation and stor-

ties but also on the expected characteristics of the
, which needs to be processed.

ods are globally much more competitive than fine-t
ones while also being simpler and faster to deploy.
are particularly advantageous for large datasets,
distillation-based methods fail to scale-up. This fi
is surprising insofar fixed-representation methods exp
classical transfer learning scheme [33, 53]. They do n
date models across incremental states and were consi
less apt for usage in IL without memory [56]. We not
these methods work better than distillation based IL
rithms even when initial representations are learned w
few dozens of classes.

Online learning methods [23, 24] are useful whe
stream of data arrives image per image. The model c
ity to learn individual classes is increased continuou
new images appear. They are fast to train and well ad
to embedded systems because they have low memory
print.

For fairness, we evaluated fixed-representation
and fine-tuning based methods with the same initia
resentation. If a larger pool of classes is availab
the beginning of the process, the performance of
representations will be boosted because the initial rep
tation generalizes better [6]. However, fixed-represent
work well only if the task does not change over time, a
the case in the evaluated scenarios presented in [2].

The evaluation is done with four different datasets
cated to distinct visual tasks. This setting can be reuse
enriched to ensure a robust testing of class incremen
gorithms. We will release the detailed implementatio
all presented methods to facilitate reproducibility.

The comparison presented here shows that recentl
posed approaches reduce the performance gap between
incremental and incremental learning processes. The
ysis of existing algorithms proposed here highlights
ries of open problems which could be investigated
future. First, handling class IL as an imbalanced lea
problem provides very interesting results with [75] or
out [8] the use of a distillation component. Here, w
troduced a competitive method where classification b
favor of new classes is reduced by using prior class p
bilities [12]. It would be interesting to investigate mo
phisticated bias reduction schemes to improve perform
further. Second, a more in-depth investigation of wh
tillation fails to work for large scale datasets is needed
empirical findings reported here should be complem
with a more theoretical analysis to improve its usefu
Already, the addition of inter-class separation from [
o memory is allowed, fixed-representation meth-

ah et al.: Preprint submitted to Elsevier Page 15 of 18
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