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We consider a branching population with arbitrary lifetime distribution and Poissonian births. Moreover, individuals experience mutations at Poissonian rate. This mechanism leads to a partition of the population by type: the allelic partition. We focus on the frequency spectrum A(k, t) which counts the number of families of size k at time t. Our main goal is to study the asymptotic error made in some approximations of the frequency spectrum.

Introduction

In this paper, we consider a general branching population where the lifetimes of the individuals and their reproductions processes are independent and follow the same distribution. Moreover, we assume that their lifetimes are distributed according to an arbitrary probability distribution P V and that the births occur, during their lifetime, according to a Poisson process with constant rate b. The tree underlying this dynamics is called a splitting tree. This class of random trees was introduced in [START_REF] Geiger | Depth-first search of random trees, and Poisson point processes[END_REF] by Geiger and Kersting and has been widely studied in the last decade [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF][START_REF] Lambert | The coalescent point process of branching trees[END_REF][START_REF] Lambert | Splitting trees stopped when the first clock rings and Vervaat's transformation[END_REF].

We suppose, in addition, that neutral mutations occur on individuals and that each new mutation confers to its holder a brand new type (i.e. never seen in the population): this is the infinitely many alleles assumption. This allows modeling the occurrence of a new type in a population (such as a new species or a new phenotype in a given species). We also suppose that every individual inherits the type of its parent. This model leads to a partition of the population by types. The frequency spectrum of the population alive at time t is defined as the sequence of number (A(k, t), k ∈ N * ) (N * refers to the set of positive integers) where, for each k, A(k, t) is the number of families (i.e. sets of individuals carrying the same type) of size k in the population. The famous example of Ewens sampling formula gives explicit expression for the law of the frequency spectrum [START_REF] Ewens | Mathematical population genetics. I[END_REF] when the genealogy is given by the Kingman's coalescent. However, due to its central role in biology, the frequency spectrum has been studied in many other population models. Among coalescent processes, the frequency spectrum has, for instance, also been studied in the context of Beta [START_REF] Berestycki | Beta-coalescents and continuous stable random trees[END_REF], Bolthausen-Sznitman [START_REF] Basdevant | Asymptotics of the allele frequency spectrum associated with the bolthausen-sznitman coalescent[END_REF] or Lambda [START_REF] Berestycki | Asymptotic sampling formulae for Λ-coalescents[END_REF] coalescents. Other works studied similar quantities in the case of Galton-Watson branching processes (see [START_REF] Bertoin | The structure of the allelic partition of the total population for Galton-Watson processes with neutral mutations[END_REF] or [START_REF] Griffiths | An infinite-alleles version of the simple branching process[END_REF]). In our model, the frequency spectrum has also been widely studied in the past [START_REF] Champagnat | Splitting trees with neutral Poissonian mutations I: Small families[END_REF][START_REF] Champagnat | Splitting trees with neutral Poissonian mutations II: Largest and oldest families[END_REF][START_REF] Champagnat | Birth and death processes with neutral mutations[END_REF][START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF].

Another object of interest is the process (N t , t ∈ R + ) which counts the number of living individuals in the population at a given time t. This process is known as binary homogeneous Crump-Mode-Jagers process. One of the main result of the theory of such process is the law of large number which gives in our particular case that e -αt N t converges almost surely to a random variable E which is exponential conditionally on non-extinction (for some positive constant α).

As for e -αt N t , it is also known that the quantities e -αt A(k, t) converge almost surely to c k E, where c k is an explicit deterministic constant. This result can be easily obtained by conjunction of the works of [START_REF] Champagnat | Splitting trees with neutral Poissonian mutations I: Small families[END_REF] and [START_REF] Richard | Processus de branchement non Markoviens et processus de Lévy[END_REF] using the theory of general branching processes counted by random characteristics (a complete statement can be found in [START_REF] Champagnat | Birth and death processes with neutral mutations[END_REF]). An alternative proof avoiding the use of the general branching processes theory can be found in [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF].

It appears that the law of frequency spectrum (A(k, t), k ∈ N * ) is hardly tractable (see [START_REF] Champagnat | Splitting trees with neutral Poissonian mutations I: Small families[END_REF][START_REF] Champagnat | Splitting trees with neutral Poissonian mutations II: Largest and oldest families[END_REF][START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF]). This implies that such a model may be unpractical for applications unless using asymptotic approximations. In this work we propose to use the laws of large numbers in order to replace (A(k, t)) k≥1 by more manipulable quantities and propose to investigate the error made during this approximation. The first possible approximation is the following.

Approximation 1:

(A(k, t), k ∈ N * ) ≈ (c k ) k≥1 e αt E.

However, this is unsatisfactory for practical applications since the random variable E is not observable at finite times. Another idea is to exploit the fact that the random variable appearing in the law of large numbers for A(k, t) and for N t is the same. This leads to the second approximation.

Approximation 2:

(A(k, t), k ∈ N * ) ≈ (c k ) k≥1 N t .

In order to investigate the errors made by this approximation (at least asymptotically), one would like to have central limit theorems associated to the law of large numbers for the frequency spectrum.

In a previous work [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF], we showed that the error in the convergence of e -αt N t is of order e αt/2 and obtained a central limit theorem for this error. An important aspect of the method introduced in [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF] is that it can be used to derive CLTs for other branching processes counted by random characteristics.

In particular, the main goal of this work is to obtain central limit theorems for the convergence of the frequency spectrum. More precisely, we show that the error in both approximations converges (when renormalized) to a Laplace random variable which is obtained through a Gaussian mixing with the limiting random variable of e -αt N t (which also improve the results of [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]). The paper is organized as follows. Section 2 is devoted to the mathematical description of the model and to preliminary results which are used in the sequel. Section 3 gives the mains theoretical results of this work and, in particular, central limit theorems which allow to study the error in our proposed approximations. Section 4 gives an outline of the strategy of proof. Section 6 and 7 are devoted to the proofs of Theorem 3.6 and 3.1 respectively.

Model and preliminaries

In this work, we consider a branching population with the following dynamics: starting with a single individual (called the ancestor ) whose lifetime is distributed according to an arbitrary probability distribution P V on (0, ∞], this ancestor gives birth to new individuals at a Poissonian rate b. Each birth event gives a single new individual. From this point, each child of the ancestor lives and gives birth according to the same mechanism independently of the other individuals in the population. This formal description can be made rigorous through the definition of a probability distribution on the set of chronological trees. For the details of such construction, we refer the reader to [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF]. The first quantity of interest when studying such population is the number N t of alive individuals in the population at a fixed time t (assuming that the time t = 0 is birth-date of the ancestor). The process (N t , t ∈ R + ) is known as binary homogeneous Crump-Mode-Jagers process and is a simple example of a non-Markovian branching process. In the sequel, we denote by W (t) the expectation of N t conditionally on the non-extinction at time t. That is

W (t) := E [N t | N t > 0] .
For simplicity at some points, we also set W (t) = 0 for any t < 0.

In [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF], the author shows that the random variable N t is geometrically distributed conditionally on {N t > 0} with parameter 1 W (t) . In addition, the author of [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF] showed that the Laplace transform of W can be linked to the Laplace transform of P V through the relation

[0,∞) W (s)e -λs ds = 1 ψ(λ) , ∀λ > α, where ψ(x) = x -b (0,∞] 1 -e -rx P V (dr), x ∈ R + , (2.1) 
and α is the largest root of ψ,

α = sup{x ∈ R + | ψ(x) = 0}.
The function ψ is called the Laplace exponent of the tree and characterizes its law. In particular, the Laplace transform of P V can be expressed in terms of ψ,

R + e -λv P V (dv) = 1 + ψ(λ) -λ b , ∀λ ∈ R + . (2.2)
In this work, we assume that α is a strictly positive real number. This case is called the supercritical case and is equivalent to bE[V ] > 1, where V is some random variable with distribution P V . In the supercritical case, the real number α is called the Malthusian parameter of the population because it corresponds to the mean exponential growth rate of the population. This is summarized by the following Main hypothesis: bE[V ] > 1, or equivalently α > 0.

Before going further, let us remark that equation (2.2) leads easily to the following identity:

R + e -αv P V (dv) = 1 - α b . (2.3) 
Many previous works [START_REF] Champagnat | Splitting trees with neutral Poissonian mutations I: Small families[END_REF][START_REF] Champagnat | Splitting trees with neutral Poissonian mutations II: Largest and oldest families[END_REF][START_REF] Champagnat | Birth and death processes with neutral mutations[END_REF] demonstrate that some properties of the splitting tree were easier to study on the tree describing only the genealogical relation between the lineages of the individuals alive at time t. For instance, in the model with mutations, the difference between two individuals in term of type lies only on the time past since their lineages have diverged (see Figure 1). Hence, this particular genealogical tree, known as coalescent point processes (CPP), contains the essential information to study the allelic partition. In order to derive the law of that genealogical tree, one needs to characterize the joint law of the times of coalescence between pairs of individuals in the population, which are the times since their lineages have split. In [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF], the author defines an order on
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Figure 1: The splitting tree (left) and the corresponding coalescent point processes (right) for the fixed time t: the length of a branch equals the time spent since the lineage of two successive individuals split.

the set of individuals alive at a fixed time t, conditionally on {N t > 0}, and considers the sequence of times of coalescence (H i ) 0≤i≤Nt-1 between two consecutive individuals (that is H i is the time passed since the lineage of individuals i and i + 1 have diverged) with the convention that the oldest lineage is the first one (i.e. H 0 = t). Moreover, in [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF], the author shows that the random vector (H i ) 0≤i≤Nt-1 can be produced from a sequence (H i ) i≥1 of i.i.d. random variable stopped at its first value greater than t and such that

P (H 1 > s) = 1 W (s) , s ∈ R + .
To summarize, given the population is still alive at time t, one can forget about the details of the splitting tree and code the genealogy by a new object called the coalescent point process (CPP). Its law is the law of a sequence (H i ) 0≤i≤Nt-1 , where the family (H i ) i≥1 is i.i.d. with the same law as H, stopped before its first value H Nt greater than t, and H 0 is deterministic equal to t (see Figure 2).

Although we do not use directly the CPP in this work, this object allowed us to obtain [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF] formulas for the moments of the frequency spectrum which are widely used in the sequel. For this reason, we recall the properties needed to understand the methods.

Remark 2.1. Let N be a integer valued random variable. In the sequel we say that a random vector with random size (X i ) 1≤i≤N form an i.i. 

N t = inf{i ≥ 1 | H i > t},
then N t is indeed geometric with the expected parameter. More precisely, for a positive integer k,

P (N t = k | N t > 0) = 1 W (t) 1 - 1 W (t) k-1
.

(2.4)

In particular,

E [N t | N t > 0] = W (t), (2.5) 
in accordance with our former definition of W (t). Moreover, it can be showed (see [START_REF] Richard | Processus de branchement non Markoviens et processus de Lévy[END_REF]), that

E [N t ] = W (t) -W P V (t), (2.6) 
or equivalently

P (N t > 0) = 1 - W P V (t) W (t) , (2.7) 
where

W P V (t) := R + W (t -s) P V (ds),
assuming that W (t) = 0 for t < 0. Now, let us introduce the mathematical formalism for the mutation process used in this work (this formalism comes from [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF]). Since only the mutations occurring on the lineages of living individuals at time t can be observed, it follows from standard properties on Poisson point processes, that the mutation process can be defined directly on the CPP. So, let P be a Poisson random measure on [0, t] × N with intensity measure θλ ⊗ C, where C is the counting measure on N, λ is the Lebesgue measure on R and θ > 0 is some constant. Then the mutation random measure N on the CPP is defined by

N (da, di) = 1 H i >t-a 1 i<Nt P (da, di) ,
where an atom at (a, i) means that the ith branch experiences a mutation at time t -a. We suppose that each individual inherits the type of its parent. This rule yields a partition of the population by types. The distribution of the sizes of the families in the population is called the frequency spectrum and is defined as the sequence (A(k, t)) k≥1 where A(k, t) is the number of types carried by exactly k individuals in the alive population at time t, excluding the family holding the ancestral type of the population (i.e. individuals holding the same type as the root at time 0). This last family is called clonal, as the ancestral type.

In the study of the frequency spectrum, an important role is played by the law of the clonal family. We denote by Z 0 (t) the size of this family at time t.

To study this family, it is convenient to consider the clonal splitting tree constructed from the original splitting tree by cutting every branches beyond mutations. This clonal splitting tree is a standard splitting tree without mutations, where individuals are killed as soon as they die or experience a mutation. The new lifespan law is therefore the minimum between an exponential random variable, with parameter θ and V . This distribution is denoted P θ . It is straightforward by simple manipulations of Laplace transforms that the Laplace exponent of the corresponding tree is

ψ θ (x) = x -b (0,∞] 1 -e -rx P θ (dr) = xψ(x + θ) x + θ .
We denote by W θ the corresponding scale function. This leads to

P (Z 0 (t) = k | Z 0 (t) > 0) = 1 W θ (t) 1 - 1 W θ (t) k-1 , k ≥ 1.
When α > θ (resp. α = θ, α < θ), this new tree is supercritical (resp. critical, sub-critical) and we talk about the clonal supercritical case (resp. critical, sub-critical case).

Moreover, the law of Z 0 conditionally on the event {N t > 0} can be obtained [START_REF] Champagnat | Splitting trees with neutral Poissonian mutations I: Small families[END_REF], and is given by

P (Z 0 (t) = k | N t > 0) = e -θt W (t) W θ (t) 2 1 - 1 W θ (t) k-1 , ∀k ≥ 1.
(2.8)

For the rest of this paper, unless otherwise stated, the notation P t refers to P (• | N t > 0) whereas P ∞ refers to the probability measure conditioned on the non-extinction event (which has positive probability in the supercritical case). Finally, we recall the asymptotic behaviors of the scale functions W (t) and W θ (t) which are widely used in the sequel. In the case that θ < α (clonal supercritical case),

W θ (t) ∼ t→∞ e (α-θ)t ψ θ (α -θ) .
In the case that θ > α (clonal sub-critical case),

W θ (t) = θ ψ(θ)
+ O e -(θ-α)t .

In the case where θ = α (clonal critical case),

W θ (t) ∼ t→∞ θt ψ (α)
.

For our purpose, a more precise description of the asymptotic behavior of W is needed. It is given by the following result.

Lemma 2.3. There exists a positive non-increasing càdlàg function F such that

W (t) = e αt ψ (α) -e αt F (t), t ≥ 0, and 
e αt F (t) ---→ t→∞ µ, with µ := 1 bE[V ]-1 if E[V ] < ∞, 0 otherwise,
where V is some random variable with distribution P V . In addition, t → e αt F (t) is solution of the renewal equation

g(t) = [0,t] g(t -u) e αu Υ(du) + e αt ψ (α) Υ((t, ∞)), t ∈ R + (2.9)
where Υ(du) = bE e -αV 1 V ≥u du.

Proof. The result comes from [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]Prop. 5.1]. The only point which needs clarification is that t → e αt F (t) is solution of (2.9). According to the proof of [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]Prop. 5.1], we see that, for any positive t,

F (t) = lim x→∞ U (x) -U (t)
where U is solution of the renewal equation

g(t) = [0,t] g(t -u)Υ(du) + 1, t ∈ R + .
The result easily follows from the two following equations (see e.g. the proof of [13, Prop. 5.1])

lim x→∞ U (x) = 1 ψ (α) and Υ(R + ) = 1 -ψ (α).
From this lemma, (2.7) and ( 2.3), one can easily deduce that

P (N t > 0) ---→ t→∞ P (NonEx) = α b , (2.10) 
where NonEx refer to the non-extinction event (see also [START_REF] Lambert | Population dynamics and random genealogies[END_REF] where this result is obtained).

In [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF], we show that a CPP stopped at time t with scale function W can be constructed by grafting independent CPPs stopped at a fixed time a ≤ t on a CPP stopped at time t -a with an explicit scale function different of W whose total population is denoted

N (t)
t-a (see Figure 3). In other words, N (t) t-a is the number of indiviual at alive at time t -a having descent at time t.

Remark 2.4. Note that time is considered backward in the context of CPP. Moreover, we showed that the frequency spectrum can be expressed as an integral with respect to the random measure N along the CPP, that is

A(k, t) = [0,t]×N 1 Z (u) 0 (a)=k N (da, du) , ∀k ∈ N * ,
where Z

(u) 0 refers to the clonal family of the uth grafted sub-CPP (see Figure 3). In other words, since the mass of N is concentrated on mutation points, this boils down to count, for each mutation, if the clonal descent (of the newest type) is represented by k alive individuals at time t. Let us point out that Z (u) 0 (a) can be interpreted (without grafting CPPs) as the number of individual at time t which descend from the uth individual (among the individuals alive a time t -a) and carrying the same type as this uth individual.

More generally, this approach allows to obtain general formulas for the moments of the frequency spectrum (see in particular Theorem 3.1, Section 5.2 and Remark 5.6 in [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF]). This method is used later to obtain some moments estimates useful to prove our theorems. In particular, this allows to prove that (see Theorem 5.2 and Theorem 3.2 [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF]) for any positive integer k and l,

E t [A(k, t)] = W (t) t 0 θe -θs W θ (s) 2 1 - 1 W θ (s) k-1 ds, (2.11) 
and

E t [A(k, t)A(l, t)] = 2W (t) 2 t 0 θe -θs W θ (s) 2 1 - 1 W θ (s) k-1 ds t 0 θe -θs W θ (s) 2 1 - 1 W θ (s) l-1 ds -W (t) t 0 2θ e -θa W (a) W θ (a) 2 1 - 1 W θ (a) l-1 a 0 θe -θs W θ (s) 2 1 - 1 W θ (s) k-1 ds da -W (t) t 0 2θ e -θa W (a) W θ (a) 2 1 - 1 W θ (a) k-1 a 0 θe -θs W θ (s) 2 1 - 1 W θ (s) l-1 ds da + W (t) t 0 θW (a) -1 E a A(k, a)1 Z 0 (a)=l + E a A(l, a)1 Z 0 (a)=k da + 1 l=k W (t) t 0 θe -θa W θ (a) 2 1 - 1 W θ (a) k-1 da.
(2.12)

These tools also allow, for instance, to prove next two results [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF][START_REF] Champagnat | Birth and death processes with neutral mutations[END_REF][START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF].

Theorem 2.5. There exists a random variable E, such that

e -αt N t ---→ t→∞ E ψ (α)
, P-a.s. and in L 2 .

Moreover, under P ∞ , E is exponentially distributed with parameter 1.

Theorem 2.6. For any positive integer k,

e -αt A(k, t) ---→ t→∞ c k E ψ (α) , P-a.s. and in L 2 ,
where E is the random variable of the Theorem 2.5 and

c k = ∞ 0 θe -θa W θ (a) 1 - 1 W θ (a) k-1 da.
(2.13)

Main results

The almost sure convergences stated in Section 2 suggests studying the second order properties of these convergences to get central limit theorems. Our main result, Theorem 3.1, allows to study the asymptotic error in the second approximation proposed in the introduction of this work. In addition, we prove more standard central limit theorem which are interesting from the theoretical point of view.

Before going further, we recall that the Laplace distribution with mean µ ∈ R n and covariance matrix K is the probability distribution whose characteristic function is given by

R n λ → 1 1 + 1 2 λ, Kλ -i µ, λ
, where •, • denotes the standard Euclidean scalar product. This law is denoted by L (µ, K). We also recall that, if G is a Gaussian random vector with null mean and covariance matrix K and E is an exponential random variable with parameter 1 independent of G, then √ EG is Laplace L (0, K).

Central limit theorem for the error between A(k, t) and c k N t

Our first theorem concerns the error between A(k, t) and c k N t .

Theorem 3.1. Let θ > 0 and assume that θ = α, we have

ψ (α) e -α t 2 (A(k, t) -c k N t ) k∈N * (d) ---→ t→∞ L(0, M ) w.r.t. P ∞ ,
where the constants c k are defined in (2.13) and the covariance matrix M is defined, for any positive integer l and k, by

M l,k =2ψ (α) ∞ 0 θe -θa W θ (a) 2 1 - 1 W θ (a) l-1 (c k W (a) -E a [A(k, a)]) da (3.1) + 2ψ (α) ∞ 0 θe -θa W θ (a) 2 1 - 1 W θ (a) k-1 (c l W (a) -E a [A(l, a)]) da + ψ (α) ∞ 0 θW (a) -1 E a (A(k, a) -c k N a ) 1 Z 0 (a)=l da + ψ (α) ∞ 0 θW (a) -1 E a (A(l, a) -c l N a ) 1 Z 0 (a)=k da -ψ (α)c k c l + 1 l=k ψ (α) ∞ 0 θe -θs W θ (s) 2 1 - 1 W θ (s) k-1 ds.
Remark 3.2. The case θ = α rises particular difficulties but may also be treated using our approach (see Remark 6.2). Remark 3.3. Note that Lemma 2.2 entails that all the integrals appearing in Formula (3.1) are well-defined.

The above theorem can be enhanced to obtain more information on the limiting distribution.

Corollary 3.4. If in addition θ > α 2 .
Then, if G is a centered R N * -valued Gaussian random variable, with covariance matrix M , independent of the random variable E of Theorem 2.5, we have

ψ (α) e -α t 2 (A(k, t) -c k N t ) k∈N * (d) ---→ t→∞ √ EG w.r.t. P ∞ .
In addition, this convergence holds jointly with the weak convergence of ψ (α)e -αt N t to E.

Remark 3.5.

• Let us point out that the above convergences has to be understood as convergence of processes for the product topology of R N * . In particular, it is well-known that for this topology (see [START_REF] Billingsley | Convergence of probability measures[END_REF]) the convergence of finite dimensional distributions is enough to ensure the convergence as processes.

• Note that an explicit formula for E t [A(k, t)] is given by (2.11). Proposition 4.5 of [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF] gives explicit formulas for E t A(k, t)1 Z 0 (t)=l . And a formula for E t N t 1 Z 0 (t)=k can be found in Proposition 4.1 of [START_REF] Champagnat | Splitting trees with neutral Poissonian mutations I: Small families[END_REF].

The proof of these results can be found in Section 7.

Central limit theorem for the convergence of Theorem 2.6

Our second result is a central limit theorem related to the convergence of Theorem 2.6.

Theorem 3.6. Let θ > 0 and assume that θ = α. Then, we have, under P ∞ ,

e -α t 2 ψ (α)A(k, t) -e αt c k E k∈N * (d) ---→ t→∞ L(0, H),
where the constants c k are defined in (2.13) and the covariance matrix H is defined, for any positive integer k and l, by

H k,l = M k,l + c k c l 4 -2ψ(α)µ -3ψ (α) .
We have a similar extension for this theorem as for the previous one.

Corollary 3.7. If in addition θ > α 2 .
Then, if G is a centered R N * -valued Gaussian random variable, with covariance matrix H, independent of the random variable E of Theorem 2.5, we have

ψ (α) e -α t 2 A(k, t) -c k e αt E k∈N * (d) ---→ t→∞ √ EG w.r.t. P ∞ .
In addition, this convergence holds jointly with the weak convergence of ψ (α)e -αt N t to E.

The proof of Theorem 3.6 can be found in Section 6.

Remark 3.8. The proofs of the two theorems are very similar. Since the hardest case is the one of Theorem 3.6, we only detail this case in the sequel. The proof of the corollaries are only detailed in the case of Theorem 3.1 in Section 7. However, Remark 7.2 highlights the only difference between the two cases.

Strategy of proof

The proof of this theorem is based on the proof of the central limit theorem for the process (N t , t ∈ R + ) given in [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]. The structure of the proof follows the same lines and is detailed in Section 4 of [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF].

In the sake of completeness, we recall the ideas. For this reason, the results which are straightforward rewording of the proofs given in [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF] are not detailed. However, we think it is necessary to recall some aspects of [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF], in particular from [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]Section 4].

The idea of the proof is based on a decomposition of the tree as the one of Figure 4. More precisely, if we fix two times u and t with u < t, each individual composing the population at time u induces a subtree of the whole tree made of its residual lifetime and its descent. To formalize this, let us recall that, for any fixed time u, there is a natural order (for instance given by an exploration process [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF], see also Figure 4) of the individuals alive at this time. Moreover, we denote, for 1 ≤ i ≤ N u , O i the residual lifetime of the ith individual alive at time u. The tree of the ith individual is denoted T(O i ) where O i refers to the residual lifetime of individual i. Indeed, since the descent of each of these individuals are made of independent random quantities (by construction), it follows that the family (O i ) 1≤i≤Nu is the only source of dependencies within the family (T(O i )) 1≤i≤Nu . Roughly speaking, in view of [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF], one would like to decompose the error

e -α 2 t (A(k, t) -c k N t ) ,
as the sum of the errors in each subtree,

e -α 2 (t-u) Nu i=1 e -α 2 u (A(k, t -u, O i ) -c k N t-u (O i )) , (4.1) 
where A(k, t -u, O i ) denotes the number of families of size k in tree T(O i ) at time t -u (seen as a standalone tree, i.e time 0 for T(O i ) corresponds to time u in the whole tree). The notation N t-u (O i ) refers to the number of individual in tree T(O i ) at time t -u. Doing so, the error can be re-expressed as a geometric sum (under P u ) of errors with controlled moments, leading to a Laplace distribution when N u gets big.

However, one cannot decompose the error this way. This is due to the fact that subtrees may share individuals with a common type. Indeed, among the individuals of a family of size k (which contribute to A(k, t)), some might belong to subtree T(O i ) whereas some others might be in T(O j ) (for i = j). Yet, the decomposition of Equation (4.1) holds true on the event Γ u,t = {"there is no family in the population at time t which is older than u"} , which occurs with high probability for u t and θ ≥ α (since in the clonal subcritical case, the families tend to extinct). In the case of θ < α, families tend to have a supercritical behavior. Hence, one can expect that, for u t, families represented at time u are either extinct or have sizes greater than a fixed threshold for t large enough. So, a good choice should be Γ (k) u,t = {"any families in the population at time t older than u has size strictly greater than k"} , Another important aspect is to obtain estimates on the moments of the error. To get such estimates, we use that (see [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]Corollary 6

.3]) 1 P (N t > 0) = b α - bµψ (α) α e -αt + o(e -αt ) (4.2) 
and

E t [N t E] = 2e αt ψ (α) - 1 ψ (α) -3µ + o(1). (4.3) 
Finally, let us recall that the law of the vector (O 2 , . . . , O Nu ) is given by the following lemma which also comes from [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]rLemma 4.2]. Lemma 4.1. Under P u , the family (O i , i ∈ {1, . . . , N u }) form a family of independent random variables, independent of N u , and, except O 1 , having the same distribution, given by, for 2 ≤ i ≤ N t ,

P(O i ∈ dx) = R + W (u -y) W (u) -1 bP (V -y ∈ dx) dy.
Moreover, it follows that the family (N s (O i ), s ∈ R + ) 1≤i≤Nu is an independent family of process, i.i.d. for i ≥ 2, and independent of N u .

Remark 4.2. We set by definition O i = 0 on the event {N t < i}. In particular, the distribution given in Lemma 4.1 is thus

P(O i ∈ dx | N t ≥ i).
To end this reminder, let us recall the decomposition of the limiting random variable E (defined for instance in Theorem 2.5) at a fixed time u. First, from the construction of the splitting tree (see also [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]), we have, almost surely, The idea behind these equations is that the tree T(O i ) is constructed by grafting on a branch with length O i a random number of trees with the same distribution as the whole splitting tree T. Hence, the number of individual in this tree at time t, is the number individual in each of the grafted trees (taken at a time corresponding to t minus the grafting time), plus 1 if the first branch has length greater than t. In addition, in [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF] we showed that ψ (α)e -αt N t (O i ) converges in L 2 to a random variable E(O i ), and that we have the following lemma. Moreover, under P u , the random variables (E i (O i )) i≥1 are independent, independent of N u , and identically distributed for i ≥ 2.

N t (O i ) = [0,t] N ξu t-u 1 O i ≥u ξ(du) + 1 O i ≥t , ∀t ≥ 0,
Before proving Theorem 3.6, we need an important number of estimates on the moments of the error. This is the point of the next section.

Preliminary moment estimates

As explained in Section 4, one needs to have estimates on the error in the sum of Equation (4.1). There are two steps to obtain these estimates:

• Get the estimates when the lifetime V ∅ of the ancestral individual is distributed according to P V .

• Deduce the estimates when V ∅ follows an arbitrary distribution, and finally take law of O i for V ∅ .

In both case, the lifetime distribution of the other individuals is still assumed to be P V . So, according to plan, we begin with the standard splitting tree case.

Case

V ∅ L = P V
One of the main difficulties is to get estimates on moments like

E ψ (α)A(k, t) -e αt c k E n , for n = 2 or 3.
or

E [|A(k, t) -c k N t | n ] ,
for n = 2 or 3.

We begin with the following lemma.

Lemma 5.1. Let k and l be two positive integers, then

e αt ψ (α) 2 E e -αt A(k, t) -c k e -αt N t e -αt A(l, t) -c l e -αt N t ---→ t→∞ M k,l
where M is defined in Equation (3.1).

Proof. We give the details for l = k, the case l = k is a direct adaptation of what follows with the indicator function 1 l=k of (2.12) in mind. We recall that using the calculus made in Remark 5.6 of [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF] (let us highlight that there is a missing 2 in front of the referenced formula), we have

E t [A(k, t)N t ] = 2W (t) 2 c k (t) -2W (t) [0,t] θP a (Z 0 (a) = k) da + W (t) [0,t] θW (a) -1 E a N a 1 Z 0 (a)=k da, (5.1) 
with

c k (t) := t 0 θe -θa W θ (a) 2 1 - 1 W θ (a) k-1 da, ∀k ≥ 1, t ∈ R + .
Moreover, from (2.8), (2.11), (2.12) and Lemma 2.3, we have

E t [A(k, t)A(l, t)] = 2W (t) 2 c k (t)c l (t) + R kl W (t) + o(e αt ), with R kl := - ∞ 0 2θW (a) -1 P a (Z 0 (a) = k) E a [A(l, a)] da - ∞ 0 2θW (a) -1 P a (Z 0 (a) = l) E a [A(k, a)] da + ∞ 0 θW (a) -1 E a A(k, a)1 Z 0 (a)=l + E a A(l, a)1 Z 0 (a)=k da.
These identities allow us to obtain, using also that N t is geometrically distributed under P t ,

E t [(A(k, t) -c k N t ) (A(l, t) -c l N t )] = 2W (t) 2 c k (t)c l (t) + W (t)R kl + o(e αt ) -2c l c k (t)W (t) 2 + 2c k W (t) [0,t] θP a (Z 0 (a) = k) da -c l W (t) [0,t] θW (a) -1 E a N a 1 Z 0 (a)=k da -2c k c l (t)W (t) 2 + 2c l W (t) [0,t] θP a (Z 0 (a) = l) da -c k W (t) [0,t] θW (a) -1 E a N a 1 Z 0 (a)=l da + c k c l W (t) 2 2 - 1 W (t) = 2W (t) 2 (c k (t) -c k ) (c l (t) -c l ) + W (t)R kl + o(e αt ) + 2c l W (t) [0,t] θP a (Z 0 (a) = k) da -c l W (t) [0,t] θW (a) -1 E a N a 1 Z 0 (a)=k da + 2c l W (t) [0,t] θP a (Z 0 (a) = l) da -c k W (t) [0,t] θW (a) -1 E a N a 1 Z 0 (a)=l da -c k c l W (t).
Using that, by Lemma 2.2,

c k -c k (t) = o(e -αt/2 ),
we get, by taking the limit as t goes to infinity,

M k,l := lim t→∞ ψ (α) 2 e -αt E t [(A(k, t) -c k N t ) (A(l, t) -c l N t )] = ψ (α)R kl + 2ψ (α)c k [0,∞) θP a (Z 0 (a) = k) da -ψ (α)c l [0,∞) θW (a) -1 E a N a 1 Z 0 (a)=k da + 2ψ (α)c l [0,∞) θP a (Z 0 (a) = l) da -ψ (α)c k [0,∞) θW (a) -1 E a N a 1 Z 0 (a)=l da -ψ (α)c k c l .
Our next goal is to get the same type of results for the error in the CLT involving E of Theorem 3.6. For this, we need the following lemma. Lemma 5.2. Consider E(O 2 ) as defined in Section 4. Then, we have

E [E(O 2 )| N t ≥ 2] = R + αe -αu P(O 2 ≥ u| N t ≥ 2) du = ψ (α) -ψ (α)e -αt 1 -ψ (α)(µ + 1) + o(e -αt ).
Proof. As recalled in Section 4, we have that there exists • an i.i.d. family of random processes (N i t , t ∈ R + ) i≥1 (corresponding to the population counting processes induced by each child of individual 2) with the same distribution as (N t , t ∈ R + ),

• a Poisson random measure ξ with constant rate b independent of the above family, such that all these objects are independent of O 2 (under P t ) and

N t (O 2 ) = [0,t] N ξu t-u 1 O 2 ≥u ξ(du) + 1 O 2 ≥t , ∀t ≥ 0,
where ξ u := ξ([0, u]). In addition, as shown in Lemma 6.6 of [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF], in L 1 (P) ,

ψ (α)e -αt N t (O 2 ) ---→ t→∞ E(O 2 ) := R + e -αu E ξu 1 u≤O i ξ(du), (5.2) 
with ψ (α)e -αt N i t ---→ t→∞ E i , almost surely and in L 1 (P).

Hence, it follows from Lebesgue's theorem that

ψ (α)e -αt E [N t (O 2 )] = ψ (α) [0,t] e -αu e -α(t-u) E [N t-u ] P(O 2 ≥ u)b du + ψ (α)e -αt P(O 2 ≥ t),
converges, as t goes to infinity, to

R + αe -αu P(O 2 ≥ u) du, which is equal to E [E(O 2 )] . Conditioning with respect to {N t ≥ 2} now gives E [E(O 2 ) | N t ≥ 2] = R + αe -αu P(O 2 ≥ u | N t ≥ 2) du.
Now, according to Lemma 4.1, we have that

R + αe -αu P(O 2 ≥ u | N t ≥ 2) du = R + αe -αu t 0 b W (t -y) W (t) -1 P(V ≥ u + y) dy du = b t 0 W (t -y) W (t) -1 R + αe -αu P(V ≥ u + y) du dy = b t 0 W (t -y) W (t) -1 P (V ≥ y) dy -b t 0 W (t -y) W (t) -1 E e -α(V -y) 1 V ≥y dy = 1 -b t 0 W (t -y) W (t) -1 E e -α(V -y) 1 V ≥y dy,
where the last equality follows from

P(O 2 ≥ 0 | N t ≥ 2) = t 0 b W (t -y) W (t) -1 P(V ≥ y) dy = 1. Now, using Lemma 2.3, we get b t 0 W (t -y) W (t) -1 E e -α(V -y) 1 V ≥y dy = be αt ψ (α)(W (t) -1) t 0 e -αy E e -α(V -y) 1 V >y dy - 1 W (t) -1 t 0
e α(t-y) F (t -y)e αy Υ(dy), with Υ(dv) = bE 1 V >v e -αV dv.

Now, on one hand we have

t 0 e -αy E e -α(V -y) 1 V >y dy = ∞ 0 e -αy E e -α(V -y) 1 V >y dy - ∞ t e -αy E e -α(V -y) 1 V >y dy = E V e -αV -e -αt E (V -t)e -α(V -t) 1 V >t = E V e -αV -e -αt E (V -t)e -α(V -t) 1 t<V <∞ = E V e -αV + o(e -αt ).
On the other hand, we know from Lemma 2.3 that t → e αt F (t) is the solution of the renewal equation

g(t) = t 0 g(t -u)e αu Υ(du) + 1 ψ (α) e αt Υ(t, ∞), but e αt Υ(t, ∞) = e αt (t,∞) bE e -αV 1 V ≥u du = bE (V -t)e -α(V -t) 1 V -t≥0 ≤ be -1 P(t ≤ V < ∞) = o(1).
Thus, It follows now from above and from Lemma 2.3 that

b t 0 W (t -y) W (t) -1 E e -α(V -y) 1 V ≥y dy = e αt W (t) -1 b ψ (α) E V e -αV -e -αt µ + o(e -αt ) =ψ (α) 1 + e -αt ψ (α)(µ + 1) + o(e -αt ) b ψ (α) E V e -αV -e -αt µ + o(e -αt )
=bE V e -αV + e -αt bψ (α)(µ + 1)E V e -αV -µψ (α) + o(e -αt ).

(5.3)

Finally, using that bE V e -αV = 1 -ψ (α), and (5.3), we get

R + αe -αu P(O 2 ≥ u | N t ≥ 2) du = 1 -bE V e -αV -e -αt bψ (α)(µ + 1)E V e -αV -µψ (α) + o(e -αt ) = ψ (α) -ψ (α)e -αt 1 -ψ (α)(µ + 1) + o(e -αt )
which ends the proof.

Using the preceding lemma, we can now get the quadratic error in the convergence of the frequency spectrum.

Lemma 5.3 (Quadratic error for the convergence of A(k, t).). Let k and l be two positive integers. Then under the hypothesis of Theorem 3.6, we have

e -αt E t ψ (α)A(k, t) -e αt Ec k ψ (α)A(l, t) -e αt Ec l ---→ t→∞ M k,l + c k c l 4 -2ψ(α)µ -3ψ (α) ,
where the sequence (c k ) k≥1 is defined by (2.13) and µ is defined in Lemma 2.3.

Proof. The proof of this lemma is based on the decomposition of E as

E = e -αt Nt i=1 E(O i ).
According to Lemma 4.1, we know that the family (E(O i )) 1≤i≤Nt is (under P t ) a family of independent random variable (which is i.i.d. for i ≥ 2), independent of N t and A(k, t). Hence,

E t [A(k, t)E] = e -αt E t [A(k, t)(N t -1)E [E(O 2 )| N t ≥ 2]] + e -αt E t [A(k, t)] E t [E(O 1 )] .
First of all, we have that the r.h. term of the above equality is bounded if e -αt E t [A(k, t)] converges as t goes to infinity, in particular because E t [E(O 1 )] is uniformly bounded in t which is a consequence of the definition of E(O 1 ) (similar to Equation (5.2), see [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]). From this, we get

E t ψ (α)e -αt A(k, t) -Ec k ψ (α)e -αt A(l, t) -Ec l =ψ (α) 2 e -2αt E t [(A(k, t) -N t c k ) (A(l, t) -N t c l )] + ψ (α)e -2αt c l E t [A(k, t)N t ] ψ (α) -E [E(O 2 )| N t ≥ 2] + ψ (α)e -2αt c k E t [A(l, t)N t ] ψ (α) -E t [E(O 2 )| N t ≥ 2] + c k c l E t E 2 -ψ (α) 2 e -2αt E t N 2 t + o(e -αt )
Now, according to Equation (5.1) and Lemma 5.2, we have

ψ (α)e -2αt c l E t [A(k, t)N t ] × e αt ψ (α) -E [E(O 2 )| N t ≥ 2] ---→ t→∞ 2c l c k 1 -ψ (α)(µ + 1) . Now, using (4.2), we get E t [E 2 ] -2 = -2µψ (α)e -αt + o(e -αt ),
which leads, using Lemma 2.3, to

e αt E t E 2 -ψ (α) 2 e -2αt E t N 2 t ---→ t→∞ 2µψ (α) + ψ (α).
Finally, using Lemma 5.1, we get

E t ψ (α)e -αt A(k, t) -Ec k ψ (α)e -αt A(l, t) -Ec l ---→ t→∞ M k,l + c k c l 4 -2ψ(α)µ -3ψ (α) .
Lemma 5.4 (Boundedness of the third moment). Let k 1 , k 2 , k 3 three positive integers, then

E 3 i=1 e -α 2 t ψ (α)A(k i , t) -e αt Ec k i = O (1) .
Proof. We have,

E 3 i=1 ψ (α)A(k i , t) -e αt Ec k i e α 2 t ≤ 3 i=1   E   ψ (α)A(k i , t) -e αt Ec k i e α 2 t 3     1 3
.

Hence, we only have to prove the lemma for

k 1 = k 2 = k 3 = k. Hence, E   ψ (α)A(k, t) -e αt Ec k e α 2 t 3   ≤ 8E ψ (α)A(k, t) -c k N t e α 2 t 3 + 8c 3 k E N t -e αt E e α 2 t

3

.

The last term have been treated in the proof of [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]Lemma 6.4], and the boundedness of

E ψ (α)A(k, t) -c k N t e α 2 t
3 follows from the following Lemma 5.5 and Hölder's inequality.

Lemma 5.5. For all k ≥ 1,

E A(k, t) -c k N t e α 2 t

4

, is bounded.

Due to technicality, the proof of this lemma is postponed to the end in appendix.

Arbitrary initial distribution case

The following lemmas are the counter parts of Lemmas 6.5, 6.6, and 6.7 of [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]. They play the same role in the proof of Theorem 3.6 as in the proof of the central limit theorem given in [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]. In the sequel, we denote by (A(k, t, Ξ)) k≥1 , the frequency spectrum of a splitting tree where the lifetime of the ancestral individual is an arbitrary random variable Ξ but where the other individuals have lifetimes distributed according to P V . This is done in the same spirit as for N t (Ξ) in [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF], which denotes the number of individuals at time t in a splitting tree where the first individual has lifetime Ξ. So, from the construction of the splitting tree, it is easily seen that there exists an i.i.d. family of processes (N (j) t , t ∈ R + ) j≥1 , and an independent Poisson point measure ξ on R with intensity b such that

N t (Ξ) = [0,t] N (ξu) t-u 1 Ξ≥u ξ(du) + 1 Ξ≥t , ∀t ∈ R + .
Now defining

E (j) := lim t→∞ ψ (α)e -αt N (j) t , ∀j ≥ 1, P-as, we can set E (Ξ) := [0,∞) E (ξu) e -αu 1 Ξ>u ξ(du).
With this in hands, we can study the asymptotic behavior of the moments of

ψ (α)A(k, t, Ξ) -e αt E(Ξ)c k .
This first lemma gives the asymptotic of the quadratic error.

Lemma 5.6 (L 2 convergence in the general case). Consider the general frequency spectrum

(A(k, t, Ξ)) k≥1 ,
then, for all k, ψ (α)e -αt A(k, t, Ξ) converge to c k E (Ξ) (see 5.2) in L 2 (P) as t goes to infinity.

Moreover,

e -αt E ψ (α)A(k, t, Ξ) -e αt c k E(Ξ) ψ (α)A(l, t, Ξ) -e αt c l E(Ξ)
converges, as t goes to infinity, to

α b H k,l R + e -αu P (Ξ > u) bdu,
where the convergence is uniform w.r.t. Ξ, and H k,l is defined in Theorem 3.6.

In the case where Ξ is distributed as O 2 for u = βt and 0 < β < 1 2 , we get

e -αt E ψ (α)A(k, t, O 2 ) -e αt c k E(O 2 ) ψ (α)A(l, t, O 2 ) -e αt c l E(O 2 ) ---→ t→∞ ψ (α)H k,l .
This next two lemma give bounds on the first and third moment of the error.

Lemma 5.7 (First moment). The first moments are asymptotically bounded, that is, for all k ≥ 1,

E ψ (α)A(k, t, Ξ) -e αt c k E(Ξ) ≤ O(1),
uniformly with respect to Ξ.

Lemma 5.8 (Boundedness in the general case.). Let k 1 , k 2 , k 3 three positive integers, then

E 3 i=1 ψ (α)A(k i , t, Ξ) -e αt E(Ξ)c k i e α 2 t
= O (1) , uniformly with respect to Ξ.

We do not detail the proofs of these results since they are direct adaptations of the proofs of Lemmas 6.5, 6.6, and 6.7 of [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF].

Proof of Theorem 3.6

The following result is based on the fact that, in the clonal sub-critical case, the lifetime of a family is expected to be small. It follows that one can expect that all the family of size k live in different subtrees as soon as t u. This is the point of the following lemma.

Lemma 6.1. Suppose that α<θ. If we denote by Γ u,t the event, Γ u,t = {"there is no family in the population at time t which is older than u"} , then, for all β in (0, 1 -α θ ), we have

P βt (Γ βt,t ) ---→ t→∞ 1.
Proof. The proof of this lemma, as the calculation of the moments of A(k, t) relies on the representation of the genealogy of the living population at time t as a coalescent point process [6, Prop. 5.1]. Moreover, we denote by

N (t)
u the number of living individuals at time u who have alive descent at time t. In [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF], we showed that, under P t , N

u is geometrically distributed with parameter W (t-u) W (t) . Now, 1 Γu,t can be rewritten as

1 Γu,t = N (t) u i=1 1 {Z i 0 (t-u)=0} , (6.1) 
where Z i 0 (t -u) denotes the number of individuals alive at time t descending from the ith individual alive at time u and carrying its type (in Figure 3, the clonal type of the sub-CPP). Moreover, from Proposition 4.3 of [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF], we know that that under P t , the family Z (i) 0 (t -u) is an i.i.d. family of random variables distributed as Z 0 (t -u) under P t-u , and

N (t) u is independent of Z (i) 0 (t -u) (still under P t ). Then, P t (Γ u,t ) = E t P t-u (Z 0 (t -u) = 0) N (t) u = P t-u (Z 0 (t -u) = 0) W (t-u) W (t) 1 -P t-u (Z 0 (t -u) = 0) 1 -W (t-u) W (t) . (6.2) 
Using (2.8), some calculus leads to

P t (Γ u,t ) = 1 - 1 1 + W θ (t-u) e -θ(t-u) W (t) -W (t-u) W (t) . (6.3) 
Thus taking u = βt, we get

P t (Γ βt,t ) ---→ t→∞ 1.
Then, from

P t (Γ u,t ) ≥ P u (Γ u,t ) P (N u > 0) P (N t > 0)
, the result follows.

where Z i 0 (t -u, O i ) denote the number of individuals alive at time t carrying the same type as the ith alive individual at time u, that is the ancestral family of the tree constructed from the residual lifetime of the ith individual and its descent (see Section 4).

Let K be a positive integer and K = (k 1 , • • • , k K ) be a multi-integer. We denote by L (K) (resp. A(K, t)) the random vector L k 1 , . . . , L k K (resp. (A(k 1 , t), . . . , A(k K , t))) with

L k t = ψ (α)A(k, t) -c k e αt E e α 2 t . (6.5) 
On the event Γ u,t , we have almost surely,

A(k l , t) = Nu i=1 A (i) (k l , t -u, O i ), ∀l = 1, . . . , N,
where the family A (i) (k l , t -u, O i ) 1≤i≤Nu stands for the frequency spectrum the subtrees (T(O i )) 1≤i≤Nu .

Remark 6.4. Here is the only point which differ from the proof of the case θ < α. In this case, one would choose Γ (l) u,t for any l > max k i , in order to have the same decomposition as above. Hence, using Lemma 4.4,

L k l t = Nu i=1 ψ (α)A (i) (k l , t -u, O i ) -e α(t-u) E i (O i )c k l e α 2 u e α 2 (t-u) . (6.6) 
In the sequel, we denote, for all l and i ≥ 1,

Ã(i) (k l , t -u, O i ) = ψ (α)A (i) (k l , t -u, O i ) -e α(t-u) E i (O i )c k l e α 2 (t-u)
.

Ã(i) (K, t -u, O i ) denotes the corresponding random vector. In particular, according to Lemma 4.1 and Lemma 4.4, we have that the family ( Ã(i

) (k l , t -u, O i )) 1≤i≤Nu is independent (under P u ). Now, let ϕ K (ζ) := E exp i Ã(2) (K, t -u, O 2 ) , ζ 1 Z 2 0 (t-u,O 2 )=0 , φK (ζ) := E exp i Ã(1) (K, t -u, O 1 ) , ζ 1 Z 1 0 (t-u,O 1 )=0 ,
where •, • denotes the standard Euclidean scalar product. From this point, following closely the proof of Theorem 3.2 of [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF]: that is, using Lemmas 4.1 and 4.4, and Equation (6.6), we have that

E βt e i<L (K) t , ζ> 1 Γ βt,t = φK (e -αβ 2 t ζ)E βt ϕ K (e -αβ 2 t ζ) N βt -1 , for u = βt with β ∈ 0, 1 2 ∧ (1 -α θ )
. This gives using that N βt has geometric distribution under P βt that

E βt e i<L (K) t , ζ> 1 Γ βt,t = φK (e -αβ 2 t ζ) 1 
W (βt) -(W (βt) -1)ϕ K (e -αβ 2 t ζ) . (6.7) 
Now, a Taylor expansion of ϕ K gives

ϕ K (ζ) = 1 + i K p=1 ζ p E Ã(2) (k p , (1 -β)t, O 2 )1 Z 2 0 ((1-β)t,O 2 )=0 - 1 2 K p,q=1 M kp,kq (t)ζ p ζ q + R (1-β)t (ζ), (6.8 
) and

M k i ,k j (t) := E ψ (α)A (2) (k i , (1 -β)t, O 2 ) -e α((1-β)t) E 2 (O 2 )c k i e α 2 ((1-β)t) × ψ (α)A (2) (k j , (1 -β)t, O 2 ) -e α((1-β)t) E 2 (O 2 )c k j e α 2 ((1-β)t) 1 Z 2 0 ((1-β)t,O 2 )=0 . (6.9) 
We now need to handle the indicator function

1 Z 0 ((1-β)t,O i )=0
in the Taylor development of ϕ K . We show how it can be done for one of the second order terms, the method is similar for the other terms. It follows from Hölder's inequality that

E   ψ (α)A (2) (k l , (1 -β)t, O 2 ) -e α((1-β)t) E 2 (O 2 )c k l e α 2 ((1-β)t) 2 1 Z 2 0 ((1-β)t,O 2 )>0   ≤ E   ψ (α)A (2) (k l , (1 -β)t, O 2 ) -e α(1-β)t E 2 (O 2 )c k l e α 2 (1-β)t 3   2 3 P Z 2 0 ((1 -β)t, O 2 ) > 0 1 3 , (6.10) 
from which it follows, using Lemma 5.8, that the r.h.s. of this last inequality is

O P Z 2 0 ((1 -β)t, O 2 ) > 0 1 3
. Now, using (6.4) and Lemma 6.1, it is easily seen that

P Z 2 0 ((1 -β)t, O 2 ) > 0 ---→ t→∞ 0.
Finally, using Cauchy-Schwarz inequality in (6.9) and Lemma 5.3, we get

M k i ,k j (t) ---→ t→∞ ψ (α)H k i ,k j , (6.11) 
where H is defined in Theorem 3.6 (see also Lemma 5.3). Now, in (6.8), we have, using similar methods and Lemma 5.7, that

e -αβ 2 t E Ã(2) (k l , (1 -β)t, O 2 )1 Z 2 0 ((1-β)t,O 2 )=0 = O(e -α 2 t ).
Finally, using the above computations, we get with (6.8)

ϕ K (e -αβ 2 t ξ) = 1 -e -αβt 1 2 K p,q=1
M kp,kq (t)ξ p ξ q + R (1-β)t (e -αβ 2 t ξ) + O(e -α 2 t ), (6.12) and a similar treatment for the third order term in the reminder R using Lemma 5.8 gives

R (1-β)t (e -αβ 2 t ξ) = O(e -3αβ 2 t ).
Putting all these together in (6.7) (and taking into account that β < 1 2 ∧ (1 -α θ )) entails

E βt e i<L (K) t ,ξ> 1 Γ βt,t = 1 1 + e -αβt W (βt) 1 2 K i,j=1 ξ i ξ j M k i ,k j (t) + o (1) 
. (6.13)

These allow us to conclude, from (6.13) and (6.11), that

E βt e i<L (K) t ,ξ> 1 Γ βt,t ---→ t→∞ 1 1 + 1 2 K i,j=1 H k i ,k j ξ i ξ j ,
where K is the multi-integer (k 1 , . . . , k K ). To end the proof, note that,

E ∞ e i<L (K) t ,ξ> -E βt e i<L (K) t ,ξ> 1 Γ βt,t ≤ E 1 NonEx P (NonEx) - 1 N βt >0 1 Γ βt,t P (N βt > 0) → t→∞ 0,
thanks to Lemma 6.1.

Proof of Theorem 3.1

Since all the ideas of the proof of this theorem have been developed the preceding sections, we do not detail all the proof. We only details the steps which need clarification.

More on moments

Our first step is the computation of the covariance matrix M of the Laplace limit law. According to the proof of Theorem 3.6 (more precisely Equation 6.13), it is given, for two positive integer l and k, by

M k,l := lim t→∞ W (βt) e αβt E ψ (α)A (i) (k, (1 -β)t, O i ) -ψ (α)c k N (1-β)t e α 2 ((1-β)t) × ψ (α)A (i) (l, (1 -β)t, O i ) -ψ (α)c l N (1-β)t e α 2 ((1-β)t) 1 Z 2 0 ((1-β)t,O 2 )>0 ,
which is equal, thanks to (6.10), Lemma 5.1 and an easy adaptation of Lemma 6.6 in [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF], to

M k,l = lim t→∞ bψ (α) 3 α W (βt)
e αβt e αt E e -αt A(k, t) -c k e -αt N t e -αt A(l, t) -c l e -αt N t = M k,l .

Note that Lemma 5.1 concerns the above limit under P t , that is why the term b α vanishes in the limit. Now, in order to obtain the joint convergence, we need some new moment estimates. Lemma 7.1. Assume that θ > α/2. Let k be some positive integer, then

E e -αt N t A(k, t) -c k N t e α 2 t
---→ t→∞ 0

Proof. In order to have an explicit expression for

E t [N t (A(k, t) -c k N t )] ,
we use again Remark 5.6 of [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF] to get

E t [N t A(k, t)] = 2 t 0 W (t) 2 1 - W (a) W (t) θe -θa W θ (a) 2 1 - 1 W θ (a) k-1 da + W (t) t 0 θ E a N a 1 Z 0 (a)=k W (a) da.
Now, using that N t has a geometric distribution under P t (with parameter W (t) -1 ), we get

c k E t N 2 t = W (t) 2 2 - 1 W (t) ∞ 0 θe -θa W θ (a) 2 1 - 1 W θ (a) k-1 da.
Combining this two equality leads to

E t [N t (A(k, t) -c k N t )] = 2W (t) 2 ∞ t θe -θa W θ (a) 2 1 - 1 W θ (a) k-1 da + O(tW (t)).
Now, Lemma 2.2 (clonal sub-critical case) and that W (t) ∼ e αt ψ (α) (Lemma 2.2 also) entails

e -3α 2 t W (t) 2 ∞ t θe -θa W θ (a) 2 1 - 1 W θ (a) k-1 da = O e -3α 2 t W (t) 2 ∞ t θe -θa da ,
we then get the result using (2.10) and that θ > α/2.

Remark 7.2. In the case of Theorem 3.6, one would need that

E e -αt N t ψ (α)A(k, t) -c k e αt E e α 2 t ---→ t→∞ 0,
to obtain the joint convergence with e -αt N t as stated in the theorem. In fact, this result easily follows from the above proof and the estimate

E t [N t E] -ψ (α)e -αt E t N 2 t = 2e αt ψ (α) -2ψ (α)e -αt W (t) 2 + o(e α 2 t ) = o(e α 2 t ),
which is deduced using (4.3), Lemma 2.3 and the geometric law of N t under P t .

Remark 7.3. In the above expression, the moments does not involve 1 Z i 0 (t-u,O 1 )=0 at will. Since according to the proof of Theorem 3.6, these indicator functions can be neglect, their presence is hidden in the reminder R t-u .

Hence, plugging (7.3) in Equation (7.2) gives φK (e -αu ζ, e -αu λ)E u ϕ K (e -αu ζ, e -αu λ) Nu-1 = φK (e -αu ζ, e -αu λ)

1 W (u) 1 -(1 -W (u) -1 ) 1 + e -α(t-u) λiE ψ (α)N t-u (O 2 ) - 1 2 |K| p,q=1 e -αu E Ã(k p , t -u, O 2 ) Ã(k q , t -u, O 2 ) ζ p ζ q + R(t, u) -1
, for some R satisfying R(βt, t) = o(e -αβt )(with the same choice of β as in the proof of Theorem 3.6). Now, setting u = βt as in the proof of Theorem 3.6, and taking the limit as t goes to infinity shows the convergence of the above quantity to

1 1 + λi + 1 2 |K| p,q=1 M i,j ζ p ζ q .
Indeed, the one main difference with the proof of Theorem 3.6 lies on the moment

E Ã(k p , t -u, O 2 )N t-u (O 2 )
in the Taylor development of ϕ K , which can be shown to go to 0 using Lemma 7.1 and an adaptation of Lemma 6.6 in [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF].

To end the proof let us remark that if G is some Gaussian random variable with null mean and covariance matrix K independent of a random variable E (with exponential distribution and mean 1), then the characteristic function of the couple ( √ EG, E) is given by

(ζ, λ) ∈ R d × R → 1 1 + λi + 1 2 ζ, Kζ
, where •, • denotes the standard Euclidean scalar product.

A Formula for the fourth moment of the error Lemma A.1.

E t (A(k, t) -c k N t ) 4 = 4 [0,t] θ W (t) W (a) E a 1 Z 0 (a)=k (A(k, a) -c k N a ) 3 da + 48 [0,t] θ W (t) 2 W (a) 2 1 - W (a) W (t) E a 1 Z 0 (a)=k N a A(k, a) E a [(c k N a -A(k, a))] da + 24 [0,t] θ W (t) 2 W (a) 2 1 - W (a) W (t) E a 1 Z 0 (a)=k N 2 a E a [(A(k, a) -c k N a )] da + 24 [0,t] θ W (t) 2 W (a) 2 1 - W (a) W (t) E a 1 Z 0 (a)=k A(k, a) 2 E a [(A(k, a) -c k N a )] da + 8 [0,t] θ W (t) 2 W (a) 2 1 - W (a) W (t) P a (Z 0 (a) = k) E a (A(k, a) -c k N a ) 3 da + 48 [0,t] θ W (t) 2 W (a) 2 1 - W (a) W (t) E a 1 Z 0 (a)=k A(k, a) E a (A(k, a) -c k N a ) 2 da + 72 [0,t] θ W (t) 3 W (a) 3 1 - W (a) W (t) 2 E a 1 Z 0 (a)=k (A(k, a) -c k N a ) E a [(A(k, a) -c k N a )] 2 da + 72 [0,t] θ W (t) 3 W (a) 3 1 - W (a) W (t) 2 P a (Z 0 (a) = k) E a (A(k, a) -c k N a ) 2 E a [A(k, a) -N a c k ] da + 96 [0,t] θ W (t) 4 W (a) 4 1 - W (a) W (t) 3 P a (Z 0 (a) = k) E a [(A(k, a) -c k N a )] 3 da + c 4 k E t N 4 t + O(W (t) 2 )
Proof. The proof of this Lemma lies on the calculation of the expectation of each term in the development of (A(k, t) -c k N t ) 4 .

To make this, we intensively use [6, Theorem 3.1] as well as [6, Remark 5.6] in conjunction with [6, Equation (5.2)]. For instance

E t A(k, t) 4 .
is directly derived from [6, Theorem 3.1]. The method is similar for every other terms and is quite straightforward although a bit painful. For these reasons, we only give the exemple of

E t A(k, t)N 3 t .
Before going further, let us highlight that the objects used below are defined in Section 2. From [6, Equation (5.

2)], we have that

A(k, t) = [0,t]×N 1 Z (i) 0 (a)=k N (da, di),
and thus

N 3 t A(k, t) = [0,t]×N N 3 t 1 Z (i) 0 (a)=k N (da, di) = [0,t]×N    N (t) t-a m=1 N m a    3 1 Z (i) 0 (a)=k N (da, di),
where N m a is the number of individuals in the mth grafted CPP in the decomposition described in Section 2 and has under P t the law of N a under P a . (see also Remark 5.6 in [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF]). This gives

N 3 t A(k, t) = [0,t]×N N (t) t-a m,j,l=1 N m a N j a N l a 1 Z (i) 0 (a)=k N (da, di).
We now use Theorem 4.2 of [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF], to get

E t N 3 t A(k, t) = E t      [0,t] θN (t) t-a N (t) t-a m,j,l=1 E t N m a N j a N l a 1 Z (i) 0 (a)=k da      . Now, using that Z (i)
0 , N l a , N m a are independent as soon as m = l = i, we get, denoting (x) (i) = x(x -1) . . . (x -i + 1),

E t N 3 t A(k, t) = [0,t] θE t (N (t) t-a ) (4) E a [N a ] 3 P a (Z 0 (a) = k) da +3 [0,t] θE t (N (t) t-a ) (3) E a [N a ] 2 E a N a 1 Z 0 (a)=k da + 3 [0,t] θE t (N (t) t-a ) (3) E a N 2 a E a [N a ] P a (Z 0 (a) = k) da + 3 [0,t] θE t (N (t) t-a ) (2) E a N 2 a E a N a 1 Z 0 (a)=k da + 3 [0,t] θE t (N (t) t-a ) (2) E a N 2 a 1 Z 0 (a)=k E a [N a ] da + [0,t] θE t (N (t) t-a ) (2) E a N 3 a P a (Z 0 (a) = k) da + [0,t] θE t N (t) t-a E a N 3 a 1 Z 0 (a)=k da
We can now conclude using the geometric distribution of N (t) t-a . The same computation is performed for every other term. We finally get Lemma A.1 by reassembling similar terms together. The last term is obtained using the geometric distribution of N t under P t .

B Boundedness of the fourth moment

Lemma B.1. We begin the proof of the boundedness of the fourth moment by some estimates. 

E t [(A(k, t) -c k N t )] = O e -(θ-α)t , (i) E t (A(k, t) -c k N t ) 3 = O W (t) 2 , (ii) E t (A(k, t) -c k N t ) 2 = O (W (t)) , (iii) 
E t [N n t ] = O(e nαt ), n ∈ N * , (iv) 
P t (Z 0 (t) = k) = O(e (α-θ)t
E t (A(k, t) -c k N t ) 3 ≤ E t N t (A(k, t) -c k N t ) 2 .
We begin the proof by computing the r.h.s. of the previous inequality using the same techniques as in Appendix A. Now, an analysis similar to the one of Lemma 5.5 leads to the result.

E t A(k, t) 2 N t = 2 t 0 θ W (t) W (a) E a N a A(k, a)1 Z 0 (a)=k da +4 t 0 θ W (t) 2 W (a) 2 1 - W (a) W (t) E a N a 1 Z 0 (a)=k E a [A(k, a)] da +4 t 0 θ W (t) 2 W (a) 2 1 - W (a) W (t) E a A(k, a)1 Z 0 (a)=k E a [N a ] da +4 t 0 θ W (t) 2 W (a) 2 1 - W (a) W (t) P a (Z 0 (a) = k) E a [A(k, a)N a ] da +12 t 0 θ W (t) 3 W ( 
Proof of Lemma 5.5. The ideas of the proof, is to analyses one to one every terms of the expression of

E t (A(k, t) -c k N t ) 4 ,
given by Lemma A.1 using Lemma B.1 to show that they behave as O W (t) 2 . Since the ideas are the same for every terms, we just give a few examples. First of all, we consider Every term in W (t) or W (t) 2 are treated this way. Now, we consider the term in W (t) 4 which is On the other hand, using the calculus made in the proof of Theorem 6.3 of [START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF], we have θe -θs W θ (s) 2 1 -

I := 96
1 W θ (s) k-1 [s,∞] θe -θu W θ (u) 2 1 - 1 W θ (u) k-1 duds = c 2 k 2 - 1 2 [t,∞]
θe -θs W θ (s) 2 1 - This shows that J is O W (t) 2 .

1 W θ (s) k-1

Lemma 2 . 2 .

 22 [START_REF] Champagnat | Splitting trees with neutral Poissonian mutations II: Largest and oldest families[END_REF] Lemma 3.2]) There exist a positive constant ρ such that, e -αt ψ (α)W (t) -1 = O e -ρt .

Figure 3 :

 3 Figure 3: Adjunction of independent CPPs on the blue CPP. N (t) t-a is the number of individual in the blue CPP.

4 ? 6 tFigure 4 :

 464 Figure 4: Residual lifetimes with subtrees associated to living individuals at time u.

Lemma 4 . 4 .

 44 [START_REF] Henry | Central limit theorem for supercritical binary homogeneous crump-mode-jagers processes[END_REF] Lemma 6.8] For any time u > 0, we have the following decomposition of E (see Theorem 2.5 for the definition),E = e -αu Nu i=1 E i (O i ) , a.s.

t 0 e

 0 α(t-y) F (t -y)Υ(dy) = e -αt F (t) 1 ψ (α) Υ(t, ∞) = µ + o(1).

a) 3 1 - 2 P 0 θ W (t) 2 W 2 P

 12022 a (Z 0 (a) = k) E a [A(k, a)] E a [N a ] da. 2E t A(k, t)N 2 t E a N a 1 Z 0 (a)=k E a [N a ] da +4 t (a) 2 1 -W (a) W (t) P a (Z 0 (a) = k) E a N 2 a da +12 t 0 θ W (t) 3 W (a) 3 1 -W (a) W (t) a (Z 0 (a) = k) E a [N a ] 2 da.

Finally,E 2 P

 2 t N t (A(k, t) -c k N t ) E a N a (A(k, a) -c k N a ) 1 Z 0 (a)=k da +4 E a N a 1 Z 0 (a)=k E a [A(k, a) -c k N a ] da +4 E a (A(k, a) -c k N a ) 1 Z 0 (a)=k E a [N a ] da +4 P a (Z 0 (a) = k) E a [N a (A(k, a) -c k N a )] da +12 a (Z 0 (a) = k) E a [N a ] E a [A(k, a) -c k N a ] da +c 2 k E t [N 3 t ].

E a 1 Z

 1 0 (a)=k (A(k, a) -c k N a ) 3 da.Using Lemma B.1 (ii), we have [0,t] W (t) W (a) E a 1 Z 0 (a)=k (A(k, a) -c k N a ) 3 da = O W (t) 2 .Now take the term[0,t] W (t) 2 W (a) 2 E a 1 Z 0 (a)=k N 2 a E a [(A(k, a) -c k N a )] da,we have from Lemma B.1 (i) and (iv),[0,t] W (t) 2 W (a) 2 E a 1 Z 0 (a)=k N 2 a E a [(A(k, a) -c k N a )] da ≤ [0,t] W (t) 2 W (a) 2 E a N 2 a e -(θ-α)a da = O W (t) 2 .

4 W

 4 (a) 4 P a (Z 0 (a) = k) E a [(A(k, a) -c k N a )]

W (t) 4 W 4 =

 44 (a) 4 P a (Z 0 (a) = k) E a [(A(k, a) -c k N a )] 3 da = -96W (t) O W (t) 4 e -2αt = O(W (t) 2 ).The last example is the most technical and relies with the term in W (t)3 , which is, using (B.1) and Lemma A.1,J :=72 [0,t] W (t) 3 W (a) 3 E a 1 Z 0 (a)=k (A(k, a) -c k N a ) E a [(A(k, a) -c k N a )] 2 da + 72 [0,t] W (t) 3 W (a) 3 P a (Z 0 (a) = k) E a (A(k, a) -c k N a ) 2 E a [A(k, a) -N a c k ] da -288 [0,t] W (t) 3 W (a) 3 P a (Z 0 (a) = k) E a [(A(k, a) -c k N a )] 3 da -36c 4 k W (t) 3 .

E 3 [0,t] 1 W 3 W 1 W

 3131 a (A(k, a) -c k N a ) 2 =4 [0,a] W (a) 2 W (s) 2 1 -W (s) W (a) P s (Z 0 (s) = k) E s (A(k, s) -c k N s ) ds + 2 [0,a] W (s) W (a) E s 1 Z 0 (s)=k (A(k, s) -c k N s ) ds + c 2 k W (a) 2 2 -1 W (a).Substituting this last expression in J leads toJ = -144 [0,t] W (t) 3 W (a) 3 E a 1 Z 0 (a)=k (A(k, a) -c k N a ) [a,∞] P s (Z 0 (s) = k) W (s) 2 E s [(A(k, s) -c k N s )] dsda + 144W (t) (a) E a 1 Z 0 (a)=k (A(k, a) -c k N a ) [a,t] 1 W (s) 2 P s (Z 0 (s) = k) E s [A(k, s) -N s c k ] da -(a) P a (Z 0 (a) = k) E a [A(k, a) -N a c k ] da + 144 [0,t] W (t) 3 W (a) 3 P (Z 0 (a) = k) E a [A(k, a) -N a c k ] 3 da -288 [0,t] W (t) 3 W (a) 2 P a (Z 0 (a) = k) (s) P s (Z 0 (s) = k) E s (A(k, s) -c k N s ) dsE a [A(k, a) -N a c k ] da + 72 [0,t] W (t) 3 W (a) P a (Z 0 (a) = k) c 2 k 2 -1 W (a) E a [A(k, a) -N a c k ] da -288 [0,t] W (t) 3 W (a) 3 P a (Z 0 (a) = k) E a [(A(k, a) -c k N a )] 3 da -36c 4 k W (t) 3 .Using many times that, [0,t] θP (Z 0 (a) = k) W (s) 2 E s [(A(k, s) -c k N s )] ds = -[0,t]

ds 2 , 2 [W (t) 3 W 3   c 2 k 2 - 3 W 4  2 [ 3 W

 2233223423 thanks to (2.8),(2.11), and (2.6), we finally getJ = -144 c 2 k -c k (t) (a) 3 E a 1 Z 0 (a)=k (A(k, a) -c k N a ) da + 36W (t) [t,∞] W (t) 3 W (a) 3 E a [A(k, a) -N a c k ] 3 da (a) 3 E a [A(k, a) -N a c k ] 3 da + 144 (c k -c k (t)) (a) E a [A(k, a) -N a c k ] da + 36W (t) 3 (c k -c k (t)) 4 .

  ∈ R + ) j≥1 is an i.i.d. family of random processes with the same law as (N t , t ∈ R + ), 2. ξ is some Poisson random measure with constant rate b, 3. the objects of item 1 and 2 are independent, and independent of O i , 4. ξ a denotes ξ([0, a]). Note that the family (N j t , t ∈ R + ) j≥1 is dependent of the index i of O i as it describe the evolution of the descent of the children of the ith individual at time t.

	where
	1. (N j t , t Remark 4.3.

  Proof. Relation (i) is easily obtained using the expectation of N t and A(k, t) (see Equations(2.11) and (2.13)) and the behavior of W provided by Proposition 2.3. The relation (iii) has been obtained in the proof of Theorem 6.1 in[START_REF] Champagnat | Moments of the frequency spectrum of a splitting tree with neutral poissonian mutations[END_REF]. The two last relations are easily obtained from (2.4), (2.8) and Lemma 2.2. The relation (ii) is obtained using the following estimation,

	).	(v)

  3 da + 24W (t) 4 c 4 k , since N t is geometrically distributed under P t , and thatE t N 4 t = 24W (t) 4 -36W (t) 3 + O(W (t) 2 ). (B.1)On the other hand, using the law of Z 0 (t) given by (2.8) and the expectation of A(k, t) given by (2.11) (under P t ), we have

	96
	[0,t]
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Remark 6.2. In the critical case α = θ, one may recover the result of Lemma 6.1 using u = β(t) = log(t) 2α instead of u = βt. Since the proofs of Theorems 3.1 and 3.6 do not rely on the particular form of u = βt, this approach may be use to extend these theorems to the critical case.

We can now prove a similar lemma for the clonal supercritical case. Lemma 6.3. Assume that θ > α, and define, for all positive integer k, Γ (k) u,t = {"any families in the population at time t older than u has size strictly greater than k"} , then for any β ∈ (0, α-θ 2α-θ ),

Proof. The proof of this lemma follows the same lines as the proof of Lemma 6.1. The main difference lies in the decomposition of formula (6.1) which becomes

First of all, we have for any i,

Hence, using Lemma 2.2, we have

Using the above equation, (6.2) becomes, in this case,

, which goes to 1 as t goes to infinity. The remaining of the proof is the same as in the proof of Lemma 6.1.

We can now prove Theorem 3.6. Since the proofs of the cases α > θ and α < θ are somehow identical, we only detail the case α > θ.

Proof of Theorem 3.6. Fix 0 < u < t. Note that the event Γ u,t of Lemma 6.1 can be rewritten as

Insights for the joint convergence

In this section, we detail the points which require clarification to obtain the joint convergence as stated in Theorems 3.6 and 3.1. In the case of Theorem 3.1, this means the joint convergence of

as t goes to infinity. To this end, rather than considering the characteristic function

as in Section 6 (we also recall that L (K) t and Γ u,t are respectively defined in Equation (6.5) and Lemma 6.1), we consider

with, this time,

.

and, for all l and i ≥ 1,

,

where we refers the reader to Section 4 for the definition of N t-u (O i ). Equation (7.1) can be rewritten, following the proof of Theorem 3.6, as

) with, this time,