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We consider the stability of a system of two wave equations with only one boundary feedback and we show that the stability of the partially damped system depends on the transmission of energy between the two equations. The study confirms that the hidden regularity is an essential ingredient for the stability property. In particular, using a sharp regularity for Neumann problem of wave equation, we improve the usual results on the energy decay rate. This new approach can certainly be applied to other situations of partially damped systems.

Résumé

Nous considérons la stabilité d'un système de deux équations des ondes avec un seul amotiseur à la frontière. Nous montrons que la stabilité du système dépend de la transmission de l'énergie entre les deux équations et que la régularité cachée est un ingrédient essentiel pour le taux de décroissance de l'énergie. En particulier, en utilisant la régularité optimale du problème de Neumann de l'équation des ondes, nous améliorons les résultats sur le taux de décroissance de l'énergie. Cette nouvelle approche peut être appliquée à d'autres systèmes partiellement amortis.

Introduction

In an earlier work [START_REF] Rao | On the sensitivity of the transmission of boundary dissipation for strongly coupled and indirectly damped systems of wave equations[END_REF], we have explained that the transmission of energy plays an important role in the stability of partially damped systems. In the present work, we will further show how the hidden regularity of the undamped equation influences the stability of the systems. More precisely, we will investigate the following two systems:

               u tt -∆u + by t = 0
in Ω × R + , y tt -∆y -bu t = 0 in Ω × R + , u = y = 0 on Γ 0 × R + , y = 0, ∂ ν u + u t = 0 on Γ 1 × R + , u(x, 0) = u 0 (x), u t (x, 0) = v 0 (x) in Ω, y(x, 0) = y 0 (x), y t (x, 0) = z 0 (x) in Ω (1.1) and

               u tt -∆u + by t = 0 in Ω × R + , y tt -∆y -bu t = 0 in Ω × R + , u = y = 0 on Γ 0 × R + , ∂ ν y = 0, ∂ ν u + u t = 0
on Γ 1 × R + , u(x, 0) = u 0 (x), u t (x, 0) = v 0 (x) in Ω, y(x, 0) = y 0 (x), y t (x, 0) = z 0 (x) in Ω, (1.2) where Ω ⊂ R N is a bounded domain with smooth boundary Γ = Γ 1 ∪ Γ 0 such that Γ 1 ∩ Γ 0 = ∅ and b ∈ L ∞ (Ω) is a positive function.

We will show that the energy of the system (1.1) decays uniformly exponentially to zero, but the energy of the system (1.2) only has a polynomial decay rate.

We observe that for both systems, the equations are coupled by means of the same viscous damping terms u t , y t , and only the equation on u is subject to a feedback damping ∂ ν u = -u t at the boundary Γ 1 , while the equation on y either has the homogeneous Dirichlet boundary condition for the system (1.1), or the homogeneous Neumann boundary condition on Γ 1 for the system (1.2). Intuitively, the equations on u are directly damped by a boundary feedback damping ∂ ν u = -u t , while the equations on y are indirectly damped through the viscous coupling terms u t , y t .

As shown in [START_REF] Rao | On the sensitivity of the transmission of boundary dissipation for strongly coupled and indirectly damped systems of wave equations[END_REF], the asymptotic behavior of the whole system depends on the effectiveness of the transmission of the boundary dissipation. For example, the kinetic energy should be equitably balanced within the two equations such that

T 0 Ω b|y t | 2 dxdt ∼ T 0 Ω b|u t | 2 dxdt. (1.
3)

The relation of transmission of energy (1.3) is indeed a key ingredient in the stability property. We therefore have the intuition that this relation is probably sufficient for the uniform exponential stability of partially damped systems even in the general case.

We will now examine the connections between the relation of transmission of energy and the trace regularity of the solution to the undamped equation. Let (u, y) be a smooth solution to the system (1.1) or (1.2). We define the corresponding energy by

E(t) = 1 2 Ω (|∇u| 2 + |u t | 2 + |∇y| 2 + |y t | 2 )dx. (1.4)
Then a straightforward computation shows that

d dt E(t) = - Γ1 |u t | 2 dΓ, (1.5) 
which gives the boundary dissipation:

+∞ 0 Γ1 |u t | 2 dΓdt = +∞ 0 Γ1
|∂ ν u| 2 dΓdt E(0). (1.6) Next, multiplying the first equation by y t , the second one by u t respectively, and integrating by parts, we get

T 0 Ω b|y t | 2 dxdt ∼ T 0 Ω b|u t | 2 dxdt - T 0 Γ1
(∂ ν uy t + ∂ ν yu t )dΓdt, (1.7) hereafter the symbol ∼ means that the difference between the two sides is a quantity of order O(E(0)).

For the system (1.2), the boundary condition ∂ ν y = 0 on Γ 1 yields

T 0 Ω b|y t | 2 dxdt ∼ T 0 Ω b|u t | 2 dxdt - T 0 Γ1
∂ ν uy t dΓdt.

(1.8)

Noting that y satisfies a wave equation with the homogeneous Neumann boundary condition on Γ 1 . Since there is no hidden regularity for the trace y t | Γ1 , we have to use a stronger norm D(A l ) with l > 0 to bind the boundary integral in (1.8). Then the obtained relation of transmission of energy will lose its uniform character, and the system (1.2) will not be uniformly exponentially stable. Usually, we would use the trace theorem in Sobolev spaces and could get a weakened decay rate as E(t) ∼ 1 t 2 . In this work, we will use Lasiecka and Triggiani's sharp trace regularity on the wave equation with Neumann boundary condition (see [START_REF] Lasiecka | Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions II. General Boundary Data[END_REF]) and improve the previous result as follows

Theorem 1.1. Assume that Ω satisfies the geometrical multiplier condition. Let b ∈ W 1,∞ (Ω) such that R b ∞ < 1 and b b 0 > 0,
where R and b 0 are positive constants. There exist some constants ω > 0 and M 1 independent of the initial data U 0 such that the energy E(t) of system (1.2) satisfies the following decay rate for all t > 0:

E(t)              M t 15 7 U 0 2 D(A) , Ω is a smooth bounded domain, M t 9 4 U 0 2 D(A) , Ω is a sphere, M t 12 5 -U 0 2 D(A)
, Ω is a parallelepiped, > 0 is small.

(1.9)

Therefore, we have a gain of 1 7 , 1 4 and 2 5 respectively over the previous decay rate E(t) ∼ 1 t 2 . Moreover, the approach can certainly be applied to other situations of partially damped systems.

For the system (1.1), the boundary condition y = 0 on Γ 1 yields

T 0 Ω b|y t | 2 dxdt ∼ T 0 Ω b|u t | 2 dxdt - T 0 Γ1 ∂ ν yu t dΓdt. (1.10) 
But this time, y satisfies a wave equation with the homogeneous Dirichlet boundary condition, so it has the following well-known hidden regularity:

T 0 Γ1 |∂ ν y| 2 dΓdt CE(0), (1.11) 
which together with the boundary dissipation (1.6) yields the relation of transmission of energy (1.3). Based on this property, we show that the system (1.1) is uniformly exponentially stable.

Theorem 1.2. Assume that Ω satisfies the geometrical multiplier condition.

Let b ∈ W 1,∞ (Ω) such that R b ∞ < 1 and b b 0 > 0,
where R and b 0 are positive constants. There exist some constants ω > 0 and M 1 independent of the initial data such that the energy E(t) of system (1.1) satisfies the following estimation :

E(t) M E(0)e -ωt , ∀t 0.
(1.12)

Besides the energy estimation, the strong stability is another important aspect for partially damped systems. Generally speaking, this question is related to the uniqueness of the eigensystem. More precisely, let

-∆φ n = µ 2 n φ n in Ω, φ n = 0 on Γ. (1.13) Define Λ = {(m, n) : µ m = µ n , ∂ ν φ m = ∂ ν φ n on Γ 1 }. (1.14)
Theorem 1.3. If the set Λ = ∅, then for any b ∈ R, the system (1.1) is strongly stable. Otherwise, the system (1.1) is not strongly stable if and only if b is given by

b 2 = (µ 2 n -µ 2 m ) 2 2(µ 2 n + µ 2 m ) (1.15) for some (m, n) ∈ Λ.
This is not a standard problem of Carleman's unique continuation. In fact, the set Λ is empty for a square domain, but it is not the case for a ball. This makes us wonder if the only Lipschitz domain of R n such that Λ = ∅ is a ball of R n ? We know less on the topic which is probably linked to the renowned Schiffer's conjecture [START_REF] Williams | A partial solution to the Pompeiu problem[END_REF]. It seems that there are many questions to discover in the area.

The notion of indirect stabilization was introduced by Russell [START_REF] Russell | A general framework for the study of indirect damping mechanisms in elastic systems[END_REF] in the early 1990's. It is referred to if the dissipation induced by one of the equation can be sufficiently transmitted to the other one in order to determine the stability of the overall system. It is well known that the lack of uniform exponential stability of a single equation can be caused by the lack of geometric control condition and the location of the damped domain (see [START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF], [START_REF] Lebeau | Équation des ondes amorties[END_REF], [START_REF] Liu | A note on the polynomial stability of a weakly damped elastic abstract system[END_REF], [START_REF] Ren | Almost global existence for the Neumann problem of quasilinear wave equations outside star-shaped domains in 3D, Electron[END_REF], [START_REF] Liu | Well-posedness for the hyperviscous magneto-micropolar equations[END_REF], [START_REF] Zheng | Orbital stability of periodic traveling wave solutions to the generalized long-short wave equations[END_REF] and the references therein). We refer to [START_REF] Li | Uniform stability of the solution for a memory-type elasticity system with nonhomogeneous boundary control condition[END_REF], [START_REF] Li | General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback[END_REF] and [START_REF] Li | Dynamic properties for nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions II[END_REF] for the recent progress on the decay rate of various viscoelastic systems.

As shown in [START_REF] Rao | On the sensitivity of the transmission of boundary dissipation for strongly coupled and indirectly damped systems of wave equations[END_REF], the matter is more complicated for partially damped systems. The effectiveness of the indirect damping depends in a very complex way on all of the involved factors such as the nature of the coupling (compact, continuous or unbounded), the order of boundary dissipation (viscous, dynamical, delayed or memory), the hidden regularity, the accordance of boundary conditions and many others.

We will now comment the literature on the topic. For the coupled hyperbolic-parabolic systems such as thermo-elastic and thermo-magnetic equations, the internal dissipation provided by the heat equation can be used to attenuate the vibration of the undamped structural equations, so that the coupled system is exponentially or polynomially stable. There is an abundant literature on the subject, of which we can only quote a few here [START_REF] Ammar-Khodja | Dynamic stabilization of systems via decoupling techniques[END_REF], [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF], [START_REF] Hao | Stability of an abstract system of coupled hyperbolic and parabolic equations[END_REF], [START_REF] Lebeau | Decay rates for the three-dimensional linear system of thermoelasticity[END_REF], [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF], [START_REF] Liu | Frequency domain approach for the polynomial stability of a system of partially damped wave equation[END_REF], [START_REF] Liu | Energy decay rate of the thermoelastic Bresse system[END_REF], [START_REF] Muñoz Rivera | Large solutions and smoothing properties for nonlinear thermoelastic systems[END_REF], [START_REF] Rauch | Polynomial decay for a hyperbolic-parabolic coupled system[END_REF] and the references therein. Moreover, following the order of coupling, the resulting hyperbolic-parabolic systems can be analytic, differentiable or Gevrey class. We quote [START_REF] Denk | L p -resolvent estimates and time decay for generalized thermoelastic plate equations[END_REF], [START_REF] Hao | Regularity analysis for an abstract system of coupled hyperbolic and parabolic equations[END_REF] and [START_REF] Muñoz Rivera | Large solutions and smoothing properties for nonlinear thermoelastic systems[END_REF] for the regularity analysis.

For the coupled systems of two wave equations, using the classic multiplier methods, the polynomial decay rate was established for one boundary feedback in [START_REF] Alabau-Boussouira | Indirect stabilization of locally coupled wave-type systems[END_REF] (and the references therein).

In 2005, based on the growth of the resolvent on the imaginary axis, Liu and Rao [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF] obtained a sufficient condition for the polynomial stability. This is the foundation of the frequency domain approach. Later, Borichev and Tomilov [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] showed that the characterization conditions in [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF] are not only sufficient but also necessary for the polynomial stability. The frequency domain approach, which takes into account the regularity of the space variable, gives a better, and often optimal decay rate (see [START_REF] Liu | Frequency domain approach for the polynomial stability of a system of partially damped wave equation[END_REF]).

This paper is organized as follows. Section 2 studies the semigroup setting and the strong stability of the considered systems. Several strong stability results will be established in different frameworks. In section 3, we study the specteral characters of the coupled systems. This will complete the study of stability in the previous section. Section 4 is devoted to the polynomial energy rate for Neumann problem (1.2). In Sections 5 and 6, we establish the uniform exponential stability for the system (1.2) in the one dimensional case and for the system (1.1) in the general case respectively. Finally, some comments and prospects for further developments are given in Section 7.

Semigroup setting and strong stability

We first consider the Dirichlet problem (1.1). Let the energy space H be defined by

H = H 1 Γ0 (Ω) × L 2 (Ω) × H 1 0 (Ω) × L 2 (Ω)
endowed with the usual inner product of Sobolev space

( U , U ) H = Ω ∇ũ • ∇ūdx + Ω ṽvdx + Ω ∇ỹ • ∇ȳdx + Ω z zdx
for U = (ũ, ṽ, ỹ, z) and U = (u, v, y, z) ∈ H.

Next we define a linear unbounded operator A by

AU = (v, ∆u -bz, z, ∆y + bv), U = (u, v, y, z) ∈ D(A),
with the domain of definition:

D(A) =    U = (u, v, y, z) such that u ∈ H 2 (Ω) ∩ H 1 Γ0 (Ω), y ∈ H 2 (Ω) ∩ H 1 0 (Ω) v ∈ H 1 Γ0 (Ω), z ∈ H 1 0 (Ω), ∂ ν u + v = 0 on Γ 1    .
Then by setting U = (u, v, y, z) as the state variable, v = u t , z = y t and U 0 = (u 0 , v 0 , y 0 , z 0 ) as the initial data, we rewrite the problem (1.1) into the following abstract form:

U t = AU, U (0) = U 0 .
In the case where b = 0, the system (1.1) is decoupled, so A generates a C 0 -semigroup of contractions. In the case where b ∈ L ∞ (Ω), A can be regarded as a continuous perturbation of the infinitesimal operator of a C 0 -semigroup of contractions, and therefore generates a C 0 -semigroup S(t) in the energy space H (see Theorem 3.1.1. in [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]). Furthermore, since

Re(AU, U ) H = - Γ1 |v| 2 dΓ 0, ( 2.1) 
the C 0 -semigroup S(t) is in fact a contraction in the energy space H. Moreover, we can show that the resolvent of A is compact in H.

Before starting the study on the stability, we recall the following frequently used Rellich's identity

     Re Ω 2∆um • ∇udx = (N -2) Ω |∇u| 2 dx -Re Γ (m • ν)|∇u| 2 -2∂ ν um • ∇u dΓ (2.2)
for all u ∈ H 2 (Ω), and Green's formula

Re Ω 2um • ∇udx = -N Ω |u| 2 dx + Γ (m • ν)|u| 2 dΓ (2.3)
for all u ∈ H 1 (Ω).

Theorem 2.1. Assume that there exists an x 0 ∈ R N such that setting m = x -x 0 , we have

(m • ν) 0, ∀x ∈ Γ 0 . (2.4)
Assume furthermore that b ∈ L ∞ (Ω) and that there exists a positive constant b 0 such that b b 0 in Ω and R b ∞ < 1. Then A has no pure imaginary eigenvalue. Consequently, the system (1.1) is strongly stable in H.

Proof. Let U 0 = (φ, iλφ, ψ, iλψ) such that AU 0 = iλU 0 . (2.5)
Noting the boundary dissipation (2.1), we have

- Γ1 |λφ| 2 dΓ = Re(iλ U 0 2 H ) = 0. (2.6) Since λ = 0, it follows that ∂ ν φ = φ = 0 on Γ 1 . (2.7) 
Then we can write (2.5) as

       λ 2 φ + ∆φ -iλbψ = 0 in Ω, λ 2 ψ + ∆ψ + iλbφ = 0 in Ω, φ = ψ = 0 on Γ, ∂ ν φ = 0 on Γ 1 . (2.8) 
Multiplying the first equation of (2.8) by ψ, respectively, the second one by φ, then adding them up, and integrating by parts, we get

Ω bφ 2 dx = Ω bψ 2 dx.
(2.9)

Next, multiplying the first equation of (2.8) by 2m • ∇φ + (N -1)φ, then using Rellich's identity (2.2) and Green's formula (2.3), we have

     Ω |∇φ| 2 dx + λ 2 Ω |φ| 2 dx - Γ0 (m • ν)|∂ ν φ| 2 dΓ = Re -iλ Ω bψ 2m • ∇φ + (N -1)φ dx . (2.10) A straightforward computation gives                      Ω |2m • ∇φ + (N -1)φ| 2 dx 4R 2 Ω |∇φ| 2 + (N -1) 2 |φ| 2 + 4(N -1)φ(m • ∇φ)dx = 4R 2 Ω |∇φ| 2 dx + (1 -N 2 ) Ω |φ| 2 dx 4R 2 Ω |∇φ| 2 dx.
(2.11) Then using Cauchy-Schwartz inequality and (2.9), we get

                     -iλ Ω bψ 2m • ∇φ + (N -1)φ dx 2R b 1/2 ∞ |λ| Ω b|ψ| 2 dx 1/2 Ω |∇φ| 2 dx 1/2 R 2 b ∞ λ 2 Ω b|φ| 2 dx + Ω |∇φ| 2 dx R 2 b 2 ∞ λ 2 Ω |φ| 2 dx + Ω |∇φ| 2 dx.
(2.12)

Combining (2.10) and (2.12), it follows that

Ω |φ| 2 dx R 2 b 2 ∞ Ω |φ| 2 dx. (2.13) It follows that φ = 0, then U 0 = 0 provided that R b ∞ < 1.
Since A -1 is compact in H, following the theory of spectral decomposition (see [START_REF] Benchimol | A note on weak stabilization of contraction semi-groups[END_REF]), the semigroup of contractions S(t) is strongly stable in H. The proof is then complete.

When the infinitesimal operator A possesses some pure imaginary eigenvalues, we project A on an appropriate invariant subspace and then consider the stability of the reduced system. More precisely, let

H u = Span λ∈R Ker(A -iλI) (2.14) 
and decompose the state space H as

H = H u ⊕ H ⊥ u . (2.15) 
We have the following Theorem 2.2. The subspaces H u and H ⊥ u are invariant for A. The restriction of S(t) to H u is conservative and the restriction of S(t) to H ⊥ u is strongly stable. In particular, if H u = {0}, the semigroup S(t) is strongly stable in the whole space H.

Proof. Let U 0 = (φ, iλφ, ψ, iλψ) such that AU 0 = iλU 0 . Noting the boundary condition (2.7), it is easy to check that U 0 is also an eigenvector of A * :

A * U 0 = -iλU 0 .
(2.16)

Let U = (u, v, y, z) ∈ D(A) ∩ H ⊥ u . Then (AU, U 0 ) H = (U, A * U 0 ) H = (U, -iλU 0 ) H = iλ(U, U 0 ) H = 0. (2.17) So, H ⊥ u is an invariant subspace for A. Noting that S * (t)U 0 = e -iλt U 0 , we have (S(t)U, U 0 ) H = (U, S * (t)U 0 ) H = e -iλt (U, U 0 ) H = 0. (2.18)
So, H ⊥ u is an invariant subspace for S(t). Since H ⊥ u is closed, it is A-admissible. We denote by S 0 (t) the restriction of S(t) to H ⊥ u , and by A 0 the restriction of A to H ⊥ u . Then A 0 is the infinitesimal operator of S 0 (t) (see Theorem 4.5.5 in [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]). Since the resolvent of A is compact in H, so is the resolvent of A 0 in H ⊥ u . Moreover, A 0 has no pure imaginary eigenvalues, so iR ⊂ ρ(A 0 ). Then following the theory of spectral decomposition (see [START_REF] Benchimol | A note on weak stabilization of contraction semi-groups[END_REF]), S 0 (t) is strongly stable in

H ⊥ u . If H u = {0}, we have H = H ⊥ u .
Then we get the strong stability of S(t) in the whole space H. The proof is complete.

Now, we briefly outline the considerations for the Neumann problem (1.2). Let

H b = H 1 Γ0 (Ω) × L 2 (Ω) × H 1 Γ0 (Ω) × L 2 (Ω). (2.19)
We define the linear unbounded operator A b by

A b U = (v, ∆u -bz, z, ∆y + bv)
with the domain of definition:

D(A b ) =    U = (u, v, y, z) ∈ H b such that u, y ∈ H 2 (Ω) ∩ H 1 Γ0 (Ω), v, z ∈ H 1 Γ0 (Ω) ∂ ν y = 0 and ∂ ν u + v = 0 on Γ 1    .
Also, we have the dissipation expression:

Re(A b U, U ) H = - Γ1 |v| 2 dΓ 0.
(2.20)

By the same argument as for the system (1.1), A b generates a C 0 -semigroup S b (t) of contractions in the energy space H b . Moreover, the resolvent of A b is also compact in H. Accordingly, we have the following Theorem 2.3. Under the same assumptions as those in Theorem 2.1, the operator A b has no pure imaginary eigenvalues. Consequently, the system (1.2) is strongly stable in H b .

Analysis on the spectral characters

In order to clarify the relationship between the spectrum and the coefficient b, we now consider the case where b is a constant. We carry the study on the system (1.1). Of course, the same considerations also apply for the system (1.2).

Inserting the new variables

Φ = iψ + φ, Ψ = iψ -φ into (2.8), we get    -∆Φ = (λ 2 -bλ)Φ in Ω, -∆Ψ = (λ 2 + bλ)Ψ in Ω, Φ = Ψ = 0 on Γ. (3.1)
we claim that Φ ≡ 0. Otherwise, we have ψ = -iφ. Then the problem (3.1) is reduced to

   -∆φ = (λ 2 -λb)φ in Ω, φ = 0 on Γ, ∂ ν φ = 0 on Γ 1 . (3.2)
Then Carleman's uniqueness theorem implies that φ ≡ 0 (see [START_REF] Garofalo | Unique continuation for elliptic operators: a geometric-variational approach[END_REF]). We thus get a contradiction. The same argument shows that Ψ ≡ 0. Let µ 2 n be an eigenvalue of -∆ in H 1 0 (Ω) associated with the eigenfunction φ n ,

-∆φ n = µ 2 n φ n in Ω, φ n = 0 on Γ. (3.3)
Since Φ ≡ 0 and Ψ ≡ 0, there exist positive integers m, n such that

Φ = φ m , Ψ = φ n and λ 2 -bλ = µ 2 m , λ 2 + bλ = µ 2 n . It follows that λ 2 = µ 2 n + µ 2 m 2 (3.4) and b 2 = (µ 2 n -µ 2 m ) 2 2(µ 2 n + µ 2 m ) . (3.5)
Moreover, the boundary condition ∂ ν u = 0 can be rewritten as

∂ ν φ m = ∂ ν φ n on Γ 1 . (3.6) Let Λ = (m, n) : µ m = µ n , ∂ ν φ m = ∂ ν φ n on Γ 1 . (3.7)
Summing the above consideration, we get the following Proposition 3.1. If the set Λ = ∅, then for any b ∈ R, the operator A has no pure imaginary eigenvalues, therefore the system (1.1) is strongly stable. Otherwise, the operator A has pure imaginary eigenvalues, if and only if b is given by (3.5) for some (m, n) ∈ Λ.

In particular, except for a countable set of values of b, the system (1.1) is strongly stable. We are interested in the condition under which Λ is an empty set. Let us examine some specific situations.

I. Let Ω =]0, π[ × ]0, π[, Γ 1 = {0} × [0, π] ∪ [0, π] × {0} . We will show that Λ = ∅ in this case.
By computation, we have

µ 2 n = k 2 + l 2 , φ n = c sin kx sin ly; µ 2 m = p 2 + q 2 , φ m = d sin px sin qy.
The condition (3.6) implies that kc sin ly = pd sin qy, lc sin kx = qd sin px, 0 x π.

Since c = 0, d = 0, it follows that l = q, k = p.
We thus get Λ = ∅. So A has no pure imaginary eigenvalues for any constant b = 0.

II. We next show that Λ = ∅ in the case that Ω = B(0, 1) is the unit ball of R 2 . In this case, the eigenfunctions are given by (see [START_REF] Courant | Methods of mathematical physics[END_REF])

φ k,l,n = J k (γ k,l r) J k (γ k,l ) (A cos(nθ) + B sin(nθ)),
where J k is the Bessel function of order k, and γ k,l is the l-th zero with J k (γ k,l ) = 0 (see [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF]).

Then the eigenvalues are given by µ k,l = γ k,l .

Clearly

∂ ν (φ k,l,n -φ p,q,n ) = J k (γ k,l ) J k (γ k,l ) - J k (γ p,q ) J k (γ p,q ) (A cos(nθ) + B sin(nθ)) = 0. So, Λ = {(k, l) = (p, q)}. If b is chosen by b 2 = (γ 2 k,l -γ 2 p,q ) 2 2(γ 2 k,l + γ 2 p,q )
, then by (3.4), the pure imaginary numbers

±i γ 2 k,l + γ 2 p,q 2 
are eigenvalues of the operator A.

Example I reveals that Λ is an empty set for a square domain, but Example II shows the opposite as Ω is a ball. Inspired by Schiffer's conjecture [START_REF] Williams | A partial solution to the Pompeiu problem[END_REF], we raise the question if the only Lipschitz domain of R n such that the laplacian -∆ possesses two linearly independent eigenfunctions with the homogeneous Dirichlet condition and the same normal derivative on the boundary Γ is actually a ball of R n ? The question is largely open. However, following a recent result of Y. Privat, E. Trélat and E. Zuazua [START_REF] Privat | Spectral shape optimization for the Neumann traces of the Dirichlet-Laplacian eigenfunctions[END_REF], for almost all domain Ω with analytic boundary Γ, the normal derivatives ∂ ν φ n of eigenfunctions of Dirichlet problem (3.3) are linearly independent. Thus, 'in most of the cases", Λ = ∅ and the system (1.1) is strongly stable. Unfortunately, we are unable to check if a given domain Ω possesses or not this property.

The following result gives a first description of the set Λ. Proof. Let (m, n) ∈ Λ. Then we have

-2∆(φ n -φ m ) = (µ 2 n + µ 2 m )(φ n -φ m ) + (µ 2 n -µ 2 m )(φ n + φ m ) (3.9)
with the boundary conditions

φ n = φ m = 0 on Γ; ∂ ν (φ n -φ m ) = 0 on Γ 1 .
Multiplying (3.9) by 2m • ∇(φ n -φ m ) + (N -1)(φ n -φ m ) and using Rellich's identity (2.2) and Green's formula (2.3), we get

             2 Ω |∇(φ n -φ m )| 2 dx + (µ 2 n + µ 2 m ) Ω |φ n -φ m | 2 dx = 2 Γ0 (m • ν)|∂ ν (φ n -φ m )| 2 dΓ +(µ 2 n -µ 2 m ) Ω (φ n + φ m ) 2m • ∇(φ n -φ m ) + (N -1)(φ n -φ m ) dx.
(3.10)

On the other hand, a straightforward computation gives that

Ω |2m • ∇(φ n -φ m ) + (N -1)(φ n -φ m )| 2 dx 4R 2 Ω |∇(φ n -φ m )| 2 dx.
Then using Cauchy-Schwartz inequality, we get

                     (µ 2 n -µ 2 m ) Ω (φ n + φ m ) 2m • ∇(φ n -φ m ) + (N -1)(φ n -φ m ) dx 2R|µ 2 n -µ 2 m | Ω |φ n + φ m | 2 dx 1/2 Ω |∇(φ n -φ m )| 2 dx 1/2 R 2 2 (µ 2 n -µ 2 m ) 2 Ω |φ n + φ m | 2 dx + 2 Ω |∇(φ n -φ m )| 2 dx = R 2 2 (µ 2 n -µ 2 m ) 2 Ω |φ n -φ m | 2 dx + 2 Ω |∇(φ n -φ m )| 2 dx, (3.11) 
where the last equality is due to the orthogonality of φ m and φ n in L 2 (Ω). Finally, noting the geometric condition on Γ 0 and inserting (3.11) into (3.10), we obtain

R 2 (µ 2 n -µ 2 m ) 2 2(µ 2 n + µ 2 m ), (3.12) 
namely

R 2 (µ n -µ m ) 2 2(µ 2 n + µ 2 m ) (µ n + µ m ) 2 10 9
, ∀µ n , µ m > 0.

(3.13)

The proof is thus complete. Now let us examine the equation (3.3) with Ω =]0, π[ and Γ 1 = {0, π}. We will show that A has at most a finite number of pure eigenvalues.

By a straightforward computation, we have

µ n = n, φ n = 1 n sin(nx).
Clearly,

φ n (0) = φ m (0), φ n (π) = φ m (π), ∀m -n = 2k, k ∈ N.
Then, Λ = {(m; n) : ∀m -n = 2k, k ∈ N}.

So, A has pure imaginary eigenvalues if and only if

b 2 = (m 2 -n 2 ) 2 2(m 2 + n 2 )
for some pair (m, n) with the same parity. Define the application

f (m, n) = (m 2 -n 2 ) 2 2(m 2 + n 2 ) , (m, n) ∈ N 2 . Let b = f (m, n) for some given pair (m, n) ∈ Λ. Then ±i m 2 + n 2 2
are pure imaginary eigenvalues of A associated with the eigenfunction:

u = 1 2m sin(mx) - 1 2n sin(nx), y = ∓ i 2m sin(mx) ∓ i 2n sin(nx).
Numerical simulations show that there exist many pairs (m, n) and (p, q) such that f (m, n) = f (p, q), for example, 

(m 2 -n 2 ) 2 2(m 2 + n 2 ) = a 2 c 2 . (3.14) Let γ 2 = gcd{(m 2 -n 2 ) 2 , 2(m 2 + n 2 )} such that (m 2 -n 2 ) 2 = γ 2 a 2 , 2(m 2 + n 2 ) = γ 2 c 2 .
Since 2 is a prime number, by Euclid's Lemma, it divides either γ or c. We claim that 2 divides γ.

Otherwise, we have c = 2ĉ. It follows that We would like to thank sincerely Professor Guoniu Han for very valuable discussions on Proposition 3.3. Moreover, the numerical simulation that he made suggests that this property remains true for any b ∈ R.

(m 2 -n 2 ) 2 = γ 2 a 2 , (m 2 + n 2 ) = 2γ 2 ĉ2 . Then m 2 = γa/2 + γ 2 c 2 .

Polynomial stability for Neumann problem

In this section, we will establish the polynomial decay rate for system (1.2). Let us consider the wave equation with Neumann boundary condition:

     φ tt -∆φ = η in Ω × (0, T ) = Q, ∂ ν φ = 0 on Γ × (0, T ) = Σ, φ(0) = φ 0 , φ t (0) = φ 1 in Ω. (4.1)
As we have already pointed out in the introduction, except in the one-dimensional case (see Lemma 5.1), the following trace regularity

T 0 Γ |φ t | 2 dΓdt C φ 0 2 H 1 (Ω) + φ 1 2 L 2 (Ω) + η 2 L 2 (0,T ;L 2 (Ω) (4.2)
does not hold true for all weak solutions of the equation (4.1). In order to overcome this difficulty and to improve the polynomial decay rate of energy, we will involve Lasiecka and Triggiani's sharp trace regularity on the wave equation with Neumann boundary condition.

Define α as follows,

     α = 3/5, Ω is a smooth bounded domain, α = 2/3, Ω is a sphere, α = 3/4 -, Ω is a parallelepiped, > 0 is small. (4.3)
The following result can be found in Lasiecka and Triggiani [START_REF] Lasiecka | Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions II. General Boundary Data[END_REF]. Then there exists a constant C(Ω) > 0 depending only on Ω such that

Γ |β α y| 2 dΓ C y 2 H 1 (Ω) + βy 2 L 2 (Ω) + f 2 L 2 (Ω) . (4.6) 
Proof. Let φ = e iβt y. Then φ is solution to problem (4.1) with φ(0) = y, φ t (0) = iβy, η = e iβt f.

By Lemma 4.1 we have

φ 2 H α (Σ) C y 2 H 1 (Ω) + βy 2 L 2 (Ω) + f 2 L 2 (Ω) , (4.7) 
where C is some positive constant. Noting that

φ 2 H α (Σ) = φ 2 H α (0,T ;L 2 (Γ)) + φ 2 L 2 (0,T ;H α (Γ)) and φ 2 H α (0,T ;L 2 (Γ)) = e(t) 2 H α (0,T ) y 2 L 2 (Γ)
with e(t) = e iβt , it follows that

e(t) 2 H α (0,T ) y 2 L 2 (Γ) C y 2 H 1 (Ω) + βy 2 L 2 (Ω) + f 2 L 2 (Ω) . (4.8) 
We next show that e(t) 2

H α (0,T ) = cβ 2α , (4.9) 
which together with (4.8) imply (4.6).

In fact, by definition (see Adams [START_REF] Adams | Sobolev Spaces[END_REF]), we have

e(t) 2 
H α (0,T ) = T 0 T 0 |e iβt -e iβs | 2 |t -s| 1+2α dsdt = T 0 T 0 |e iβ(t-s) -1| 2 |t -s| 1+2α dsdt = 4 T 0 t+T t sin 2 (βσ/2) σ 1+2α dσdt = 4β 2α T 0 β(t+T ) βt sin 2 (σ/2) σ 1+2α dσdt.
Since 0 < α < 1, we have

T 0 β(t+T ) βt sin 2 (σ/2) σ 1+2α dσdt T 0 +∞ 0 sin 2 (σ/2) σ 1+2α dσdt < +∞.
On the other hand, noting that for β 1, we have

[0, T ] × [βt, β(t + T )] ⊃ [0, T ] × [t, T ],
then, it follows that

T 0 β(t+T ) βt sin 2 (σ/2) σ 1+2α dt T 0 T t sin 2 (σ/2) σ 1+2α dt.
The last integral converges in the neighborhood of σ ∼ 0 because α < 1. We thus get (4.9). The proof is complete. Theorem 4.4. Assume that there exists x 0 ∈ R N such that by setting m = x -x 0 , there exists a positive constant δ such that we have

(m • ν) δ, x ∈ Γ 1 ; (m • ν) 0, x ∈ Γ 0 . (4.10) Let b ∈ W 1,∞ (Ω) such that R b ∞ < 1 and b b 0
, where R = m ∞ and b 0 > 0 are positive constants. Then there exists a constant M 1 independent of the initial data U 0 such that the energy E(t) of system (1.2) satisfies the following decay rate for all t > 0:

E(t)              M t 15 7 U 0 2 D(A) ,
Ω is a smooth bounded domain,

M t 9 4 U 0 2 D(A) , Ω is a sphere, M t 12 5 -U 0 2 D(A)
, Ω is a parallelepiped, > 0 is small.

(4.11)
Proof. The proof is based on the following characterization on the polynomial stability of a C 0 -semigroup of contractions by the growth of the resolvent of the infinitesimal operator on the imaginary axis (see [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF] and [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF]):

S(t)U 0 H M t 1 l U 0 D(A) , t > 0 (4.12) if and only if    iR ⊆ ρ(A), sup |β|≥1 1 β l (iβI -A) -1 H < +∞, l > 0. (4.13)
By Theorem 2.3, A -1 is compact and has no pure imaginary eigenvalues. By Fredholm's alternative, (iβA -1 -I) is an isomorphism in H, then the relation (iβI

-A) -1 = A -1 (iβA -1 -I) -1
shows that iβ ∈ ρ(A) with compact resolvent. Then the first condition of (4.13) is true.

We suppose, by contradiction, that the second condition is false. Then there exists a sequence We will show that U n H = o(1). This contradiction allows us to conclude the proof, which will divide into several steps. Denoting by U n = (u n , v n , y n , z n ), we write down (4.15) into the following form

{β n } ∈ R and a sequence {U n } ∈ D(A) such that U n H = 1, n 1 (4.
       β l n (iβ n u n -v n ) = f n → 0 in H 1 Γ0 (Ω), β l n (iβ n v n -∆u n + bz n ) = g n → 0 in L 2 (Ω), β l n (iβ n y -z n ) = p n → 0 in H 1 Γ0 (Ω), β l n (iβ n z n -∆y n -bv n ) = q n → 0 in L 2 (Ω). (4.16)
For the convenience of notation, we will omit the index n in the following. Then, eliminating the unknown v, z in (4.16), we get

β 2 u + ∆u = iβby -iβ 1-l f - 1 β l (bp + g), ( 4 
.17) 

β 2 y + ∆y = -iβbu -iβ 1-l p + 1 β l (bf -q). ( 4 
β l (iβ U 2 H b -(AU, U ) H b ) = β l (iβ U 2 H b - Γ1 |v| 2 dΓ) = o(1), (4.21) 
the real part of which gives

β l Γ1 |v| 2 dΓ = o(1). (4.22)
Then using the boundary condition

∂ ν u + v = 0 on Γ 1 and v = iβu + f β l in H 1 Γ0
(Ω), we get the boundary dissipations

∂ ν u L 2 (Γ1) = o(1) β l/2 and u L 2 (Γ1) = o(1) β 1+l/2 . (4.23)
(ii) Next we establish some equivalences between kinetic energy and elastic energy:

Ω b|βy| 2 dx = Ω b|∇y| 2 + o(1) β l , (4.24 
)

Ω |βu| 2 dx = Ω |∇u| 2 + o(1) β l . (4.25)
Noting the boundary condition y = 0 on Γ 0 and ∂ ν y = 0 on Γ 1 , then multiplying (4.18) by by and integrating by parts, we obtain (iii) The main difficulty lies in the proof of the following relation of transmission of energy:

     Ω b|βy| 2 dx - Ω b|∇y| 2 = Ω ȳ∇y • ∇bdx + Ω (-ibβu - 1 β l q -iβ 1-l p + 1 β l bf )bydx. ( 4 
     Ω |βu| 2 dx - Ω |∇u| 2 dx = - Γ1 ∂ ν uudΓ + Ω (ibβy - 1 β l g -iβ 1-l f - 1 β l bp)udx.
Ω b|∇u| 2 dx = Ω b|∇y| 2 dx + o(1), (4.28)
which is the key ingredient for establishing the energy decay rates (4.11).

First, multiplying (4.17) by 1 β ∆y and using Green's formula, we get

     -β Ω (∇u • ∇y)dx + 1 β Ω ∆u∆ydx + i Ω b|∇y| 2 dx = Ω (-g -bp) 1 β 1+l ∆ydx + i Ω 1 β l ∇f • ∇ydx -i Ω y∇b • ∇ydx. (4.29) Since 1
β ∆y is bounded in L 2 (Ω), then using (4.19)-(4.20), we easily get

-β Ω (∇u • ∇y)dx + 1 β Ω ∆u∆ydx + i Ω b|∇y| 2 dx = o(1) β l . (4.30) 
Next, multiplying (4.18) by 1 β ∆u and using Green's formula, we obtain

             -β Ω (∇y • ∇u)dx + 1 β Ω ∆y∆udx -i Ω b|∇u| 2 dx = Ω (-q + bf ) 1 β 1+l ∆udx + i Ω 1 β l ∇p • ∇udx + i Ω u∇b • ∇udx -i Γ1 bu∂ ν udΓ - Γ1 βy∂ ν udΓ. (4.31) Since 1 β ∆u is bounded in L 2 (Ω), then using (4.19)-(4.20), it follows that        -β Ω (∇y • ∇u)dx + 1 β Ω ∆y∆udx -i Ω b|∇u| 2 dx = - Γ1 βy∂ ν udΓ + o (1) β l . (4.32) 
Combining (4.30) and (4.32), we deduce that

Ω b|∇y| 2 dx = Ω b|∇u| 2 dx + Re i Γ1 βy∂ ν udΓ + o(1) β l . (4.33) 
In order to handle the boundary integration in the left-hand side of (4.33), we have to give an estimation on the trace βy on Γ 1 . To this end, let

f := -iβbu - 1 β l (q -bf ) -iβ 1-l p (4.34) 
and write (4.18) into the following Neumann problem

   β 2 y + ∆y = f in Ω, y = 0 on Γ 0 , ∂ ν y = 0 on Γ 1 . (4.35) 
Applying Lemma 4.2, we obtain

β α y 2 L 2 (Γ1) C y 2 H 1 (Ω) + βy 2 L 2 (Ω) + f 2 L 2 (Ω) . (4.36) Since f = β 1-l o(1) in H 1 (Ω) for 0 l 1, noting (4.19)-(4.20), it follows that y L 2 (Γ1) = O(β 1-l-α ). (4.37) 
Then, using the boundary dissipation (4.23), it follows that

Γ1 βy∂ ν udΓ = o(β 2-3l 2 -α ) = o(1), (4.38) 
provided that

l 2(2 -α) 3 . (4.39) 
Then, inserting (4.38) into (4.33), we obtain

-β Ω (∇y • ∇u)dx + 1 β Ω ∆y∆udx -i Ω |∇u| 2 dx = o(1). (4.40) 
Finally, combining (4.30) and (4.40), we deduce the relation of transmission of energy (4.28).

(iv) In the last step, we establish the estimation:

∇u = o(1). (4.41) 
Then, thanks to (4.24), (4.25) and (4.28), we successively deduce

∇y = o(1), βu = o(1), βy = o(1), (4.42) 
which contradicts the condition (4.14). The proof of (4.41) is mostly based on the relation of transmission of energy (4.28). We multiply (4.17) by 2m • ∇u, and it follows that

     2 Ω (β 2 u + ∆u)m • ∇udx -2 Ω iβbym • ∇udx = 2β -l Ω (-g -iβf -bp)m • ∇udx. (4.43)
We first consider the left-hand side of (4.43). Using (4.19)-(4.20), we have

     2β -l Ω (-g -iβf -bp)m • ∇udx = -2iβ 1-l Ω f m • ∇udx + o(1) β l . (4.44) 
Noting that f = o(1) in H 1 Γ0 (Ω) and using the boundary dissipation (4.23), it is easy to deduce that

       β 1-l Ω f m • ∇udx = β 1-l Γ1 f u(m • ν)dΓ - Ω (N f + m • ∇f )udx = o(1) β l . (4.45) 
Then combining (4.44) and (4.45), we get an estimation of the right-hand side of (4.43):

2β -l Ω (-g -iβf -bp)m • ∇udx = o(1) β l . (4.46)
We then consider the right-hand side of (4.43). Using Green's formula (2.3) and the boundary dissipation (4.23), it is easy to get

Re Ω 2β 2 um • ∇udx = -N Ω |βu| 2 dx + o(1) β l . (4.47) 
Recall Rellich's identity: 

     Re Ω 2∆um • ∇udx = (N -2) Ω |∇u| 2 dx -Re Γ |∇u| 2 (m • ν) -2∂ ν um • ∇u dΓ.
     2 Ω |∇u| 2 dx + 2Re Ω iβbym • ∇udx = -Re Γ |∇u| 2 (m • ν) -2∂ ν um • ∇u dΓ + o (1) β l . 
(4.49)

Furthermore, using the geometrical multiplier condition (4.10), we have

                       2 Ω |∇u| 2 dx + 2Re Ω iβbym • ∇udx = Γ0 |∂ ν u| 2 (m • ν) -Re Γ1 |∇u| 2 (m • ν) -2∂ ν um • ∇u dΓ -δ Γ1 |∇u| 2 dΓ + 2R Γ1 |∂ ν u ∇u|dΓ R 2 δ Γ1 |∂ ν u| 2 dΓ = o (1) β l . 
(4.50)

With the help of (4.24) and (4.28), we can obtain Obviously, we look for the smallest l under which (4.28) holds. For example, if we had used the usual interpolation inequality (see Theorem 1.4.4 in [START_REF] Liu | Semigroups Associated with Dissipative Systems[END_REF]):

                                 2 Ω iβby(m • ∇u)dx 2Rβ( Ω |by| 2 dx) 1/2 ( Ω |∇u| 2 dx) 1/2 + o(1) R 2 b ∞ Ω b|βy| 2 dx + Ω |∇u| 2 dx + o(1) = R 2 b ∞ Ω b|∇y| 2 dx + Ω |∇u| 2 dx + o(1) R 2 b ∞ Ω b|∇u| 2 dx + Ω |∇u| 2 dx + o(1) (R 2 b 2 ∞ + 1) Ω |∇u| 2 dx + o (1). 
β Γ |y| 2 dΓ C y H 1 (Ω) βy L 2 (Ω) , (4.53) 
we would have to take l = 1 and then obtain a weaker boundary dissipation as y = O(1) β 1/2 . In this case, we could only obtain an energy decay rate E(t) ∼ 1 t 2 . The interpolation inequality (4.53) is optimal for all functions y ∈ H 1 (Ω), but it is not optimal for the solution of the differential equation (4.5). The hidden regularity (4.6) takes into account the fact that y is the solution of a different equation. Therefore, it provides a better boundary dissipation y = O (1) β α . Comparing with the interpolation inequality (4.53), we have a gain of 1 7 , 1 4 and 2 5 respectively for the energy decay rate, the optimality of which is still an open problem however.

Because of the sharpness of the regularity (4.4), the trace estimate (4.6) should also be optimal. In any case, the following trace estimate

Γ |βy| 2 dΓ C y 2 H 1 (Ω) + βy 2 L 2 (Ω) + f 2 L 2 (Ω) (4.54)
does not hold true in general. This is the reason why we cannot establish (technically) the uniform exponential stability for the system (1.2).

Exponential stability for one-dimensional Neumann problem

In the one dimensional case, the Neumann problem recovers the hidden regularity which would yield the uniform exponential stability. This is the object of the section.

For the sake of ease of application, we formulate the hidden regularity in the following form.

Lemma 5.1. Let f ∈ L 2 (0, 1), g ∈ H 1 (0, 1) and β ∈ R. Let y ∈ H 1 (0, 1) be the solution to the following problem

β 2 y + y xx = f + βg, 0 < x < 1, y(0) = y x (1) = 0. (5.1)
Then there exists a constant C > 0 such that 

|βy(1)| 2 C y 2 H 1 (0,1) + βy 2 L 2 (0,1) + f 2 L 2 (0,1) + g 2 H 1 (0,1) . ( 5 
Multiplying (6.1) by 2h • ∇y, a straightforward computation gives that

             Γ 2∂ ν y(h • ∇y) -(h • ν)|∇y| 2 + β 2 (h • ν)|y| 2 )dΓ = Ω div(h)(|βy| 2 -|∇y| 2 ) + 2(Dh∇y) • ∇ydx +2 Ω (βf + g)(h • ∇y)dx, (6.4) 
where Dh is the Jacobi matrix of h. It follows that

Γ |∂ ν y| 2 dΓ c Ω (|βy| 2 + |∇y| 2 )dx + 2 Ω (βf + g)(h • ∇y)dx. (6.5) 
On the other hand, using Green's formula, we have

β Ω f h • ∇ydx = - Ω ∇f • h + div(h)f βydx. (6.6) It follows that β Ω f h • ∇ydx C Ω (|f | 2 + |∇f | 2 + |βy| 2 )dx. ( 6.7) 
Inserting (6.7) into (6.5) we get (6.2). The proof is complete.

Theorem 6.2. Assume that Ω satisfies the geometrical multiplier condition (4.10).

Let b ∈ W 1,∞ (Ω) such that R b ∞ < 1 and b b 0 > 0,
where R = m ∞ and b 0 are positive constants. Therefore there exist some constants ω > 0 and M 1 independent of the initial data U 0 such that the energy E(t) of system (1.1) satisfies the following estimation : E(t) M E(0)e -ωt , ∀t 0. (6.8)

Proof. The proof is based on the characterization of the exponential stability of a C 0 -semigroup S(t) by the boundedness of the resolvent of the infinitesimal operator on the imaginary axis described in (5.13). By Theorem 2.1, A -1 is compact and has no pure imaginary eigenvalues. By the same argument as in the proof of Theorem 4.4, we observe that iβ ∈ ρ(A) with compact resolvent. So, the first condition of (5.13) is obviously true.

Suppose by contradiction that the second condition of (5.13) is false. Then there exists a sequence {β n } ∈ R and a sequence {U n } ∈ D(A) such that Let U n = (u n , v n , y n , z n ) and rewrite down (6.10) into the following form,

β n → +∞, U n H = 1 (6.
       iβ n u n -v n = f n → 0 in H 1 Γ0 (Ω), iβ n v n -∆u n + bz n = g n → 0 in L 2 (Ω), iβ n y n -z n = p n → 0 in H 1 0 (Ω), iβ n z n -∆y n -bv n = q n → 0 in L 2 (Ω). (6.11)
For the convenience of notation, we will omit the index n and denote by • the norm in L 2 (Ω). Then, eliminating the unknowns v, z, we get

β 2 u + ∆u -iβby = -g -bp -iβf, (6.12) 
β 2 y + ∆y + iβbu = -q + bf -iβp. (6.13)

We will conclude the proof by showing that the sequence U tends towards zero as β → ∞. Comparing (6.11) with (4.16), we perceive that (6.11) has the same form than (4.16) as l = 0, except that the space H 1 Γ0 (Ω) in the third line of (4.16) is replaced by H 1 0 (Ω) in the third line of (6.11) because of the replacement of the Neumann boundary condition by a Dirichlet boundary condition. So, the proof of Theorem 6.2 is very similar to that of Theorem 4.4. In fact, we will follow the same procedure as in the proof of Theorem 4.4, and omit the details of the results which can be done similarly in the present case. We will give the detailed computations when necessary.

(i) We first give some preliminary results. By the same procedure with l = 0 as in step (i) of Theorem 4.4, we get the boundary dissipation: 

∂ ν u L 2 (Γ1) = o(1), u L 2 (Γ1) = o ( 
g = o(1), q = o(1), ∇f = o(1), ∇p = o(1), (6.15) 
hereafter • denotes the L 2 (Ω) norm.

(ii) Similarly, multiplying (6.12) by bu, and (6.13) by by, the same procedure as in step (ii) of Theorem 4.4 yields the following results:

Ω b|βy| 2 dx = Ω b|∇y| 2 dx + o(1), (6.17 
)

Ω |βu| 2 dx = Ω |∇u| 2 dx + o(1). (6.18) 
(iii) We establish the relation of transmission of energy:

Ω b|∇u| 2 dx = Ω b|∇y| 2 dx + o(1). (6.19) 
Because of the hidden regularity (6.2), the relation of transmission of energy (6.19) is easier to show than (4.28) for the Neumann problem. However the proof is slightly different from that of (4.28). For clarity, we give the details of the proof. Multiplying (6.12) by 1 β ∆y and using Green's formula, we get

             -β Ω ∇u • ∇ydx + 1 β Ω ∆u∆ydx + i Ω b|∇y| 2 dx = - Ω (g + bp) 1 β ∆ydx -i Ω y∇b • ∇ydx + i Ω ∇f • ∇ydx - Γ1 βu∂ ν ydΓ -i Γ1 f ∂ ν ydΓ. (6.20) 
Noting that 1 β ∆y is bounded in L 2 (Ω), then using (6.15) and (6.16), the first three terms in the left-hand side of (6.20) are of order o(1). On the other hand, by Lemma 6.1, the trace ∂ ν y is bounded in L 2 (Γ 1 ). Then, using the boundary dissipation βu = o(1) in L 2 (Γ 1 ) and f = o(1) in H 1 Γ0 (Ω), the last two terms in the left hand side of (6.20) Noting that 1 β ∆u is bounded in L 2 (Ω), then using (6.15) and (6.16), the first three terms in the lefthand side of (6.22) are of order o(1). Using the boundary dissipations βu = o(1) and ∂ ν u = o(1) in L 2 (Γ 1 ), the last term in the left hand side of (6.22) is also of order o(1). Thus, it follows that (iv) Finally, based on the relation of transmission of energy (6.19), in the same way as in step (iv) of Theorem 4.4, we establish ∇u = o(1), (

provided that R b ∞ < 1. (6.25)

Then from (6.17), (6.18) and (6.19), we deduce that ∇y = o(1), βy = o(1), βu = o(1), (6.26) which contradicts (6.9). The proof is complete.

Comments and prospects

At the end of this paper, we formulate some open questions to be developed more precisely later. First, the polynomial energy decay rate (4.11) was established by means of the sharp regularity of the solution to Neumann problem of the wave equation. However, we do not know if the system (1.2) really loses its exponential stability. A general characterization for the non-uniform exponential stability is based on the theory of compact perturbation (see [START_REF] Rao | Stabilization of elastic plates with dynamical boundary control[END_REF], [START_REF] Russell | Decay rates for weakly damped systems in Hilbert space obtained with controltheoretic methods[END_REF] and [START_REF] Gibson | A note on stabilization of infinite-dimensional linear oscillators by compact linear feedback[END_REF]). Unfortunately, this is not the case here because the viscous damping terms u t , y t are not compact in the energy space. Another feasible way consists of using the asymptotic expansion of the spectrum of the system, which provides a lot of useful information on the long-time behavior of the considered system. In a forthcoming work, we will further develop the topic in this direction and hope to remove the ambiguity on the issue. On the other hand, the spectral analysis in §3 shows that if b is not given by the expression (3.5), then A has no pure imaginary eigenvalues and the system is strongly stable. However, in order to get an energy decay rate in Theorem 6.2 (also in Theorem 4.4), we had to assume that R b ∞ < 1. Apparently, the restriction on b is only technically necessary, so, we are interested in some energy decay rate (not necessarily optimal) for any parameter b different from those given by the expression (3.5).

Of course, we should consider some systems composed of three or more equations, for example:

          
y tt -∆y + au t + bw t = 0 in Ω × R + , u tt -∆u -ay t + cw t = 0 in Ω × R + , w tt -∆w -by t -cu t = 0 in Ω × R + , ∂ ν u + u t = 0 on Γ × R + , ∂ ν y = ∂ ν w = 0 on Γ × R + , (

where the coefficients should satisfy Kalman's rank condition : (a 2 + c 2 )b = 0. This situation should be interesting and promising.

Naturally, under suitable assumptions on the coefficient b and the feedback function f , combining the present approach and the classical multiplier method in [START_REF] Conrad | Decay of solutions of the wave equation in a star shaped domain with non linear boundary feedback[END_REF] or [START_REF] Lasiecka | Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping[END_REF], we can also consider the exponential stability of system (1.1) with the non-linear feedback

∂ ν u = f (u t ) on Γ 1 . (7.2)
More generally, our method can be adapted for other problems, for example, the system composed of one damped plate-like equation

   u tt + ∆ 2 u + by t = 0 in Ω × R + , ∆u + ∂ ν u t = 0 on Γ × R + , ∂ ν ∆u -u t = 0 on Γ × R + , (7.3) 
coupled with another plate-like equation y tt + ∆ 2 y -bu t = 0 in Ω × R + . (7.4)

Following different boundary conditions on y, the corresponding energy decay rate could be established.

Proposition 3 . 2 .

 32 Assume that Ω satisfies the geometrical multiplier condition (2.4). Then for any (m, n) ∈ Λ, we have the gap condition: R 2 (µ n -µ m )

3 . 3 .

 33 12544 65 = f (22, 6) = f (63, 49), 680 = f (165, 55) = f (325, 225), 57600 = f (350, 50) = f (391, 119) = f (442, 182). However, we have the following Proposition Let b ∈ Q. Then there exists at most a finite number of pairs (m, n) such that b 2 = f (m, n). In other words, the subspace H u defined by (2.14) has a finite dimension. Proof. Let b = a/c, in which a and b are relatively prime numbers such that

Since 2

 2 is relatively prime to γ, by Euclid's Lemma, it must divide a. This yields a contradiction, because a, b are relatively prime numbers. So, we can write γ = 2γ. Then it follows that (m -γc)(m + γc) = γa. There exists k > 1 such that k(m + γc) = γa. (3.15) It follows that k < a/c. So, the number of m satisfying (3.15) is limited by [a/c]. In particular, the number of pairs (m, n) satisfying (3.14) is also limited by [a/c].

Lemma 4 . 1 . 1 . 4 . 2 .

 41142 For any given φ 0 ∈ H 1 Γ0 (Ω), φ 1 ∈ L 2 (Ω) and η ∈ L 2 (0, T ; L 2 (Ω)), the unique solution φ to problem (4.1) satisfiesφ| Σ ∈ H α (Σ) = H α (]0, T [; L 2 (Γ)) ∩ L 2 (]0, T [; H α (Γ)). (4.4)with continuous dependency.The following result is a frequency domain version of Lemma 4.LemmaLet Ω ⊂ R n be a bounded open set with smooth boundary Γ. Let f ∈ L 2 (Ω) and β ∈ R. Let y ∈ H 1 (Ω) be the solution to the following problem β 2 y + ∆y = f in Ω, ∂ ν y = 0 on Γ. (4.5)

Remark 4 . 3 .

 43 Obviously, Lemma 4.2 remains true for the problem with a Dirichlet boundary condition on Γ 0 and a Neumann boundary condition on Γ 1 .

  n I -A)U n H = 0. (4.15)

. 18 )

 18 (i) First, we collect the useful information on the dissipation of the sequence U . From (4.14) and (4.15), we have ∇u = O(1), ∇y = O(1), βu = O(1), βy = O(1), (4.19) g = o(1), q = o(1), ∇f = o(1), ∇p = o(1), (4.20) hereafter • denotes the L 2 (Ω) norm. Next, taking the inner product in (4.15) with U , it follows that

(4. 27 )

 27 Once again, thanks to the condition (4.19)-(4.20) and also to the boundary dissipation (4.23), we easily get the second relation(4.25).

  46)-(4.48) into (4.43) and using (4.25), we obtain

( 4 .

 4 51)Inserting (4.51) into (4.50), we obtain[1 -(R b ∞ ) 2 ] Ω |∇u| 2 dx o(1),(4.52)which yields (4.41) due to the condition: R b ∞ < 1. The proof is thus complete.Comment on the proof. The relation of transmission of energy (4.28) is the key point of the proof. It is the only connection between the two equations and explains how the damping is transmitted from the equation in u into the equation in y. The boundary dissipation (4.37) is due to the hidden regularity (4.6), which is based on the sharp regularity (4.4) of the solution to the wave equation with Neumann boundary condition (4.1). Therefore, it is natural that the obtained energy decay rate depends on the geometry of the domain Ω.

. 2 ) 1 )| 2 = 1 0|βy| 2 dx + 1 0|y x | 2 dx + 2 1 0f xy x dx + 2 Since H 1

 2111121 Proof. Multiplying the equation by 2xy x and integrating by parts, it follows that |βy((0, 1) ⊂ C 0 ([0, 1]), we get 2|βy(1)g(1)| 1 2 |βy(1)| 2 + 2|g(1)| 2 1 2 |βy(1)| 2 + c g 2 H 1 (0,1) ,

  n I -A)U n H = 0. (6.10)

Ω

  (∇u • ∇y)dx + 1 β Ω ∆u∆ydx + i Ω b|∇y| 2 dx = o(1).(6.23)Summing (6.21) and (6.23) and taking the imaginary part, we obtain the desired relation of transmission of energy (6.19) under the weak damping l = 0.

  are also of order o(1). It follows that

			-β	Ω	(∇u • ∇y)dx +	1 β Ω	∆u∆ydx + i	Ω	b|∇y| 2 dx = o(1).	(6.21)
	Similarly, multiplying (6.13) by 1 β ∆u, we easily get
	    	=	-β Ω (bf -q) Ω ∇y • ∇udx + β ∆udx + i 1 β Ω Ω 1	∆y∆udx -i ∇p • ∇udx + i Ω	b|∇u| 2 dx Ω u∇b • ∇udx -i	Γ1	bu∂ ν udΓ.	(6.22)
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where c denotes generic positive constants. By Cauchy-Schwartz inequality, we have 2 1 0 (xg) x βydx c( g 2 H 1 (0,1) + βy 2 L 2 (0,1) ), (5.6) 2 1 0 f xy x dx f 2 L 2 (0,1) + y 2 H 1 (0,1) .

(5.7)

Inserting the above estimates into (5.3), we get (5.2). The proof is complete.

This result will lead to the exponential stability for the following one dimensional problem

in (0, 1), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x) in (0, 1).

(5.8) More precisely, let V = {u ∈ H 1 (0, 1) : u(0) = 0} (5.9)

and

We have the following result

, where b 0 > 0 is a positive constant. Then there exist some constants ω > 0 and M 1 independent of the initial data U 0 such that the energy of system (5.8) satisfies E(t) M e -ωt E(0), ∀t > 0 (5.11) for all initial data U 0 in the space V × L 2 (0, 1) × V × L 2 (0, 1).

Proof. The proof is based on the following characterization of the exponential stability of a C 0semigroup of contractions S(t) by the boundedness of the resolvent of the infinitesimal operator on the imaginary axis (see [START_REF] Gearhart | Spectral theory for contraction semigroups on Hilbert spaces[END_REF], [START_REF] Huang | Characteristic Conditions for Exponential Stability of Linear Dynamical Systems in Hilbert Spaces[END_REF] and [START_REF] Pruss | On the spectrum of C 0 semi groups[END_REF]): (5.16)

Applying Lemma 5.1 to equation (5.15), we get the hidden regularity:

which is uniformly bounded due to (4. [START_REF] Lebeau | Équation des ondes amorties[END_REF])-(4.20), still valid for l = 0. On the other hand, under the condition l = 0, the boundary dissipation (4.23) becomes

which together with the hidden regularity (5.17 

Finally inserting (5.19) into (5.16), we deduce again the relation of transmission of energy (5.14). The proof is then complete.

Exponential stability for Dirichlet problem

Since the Dirichlet problem possesses the property of hidden regularity, the system (1.1) has the relation of transmission of energy and therefore, should logically have the uniform exponential decay rate that we will establish in this section.

For the sake of ease of application, we formulate the frequency domain version of the hidden regularity in the following form.