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Abstract

Simulation and model-based design software packages are widely used in many engineering disciplines. When it comes to robotics those tools
are very important for robot design, simulation and the development of control algorithms before the implementation on the real robot. Simulink
by MathWorks R© is an advanced model-based design tool. It is popular in education, industry and research. In addition, Simulink supports several
hardware components, facilitating a rapid deployment of the developed programs on the target hardware. In this study, the SimulinkIIWA interface
for controlling KUKA iiwa robots from Simulink is presented and compared to the KUKA Sunrise Toolbox (KST). This interface is based on
the User Datagram Protocol (UDP) and allows graphical real-time control of iiwa robots from Simulink without a need for writing any code. The
interface supports different robot control modes, at the joints level and at the end-effector (EEF) level. Example applications are also provided
showing the flexibility and the ease of use of the proposed interface.
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Peer-review under responsibility of the scientific committee of the FAIM 2020.
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1. Introduction

Due to the demand from industry, KUKA has introduced
the iiwa series of collaborative manipulators, the result of the
joint research efforts between KUKA Roboter and the German
Aerospace Center (DLR) [1]. Those robots have seven degrees
of freedom (DOF) and are designed to mimic the anatomy of the
human arm. KUKA iiwa robots are considered sensitive manip-
ulators due to the integrated torque sensors in their joints. This
sensitivity is important to guarantee co-worker’s safety in hu-
man robot interaction applications. On the other hand, Simulink
by MathWorks R© is an important engineering tool used for the
development of high-tech applications and is widely popular in
education, research and industry. For example, in [2] Simulink
is used to develop and implement a dynamic walking controller
for a human-sized bipedal robot. Thus, combining the ease of
use of Simulink on an external computer with the capabilities
of KUKA iiwa robot has its merits for many applications. In
robotics, it is not uncommon to have an external computer run-
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ning along with the robot-controller, where the PC can be used
for performing computationally expensive operations, for treat-
ing data from sensors or even for implementing control algo-
rithms.

The robotics community has presented various software
packages related to robot simulation and control. The Robotics
Toolbox for MATLAB (RTB) described in [3] is used by many
students and researchers worldwide. This toolbox provides
packages for the fundamental algorithms in robotics, which
are essential for their modeling and control. Roy Featherstone
described the algorithms for modeling robot dynamics [4] ac-
companied by software implementation (including Simulink)
[5]. The SpaceDyn toolbox introduced in [6] integrates float-
ing base dynamics as such it can be used for simulating space
robots. Another toolbox which can be used for the model-
ing/simulation of manipulators is described in [7]. This tool-
box integrates graphical user interface (GUI), 3D simulator
and utilizes symbolic math for producing the physical quan-
tities of the robot. The Machine Vision Toolbox (MVT) intro-
duced in [8], is a MATLAB toolbox which integrates vision
and image-processing algorithms, as such the user can extend
his/her robotic application with machine vision capabilities [9].

While the previous software packages are used for perform-
ing advanced mathematical operations related to robotics, they
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do not support direct control of robots from an external com-
puter, consequently other packages have been proposed for this
purpose. The Kuka Control Toolbox (KCT) [10] and the JOpen-
ShowVar [11, 12] are used for controlling 6 DOF KUKA robots
from MATLAB/Java. However, KCT and JOpenShowVar sup-
port the KRC controller only, as such they can not be used for
controlling KUKA iiwa robots (provided with the newer Sun-
rise controller). The Robot Operating System (ROS) is another
option for controlling robots from an external computer. Sev-
eral packages have been proposed for different types of manip-
ulators. In [13] the authors used the ROS interface, iiwa stack,
for controlling iiwa robot to perform autonomous MRI-guided
ultrasound, and in [14] the authors presented the KUKA-IIWA-
API, an interface for controlling iiwa using ROS. This interface
provides data acquisition and point-to-point (PTP) motion fea-
tures, but it does not support on-the-fly control feature.

Recently, the KUKA Sunrise Toolbox (KST) [15] is intro-
duced. It is a MATLAB toolbox that allows controlling KUKA
iiwa robots from an external computer. KST implements Trans-
mission Control Protocol Internet Protocol (TCP/IP) to connect
with the robot. It integrates several functionalities including (1)
networking functions, (2) point-to-point motion functions, (3)
on-the-fly control functions, (4) setters and getters of robot pa-
rameters, (5) general purpose control functions and (6) phys-
ical interaction functions. KST allows the user to control the
robot remotely from MATLAB scripting language. Due to its
complex design, it does not implement Simulink integration.
As such, we developed the SimulinkIIWA interface for con-
trolling KUKA iiwa robots from Simulink. Unlike the KST
and the previously listed ROS-interfaces (all TCP/IP based),
the SimulinkIIWA has a different nature, Table I. It is based on
the User Datagram Protocol (UDP), it supports on-the-fly con-
trol only, and it implements the Desktop Real-TimeTM toolbox,
which provides real-time kernel for performing real-time simu-
lations or hardware-in-the-loop implementation from Simulink.
Since that the Desktop Real-TimeTM toolbox is available only
for Windows and Mac, the presented interface can only be used
under those two operating systems. Simulink comes with a rich
library supporting control, digital signal processing, artificial
intelligence, interfacing with hardware in addition to others,
which gives the ability to develop hardware-in-the-loop control
algorithms graphically without requiring written code.

Table 1. Comparison, KST vs SimulinkIIWA interface.

Comparison criteria KST SimulinkIIWA

Supported OS Linux, Windows, Mac Windows and Mac
Programming tool MATLAB (code-script) Simulink (graphical)
Communication protocol TCP/IP UDP
Messaging format ASCII Binary
Running threads Two Three
Programming blocks 100+ different methods Three blocks
Supported functionalities Seven different categories Only real-time

2. SimulinkIIWA interface

The KUKA iiwa 7R800 and 14R820 are programmed using
the Java based Sunrise.Workbench engineering suite. In addi-
tion, various packages for controlling the robot from an exter-
nal computer have been proposed, by using MATLAB, ROS
and C++. However, no Simulink interface is available for these
kind of robots (according to our knowledge). Simulink is a pop-
ular tool for developing control algorithms, because it imple-
ments relevant libraries, including interfaces to a wide range
of sensors, actuators and other hardware components. In addi-
tion, Simulink allows the development and implementation of
powerful control algorithms graphically, without requiring to
write any code. Due to those advantages, we present an inter-
face for on-the-fly control of KUKA iiwa manipulators using
Simulink, this interface supports several operation modes elab-
orated in subsection 2.1. The interface consists of two parts, the
SimulinkIIWA Sunrise application (runs in the robot controller)
demonstrated in subsection 2.2, and the SimulinkIIWA subsys-
tem blocks (in Simulink) described in subsection 2.3. The in-
terface is available in the public repository [16], which includes
additional documentation including a web-link to video tutori-
als.

2.1. Supported operation modes

SimulinkIIWA interface supports different on-the-fly control
modes, each operation mode is provided in a different applica-
tion that the user can run from the teach pendant of the robot.
Those applications were written using the Sunrise.Workbench.
The control modes provided by the SimulinkIIWA interface are:

• Cartesian/Joints position control mode which is built
upon the DirectServo [17]. In this control mode the user
can control the robot at EEF or joints level, due to the
utilization of the DirectServo this operation mode is very
reactive.
• Cartesian/Joints position control mode which is built

upon the SmartServo [17]. Due to the utilization of the
SmartServo this mode provides smoother motions, but it
is less reactive than the first mode.
• Impedance control mode, suitable for applications that

involve physical interaction between the manipulator and
the surroundings.

All interfaces support feedback from the various sensors in-
tegrated in the robot.

2.2. SimulinkIIWA Sunrise application

The SimulinkIIWA Sunrise Application (SSA) is a multi-
threaded application which runs on the Sunrise controller. This
application is written using the Sunrise.Workbench. The main
thread of the application implements the DirectServo and the
SmartServo (from KUKA), and is used for on-the-fly control
of the manipulator. This application shall be synchronized to
the robot, several flavors are provided according to the control
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mode required for operating the robot as described previously
in subsection 2.1.

2.3. SimulinkIIWA subsystem blocks

For controlling the robot from an external computer using
Simulink, three different subsystem blocks are provided by the
proposed interface, Fig 1. The user can copy the blocks and
insert them in his/her customized block diagram. Those blocks
communicate with the robot using UDP protocol and are used:

• For controlling the robot at EEF level, the Simulink block
Command IIWA in Cartesian Space is provided, Fig
1 (left). This block has six inputs representing the target
pose (position/orientation) of the EEF. In such a case, the
(X,Y,Z) position and the (α, β, γ) rotation angles of the
EEF are streamed to the robot using UDP protocol. The
(X,Y,Z) coordinates are taken relative to the base frame
of the robot, and (α, β, γ) are the fixed rotation angles
around axes Z,Y and X (respectively) of the base frame
of the robot.
• For controlling the robot at joints level, the Simulink

block Command IIWA in Joint Space is provided,
Fig 1 (middle). This block has seven inputs representing
the reference positions of the robot joints. In such a case
the joints angles are streamed to the robot using UDP
protocol.
• For acquiring feedback about the state of the robot, the

Simulink block IIWA State is provided, Fig 1 (right).
This block has twenty seven outputs, organized: (1) the
outputs one to seven represent the joints torques due to
external forces acting on the structure of the robot, (2) the
outputs eight to fourteen represent the raw torques mea-
surements at the joints as acquired from the integrated
torque sensors, (3) the outputs fifteen to twenty one rep-
resent the actual joints positions as acquired by the in-
tegrated encoders, (4) the outputs twenty two to twenty
four represent the components of the external force at the
flange, (5) the outputs twenty five to twenty seven repre-
sent the components of the external moment at the flange.

3. Tests and Results

In this section two different tests and a use case are proposed.
In Test 1 an example application is provided demonstrating
the capabilities of the proposed interface. The SimulinkIIWA
is used in developing a control algorithm for manually guiding
iiwa robot at the EEF level, Fig. 2. In this example a feedback
about the forces at the flange of the robot is acquired and used as
input for the control algorithm. Based on this feedback the mo-
tion commands are calculated and streamed to the robot. Virtue
to the graphical user interface in Fig. 3, the user can change the
stiffness along each axis separately (X, Y or Z), or even con-
strain the motion to only one or two dimensions. Meanwhile, in
Test 2 a detailed comparison between the network communica-

Fig. 1. Simulink block for controlling the robot at EEF level (left), controlling
the robot at joints level (middle), acquiring feedback about the state of the robot
from its controller (right).

Fig. 2. Human-robot interaction example implemented in Simulink using the
proposed interface, the user is moving the EEF by applying a force at the robot,
the arrow shows the direction of the motion (orientation is kept fixed in this
example).

tion performance for the SimulinkIIWA interface and the KST
is provided. A use case is also provided showing the use of the
SimulinkIIWA interface for performing a pick and place oper-
ation. More examples can be found in the web-page of the pre-
sented interface, including drawing geometrical shapes using
the robot, and for commanding the joints in impedance mode.

3.1. Test 1

In this example, the user can guide the robot at EEF level
while keeping the orientation of the robot fixed, Fig 2. A video
demonstration of the test is available in [18]. For the sake of
simplicity, this example is made different to our previous work
in [19], in which the user can move the robot manually, includ-
ing orientation control, at one direction at a time (implementing
force and position feedback). Figure 3 shows the Simulink di-
agram used for the control scheme in Test 1. In the presented
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block diagram the subsystem IIWA State is used to acquire
a feedback about the external force at the flange frame of the
robot, the orientation of the EEF is kept fixed using the block
Orientation Value. Then, the applied forces along the X, Y
and Z directions of the base frame of the robot are used as inputs
to the following motion controller subsystems:

• Subsystem X motion control is used to calculate the
X reference coordinates, or the motion command along
the X axis according to the X component of the force-
feedback at the flange of the robot. The building blocks
of this subsystem are shown in Fig 4. From the figure
the subsystem consists of (a) a dead zone filter (b) a gain
(c) an integrator (d) a constant bias and (e) a summing
block. The dead zone filter is used to cut off the noise
from the measurement and also to add an initial resis-
tance to the motion. The gain is used to change the resis-
tance of the motion according to the filtered force. The
integrator is used to calculate the motion command, rep-
resented by the displacement along the X axis from the
initial position. The constant is used to specify the initial
position. The summing block is used to sum the initial
position with the integrated motion command, the result
is used for the X input of the subsystem Command IIWA

in Cartesian Space, which streams the reference X
coordinate to the robot.
• Subsystem Y motion control is used to calculate the

Y reference coordinates, or the motion command along
the Y axis according to the Y component of the force-
feedback at the flange of the robot. Similar to subsystem
X motion control.
• Subsystem Z motion control is used to calculate the

Z reference coordinates, or the motion command along
the Z axis according to the Z component of the force-
feedback at the flange of the robot. Similar to subsystem
X motion control.

The reference coordinates calculated from the previous sub-
systems are used as inputs to the block Command IIWA in

Cartesian Space provided by the SimulinkIIWA interface.
This block streams motion reference positions using UDP pro-
tocol to the robot, which are used by the Sunrise controller as
motion commands that drive the robot. The block diagram in
Fig 3 also includes the Real-Time Sync block from Simulink,
this block utilizes the real-time kernel for executing Simulink
models in real-time on a personal computer (laptop or desktop)
with Windows or Mac operating systems. In addition, the pre-
sented Simulink block diagram includes graphical potentiome-
ters which are used to change the values of the gain blocks,
accordingly changing the resistance of the motion with the ap-
plied force for each axis separately.

Tests using KUKA iiwa 7R800 were performed and the
force/coordinates data at EEF were collected from Simulink
and then plotted as shown in Fig 5.

Fig. 3. Simulink block diagram for the example of hand-guiding the EEF in
Cartesian space in Test 1.

Fig. 4. Simulink block diagram for the X motion control block.

3.2. Test 2

In this test, technical comparison between the SimulinkIIWA
and the KST is presented in terms of the communication archi-
tecture and performance. Given that Simulink is used for real-
time hardware-in-the-loop control, the SimulinkIIWA interface
is designed to support only the real-time control of KUKA iiwa
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Fig. 5. Coordinates and force-feedback at EEF with time for the example guid-
ing the EEF in Cartesian space.

robot. Consequently, we opted to build the interface upon UDP
communication protocol. UDP is better suited for data stream-
ing than the TCP/IP protocol. However, using UDP does not
guarantee the arrival of every message to the server. This is why
the KST and other ROS interfaces for KUKA iiwa implement a
TCP/IP protocol, where losing a message in particular type of
commands (onetime-execution command) will lead to execu-
tion errors (for example in point-to-point motion). Because of
its ACK-NACK (acknowledgment, negative acknowledgment)
design, the server application of KST implements two sepa-
rate threads, the main thread and the communication thread.
The main thread is used for the main control loop. The com-
munication thread is used for receiving and transmitting data.
Only one socket is used, a response message is sent for each
command received. On the other hand, the SSA implements
three different threads, one is used for the control loop, another
is used for receiving position command stream from Simulink
and the third is used for streaming the state feedback from the
robot to Simulink. The SimulinkIIWA interface does not im-
plement ACK-NACK. Two different sockets are running at the
same time, one socket is used to stream feedback data, another
socket is used to receive position command stream. This fact al-
lows the SimulinkIIWA interface to operate at higher network
rates. In our tests the KST achieves 275 HZ rate for motion
commands transmission [15]. On the other hand, Fig. 6, shows
the timing interval between each two consecutive UDP motion
commands received by the robot from Simulink, where the tim-
ing data was collected at the controller side. Using the Sunr-
sie.OS a timestamp is recorded when each motion command
message is received. The results show that the SimulinkIIWA
interface is able to achieve 1KHz rate for motion commands
stream capacity. The figure also shows that the timing intervals
are not regular, there are sporadic spikes with a maximum of 42
milliseconds. However, the average time interval is 1 millisec-
ond. At the same time, the interface achieved an average 177 Hz
rate for the feedback data stream, Fig. 7, where the maximum
time interval between two consecutive feedback data measure-
ments sent from the robot to Simulink is around 20 millisec-

0 500 1000 1500 2000
Iteration

0

10

20

30

40

50

So
ck

et
 d

ur
at

io
n 

(m
ill

is
ec

on
ds

)

Fig. 6. Time interval between two consecutive motion commands (UDP sock-
ets) received by the robot from Simulink (using SimulinkIIWA interface). The
dashed line represents the average value.
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Fig. 7. Time interval between two consecutive feedback data messages (UDP
sockets) sent from the robot to Simulink (using SimulinkIIWA interface). The
dashed line represents the average value.

onds, the average time interval is 5.6 milliseconds. The slow
rate for feedback data streaming is caused by the fact that the
SimulinkIIWA interface is designed to feedback the state data
for (1) actual joints positions, (2) the external torques, (3) the
measured torques of all the joints and (4) the force and the mo-
ment acting at the EEF, all together, leading to considerable
processing time by the robot controller to acquire the various
measurements. Finally, the timestamps shown in the figures 6
and 7 are calculated at the robot side, where we took advantage
of the deterministic nature of the Sunrise.OS to achieve higher
accuracy in timing measurements.

3.3. Use case

To further test the proposed interface, a KUKA iiwa robot
is controlled from an external computer using Simulink to ma-
nipulate a box in a pick and place operation as shown in the
snapshots of Fig. 8. First the robot moves from the home po-
sition towards the box Fig. 8 (a). When the robot reaches an
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(a) (b) (c) (d)

Fig. 8. Snapshots of KUKA iiwa robot performing a pick and place operation, the robot is controlled from an external computer using SimulinkIIWA interface. (a)
Robot moves from home position towards the box. (b) Robot reaches the box location and closes its gripper. (c) Robot starts manipulating the box. (d) Robot places
the box in the target position.

appropriate picking location of the box, the gripper is closed
Fig. 8 (b). Afterwards, the robot starts moving the box Fig.
8 (c) towards the target location. When the release position
is reached the robot leaves the box Fig. 8 (d). The block di-
agram of the Simulink program for this example is shown in
Fig. 9, A MATLAB Function block (named Cartesian Path) is
used to program the path for the pick and place motion, the in-
put to this block is the simulation time (from Simulink’s Clock
block), while the outputs are the Cartesian coordinates (calcu-
lated as a function of time). Those Coordinates are fed to the
block Command IIWA in Cartesian space of the SimulinkIIWA
for controlling the robot. In this use case the control is open
loop at Simulink side, where we rely on the robot’s internal
servo closed loop control (of the direct servo motion) to track
the reference coordinates. The gripper used is custom made in
our laboratory and it is also controlled from Simulink. The con-
trol command for the gripper is also a function of time (cal-
culated in the block Gripper Command), and streamed to the
gripper using the block Gripper Ctl. From this example, it is
shown that the presented interface is a useful tool in education,
allowing students to have a hands-on experience by prototyping
and testing their Simulink algorithms on the real robot.

4. Conclusion

In this study we presented the SimulinkIIWA interface and
compared it with the KST for controlling KUKA iiwa robots
from an external PC. Using this interface, the user can design
and run complex control algorithms in Simulink for iiwa ma-
nipulators graphically and without a need to write any code.
The interface supports different control modes, spanning Carte-
sian and joint space, either in impedance or in position control
modes. It also supports feedback from the robot sensors includ-
ing the joint torques/positions, in addition to the forces and mo-
ments acting at the EEF. The SimulinkIIWA interface is based
on UDP protocol which is advantageous for the on-the-fly con-
trol applications. To show the flexibility and the ease of use of
the proposed interface various examples are provided.

Fig. 9. Simulink block diagram for the pick and place use case example.
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