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This work examines the applicability of Uncertainty Quantification (UQ) in Game Theory. We consider the classical games "matching pennies" and "Hawk an Dove" in situations involving uncertainty. The first game examined is "matching pennies": a first situation concerns the game where the probabilities of choice between Heads and Tails are unknown and must be determined from observations. A second situation concerns fluctuations in the implementation of the Nash equilibrium. Instability is evidentiated and a strategy based on statistical estimation is introduced. A third situation considers random payoffs having an unknown distribution: observations are used to generate an UQ representation of the real distribution of the payoffs, without any supplementary assumption on the nature of the distribution. Finally, we analyze the effects of uncertainties on the associated replicator dynamics: UQ is applied to generate mean trajectories and mean orbits -in this step, we need to manipulate statistics of curves, which are objects defined by functions, belonging to infinitely dimensional vector spaces. The second game is "Hawk and Dove". We examine the situation where the reward and the cost of an injury are both uncertain and only a small sample of values is available. The methods of UQ are applied to determine the mean evolution of the system and confidence intervals for the evolution of the fractions of Hawks and Doves. The UQ methods involved are described and simple examples are given to facilitate understanding and application to other situations.

Introduction

Uncertainty Quantification (UQ) is a field of knowledge which develops methods for the analysis of numerical data, namely when uncertainty or variability is involved. The general aim of UQ is to characterize the observed variability in a quantity X by using a random variable U . UQ searches for representations of the observed variability that can be useful for numerical calculations involving X. Indeed, if some information may be obtained on (X, U ), then it can be used to analyze the behavior of X and to obtain a model representing its variability, namely by using U as explanation of the observed randomness of X.

Typical information used by UQ are samples (see, for instance, [START_REF] Russi | Uncertainty quantification with experimental data and complex system models[END_REF][START_REF] Marsden | A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations[END_REF][START_REF] Oladyshkin | Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion[END_REF][START_REF] Torre | A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas[END_REF][START_REF] Köppel | Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario[END_REF][START_REF] Chen | Uncertainty quantification of fatigue s-n curves with sparse data using hierarchical bayesian data augmentation[END_REF]), but UQ may exploit also other types on information, such as numerical problems involving both the variables (see, for instance, [START_REF] Abgrall | A simple semi-intrusive method for uncertainty quantification of shocked flows, comparison with a non-intrusive polynomial chaos method[END_REF][START_REF] Lopez | Approximating the probability density function of the optimal point of an optimization problem[END_REF][START_REF] Lopez | Uncertainty quantification for algebraic systems of equations[END_REF][START_REF] Mohammadi | Uncertainty quantification in the numerical solution of coupled systems by involutive completion[END_REF][START_REF] Després | Uncertainty propagation; intrusive kinetic formulations of scalar conservation laws[END_REF][START_REF] Lopez | A state estimation approach based on stochastic expansions[END_REF][START_REF] Cursi | Uncertainty Quantification in Optimization[END_REF][START_REF] Kusch | Intrusive acceleration strategies for uncertainty quantification for hyperbolic systems of conservation laws[END_REF]). In practice, it often happens that U or its distribution is unknown : variability of X is observed, but the explanation is unknown -UQ proposes also methods for this kind of situation (see, for instance, [START_REF] Souza De Cursi | Uncertainty Quantification and Stochastic Modeling with Matlab[END_REF][START_REF] Cho | Numerical moment matching stabilized by a genetic algorithm for engineering data squashing and fast uncertainty quantification[END_REF][START_REF] Gerbeau | A moment-matching method to study the variability of phenomena described by partial differential equa-tions[END_REF][START_REF] Teng | Moment matching technique for fast and robust uncertainty quantifications of complex systems[END_REF][START_REF] Novaes | Predictive manufacturing tardiness inference in oem milk-run operations[END_REF]). UQ techniques may deal also with infinitely dimensional objects, such as curves and surfaces. For instance, UQ proposes methods for the determination of means, medians and confidence intervals of families of curves and surfaces, such as Pareto fronts, trajectories and orbits ( [START_REF] Bassi | Statistics of the Pareto front in Multi-objective Optimization under Uncertainties[END_REF][START_REF] Bassi | Uncertainty quantification and statistics of curves and surfaces[END_REF][START_REF] Bassi | Uncertainty quantification of pareto fronts[END_REF]). UQ methods are general enough to cover a wide range of application areas (to cite a few among a large number, [START_REF] Wattenbach | A framework for assessing uncertainty in ecosystem models[END_REF][START_REF] Santonja | Uncertainty quantification in simulations of epidemics using polynomial chaos[END_REF][START_REF] Mukhopadhyay | Model comparison and uncertainty quantification for geologic carbon storage: The sim-seq initiative[END_REF][START_REF] Chernatynskiy | Uncertainty quantification in multiscale simulation of materials: A prospective[END_REF][START_REF] Lamorlette | Quantification of ignition time uncertainty based on the classical ignition theory and fourier analysis[END_REF][START_REF] Heuvelink | Uncertainty quantification of globalsoilmap products[END_REF][START_REF] Burger | Hp-finite element method for simulating light scattering from complex 3d structures[END_REF][START_REF] Eck | A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications[END_REF][START_REF] Crevillén-García | Uncertainty quantification for flow and transport in highly heterogeneous porous media based on simultaneous stochastic model dimensionality reduction[END_REF][START_REF] Kucharczak | Interval-based reconstruction for uncertainty quantification in pet[END_REF][START_REF] Arnold | Uncertainty quantification in reservoir prediction: Part 1-model realism in history matching using geological prior definitions[END_REF][START_REF] Bhati | Uncertainty quantification in alchemical free energy methods[END_REF][START_REF] Begoli | The need for uncertainty quantification in machine-assisted medical decision making[END_REF][START_REF] Gamannossi | Uncertainty quantification of film cooling performance of an industrial gas turbine vane[END_REF][START_REF] Phipps | Exploring emerging manycore architectures for uncertainty quantification through embedded stochastic galerkin methods[END_REF][START_REF] Tanno | Uncertainty quantification in 40 deep learning for safer neuroimage enhancement[END_REF][START_REF] Kumar | Efficient uncertainty quantification and management in the early stage design of composite applications[END_REF][START_REF] Zhou | Uncertainty quantification of mode shape variation utilizing multi-level multi-response gaussian process[END_REF]), but their use in Game Theory (GT) is still incipient. We present in this work an example of application of these methods to a simple game and the associated replicator dynamics. The methods of UQ are used to determine, for instance, unknown distributions of probability, mean trajectories, mean orbits and also to estimate probabilities of some events connected to the game or the replicator dynamics. The focus of this work is UQ and not GT, even if some elements of GT are recalled, by sake of clarity.

GT and uncertainty

GT encounters uncertainty right from the start, as the result of the game may depends on a random variable. For example, when betting on the outcome of a coin toss -Head (H) or tail (T ), the result is random. In addition, a player may decide to choose heads with a given probability p and tails with its complement 1 -p: his strategy mixes the pure strategies H and T and a supplementary randomness is introduced in the game. As a consequence, the gains (or losses) of the players are also random variables. Supplementary uncertainty arises if the payoffs associated to each possible result are affected by variability or randomness -for example, when, at each toss of the coin, a second draw defines the payment to be made by the loser to the winner: the payoff becomes a supplementary random variable. In the framework of GT, supplementary randomness was introduced by several ways, namely Stochastic Games (SG) and Bayesian Games (BG). These approaches attempt to take into account the errors or lacks in the information of the players, randomness involved in the moves (for instance, in mixed strategies), uncertainty in the payoffs and so on. When dealing with uncertainty in GT, UQ techniques may be used by different ways. A first application is the determination of unknown probability distributions. For example, the probability p with which the player chooses H is generally unknown and must be estimated. When the payoffs are random variables, their distribution has also to be determined: in both the cases, UQ methods may be used. A second application is the implementation of decision rules based on probabilities -for instance, the probability of a particular event may be used as decision rule. As an example, we may look for strategies correspponding to Equal Opportunity -when all the players have the same probability of obtaining a given non-negative payoff (often zero). Other than Equal Opportunity, we may also look for an Egalitarian Solution, where all the players have the same expected payoff. In zero-sum games, Equal Opportunity corresponds to Egalitarism, but this is not true in general, namely for non zerosum games. A third application concern replicator dynamics in evolutionary games. For instance, if uncertainties affect initial conditions or the payoffs, then the equation become random differential equations: in such a situation, UQ furnishes tools for the inclusion of randomness in the analysis of the evolution of the populations. For instance, UQ furnishes methods for the determination of confidence intervals for the trajectories or orbits, for the representation of the evolution of the populations, or for the estimation of probabilities of events concerning the populations. In the sequel, we consider a simple game, which is a variation of the classical game "matching pennies" and we illustrate the use of UQ techniques for its analysis.

A simple game

In the classical "matching pennies", two players compete using two coins: each player secretly chooses head H or tail T for his coin. Their choices are revealed simultaneously and one of the players wins if the choices are equal, while the other wins if the choices are different. For instance, we may assume that Player 1 wins if the results are equal, while Player 2 wins if the results are different. The reward is r > 0. We denote by p 1 the probability of the choice H by Player 1 and p 2 the probability of the choice H by Player 2. The payoff matrix of this game is given in Table 1 .

Table 1: Payoff matrix of "matching pennies". r is the reward, p i is the probability of choice H by Player i.

Player 1

Player 2

H(p 2 ) T (q 2 = 1 -p 2 ) H(p 1 ) (r, -r) (-r, r) T (q 1 = 1 -p 1 ) (-r, r) (r, -r)
Notice that this game is not symmetric: indeed, the payoff matrices A i of Player i, for i = 1, 2, are

A 1 =   r -r -r r   , A 2 =   -r r r -r   . (1) 
Thus, A 1 = A t 2 , so that the game is not symmetric. It is a zero-sum game, since

A 1 + A 2 = 0.
Let us denote by C i the choice of Player i and by R i the payoff of Player i.

We have

P (R 1 = r | C 2 = H) = P (C 1 = H) = p 1 , P (R 1 = -r | C 2 = H) = P (C 1 = T ) = q 1 = 1 -p 1 , P (R 1 = r | C 2 = T ) = P (C 1 = T ) = q 1 = 1 -p 1 , P (R 1 = -r | C 2 = T ) = P (C 1 = H) = p 1 . Let us introduce the events R 1 (α) = "R 1 = α", α ∈ {-r, r}; C 2 (β) = "C 2 = β", β ∈ {H, T }. Then, R 1 (α) = (R 1 (α) ∩ C 2 (H)) ∪ (R 1 (α) ∩ C 2 (T )). Notic- ing that C 2 (H) ∩ C 2 (T ) = ∅, we have P (R 1 = α) = P (R 1 = α, C 2 = H) + P (R 1 = α, C 2 = T ). Since P (R 1 = α, C 2 = β) = P (R 1 = α | C 2 = β) P (C 2 = β),
we obtain

P (R 1 = r) = p 1 p 2 + q 1 q 2 = 1 -p 2 -p 1 + 2p 1 p 2 = π 1 , (2) 
P (R 1 = -r) = q 1 p 2 + p 1 q 2 = p 1 + p 2 -2p 1 p 2 = 1 -π 1 . (3) 
In addition, the conditional expectations of R 1 and R 2 verify

E (R 1 | C 2 = H) = (p 1 -q 1 )r = (2p 1 -1)r , (4) 
E (R 2 | C 1 = H) = (p 2 -q 2 )r = (2p 2 -1)r . (5) 
Since the game is a zero-sum one, we have

P (R 2 = r) = P (R 1 = -r) , P (R 2 = -r) = P (R 1 = r) , (6) 
E (R 1 | C 2 = T ) = -E (R 1 | C 2 = H) , (7) 
E (R 2 | C 1 = T ) = -E (R 2 | C 1 = H) . (8) 
The mean value of the payoff of the Players are

E(R 1 ) = (2p 1 -1)(2p 2 -1)r , E(R 2 ) = -E(R 1 ) . (9) 
In GT, this game was extensively studied and the reader may find in the literature a large number of publications about it. This game has no pure Nash equilibrium, but it admits a mixed Nash one. Recall that mixed Nash Eqilibrium may be determined by making the expected winnings of each player independent from the choices of the other player. In this case, we must solve the equations

E (R 1 | C 2 = H) = E (R 1 | C 2 = T ) , E (R 2 | C 1 = H) = E (R 2 | C 1 = T ) ,
so that the mixed Nash equilibrium corresponds to p 1 = p 2 = 1/2, id est, to the situation where each player makes his choices uniformly random. In this game, Equal Opportunity consists of giving to both the players the same probability of winning:

P (R 1 = r) = P (R 2 = r). Then, π 1 = 1 -π 1 , so that π 1 = 1/2. Thus E(R 1 ) = E(R 2 )
= 0 and the it is also an Egalitarian solution.

Equal Opportunity is achieved if one of the players adopts p i = 1/2 (and not necessarily both the players).

Probabilistic analysis of the game 85

In practice, the implementation of an uniformly random strategy supposes, on the one hand, an iterated infinite game and, on the other hand, a perfectly random choice. Both these assumption generally fail in practice: on the one hand, the game stops after a finite number of plays and, on the other hand, there are imperfections in the implementation of the uniform random choice.

Let us analyze the consequences of these imperfections from the point of view of Player 1. If the implementation by player i is not perfectly uniformly random, but p i = δ i + 1/2, then

π 1 = 1/2 + δ 1 δ 2 , E(R 1 ) = 4rδ 1 δ 2 . ( 10 
)
Thus Player 1 may choose a different strategy: if δ 1 = αδ 2 , with α > 0, the probability of a positive payoff r for Player 1 is equal to

π 1 = 1/2 + αδ 2 2 >
1/2. Ideally, he must know the sign of the deviation δ 2 : if δ 2 > 0, then he must choose the pure strategy H; if δ 2 < 0, he must choose the pure strategy T . In both the cases,

π 1 = 1/2+ | δ 2 |, E(R 1 ) = 2r | δ 2 |. If the game consists of k plays, Player 1 will receive R i 1 ∈ {-r, r} at play i and a global payoff is R k 1 = R 1 1 + ... + R k
1 at the end of the game. We have R k 1 ∈ {-kr, -(k -2)r, . . . , -(k mod 2)r, (k mod 2)r, . . . , (k -2)r, kr} (the step between two possible values is 2r). If the players keep their strategies along all the game, the distribution of R k 1 is analogous to a binomial one. Indeed,

B i 1 = (r + R i 1 )/(2r) is a Bernoulli variable such that P (B i 1 = 1) = π 1 . So, X k 1 = B 1 1 + ... + B k 1 is a Binomial variable B(k, π 1 ). Since R i 1 = 2rB i 1 -r, we have R k 1 = 2rX k 1 -kr , so that P R k 1 = ir = P X k 1 = i + k 2 = k i+k 2 π i+k 2 1 (1 -π 1 ) k-i 2 . (11) 
Thus,

E R k 1 = kr(2π 1 -1), V R k 1 = 4kr 2 π 1 (1 -π 1 ) . (12) 
If Player 1 looks for the maximal value of the expected value E R k 1 , he must maximize π 1 , what corresponds to the strategy introduced above: if δ 2 > 0, choose H; if δ 2 < 0, choose T . As an alternative, Player 1 can look for the strategy that maximizes his probability of a minimal winning s ≥ 0. In this case, he looks for the strategy that maximizes P R k 1 ≥ s , or, equivalently, for the strategy that minimizes P R k 1 < s . Since P R k 1 ≥ s increases with π 1 , the strategy consists of maximizing this value -what corresponds to the same strategy. In this case, Equal opportunity means that each player has a equal probability of no loss:

P R k 1 ≥ 0 = P R k 2 ≥ 0 , so that P R k 1 ≥ 0 = P R k 1 ≤ 0 , id est, 0 is a median of R k 1 or, equivalently, k/2 is a median of X k 1 .
Thus, Equal Opportunity is achieved by π 1 = 1/2, what corresponds to the same result previously obtained in the static game formed by a single play.

A basic UQ approach: using statistical tools

In practice, Player 1 does not know the exact value of p 2 or δ 2 : it must be estimated. For instance, Player 1 may use the preceding choices to get an estimation. Let H k 2 be the number of choices H by Player 2 in the first k plays. The standard statistical estimator p k 2 for p 2 after k plays is 

p k 2 = H k 2 /k. H k 2 is binomially distributed B(k, p 2 ): for k -→ ∞, α k = P p k 2 < 1/2 = P H k 2 < k/2
P R k+1 1 = r = Π k 1 = 1 -p 2 -α k + 2α k 1 p 2 , P R k+1 1 = -r = 1 -Π k 1 , (13) 
E R k+1 1 = r(2p 2 -1)(2α k 1 -1) . (14) 
P =         p 2 1 -p 2 0 0 0 0 p 2 1 -p 2 p 2 1 -p 2 0 02 0 0 p 2 1 -p 2         . ( 15 
)
This chain has a stationnary distribution:

p s = p 2 2 , p 2 (1 -p 2 ), p 2 (1 -p 2 ), (1 -p 2 ) 2 . In addition, ∀k ≥ 2 : P k =         p 2 2 p 2 (1 -p 2 ) p 2 (1 -p 2 ) (1 -p 2 ) 2 p 2 2 p 2 (1 -p 2 ) p 2 (1 -p 2 ) (1 -p 2 ) 2 p 2 2 p 2 (1 -p 2 ) p 2 (1 -p 2 ) (1 -p 2 ) 2 p 2 2 p 2 (1 -p 2 ) p 2 (1 -p 2 ) (1 -p 2 ) 2         . ( 16 
)
Assume that the initial choice of Player 1 is H with probability p 1 . Then, the initial state of the chain is

p 0 = (p 1 p 2 , p 1 (1 -p 2 ), (1 -p 1 )p 2 , (1 -p 1 )(1 -p 2 )) .
The state at step k ≥ 1 is p k = p 0 P k = p s . Thus, for δ 2 > 0 : ∀k ≥ 1 : Thus, a small deviation from zero is enough to improve the winnings of Player 1 on the long run. Table 5 exhibits P R k 1 ≥ 0 . Table 6 shows the values of E R k 1 . A similar analysis may be found in [START_REF] Wang | Invincible strategies of iterated prisoner's dilemma[END_REF]. 

π 1 = P (R k 1 = r) = p 2 2 + (1 -p 2 ) 2 = 1 2 + 2δ 2 2 > 1 2 , (17) 
P (R k 1 = -r) = 1 -π 1 = 1 2 -2δ 2 2 < 1 2 , ( 18 
) E R k 1 = 4rδ 2 2 > 0. ( 19 
)

UQ application to random payoffs

In the preceding r > 0 is considered as a given constant value. In some situations, r may be a random variable. For example, when each move is followed by a drawn lottery to determine r. Assuming that r is independent from the Player's choices, the mean value of the payoff of the Players are

E(R 1 ) = (2p 1 -1)(2p 2 -1)E(r) , E(R 2 ) = -E(R 1 ) . ( 20 
)
and

P (R 1 ≥ s) = π 1 P (r ≥ s) . (21) 
This situation is a generalization of the preceding ones. We may observe that

E R k 1 = kE(r)(2π 1 -1) , (22) 
so that we obtain results analogous to those of Table 4, but in terms of multiples of E(r). If the distribution of r is unknown, these values must be estimated from the available data (for instance, the preceding values of r). In such a situation, UQ furnishes tools for the determination of the distribution of r and the estimation of these values. For instance, we may consider a random variable U , a Hilbert basis Φ = {ϕ i : i ∈ N} and an expansion

r = i∈N r i ϕ i (U ) ≈ n i=0 r i ϕ i (U ) = P n r(U ). ( 23 
)
This expansion may be considered as a Fourier series of r in the basis Φ (but the elements of Φ are not necessarily orthogonal two-by-two). For instance, in onedimensional situations, we may use a trigonometrical family given by (k ≥ 1)

ϕ 0 (U ) = 1 ; ϕ 2k-1 (U ) = sin k U -a b -a ; ϕ 2k (U ) = cos k U -a b -a , (24) 
where a et b are parameters defined by the user. For instance, we can take either a = 0,b = 1 or choose a,b to bring the values to (0, 1) (for instance:

a ≤ min U ≤ max U ≥ B.
We may also use a polynomial family

ϕ 0 (U ) = 1 ; ϕ k (U ) = U -a b -a k-1 (k > 1). ( 25 
)
In n-dimensional situations, we may use tensor basis generated by the product of n one dimensional basis (see [START_REF] Souza De Cursi | Uncertainty Quantification and Stochastic Modeling with Matlab[END_REF]). For instance, in 2-dimensional situations,

U = (u 1 , u 2 ), we can use ϕ k (U ) = ϕ (1) i (u 1 )ϕ (2) j (u 2 ) , k = k(i, j). (26) 
Here, k is a renumbering system transforming two indexes into a single one, such as, for instance, a Peano key ( [START_REF] Peano | Sur une courbe, qui remplit toute une aire plane[END_REF]. For finite sums, it is analogous to the system of node numbering in Finite Element methods); Φ (j) = ϕ

(j) i : i ∈ N is a Hilbert basis, for j = 1, 2.
UQ proposes a panel of methods for the determination of the coefficients r = (r 0 , r 1 , . . . , r n ) t : collocation, variational approximation or moment matching (see, for instance, [START_REF] Souza De Cursi | Uncertainty Quantification and Stochastic Modeling with Matlab[END_REF]). If some information on U is available, it may be used to determine its distribution (for instance, we may choose specific distributions in coherence with the available information). In the general situation, we have no additional information on U , which can be chosen rather arbitrarily. in UQ, better results are expected when U is not completely uncorrelated to r :notice that a simple way to generate correlation consists of ordering the samples of U and r into an increasing order. 7 are the sample R from r, of which we do not know the probability distribution.

In the sequel, we illustrate the UQ approaches mentioned using R as data.

Observe that the empirical mean of R is 1.1075, its empirical median is 0.76 and its standard deviation is 1.1. The exact values are 1, ln (2) ≈ 0.6931 and 1, respectively. As we shall see, the UQ approach will furnish better values.

The collocation approach

For the collocation approach, we solve the linear system

P n r(U i ) = r i , i = 1, . . . , n ⇐⇒ Ar = B, A ij = ϕ j (U i ), B i = r i-1 . (27) 
In the general situation, A is a m × (n + 1) matrix, where m is the size of the sample R, id est, the number of elements of R. For m > n + 1, the linear system must be solved into a generalized way, such as, for instance, determining a least squares solution. When the distribution of U is known, we may generate a convenient sample from U to generate matrix A. In the general situation, we must choose a random variable. For instance, we may consider U as uniformly distributed on the interval (min (R), max(R)). The natural way is then to generate a sample U from U and use it to generate the matrix A, but it is also possible to use an uniform grid, sparse collocation points (see, for instance, [START_REF] Gerstner | Numerical integration using sparse grids[END_REF])

or other interpolation points (see, for instance, [START_REF] Sommariva | Numerical integration using sparse grids[END_REF]). Once the coefficients r, we may generate a large simple of variates from r, by using the approximation (the computational cost is the generation of a sample from U and the evaluation of the expression (23) on the sample). For instance, we may generate 50000 variates from r by this way. In practice, a sample from an uniform variable on 

The variational approach

For the variational approach, we consider that P n r is the orthogonal projection of r onto the linear subspace generated by the basis. Then,

E (ϕ i (U )P n r(U )) = E (U r) , i = 1, . . . , n, (28) 
what is equivalent to the linear system

Ar = B, A ij = E (ϕ i (U )P n r(U )) , B i = E (U r) (29) 
Here, A is a (n + 1) × (n + 1) symmetric positive definite matrix and B is a 

The moment matching approach

Moment Matching is based on Lévy's theorem [START_REF] Lévy | Sur la détermination de lois de probabilité par leurs fonctions caractéristiques[END_REF]: a given distribution may be approximated by another distribution having the same moments. Indeed, let

X be a random variable such that M k (X) = E X k < ∞, ∀k ≥ 0. Then, its characteristic function φ verifies φ(t) = E e itX = ∞ =0 M (X) i t ! ≈ k =0 M (X) i t ! = φ k (t). (30) 
Thus, we may determine a random variable X k such that φ k (t) = E e itX k , id est, having φ k as characteristic function. From Lévy's theorem, X k -→ X in distribution for k -→ ∞. To generate X k , we may solve the equations

M i (X k ) = M i (X) , 1 ≤ i ≤ k . ( 31 
)
Notice that these equation form a nonlinear algebraic system of k equations, so that the equality between the number of equations and the number of unknowns arise for k = n + 1. In practice, we may minimize the distance between the

vectors M(X) = (M 1 (X), ..., M k (X)) and M(X k ) = (M 1 (X k ), ..., M k (X k )),
what allows us to consider consider k ≥ n + 1. The gap between the vectors is measured by a distance dist, such as, for instance, the euclidean norm of the difference:

dist(A, B) = A -B = n i=1 |A i -B i | 2 1/2 . ( 32 
)
More generally, we may consider other ways to measure the gap, such as pseudodistances : for instance, we may use the sum of relative errors:

dist(A, B) = n i=1 |A i -B i | |B i | . ( 33 
)
Taking X n = P n r, the moment matching method minimizes

F (r) = dist (M (P n r(U )) , M(X)) . (34) 
Notice that, in general, F is a non-convex functional. In practice, the minimization of F may lead to a difficult optimization problem, so that global optimization methods must be employed for the numerical determination of the coefficients. Here, we use random perturbations of the gradient descent [START_REF] Pogu | Global optimization by random perturbation of the gradient method with a fixed parameter[END_REF] to achieve the minimization.We use the pseudo-distance [START_REF] Arnold | Uncertainty quantification in reservoir prediction: Part 1-model realism in history matching using geological prior definitions[END_REF]. The starting point of the iterations is furnished by the collocation coefficients. 

Replicator dynamics

GT is also used to simulate population dynamics, in the framework of Evolutionary Game Theory, where the probabilities of each strategy are interpreted as fractions of a global population, and the evolution of these fractions depends on their fitness, measured as the deviation between their mean payoff and the global mean payoff -the replicator equation (see, for example, [START_REF] Cressman | The replicator equation and other game dynamics[END_REF][START_REF] Nowak | Evolutionary Dynamics: Exploring the Equations of Life[END_REF]). Analogously to the preceding situations, we may consider uncertainty on the payoffs, but also on the initial data. Different models can be generated by the same game. To illustrate the possibilities, let us consider the simple game introduced in Table 1). We assume that the population is divided into subpopulations. In their competitions for resources, the individuals get the payoffs given in Table 1 and we are interested in their evolution. There are different interpretations of the Table 1 leading to different models. For example:

1. A first simple model consists of considering the global population divided into two subpopulations: a first one applies the strategy H and the second one applies the strategy T . The payoffs are those of Player 1 (the lines of A 1 in Eq. ( 1)).

2. A second model is generated by considering two subpopulations having the behaviors of Player 1 and Player 2, internally divided into two subpopulations each, applying the strategies H and T , respectively.

3. Finally, we consider the classical replicator equation for asymmetric games( see, for instance, [START_REF] Tuyls | Symmetric decomposition of asymmetric games[END_REF]).

UQ approachs furnish tools to generate confidence interval for the evolution of the populations under uncertainty and for the evaluation of probabilities of events connected to the subpopulations. It should be noticed that the temporal evolution of a fraction x i of a population is defined by a function t -→ x i (t), so that it belongs to a functional space, which is infinite dimensional. In the same way, the trajectories (t, x i (t)) are are curves and belong to spaces of infinite dimension. Thus, the analysis of uncertainties on the trajectories of the populations involve probabilities in infinite dimensional spaces. In this case, difficulties may arise and it is convenient to determine the mean and the median by their variational formulations (see section 7.1).

In the sequel, we shall illustrate the UQ approaches in these models. Previously, we recall some elements about the determination of means for families of curves.

The variational approach for the mean of a family of objects

As previously indicated, the determination of statistics of families of infinite dimensional objects involve difficulties. For instance, when considering families of trajectories or orbits of a dynamical system. In such a situation situation, it may be convenient to use a variational definition of the mean and of the median:

we look for elements that minimize either the mean squared distance (for the mean) or the mean distance to the family (for the median). To illustrate these dificulties and their solution, let us consider two families of circles (see Figure 7.1)

1. C(u) = {C(t, u) = (cos (t + u), sin (t + u)) , t ∈ (0, 2π)}, u uniformly distributed on (0, 2π). This family consists of a single circle centered in (0, 0) and radius 1. Since the family contains a single element, it is expected that the mean is this single element;

2. D(u) = {D(t, u) = (u cos (t), u sin (t)) , t ∈ (0, 2π)}, u uniformly distributed on (-2, 2). Now, the family consists of concentric circles having a radius uniformly distributed on (0, 2): we expect that the mean will be the circle of radius 1. A second attempt consists of considering expansions having random coefficients. For instance, cos (t + u) = i∈N c 1 i (u)ϕ i (t), sin (t + u) = i∈N c 2 i (u)ϕ i (t): then, we may take the mean of the coefficients and write E (cos (t + u))

= i∈N E c 1 i (u) ϕ i (t), E (sin (t + u)) = i∈N E c 2 i (u) ϕ i (t)
. When using a trigonometrical basis [START_REF] Santonja | Uncertainty quantification in simulations of epidemics using polynomial chaos[END_REF], we have cos (t + u) = cos (u) cos (t) -sin (u) sin (t) and sin (t + u) = sin (u) cos (t) + cos (u) sin (t). Thus, only two coefficients are non null for each expansion:

c 1 1 (u) = cos (u), c 2 1 (u) = sin (u), c 2 1 (u) = cos (u), c 2 
2 (u) = sin (u). Again, we obtain E c j i (u) = 0, j = 1, 2, i ∈ N and E (C(u)) = {(0, 0}). For the family D, the calculations are immediate: we have a single non null coefficient for each expansion i∈N d j i (u)ϕ i (t):

d 1 2 (u) = d 2 1 (u) = u. Again, E (D(u)) = {(0, 0})
Indeed, it is more convenient to use the variational definition of the mean and of the median: the mean of a family F ⊂ V is an element m ∈ V that minimizes the mean square distance to the family, while the median is an element which minimizes the mean distance to the family. For instance, if we consider a discrete variable X taking the values F = {1, 2, 3, 4} ⊂ R, with equiprobability 1/4 each.

Then,

f 2 (α) = E (X -α) 2 = 1 4 (1 -α) 2 + (2 -α) 2 + (3 -α) 2 + (4 -α) 2 . ( 35 
)
f 2 is minimal for α = 5/2: the mean is 5/2. Moreover,

f 1 (α) = E (|X -α|) = 1 4 (|1 -α| + |2 -α| + |3 -α| + |4 -α|) , (36) 
Now, the minimum of f 1 is attained at α ∈ (2, 3) : any number in this interval is a median. If we consider a continuous variable exponentially distributed with parameter λ = 1, its probability density is f X (x) = e -x , for x ≥ 0. Then,

f 2 (α) = +∞ 0 (x -α) 2 e -x dx = 2 -2α + α 2 . ( 37 
)
Thus, the minimum of f 2 is attained at α = 1, what corresponds top the mean.

In addition,

f 1 (α) = +∞ 0 |x -α| e -x dx = -1 + α + 2e -α . ( 38 
)
f 1 attains its minimum at α = ln 2, which is the value of the median. When dealing with curves, we may look for the mean of the family as being the curve C mean that minimizes E dist 2 (C mean , C(u)) and for the the median as being the element C med which minimizes E (dist (C med , C(u))). Here, dist is a convenient distance in the space of the objects under consideration: for curves, we may use, for example, the Hausdorff's distance.

In general, C mean and C med are not elements of the family and must be determined by considering their expansions in a Hilbert basis Φ: for instance, assume that the object under consideration is a subset of R k parameterized by t ∈ (0, T ). Then, we consider an expansion

C mean = i∈N c i ϕ i (t), c i = (c 1 i , ..., c k i ) ∈ R k , i ∈ N, t ∈ (0, T ) . ( 39 
)
The unknowns to be determined are c i , i ∈ N, by minimizing

f 2 (c) = E dist 2 (C mean , C(u)) . ( 40 
)
In practice, the infinite sums may be truncated at a level n and we look for the coefficients c = (c 0 , ..., c n ) that minimize f 2 (c), analogous to Eq. ( 40), but involving a finite sum for i = 0, ..., n in Eq. ( 39). The approach is analogous for the median. For families involving a large number of elements, an approximation may be determined by looking for one of the elements of the family that minimizes the mean squared distance or the mean distance.

To illustrate this approach, let us come back to the family of circles C(u).

We consider the Hausdorff distance and the trigonometrical basis Φ previously introduced (Eq. ( 24)). Then, we look for the coefficients

c j = c 1 i , c 2 i : i ∈ N},
of the expansion of C mean = i∈N c 1 i ϕ i (t), i∈N c 2 i ϕ i (t) , t ∈ (0, 2π) . In this case, the solution is any set of values that generate the circle centered in (0, 0) and radius 1 : for such a values, we have f 2 = 0. For instance, we can take

c 1 2 = 1, c 2 1 = 1,
all the other elements of c being null. Notice that c is not uniquely determined, but any solution will generate the same curve: the circle C(0).

For the family D, we look for

D mean = i∈N d 1 i ϕ i (t), i∈N d 2 i ϕ i (t) , t ∈ (0, 2π)}.
In this case, the calculations are complex and a numerical solution must be considered. As mentioned, a numerical solution may be generated by determining a finite number of coefficients corresponding to a given n, that minimizes f 2 .

For instance, for the family C, we look for c, using n = 2, 4, 6 and performing the minimization by Nelder-Meade's method, starting from a random point.

Examples of results obtained for c j = (c j 0 , ..., c j n ) are shown in Table 8. For the family D, we look for d, using the same method and parameters, examples of results appear in Table 9. All the results are close to the exact solution (see Fig. 2). 6 (0;-0.9999;0.013;0;0;0;0) (0;0.013;0.9999;0;0;0;0) 0.335

As previously observed, we can also look foran approximation of the mean by a member of the family that minimizes the mean squared distance to the whole family: we look for

u mean such f (u mean ) = E dist 2 (C(u mean ), C(u))
is minimal. In this case, ∀u mean ∈ (0, 2π) : f (u mean ) = 0, so that any point u mean ∈ (0, 2π) is a solution: all the points generate the same curve C(0).

For the family D, the Hausdorff distance between two elements is Thus, we have f 2 (u) = -2 |u| + u 2 + 4/3, which attains its minimum for|u| = 1.

dist (D(u 1 ), D(u 2 )) = ||u 1 | -|u 2 || . (41) 
The solution corresponds to u mean = ±1, which generates the circle D(1).

In general, the determination of the coefficients of an expansion involves a higher computational cost when compared to the determination of a member of the family. Consequently, the approximation of the mean by a member of the family is used whenever it is expected to furnish a result close to the exact one -for instance, when dealing with large samples of objects whose distances remain limited to an interval of variation considered to be relatively small.

Once the mean is determined, we may associate a variance to it, which is the expected value of the squared distance:

V (C(u)) = E dist 2 (C mean , C(u)) = 0 and V (D(u)) = E dist 2 (D mean , D(u)) = 1/3.
We may also generate confidence intervals by considering quantiles: for instance, a bilateral confidence interval with a risk α (id est, with a confidence 1 -α), corresponds to a quantile centered at the mean, corresponding to a probability 1 -α: we determine the fraction 1 -α of the family closest to the mean in the sense of the distance dist. For the family of circles C(u), any confidence interval contains a single circle, since the family is formed by a single one. For the family examples may be found in [START_REF] Bassi | Statistics of the Pareto front in Multi-objective Optimization under Uncertainties[END_REF][START_REF] Bassi | Uncertainty quantification and statistics of curves and surfaces[END_REF].

UQ for the first model

Let us denote by x H , x T the fractions of the global population applying the strategies H and T , respectively. We have x H + x T = 1, with 0 < x H , x T < 1.

Notice that the extreme values 0 and 1 correspond to the extinction of one of the species -in such a situation, there is no game, since a single player remains.

Since x T = 1 -x H , the analysis reduces to the single fraction x H . Assimilating the fractions to the probability we have p 1 = p 2 = x H , so that the mean payoffs f H and f T of individuals from subpopulations H an T are respectively given by

f H (x H ) = (x H -x T )r = (2x H -1)r , f T (x H ) = -f H (x H ) . (42) 
The mean payoff of the global population is

f (x H ) = x H f H (x H ) + x T f T (x H ) = (2x H -1)f H (x H ) = (2x H -1) 2 r . ( 43 
)
The replicator equation reads as

dx H dt = x H f H (x H ) -f (x H ) = 2rx H (1 -x H )(2x H -1) . (44) 
For x H (0) ∈ {0, 1/2, 1}, the solution is x H (t) = x H (0), ∀t > 0. For x H (t) / ∈ {0, 1/2, 1}, the solution is

x H (t) = β(x H (0), t) -sig(x H (0))(γ(x H (0)) -1)α(x H (0), t) + γ(x H (0)) 2 (β(x H (0), t) + γ(x H (0))) (45) 
α(s, t) = γ(s)e 2rt (2s -1) 2 + e 4rt , β(s, t) = e 2rt (1 -γ(s)) , γ(s) = -4s 2 + 4s , sig(s) = sign(s -1/2) .

As an alternative to the use of these expressions is to simulate the evolution of the system by numerically solving Eq. [START_REF] Sommariva | Numerical integration using sparse grids[END_REF]. For x H (0

) > 1/2, t -→ x H (t)
is increasing and x H (t) -→ 1 for t -→ +∞ : the subpopulation applying the strategy H tends to become dominating, and the subpopulation applying the strategy T tends to the disappear: x T (t) = 1 -x H (t) -→ 0 for t -→ +∞. For

x H (0) < 1/2, t -→ x H (t) is decreasing and x H (t) -→ 0 for t -→ +∞: the subpopulation applying the strategy T tends to become dominating: x T (t) = 1 -x H (t) -→ 1 for t -→ +∞ (see Fig. 4). Thus, the populations are stable for

x H (0) = 1/2, but this situation is unstable: small variations of this state make that either x H (t) -→ 0 or x H (t) -→ 1 when t -→ +∞.

When r or x H (0) is a random variable, the evolution of the system becomes random. In such a situation, we may determine the mean evolution and a confidence interval for the evolution of the system, by using the UQ approach previously presented. For instance, let r be a random variable, uniformly distributed on (0.1, 2). For x H (0) = 0.25, the mean trajectory and the confidence interval 90 For x H (0) < 1/2, it tends to zero. For x H (0) > 1/2, it tends to 1. Here, r = 1 % are shown in Figure 5 and the mean orbit and the confidence interval 90 % are shown in Fig. 6. Notice that all the orbits tend to (0, 0) -the population H tends to extinction, since x H (t) -→ 0.

Analogously, we may consider a random x H (0).For instance, let r = 1 and

x H (0) be uniformly distributed on (0.45, 0.55). Figure 7 shows the mean trajectory furnished by the variational formulation with the Hausdorff distance: it corresponds to the central point x H (0) = 0.5. This situation corresponds to the maximal uncertainty for this system: if x H (0) > 1/2, then x H (t) -→ 1 and the orbits converge to (1, 0); if x H (0) < 1/2,then x H (t) -→ 0 and the orbits converge to (0, 0). The mean orbit is the point (0.5, 0), which is unstable. In this situation, confidence intervals consist of the whole set of orbits (see Fig. 8).

To consider a situation involving less uncertainty, let us consider that r = 1 and x H (0) is uniformly distributed on (0.4, 0.45). In this situation, we know that x H (t) -→ 0. We are interested in the time t 10 where x H (t 10 ) = 0.1. We generate a sample from t 10 by simulating the evolution the system on a sample of n s variates from x H (0). In our experioment, the simulation was made by ode45 from M AT LAB®(Runge-Kutta's from [START_REF] Dormand | A family of embedded runge-kutta formulae[END_REF]).Then, we determine the solution 10. internal fractions are denoted x i H (species i, strategy H), x i T (species i, strategy T ). Then the global population is divided according proportions x i H x i (species i, strategy H), x i T x i (species i, strategy T ). We have

x 1 +x 2 = 1, x 1 H +x 1 T = 1, x 2 H + x 2 T = 1.
In this model, the mean payoff of an individual of fraction x 1 H is the mean reward of Player 1 applying strategy H: From Table 1, it corresponds to r(2p 2 -1). p 2 is the probability of Player 2 applying strategy H, what corresponds to x 2 H . Thus, the payoff of such an individual is r(2x 2 H -1). Analogously,

f 1 T = r(1 -2x 2 H -1)
. Thus, the mean payoff of the whole subpopulation corresponding to

x 1 is f 1 = x 1 H f 1 H + x 1 T f 1 T . Since f 1 T = -f 1 H , x 2 = 1 -x 1 and x 1 T = 1 -x 1 H , we have f 1 = r(2x 1 H -1)(2x 2 H -1)
. The same analysis can be made to the other subpopulations. The results are summarized in the equations below:

f 1 H = r(2x 2 H -1), f 1 T = r(1 -2x 2 H ), (46) 
f 1 = r(2x 1 H -1)(2x 2 H -1), (47) 
f 2 H = r(1 -2x 1 H ), f 2 T = r(2x 1 H -1), (48) 
f 2 = r(1 -2x 1 H )(2x 2 H -1) . (49) 
The mean payoff of the whole population is

f = x 1 f 1 + x 2 f 2 = r(2x 1 -1)(2x 1 H -1)(2x 2 H -1).
and the replicator dynamics leads to We illustrate the UQ approach by considering uncertainty on the initial fraction of population corresponding to x 1 . In a first example, x 1 (0) is a random variable, uniformly distributed on (0.1, 0.5). In a second one, x 1 H (0) is uniformly distributed on (0.4, 0.6). As an example, we analyze the mean fraction of the subpopulations adopting the strategy H. The evolution of the pair (x 1 H (t), x 2 H (t)) form an uncertain parametric curve : we exhibit in Fig. 10 its mean and and the confidence interval 90 %, estimated from a family of 20 curves, for the initial data (x 1 (0), 0.25, 0.25) at left) and (x H (0), x 1 H (0), 0.25) (at right), r = 1.

d dt x 1 = x 1 (f 1 -f ) = 2rx 1 (1 -x 1 )(2x 1 H -1)(2x 2 H -1), (50) 
d dt x 1 H = x 1 H (f 1 H -f 1 ) = 2rx 1 H (1 -x 1 H )(2x 2 H -1) (51) d dt x 2 H = x 2 H (f 2 H -f 2 ) = 2rx 2 H (1 -x 2 H )(1 -2x 1 H ). (52) 

The third model

The classical replicator dynamics introduces fractions of population X = (X 1 , X 2 ) t represented by Player 1 and Y = (Y 1 , Y 2 ) t represented by Player 2.

Then, the replicator equations read as (see, for instance, [START_REF] Tuyls | Symmetric decomposition of asymmetric games[END_REF]):

dX i dt = X i (A 1 Y ) i -X t A 1 Y , dY i dt = Y i X t A 2 i -X t A 2 Y (53) 
These equations may be analyzed into an analogous way. As an example, let us consider that X 1 (0) is unformly distributed on (0.1, 0.5). We show in Fig. 11 the joint evolution of (X 1 , X 2 ) and (X 1 , Y 1 ).The mean and the confidence interval 90 % are estimated from a family of 20 curves, for the initial data (x H (0), 0.5 -x H (0), 0.25, 0.25), r = 1.

Possible extensions

The game under consideration is asymmetric, zero-sum , with two players.

In the examples, we considered a single source of uncertainty. These choices are not limitations of the approach, which may be extended for more general situations, such as non zero-sum, symmetric or n-players games. Multidimensional uncertainty may also be considered. As an example, let us consider the classical Hawk-Dove game, which has as payoff matrix Thus,

f H = x H r -c 2 + (1 -x H )r = r -x H r + c 2 , f D = (1 -x H ) r 2 . ( 55 
)
The mean payoff of the whole population is

f = x H f H + (1 -x H )f D = r 2 -x 2 H c 2 (56) 
and the replicator equation reads as In practice, the time interval (0, t max ) is discretized in N t > 0 subintervals, with a step ∆t = t max /N t > 0. Then, we determine ξ (j) = (ξ 0 (t j ), ..., ξ n (t j )), t j = (j -1)∆t, 1 ≤ j ≤ N t +1, by using the values X H (t j , U k ) (1 ≤ k ≤ 16), obtained The game under consideration is an asymmetric zero-sum one, but the methods exposed are general and may be applied to symmetric or non zero-sum games.

dx H dt = x H (f H -f ) = 1 2 rx H (1 -x H )(r -cx H ). ( 57 
For instance, we applied the methods to the classical Hawk-Dove game under uncertainty of both the reward and the cost of an injury. The results presented

2 {s 1 =

 21 (H, H), s2 = (H, T ), s 3 = (T, H), s 4 = (T, T )}. The transition matrix is
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 1 can be replaced by an uniform grid. Using a trigonometrical basisi with an uniform grid, n = 8, a = 0, b = 1, this approach furnishes the estimations E(r) ≈ 1.04 (for the mean), med(r) ≈ 0.73 (for the median) and σ(r) ≈ 1.02 (for the standard deviation). Using the same parameters, but n = 10, we obtain E(r) ≈ 1.01, med(r) ≈ 0.63 and σ(r) ≈ 1.01. For n = 12, the results deteriorate: E(r) ≈ 1.07, med(r) ≈ 0.74 and σ(r) ≈ 1.01. The deterioration may be explained by the deterioration of the condition number of the matrices A and A t A. With the same parameters, a polynomial family furnishes, for n = 8, the estimations E(r) ≈ 1.03, med(r) ≈ 0.66 and σ(r) ≈ 1.02. For n = 10, we obtain E(r) ≈ 1.01, med(r) ≈ 0.63 and σ(r) ≈ 1.01. For n = 12, the results deteriorate analogously: E(r) ≈ 1.08, med(r) ≈ 0.74 and σ(r) ≈ 1.02.

(n + 1 )

 1 × 1 vector. Using the trigonometrical basis and the same parameters as the preceding situation, we obtain, for n = 8, E(r) ≈ 1.03, med(r) ≈ 0.66 and σ(r) ≈ 1.02. For n = 10, we get E(r) ≈ 1.02, med(r) ≈ 0.64 and σ(r) ≈ 1.02.For n = 12, the results are E(r) ≈ 1.01, med(r) ≈ 0.63 and σ(r) ≈ 1.02. The polynomial basis with the same parameters as the preceding situation furnishes, for n = 8, E(r) ≈ 1.03, med(r) ≈ 0.66 and σ(r) ≈ 1.02. For n = 10, we obtain E(r) ≈ 1.02, med(r) ≈ 0.63 and σ(r) ≈ 1.02. For n = 12, the results are E(r) ≈ 0.98, med(r) ≈ 0.64 and σ(r) ≈ 1.08.

  Using the trigonometrical basis and the same parameters as the preceding examples, we obtain, for n = 8 and k = 10, E(r) ≈ 1.03, med(r) ≈ 0.69 and σ(r) ≈ 1.02. For n = 8 and k = 12, E(r) ≈ 1.03, med(r) ≈ 0.69 and σ(r) ≈ 1.02. For n = 10 and k = 12, E(r) ≈ 1.05, med(r) ≈ 0.65 and σ(r) ≈ 1.01. For n = 12 and k = 14, E(r) ≈ 1.07, med(r) ≈ 0.70 and σ(r) ≈ 1.00. The polynomial family furnishes for n = 8 and k = 10, E(r) ≈ 1.03, med(r) ≈ 0.69 and σ(r) ≈ 1.02. For n = 8 and k = 12, E(r) ≈ 1.03, med(r) ≈ 0.69 and σ(r) ≈ 1.02. For n = 10 and k = 12, E(r) ≈ 1.02, med(r) ≈ 0.66 and σ(r) ≈ 1.02. For n = 12 and k = 14, E(r) ≈ 1.08, med(r) ≈ 0.73 and σ(r) ≈ 1.02.

Figure 1 :

 1 Figure 1: Two families of circles to illustrate the variational definition of the mean. In both the cases, the punctual mean leads to incoherent results.

Figure 2 :

 2 Figure 2: Examples of results furnished by Nelder-Meade minimization of f 2 : all the solutions determined are close to the exact solution.

Figure 3 :

 3 Figure 3: Examples of confidence intervalsl for family D .

Figure 4 :

 4 Figure 4: Typical evolutions of x H in model 1: for x H (0) = 1/2, the fraction x H (t) is constant.

Figure 5 : 25 Figure 6 :

 5256 Figure 5: Model 1: Mean trajectory (t, x 1 (t)) and confidence interval 90 % for r uniformly distributed on (0.1, 2), x H (0) = 0.25

Figure 7 :

 7 Figure 7: Model 1: Mean trajectory (t, x 1 (t)) and confidence interval 90 % for x H (0) uniformly distributed, centered at 1/2, r = 1. As expected, the mean is the curve corresponding to x H (0) = 1/2.
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  with a step 1E -4 with deval from M AT LAB®and we determine the first time where x H (t) < 0.1. This time is considered as t 10 . The sample of t 10 is used to determine the coefficients of an expansion analogous to (23) for t 10 , involving the polynomial basis[START_REF] Mukhopadhyay | Model comparison and uncertainty quantification for geologic carbon storage: The sim-seq initiative[END_REF], n = 4 and two kinds of collocation points U = x H (0): equally spaced or randomly generated. The results are compared 370 with a reference solution furnished by a simulation with 50000 equally spaced values. The results are exhibited in Fig.9and Table

Figure 8 :

 8 Figure 8: Model 1: Mean orbit (x 1 , p 1 = ẋ1 ) for x H (0) uniformly distributed, centered at 1/2, r = 1.This situation has a maximal uncertainty: for x H (0) > 1/2, the orbits converge to (1, 0); for x H (0) < 1/2, the orbits converge to (0, 0). The mean orbit is the point (0.5, 0), which is unstable. Under this maximal uncertainty, confidence intervals consist of the whole set of orbits.

Figure 9 :

 9 Figure 9: Model 1: distribution of the time t 10 such that x H (t 10 ) = 0.1, for x H (0) uniformly distributed on (0.35, 0.45), r = 1.

Figure 10 :

 10 Figure 10: Model 2: Mean fraction of subpopulations adopting strategy H and the associated confidence interval 90 %, for x 1 (0) uniformly distributed on (0.1, 0.5) (left) and for x 1 H (0) uniformly diistributed on (0.4, 0.6) (right). r = 1 in both.

(a) x 1

 1 (0) random. (b) x 1 H (0) random.

Figure 11 : 2 )A 1 = A t 2 .

 1122 Figure 11: Model 3: Confidence intervals for the orbits of pairs of variables for X 1 (0) uniformly distributed on (0.1, 0.5), r = 1.

)

  Assume that rand c are independent random variables having distributions which are approximately lognormal : r = ln R, R ≈ N (ln 2, 0.2); c = ln C, C ≈ N (ln 10, 2). Assume that a sample of 4 variates from each variable is available : (r 1 , r 2 , r 3 , r 4 ), (c 1 , c 2 , c 3 , c 4 ). Let U = (r, c): these values generate a sample U 1 , ..., U 16 of 16 variates fromU (recall that the variables r and c are independent). The numerical solution of Eq. (57) for each couple U k , 1 ≤ k ≤ 16 generates a sample of 16 variates from x H (t) : 0 ≤ t ≤ t max . Then, we look for an expansionx H (t, U ) = i∈N ξ i (t)ϕ i (U ) ≈n i=0 ξ i (t)ϕ i (U ) = P n x H (t, U ).(58)

Figure 12 :

 12 Figure 12: Confidence intervals for the trajectory of X H in the Hawk-Dove game, when r and c are lognormal random variable, x H (0) = 0.8. The fraction of Hawks decline and stabilizes beteen 10%and30% (according to the values of r and c).

  (a) nr = nc = 20 (400 curves). (b) nr = nc = 100 (10000 curves).

Figure 13 :

 13 Figure 13: Comparison between the estimations of the mean trajectory in the Hawk-Dove gamee, when r and c are lognormal random variables, x H (0) = 0.8. For the mean evolution, the fraction of Hawks stabilizes near 20%. The generation of supplementary data by UQ expansions improves the quality of the estimation.

  

Table 2 :

 2 Convergence of α k = P p k

	converges to either 0, when p 2 > 1/2; or 1, when p 2 < 1/2 (see
	Table 2 ).			
				2 < 1/2
	k	10	50	100 1000 10000
	p 2			
	0.4	0.87 0.90 0.97 1.00	1.00
	0.49	0.49 0.50 0.54 0.73	0.98
	0.5	0.44 0.44 0.46 0.49	0.50
	0.51	0.39 0.39 0.38 0.25	0.02
	0.6	0.07 0.06 0.02 0.00	0.00
	If Player 1 uses the estimator pk 2 , at the move k +1, he will choose H if p k 2 < 1/2,
	and T when p k 2 > 1/2. Thus, p k 1 = α k 1 and
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Table 3

 3 

	exhibits the values of P R k 1 ≥ 0 furnished by a MCS (Monte Carlo
	Simulation) with 10 4 runs. The values of E R k 1 are exhibited in Table 4.
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As an alternative, Player 1 can take his decision from the previous choice of Player 1: choose H at move k + 1 if Player 1 has chosen H at move k and T otherwise. Then, the game corresponds to a Markov Chain. There are four states:

Table 3 :

 3 Values of P R k 1 ≥ 0 -Monte Carlo with 10000 runs

	k	10	50	100 1000 10000
	p 2			
	0.4	0.68 0.84 0.95 1.00	1.00
	0.49	0.60 0.55 0.54 0.58	0.94
	0.5	0.62 0.55 0.55 0.50	0.50
	0.51	0.63 0.56 0.56 0.62	0.94
	0.6	0.73 0.88 0.96 1.00	1.00

Table 4 :

 4 

Values of E R k 1 in multiples of r -Monte Carlo with 10000 runs

Table 5 :

 5 Values of P R k 1 ≥ 0

	k	10	50	100 1000 10000
	p 2			
	0.4	0.67 0.66 0.69 0.90	1.00
	0.49	0.56 0.56 0.54 0.52	0.52
	0.5	0.62 0.56 0.54 0.51	0.50
	0.51	0.62 0.56 0.54 0.52	0.52
	0.6	0.66 0.66 0.69 0.90	1.00

Table 6 :

 6 Values of E R k

	1

Table 7 :

 7 A sample R of 20 observed values of a random r. The distribution of r is unknown and needs to be determined using this data.Let us illustrate the UQ methods: assume that r is exponentially distributed, with parameter λ = 1, but this fact is unknown. The single data available is a sample R of r, generated by the previous moves. For instance, let us consider data in Table7, which contains 20 values, generated by simulating an exponential law of parameter 1. Assume that the 20 values in Table

	0.35 3.45 1.28 3.08 2.33 0.19 0.36 1.15 0.05 3.37
	0.82 0.96 0.27 0.23 1.68 0.71 0.81 0.44 0.34 0.28

Table 8 :

 8 Results furnished by Nelder-Meade minimization of f 2 for the family C(u). Quantities having absolute values inferior to 1E -10 were brought down to zero

	n	c 1	c 2	f 2
	2	(0;-0.0377;0.9993);	(0;0.9993;0.0377)	0
	4 (0;-0.012;0.012;0.995;-0.002) (-0.004;0.005;-0.002;-0.004;1.001) 0
	6	(0;-0.9999;0.0126;0;0;0;0)	(0.0126;0.9999;0;0;0;0;0)	0

Table 9 :

 9 Examples of results furnished by Nelder-Meade minimization of f 2 for the family D(u). Quantities having absolute values inferior to 1E -10 were brought down to zero

	n	c 1	c 2	f 2
	2	(0;1.02;-0.0003);	(0;0.0003;1.02)	0.335
	4	(0;0;0;1.000;-0.224)	(0;0;0;0.224;1.000)	0.335

Table 10 :

 10 Statistics of the time t 10 such that x

	method	mean	median standard deviation
	reference	1.9201 1.87670	0.3197
	random sample	1.908	1.8749	0.28061
	equispaced sample 1.9202 1.8768	0.32033
	7.3. The second model			

H (t 10 ) = 0.1, for x H (0) uniformly distributed on (0.35, 0.45).

In this model, we consider two species corresponding to Players 1 and 2. the fraction of the subpopulation i is x i and we have x 2 = 1 -x 1 . Each subpopulation is formed of individuals applying a fixed strategy H or T . The by numerical integration of Eq. (57). Once the coefficients are determined, we may generate a large sample containing N U from U ( by generating two samples: nr variates from r and nc variates from c: N U = nr × nc). The evaluation of

x H (t, U ), which is used to determine the mean and a confidence interval of (t, x H (t, U )). As an example, let us consider the initial data x H (0) = 0.8 (80 % of Hawks in the initial population). We use the basis Φ = {ϕ k (u 1 , u 2 ) : k ∈ N}, generated by the tensor product of two polynomial basis ( Eq. ( 26)): 

Concluding Remarks

We presented applications of UQ techniques to two classical games ("matching pennies" and "Hawk and Dove"). UQ furnishes tools to determine representations of random variables, their distribution and associated statistics, their simulation. We applied some of these tools in situations where these gamse involve uncertainty. The first situation was the definition of a strategy for "matching pennies" when the probabilities defining the strategy of a player are unknown and must be estimated from observations. The second situation was the one where the payoffs of this game are random and their distribution is unknown, to be determined from observations. Finally, we applied the approach to the determination of mean curves of the replicator dynamics associated to "matching pennies", under uncertainty on the initial conditions or the payoffs. This application concerns objects belonging to infinitely dimensional vector spaces, are encouraging and tend to show that UQ techniques may be applied in other games.