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. We discuss this equation without any restriction on p and gcd(n, k). Criteria for the number of the FQ-zeros of Pa(x) are proved by a new methodology. For the cases of one or two FQ-zeros, we provide explicit expressions for these rational zeros in terms of a. For the case of p gcd(n,k) +1 rational zeros, we provide a parametrization of such a's and express the p gcd(n,k) + 1 rational zeros by using that parametrization.

Introduction

Let k and n be any positive integers with gcd(n, k) = d. Let Q = p n and q = p k where p is a prime. We consider the polynomial where F * Q := F Q \ {0}. Note that the more general polynomials X q+1 + rX q + sX + t, with s = r q and t = rs can be transformed into this shape by the substitution X = (s -r q ) 1 q X 1 -r.

It is clear that P a (X) has no multiple roots. Polynomials of the form t i=0 a i X q i -1 q-1 , a i ∈ F q m , are called projective polynomials. Projective polynomials were introduced by Abhyankar [START_REF] Abhyankar | Projective polynomials[END_REF]. His original motivation was to find polynomials with a given Galois group. P a (X) is a particular projective polynomial where t = 2, a 1 = a 2 = 1, a 0 = a and m = n gcd(n,k) . Projective polynomials have arisen in several different contexts including finite geometry, the inverse Galois problem [START_REF] Abhyankar | Bivariate factorizations connecting Dickson polynomials and Galois theory[END_REF], the construction of difference sets with Singer parameters [START_REF] Dillon | New cyclic difference sets with singer parameters[END_REF], determining cross-correlation between m-sequences [START_REF] Dobbertin | Niho type cross-correlation functions via Dickson polynomials and Kloosterman sums[END_REF][START_REF] Helleseth | Characterization of m-sequences of lengths 2 2k -1 and 2 k -1 with three-valued crosscorrelation[END_REF], the construction of error-correcting codes [START_REF] Bracken | Triple-error-correcting BCH-like codes[END_REF] and the calculation of composition collisions [START_REF] Von Zur Gathen | Composition collisions and projective polynomials[END_REF]. These polynomials are also exploited to speed up (the relation generation phase in) the index calculus method for the computation of discrete logarithms on finite fields [START_REF] Göloglu | On the function field sieve and the impact of higher splitting probabilities : application to discrete logarithms in F 2 1971 and F 2 3164[END_REF][START_REF] Göloglu | Solving a 6120-bit DLP on a desktop computer[END_REF] and on algebraic curves [START_REF] Massierer | Some experiments investigating a possible L(1/4) algorithm for the discrete logarithm problem in algebraic curves[END_REF].

Let N a denote the number of zeros in F Q of the polynomial P a (X) and M i denote the number of a ∈ F * Q such that P a (X) has exactly i zeros in F Q . In 2004, Bluher [START_REF] Bluher | On x q+1 + ax + b[END_REF] proved that N a equals 0, 1, 2 or p d + 1 where d = gcd(k, n) and computed M i for every i. She also stated some criteria for the number of the F Q -zeros of P a (X).

The number of roots of any projective polynomial was determined implicitly in [START_REF] Von Zur Gathen | Composition collisions and projective polynomials[END_REF] and explicitly in [START_REF] Mcguire | A characterization of the number of roots of linearized and projective polynomials in the field of coefficients[END_REF] from its coefficients. In particular, new criteria for which P a (X) has 0, 1, 2 or p d + 1 roots were proved in [START_REF] Mcguire | A characterization of the number of roots of linearized and projective polynomials in the field of coefficients[END_REF] for any characteristic.

The ultimate goal in this direction of research is to identify all the F Q -zeros of P a (X). Really many efforts were made by several researchers toward this goal, specifically for a particular instance of the problem over binary fields i.e. p = 2. In 2008 and 2010, Helleseth and Kholosha [START_REF] Helleseth | On the equation x 2 l +1 + x + a over GF (2 k )[END_REF][START_REF] Helleseth | x 2 l +1 + x + a and related affine polynomials over GF (2 k )[END_REF] found new criteria for the number of F 2 n -zeros of P a (X). In the cases when there is a unique zero or exactly two zeros and d is odd, they provided explicit expressions of these zeros as polynomials of a [START_REF] Helleseth | x 2 l +1 + x + a and related affine polynomials over GF (2 k )[END_REF]. They also showed in [START_REF] Helleseth | On the equation x 2 l +1 + x + a over GF (2 k )[END_REF] that if d = 1 then N a equals 0, 1 or 3. In 2014, Bracken, Tan and Tan [START_REF] Bracken | On a class of quadratic polynomials with no zeros and its application to APN functions[END_REF] presented a criterion for N a = 0 in F 2 n when d = 1 and n is even. Very recently, Kim and Mesnager [START_REF] Kim | Solving x 2 k +1 + x + a = 0 in F2n with gcd(n, k) = 1. Finite Fields and Their Applications[END_REF] completely solved the equation X 2 k +1 + X + a = 0 over F 2 n when d = 1. They showed that the problem of finding zeros in F 2 n of P a (X) can be divided into two problems with odd k : to find the unique preimage of an element in F 2 n under a MCM polynomial and to find preimages of an element in F 2 n under a Dickson polynomial. By completely solving these two independent problems, they explicitly calculated all possible zeros in F 2 n of P a (X), with new criteria for which N a is equal to 0, 1 or 3 as a by-product.

We discuss the equation X p k +1 + X + a = 0, a ∈ F p n , without any restriction on p and gcd(n, k). After defining a sequence of polynomials and considering its properties in Section 2, it is shown in Section 3 that if N a ≤ 2 then there exists a quadratic equation that the rational zeros must satisfy. In Section 4, we state some useful properties of the polynomials which appear as the coefficients of that quadratic equation. In Section 5, criteria for the number of the F Q -zeros of P a (x) are proved. For the cases of one or two F Q -zeros, we provide explicit expressions for these rational zeros in terms of a. We also provide a parametrization of the a's for which P a (X) has p gcd(n,k) + 1 rational zeros. Based on that parametrization, all the p gcd(n,k) + 1 rational zeros are expressed. For the case of p gcd(n,k) + 1 rational zeros, some results to explicitly express these rational zeros in terms of a are presented in Section 6. Finally, we conclude in Section 7.

Preliminaries

Given positive integers k and l, define the polynomial 1) .

T kl k (X) := X + X p k + • • • + X p k(l-2) + X p k(l-
Usually we will abbreviate T l 1 (•) as T l (•). For x ∈ F p l , T l (x) is the absolute trace Tr l 1 (x) of x. For x ∈ F p kl , its norm Nr kl k (x) over F p k is defined by 1) .

Nr kl k (x) := x 1+p k +•••+p k(l-2) +p k(l-
The preimages of T kl k (X) are studied in [START_REF] Mesnager | Solving x + x 2 l + • • • + x 2 ml = a over F2n[END_REF]. Let F p denote the algebraic closure of F p . The following is, in essence, a restatement of Hilbert's Theorem 90 (cf. Theorem 2.25 in [START_REF] Lidl | Finite Fields[END_REF]).

Proposition 1. For any positive integers k and r,

{x ∈ F p | T kr k (x) = 0} = {u -u p k | u ∈ F p kr }.
Proof. Evidently, {u -u p k |u ∈ F p kr } ⊂ ker(T kr k ). The linear mapping u → u -u p k has the kernel F p k and so #{u -u p k |u ∈ F p kr } = p k(r-1) . On the other hand, T kr k cannot have a kernel of greater cardinality than its degree p k(r-1) .

Define the sequence of polynomials {A r (X)} as follows:

A 0 (X) = 0, A 1 (X) = 1, A 2 (X) = -1, A r+2 (X) = -A r+1 (X) q -X q A r (X) q 2 for r ≥ 0. ( 1 
)
This sequence of polynomials {A r (X)} have also appeared in [START_REF] Helleseth | On the equation x 2 l +1 + x + a over GF (2 k )[END_REF][START_REF] Helleseth | x 2 l +1 + x + a and related affine polynomials over GF (2 k )[END_REF] for p even and in the independent study [START_REF] Mcguire | A characterization of the number of roots of linearized and projective polynomials in the field of coefficients[END_REF] for general p by a bit different form (see also Remarks 12 and 13). However, our motivation is different from [START_REF] Helleseth | On the equation x 2 l +1 + x + a over GF (2 k )[END_REF][START_REF] Helleseth | x 2 l +1 + x + a and related affine polynomials over GF (2 k )[END_REF][START_REF] Mcguire | A characterization of the number of roots of linearized and projective polynomials in the field of coefficients[END_REF] (see Sec. 3). Lemma 2 gives another identity which can be used as an alternative definition of {A r (X)} and an interesting property of this polynomial sequence which will be important later. Its proof also appear in [START_REF] Helleseth | x 2 l +1 + x + a and related affine polynomials over GF (2 k )[END_REF] for p even and in [START_REF] Mcguire | A characterization of the number of roots of linearized and projective polynomials in the field of coefficients[END_REF] for general p. For completeness, we include here the proof.

Lemma 2. For any r ≥ 1, the following are true.

1.

A

r+2 (X) = -A r+1 (X) -X q r A r (X). ( 2 
)
2.

A r+1 (X) q+1 -A r (X) q A r+2 (X) = X q(q r -1) q-1 . (3) 
Proof. We will prove these identities by induction on r. It is easy to check that they hold for r = 1, 2. Suppose that they hold for all indices less than r(≥ 3). Then, we have

A r+3 (X) = -A r+2 (X) q -X q A r+1 (X) q 2 = A r+1 (X) + X q r A r (X) q + X q A r (X) + X q r-1 A r-1 (X) q 2 = A q r+1 (X) + X q A q 2 r (X) + X q r+1 A q r (X) + X q A q 2 r-1 (X) = -A r+2 (X) -X q r+1 A r+1 (X),
which proves (2) for all r. Also, using the proved equality (2), we have

A r+2 (X) q+1 -A r+1 (X) q A r+3 (X) = A r+2 (X) q+1 + A r+1 (X) q A r+2 (X) + X q r+1 A r+1 (X) = X q r+1 A r+1 (X) q+1 -A r (X) q A r+2 (X) + A r+2 (X) A r+2 (X) q + A r+1 (X) q + X q r+1 A r (X) q (2) = X q r+1 A r+1 (X) q+1 -A r (X) q A r+2 (X) = X q r+1 X q(q r -1) q-1 = X q(q r+1 -1) q-1
, which proves (3) for all r.

The zero set of A r (X) can be completely determined for all r:

Proposition 3. For any r ≥ 3, {x ∈ F p | A r (x) = 0} = (u -u q ) q 2 +1 (u -u q 2 ) q+1 , u ∈ F q r \ F q 2 .
Proof. Given any x ∈ F p \ {0}, there exists at least one element v ∈ F p such that x = v q 2 +1 (v+v q ) q+1 and v + v q = 0. Then, for any r ≥ 2, we have

A r (x) = (-1) r+1 r j=1 v q j v q + v q 2 r-1 j=2 v v + v q q j
, where for i = 2 it is assumed that the product over the empty set is equal to 1. Indeed, this can be proved by induction on r as follows. For r = 2 and r = 3, we have

A 2 (x) = -1 = (-1) 3 2 j=1 v q j v q + v q 2 and A 3 (x) = 1 -x q = 1 - v q+q 3 (v + v q ) q+q 2 = (-1) 4 3 j=1 v q j v q + v q 2 v v + v q q 2 .
Assuming this identity holds for all indices less than r, we have

A r (x) (2) = -A r-1 (x) -x q r-2 A r-2 (x) = (-1) r+1 r-1 j=1 v q j v q + v q 2 r-2 j=2 v v + v q q j -(-1) r+1 v q r r-2 j=1 v q j (v + v q ) q r-1 +q r-2 j=2 v v + v q q j = (-1) r+1 (v + v q ) q r-1 r-1 j=1 v q j -v q r r-2 j=1 v q j v q r-1 (v + v q ) q r-1 j=2 v v + v q q j = (-1) r+1 r j=1 v q j v q + v q 2 r-1 j=2 v v + v q q j
. Thus A r (x) = 0 if and only if r j=1 v q j = (T kr k (v)) q = 0 and v + v q = 0, which by Proposition 1 is equivalent to v = u -u q for some u ∈ F q r \ F q 2 . Therefore, A r (x) = 0 if and only if x = (u-u q ) q 2 +1 (u-u q 2 ) q+1 for some u ∈ F q r \ F q 2 . Later we will need the following lemma.

Lemma 4 ([3]).

1. N a = p d + 1 if and only if P a (X) splits in F q m . 2. The number of a ∈ F * Q such that P a (X) has exactly

p d + 1 zeros in F Q is M p d +1 = p (m-1)d -p d p 2d -1 ,
where = 0 if m is odd and = 1 otherwise.

Proof. The first item follows from Theorem 4.3 and Corollary 7.2 of [START_REF] Bluher | On x q+1 + ax + b[END_REF] since F q m is the smallest field containing both F q and F Q . The second item is from Theorem 5.6 of [START_REF] Bluher | On x q+1 + ax + b[END_REF].

3 Quadratic equation satisfied by rational zeros of P a (X)

Put m = n/d and define the polynomials

F (X) := A m (X), G(X) := -A m+1 (X) -XA q m-1 (X).
We will show that if F (a) = 0 then the F Q -zeros of P a (X) satisfy a quadratic equation and therefore necessarily N a ≤ 2.

Lemma 5. Let a ∈ F * Q . If P a (x) = 0 for x ∈ F Q then F (a)x 2 + G(a)x + aF q (a) = 0. ( 4 
)
Proof. If x q+1 + x + a = 0 for x ∈ F Q , then x = 0 and thus we get

x q = -x -a x . (5) 
Now, we prove that for any r ≥ 1

x q r (A r (a)x -aA r-1 (a) q ) -A r+1 (a)x + aA r (a) q = 0 (6)
with the assumption A 0 (x) = 0. In fact, if r = 1 then the left side of ( 6) is P a (x) and so it holds for r = 1. Suppose that it holds for r ≥ 1. Taking q-th powers of (6) and substituting (5), we have

x q r+1 A r (a) q x q -a q A r-1 (a) q 2 -A r+1 (a) q x q + a q A r (a) q 2 = 0 ⇒

x q r+1 -A r (a) q x+a x -a q A r-1 (a) q 2 + A r+1 (a) q x+a x + a q A r (a) q 2 = 0 ⇒ x q r+1 -A r (a) q -a q A r-1 (a) q 2 x -aA r (a) q + A r+1 (a) q + a q A r (a) q 2 x + aA r+1 (a) q = 0 ⇒ x q r+1 (A r+1 (a)x -aA r (a) q ) -A r+2 (a)x + aA r+1 (a) q = 0. This shows that (6) holds for r + 1 and so for all r.

Taking r = m in (6) and using the fact that x q m = x Q k/d = x when x ∈ F Q , we obtain the result of the lemma.

Some equalities involving F and G

To determine the F Q -rational zeros of P a (X) when N a ≤ 2, we will need the following properties of the polynomials F and G which appear as coefficients of the quadratic equation ( 4). Proposition 6. For any x ∈ F q m , the following are true.

1.

(G(x) -2F (x)) q = -G(x).

2.

G(x) 2 -4xF (x) q+1 ∈ F q . (8) 3. G(x) = -x q F q 2 (x) + F q (x) + xF (x). ( 9 
)
Proof. The first item follows from

(G(x) -2F (x)) q = G(x) q -2F (x) q = -A m+1 (x) q -x q A m-1 (x) q 2 -2A m (x) q (2) = (A m (x) + x q m-1 A m-1 (x)) q -x q A m-1 (x) q 2 -2A m (x) q = xA m-1 (x) q -x q A m-1 (x) q 2 -A m (x) q (since x q m = x) (1) 
= xA m-1 (x) q + A m+1 (x) = -G(x).
The second item is proved as follows. Let E = G(x) 2 -4xF (x) q+1 . Then

E q -E = A m+1 (x) q + x q A m-1 (x) q 2 2 -4x q A m (x) q(q+1) -(A m+1 (x) + xA m-1 (x) q ) 2 + 4xA m (x) q+1 . Consider A m+1 (x) q (2) = (-A m (x) -x q m-1 A m-1 (x)) q = -A m (x) q -xA m-1 (x) q
. By substituting this and using (1), we have

E q -E = -A m (x) q -xA m-1 (x) q + x q A m-1 (x) q 2 2 -4x q A m (x) q(q+1) --A m (x) q -x q A m-1 (x) q 2 + xA m-1 (x) q 2 + 4xA m (x) q+1 = 4A m (x) q xA m-1 (x) q -x q A m-1 (x) q 2 -4x q A m (x) q(q+1) + 4xA m (x) q+1 = 4A m (x) q xA m-1 (x) q -x q A m-1 (x) q 2 -x q A m (x) q 2
+ xA m (x) .

If m = 1, then obviously E q -E = 0. Now, assume m ≥ 2. Then, by using

x q A m-1 (x)

q 2 + x q A m (x) q 2 = x q (A m-1 (x) + A m (x)) q 2 (2) = -x q (x q m-2 A m-2 (x)) q 2 = -x q+1 A m-2 (x) q 2 ,
we get

E q -E = 4xA m (x) q A m-1 (x) q + x q A m-2 (x) q 2 + A m (x) (1) 
= 0, that is,

E = G(x) 2 -4xF (x) q+1 ∈ F q .
Finally, the third item is verified as follows:

G(x) = -A m+1 (x) -xA m-1 (x) q (1) = A m (x) q + x q A m-1 (x) q 2 -xA m-1 (x) q (1) = A m (x) q + x q A m-1 (x) q 2 + x x q A m-2 (x) q 2 + A m (x) = x q A m-1 (x) + x q m-2 A m-2 (x) q 2 + A m (x) q + xA m (x) (2) 
= -x q A m (x) q 2 + A m (x) q + xA m (x).

When p = 2, Item 1 and 2 of Proposition 6 are reduced to

G(x) ∈ F q for any x ∈ F q m . ( 10 
)
For p even, we will further need the following proposition.

Proposition 7. Let p = 2. Let a ∈ F Q with G(a) = 0. Let E = aF (a) q+1 G 2 (a)
and

H = Tr d 1 Nr n d (a)
G 2 (a) . The followings hold.

1.

Tr n 1 (E) = mH. (11) 
2.

T k (E) = G(a) + F (a) q G(a) + k d H. (12) 
Proof. From the fact that modulo n the sets {0, k, 2k, . . . , (m-1)k} and {0, d, 2d, . . . , (m-1)d} coincide, Nr mk k (a) = Nr n d (a) follows and we have

E = aF (a) q+1 G(a) 2 (3) = aA m-1 (a) q A m+1 (a) + Nr n d (a) G(a) 2 = (A m+1 (a) + G(a)) A m+1 (a) + Nr n d (a) G(a) 2 = A m+1 (a) G(a) + A m+1 (a) G(a) 2 + Nr n d (a) G(a) 2 .
Hence, [START_REF] Göloglu | On the function field sieve and the impact of higher splitting probabilities : application to discrete logarithms in F 2 1971 and F 2 3164[END_REF] immediately follows from the facts Nr n d (a) ∈ F p d and G(a) ∈ F p md ∩ F p k = F p d (which follows from [START_REF] Von Zur Gathen | Composition collisions and projective polynomials[END_REF] as a ∈ F p md ). And also

T k (E) = A m+1 (a) G(a) + A m+1 (a) G(a) q + k d H (10) = A m+1 (a) + A m+1 (a) q G(a) + k d H = G(a) + aA m-1 (a) q + A m+1 (a) q G(a) + k d H (2) = G(a) + aA m-1 (a) q + A m (a) + a q m-1 A m-1 (a) q G(a) + k d H = G(a) + F (a) q G(a) + k d H. 5.1 N a = p d + 1 Theorem 8. Let a ∈ F * Q .
The following are equivalent.

1. N a = p d + 1 i.e. P a (X) has exactly p d + 1 zeros in F Q .

2. F (a) = 0, or equivalently, by Proposition 3, there exists u ∈ F q m \ F q 2 such that a = (u-u q ) q 2 +1 (u-u q 2 ) q+1 . 3. There exists u ∈ F Q \ F p 2d such that a = (u-u q ) q 2 +1 (u-u q 2 ) q+1 . Then the

p d + 1 zeros in F Q of P a (X) are x 0 = -1 1+(u-u q ) q-1 and x α = -(u+α) q 2 -q 1+(u-u q ) q-1 for α ∈ F p d . Proof. (Item 1 ⇐⇒ Item 2)
We already showed that if F (a) = 0, then N a ≤ 2, i.e. N a = p d + 1.

If F (a) = 0 i.e. there exists u ∈ F q m \ F q 2 such that a = (u-u q ) q 2 +1 (u-u q 2 ) q+1 , then the set given by α∈Fq

-(u + α) q 2 -q 1 + (u -u q ) q-1 -1 1 + (u -u q ) q-1
is the set of all q + 1 zeros of P a (X). In fact, the cardinality of this set is exactly q + 1 as u is not in F q . Also, we have

P a -1 1 + (u -u q ) q-1 = -1 1 + (u -u q ) q-1 1 - 1 1 + (u -u q ) q-1 q + (u -u q ) q 2 +1 (u -u q 2 ) q+1 = -(u -u q ) u -u q 2
(u -u q ) q u -u q 2 q + (u -u q ) q 2 +1 (u -u q 2 ) q+1 = 0 and

P a -(u + α) q 2 -q 1 + (u -u q ) q-1 = -(u + α) q 2 -q 1 + (u -u q ) q-1 1 + -(u + α) q 2 -q 1 + (u -u q ) q-1 q + (u -u q ) q 2 +1 (u -u q 2 ) q+1 = -(u -u q ) (u -u q 2 ) q+1 (u + α) q (u -u q 2 )(u + α) q -(u -u q )(u + α) q 2 q + (u -u q ) q 2 +1 (u -u q 2 ) q+1 = -(u -u q ) (u -u q 2 ) q+1 (u + α) q (u -u q 2 )(u q + α) -(u -u q )(u q 2 + α) q + (u -u q ) q 2 +1 (u -u q 2 ) q+1 = -(u -u q ) (u -u q 2 ) q+1 (u + α) q ((u -u q ) q (u + α)) q + (u -u q ) q 2 +1 (u -u q 2 ) q+1 = 0. Lemma 4 concludes N a = p d + 1. (Item 1 ⇐⇒ Item 3) To begin with, define S 0 = F Q \ F q 2 , S 1 = {u -u q | u ∈ S 0 }, S 2 = {v q-1 | v ∈ S 1 } and S = {a ∈ F Q | N a = p d + 1}.
Now, we will show that the mapping

Ψ : u ∈ S 0 -→ (u -u q ) q 2 +1 (u -u q 2 ) q+1 ∈ S,
which is well-defined by Proposition 3 and by the equivalence between Item 1 and Item 2, is surjective.

Regarding (u-u q ) q 2 +1 (u-u q 2 ) q+1 = ((u-u q ) q-1 ) q (1+(u-u q ) q-1 ) q+1 , we can write

Ψ = ϕ 3 • ϕ 2 • ϕ 1 where ϕ 1 : u ∈ S 0 -→ u -u q ∈ S 1 , ϕ 2 : v ∈ S 1 -→ v q-1 ∈ S 2 , ϕ 3 : w ∈ S 2 -→ w q (1+w) q+1 ∈ S.
Here, we note that -1 / ∈ S 2 (and hence ϕ 3 is well-defined) since

(u -u q ) q-1 = -1 would yield u = u q 2 , i.e. u ∈ F q 2 . Consider ϕ 1 (u + F p d ) = ϕ 1 (u) for any u ∈ S 0 and #S 1 = p (m-1)d -(p d - (p d -1) • (m mod 2)) = (p md -p (2-m mod 2)d )/p d = #S 0 /p d . Therefore ϕ 1 is p d -to-one and surjective. Next, note that ϕ 2 (v 1 ) = ϕ 2 (v 2 ) for v 1 , v 2 ∈ F Q if and only if v 2 = βv 1 for some β ∈ F * p d and that if v 1 ∈ S 1 then βv 1 ∈ S 1 for any β ∈ F * p d since T r n d (βv 1 ) = βT r n d (v 1 ) = 0. Hence ϕ 2 is (p d -1
)-to-one and surjective. On the other hand, if a = ϕ 3 (w) for w ∈ S 2 , then P a (-

1 1+w ) = -1 1+w q+1 + -1 1+w + w q
(1+w) q+1 = 0. Since a ∈ S and so N a = p d + 1, there are at most

p d + 1 such w ∈ S 2 that ϕ 3 (w) = a. Therefore we get #Ψ (S 0 ) ≥ #S 2 p d + 1 = p (m-1)d -p (1-m mod 2)d p 2d -1 . Since #S = p (m-1)d -p (1-m mod 2)d p 2d -1
by the second item of Lemma 4, we have a sequence of inequalities #S ≤ #Ψ (S 0 ) ≤ #S which concludes that Ψ (S 0 ) = S, i.e. Ψ is surjective (note that it also follows that ϕ 3 is (p d + 1)-to-one and Ψ is p d (p 2d -1)-to-one). This means that Item 1 and Item 3 are equivalent. = 1). In this case, the two zeros in

F Q of P a (X) are x 1,2 = ±E(a) 1 2 -G(a) 2F (a)
, where E(a) Proof. To begin with, note E(a) ∈ F q by [START_REF] Dillon | New cyclic difference sets with singer parameters[END_REF] and so E(a)

∈ F q ∩ F Q = F p d .
Theorem 8 shows that N a ≤ 2 if and only if F (a) = 0. Now, assume F (a) = 0. Then Equation ( 4) can be rewritten as

x + G(a) 2F (a) 2 = E(a) 4F (a) 2 . (13) 
Now, we will show that the solutions x 1,2 = ±E of ( 13) become the zeros of P a (X) if and only if E(a) is a quadratic residue in F q . In fact, E(a)

1 2 q = E(a)
1 2 + δ for some δ and then we have , and so P a (x 1,2 ) = 0 if and only if δ = 0, that is, E(a)

P a (x 1,2 ) = x 1,2 (x 1,2 + 1) q + a = ±E(a) 1 2 -G(a) 2F (a) 1 + ±E(a) 1 2 -G(a) 2F (a) q + a = (±E(a)
1 2 ∈ F q . On the other hand, x 1,2 ∈ F Q if and only if E(a) 1 2 ∈ F Q .
Remark 10. In the last two cases of Theorem 9 (i.e. the cases of N a = 0 or 2), the condition F (a) = 0 is implied because E = 0 implies F (a) = 0. Indeed, if F (a) = 0, then from Equality (9) G(a) = 0 follows and so E(a) = 0. 1. N a = 1 if and only if F (a) = 0 and G(a) = 0. In this case, (aF (a) q-1 ) 1 2 is the unique zero in F Q of P a (X). 2. N a = 0 if and only if G(a) = 0 and H = 0. 3. N a = 2 if and only if G(a) = 0 and H = 0. In this case the two zeros in

F Q are x 1 = G(a) F (a) • T n E ζ+1 and x 2 = x 1 + G(a) F (a) , where ζ ∈ µ * Q+1 := {z ∈ F Q 2 | z Q+1 = 1} \ {1}.
Proof. By Theorem 8 we may assume F (a) = 0 since this is equivalent to N a ∈ {0, 1, 2}.

If G(a) = 0, then the Equation ( 4) has a unique solution x 0 = (aF (a) q-1 ) 1/2 .

Then P 2 a (x 0 ) = a F (a) a q F q 2 (a) + F q (a) + aF (a)

= a F (a) G(a) = 0 and thus it follows that P a (X) has exactly one zero (aF (a) q-1 )

1/2 in F Q when G(a) = 0. by G n + G n σ + G n-1 σ = 0 or G n + G n σ + G n-1 σ = 0 respectively. Note that the quantity G n + G n σ + G n-1 σ (∆ L for p odd, resp.) therein equals G(a) 1 q (E(a) 1 q
for p odd, resp.) with the notation of our paper.

6 More for the case N a = p d + 1

Let S a = {x ∈ F p md = F Q | P a (x) = 0}. The following problem remained : when N a = p d + 1 i.e. A m (a) = 0, express S a explicitly in terms of a.

For this problem, the following facts are the only things we know at the moment.

1. When m = 3 and A 3 (a) = 1 -a q = 0 i.e. a = 1, we have

S a = {(b -b q ) q-1 , b ∈ F p 3d \ F p d }.
2. When p = 2, m = 4 and A 4 (a) = 1 + a q + a q 2 = 0, we have √ a ∈ S a .

3. When p = 2, m = 5 and A 5 (a) = 1 + a q + a q 2 + a q 3 (1 + a q ) = 0, we have a(a + a q ) 1 + a q + a q+1 ∈ S a .

4. When p = 2, m = 6 and A 6 (a) = 1+a q +a q 2 +a q 3 (1+a q )+a q 4 q +a q 2 ) = 0, we have a 2 (1 + a + a q + a q 2 +1 ) + a q 2 +q+1 (1 + a + a q ) q a 2q 2 +q + (1 + a + a q )(1 + a 2 + a q ) q ∈ S a .

All these can be checked by direct substitutions to P a (X).

Lemma 14. If x q+1 + x + a = 0 for a ∈ F * Q , then for any r ≥ 1

x q r = A r+1 (a)x -aA r (a) q A r (a)x -aA r-1 (a) q , (16

)
where the denominator never equals zero.

Proof. This is an alternation of [START_REF] Bracken | On a class of quadratic polynomials with no zeros and its application to APN functions[END_REF]. The only thing to be verified is the fact that the denominator never equals zero. In fact, if A r (a)x -aA r-1 (a) q = 0 (and so also A r+1 (a)x -aA r (a) q = 0 by (6)), then x = aAr-1(a) q Ar(a)

= aAr(a) q Ar+1(a)

and thus it follows that a(A r (a) q+1 -A r-1 (a) q A r+1 (a)) = 0. But (3) shows a(A r (a) q+1 -A r-1 (a) q A r+1 (a)) = a q r -1

q-1 = 0, a contradiction. Proof. By Proposition 3 and the premise A m (a) = 0, we have a ∈ F q m . By multiplying all equalities (16) for r ranging from 1 to m -1 side by side we get x q m -1 q-1 = -aA m-1 (a) q = A m+1 (a) 1/q , i.e. A m+1 (a) = Nr km k (x) q = Nr km k (x) ∈ F q . Then, an induction on t leads to the conclusion of the lemma.

Conclusions

We studied the equation P a (X) = X p k +1 + X + a = 0, a ∈ F p n and proved some new criteria for the number of the F p n -zeros of P a (x). In case of one or two F p nzeros, we expressed these zeros in terms of a. For the case of p gcd(n,k) + 1 rational zeros, we provided a parametrization of such a's and expressed all the p gcd(n,k) +1 rational zeros by using this parametrization. An important open problem is to explicitly express in terms of a the F p n -zeros when there are p gcd(n,k) + 1 zeros in F p n .

5. 2 1 . 3 .

 213 N a ≤ 2: Odd p Theorem 9. Let p be odd. Let a ∈ F * Q and E(a) = G(a) 2 -4aF (a) q+1 . N a = 1 if and only if F (a) = 0 and E(a) = 0. In this case, the unique zero in F Q of P a (X) is -G(a) 2F (a) . 2. N a = 0 if and only if E(a) is not a quadratic residue in F p d (i.e. E(a) N a = 2 if and only if E(a) is a non-zero quadratic residue in F p d (i.e. E p d -1 2

1 2

 1 represents a quadratic root in F p d of E(a).

1 2 - 1 2 1 2 1 2

 2111 G(a)) ±E(a) + δ + (2F (a) -G(a)) q + 4aF (a) -G(a)) ±E(a) + δ + G(a) + 4aF (a)

5. 3 2 Theorem 11 .

 3211 N a ≤ 2: p = Let p = 2 and a ∈ F * Q . Let H = Tr d 1 Nr n d (a) G 2 (a) and E(a) = aF (a) q+1 G 2 (a) .

Lemma 15 .

 15 If A m (a) = 0, then for any x ∈ F Q such that x q+1 + x + a = 0, it holds Nr km k (x) = A m+1 (a). Furthermore, for any t ≥ 0 A m+t (a) = A m+1 (a) • A t (a).

Rational zeros of P a (X)By exploiting the results of the previous sections, now we represent the rational zeros of P a (X) in terms of a.
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Now consider the case of G(a) = 0. Note that [START_REF] Dobbertin | Niho type cross-correlation functions via Dickson polynomials and Kloosterman sums[END_REF] shows that G(a) = 0 implies F (a) = 0. The equation ( 4) can be rewritten as F (a) G(a) x 2 + F (a) G(a) x = E(a) and so it has a solution in F Q if and only if

If Equation ( 4) has a solution then it has exactly two solutions

, and so x 1 and x 2 are two solutions of (4). And, both x 1 and x 2 are in

Let x be a solution of ( 4). Then we have T k

=

. Thus, it follows that the solution x of ( 4) is a zero of P a (X) if and only if

Equalities ( 11), ( 12), ( 14) and ( 15) together leads us to conclude that when G(a) = 0, P a (X) has a zero (equivalently, exactly two zeros) in F Q if and only if mH = 0 and k d H = 0 which is equivalent to H = 0 since at least one of m and k/d must be odd as gcd(m, k/d) = 1.

Combining the discussion above with Theorem 8 completes the proof.

Remark 12. When p = 2, A r (X) defined in this paper coincides with C r (X) introduced in [START_REF] Helleseth | x 2 l +1 + x + a and related affine polynomials over GF (2 k )[END_REF]. Many of our results for p = 2 appears also in [START_REF] Helleseth | x 2 l +1 + x + a and related affine polynomials over GF (2 k )[END_REF] with relatively longer and more complicated proofs.

Remark 13. On the other hand, very recently, the number of roots of linearized and projective polynomials was studied in [START_REF] Csajbók | A characterization of linearized polynomials with maximum kernel[END_REF][START_REF] Mcguire | A characterization of the number of roots of linearized and projective polynomials in the field of coefficients[END_REF]. In particular, criteria for which P a (X) has 0, 1, 2 or p d +1 roots were stated by Theorem 8 of [START_REF] Mcguire | A characterization of the number of roots of linearized and projective polynomials in the field of coefficients[END_REF] using some polynomial sequence G r (X) which are related by A r (X) = G r-1 (X) q with A r (X) defined in this paper. Using the notation of our paper, Theorem 8 of [START_REF] Mcguire | A characterization of the number of roots of linearized and projective polynomials in the field of coefficients[END_REF] states that N a = p d + 1 if and only if A m (a) = 0 and A m+1 (a) ∈ F p d . Firstly, here, the condition A m+1 (a) ∈ F p d is surplus because this follows from the condition A m (a) = 0. In fact, if F (a) = A m (a) = 0 then by (1) A m+1 (a) = (-aA m-1 (a) q ) q and by ( 9) G(a) = 0 i.e. A m+1 (a) = -aA m-1 (a) q , so A m+1 (a) = A m+1 (a) q that is A m+1 (a) ∈ F q ∩ F Q = F p d . Secondly, when p = 2, the criteria for N a = 0, 1, 2 in [START_REF] Mcguire | A characterization of the number of roots of linearized and projective polynomials in the field of coefficients[END_REF] are false. In the criteria for N a = 0, 1, 2 of Theorem 8 of [START_REF] Mcguire | A characterization of the number of roots of linearized and projective polynomials in the field of coefficients[END_REF], G n ∈ F q or G n / ∈ F q must be fixed