
HAL Id: hal-03493814
https://hal.science/hal-03493814

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Component-based 2-/3-dimensional nearest neighbor
search based on Elias method to GPU parallel 2D/3D

Euclidean Minimum Spanning Tree Problem
Wen-Bao Qiao, Jean-Charles Créput

To cite this version:
Wen-Bao Qiao, Jean-Charles Créput. Component-based 2-/3-dimensional nearest neighbor search
based on Elias method to GPU parallel 2D/3D Euclidean Minimum Spanning Tree Problem. Applied
Soft Computing, 2021, 100, pp.106928 -. �10.1016/j.asoc.2020.106928�. �hal-03493814�

https://hal.science/hal-03493814
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Component-based 2-/3-dimensional Nearest Neighbor
Search based on Elias method to GPU parallel 2D/3D

Euclidean Minimum Spanning Tree Problem

Wen-Bao Qiaoa,b,�, Jean-Charles Créputb

aComputer School, Beijing Information Science and Technology University, China
bCIAD, Univ. Bourgogne Franche-Comté, UTBM, F-90010 Belfort, France

Abstract

We present improved data parallel approaches working on graphics process-

ing unit (GPU) compute unified device architecture (CUDA) platform to build

hierarchical Euclidean minimum spanning forest or tree (EMSF/EMST) for ap-

plications whose input only contains N points with arbitrary data distribution

in 2D/3D Euclidean space. Characteristic of the proposed parallel algorithms

follows “data parallelism, decentralized control and O�1� local memory occu-

pied by each GPU thread”. This research has to solve GPU parallelism of

component-based nearest neighbor search (component-based NNS), tree traver-

sal, and other graph operations like union-find. For exact NNS, instead of using

classical K-d tree search or brute-force computing method, we propose a K-d

search method working based on dividing the Euclidean K-dimensional space

into congruent and non-overlapping square/cubic cells where size of points in

each cell is bounded. For component-based NNS, with the uniqueness property

based on 2D/3D square/cubic space partition, we propose dynamic and static

pruning techniques to prune unnecessary neighbor cells’ search. For tree traver-

sal, instead of using breadth-first-search, this paper proposes CUDA kernels

working with a distributed dynamic link list for selecting a local spanning tree’s

shortest outgoing edge since size of local EMSTs in EMSF can not be predicted.

�Corresponding author
Email address: rapidbao@outlook.com (Wen-Bao Qiao)

Preprint submitted to Journal of LATEX Templates September 11, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1568494620308668
Manuscript_86f2180f1b1a333287498f247e5b6aeb

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1568494620308668
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1568494620308668


Source code is provided online and experimental comparisons are conducted on

both 2D and 3D benchmarks with up to 107 points to build final EMST. Results

show that applying K-d search with static pruning technique and the proposed

operators totally working in parallel on GPU, our current implementation runs

faster than our previous work and current optimal sequential dual-tree mlpack

EMST library.

Keywords: Component-based nearest neighbor search, 3D Euclidean

Minimum Spanning Tree, GPU Parallel 3D EMST, GPU Breadth first search,

GPU union-find, GPU link list, decentralized control

1. Introduction

Given a point set vi > V of N points in K�dimensional Euclidean space, the

exact Euclidean Minimum Spanning Tree (EMST) problem is to find the lowest

weight spanning tree in a complete un-directed graphG � �V,g�, �v0, v1, ...vN�1 >

V �, with implicit N��N�1�
2

edge list E and edge weights given by the Euclidean5

distance between any two points. A general minimum weight spanning tree

(MST) is defined as: given a general weighted un-directed graph G � �V,E�

with N vertexes and explicit edge list E, finding a subset of E that connects all

vertexes without any circles and with minimum total edges’ weight[1]. A min-

imum spanning forest (MSF) consists of local MSTs on each of the connected10

graph components of that graph G. A connected component (or just component)

of an un-directed graph G is a sub-graph of G in which any two vertexes are

connected by a finite or infinite sequence of edges[1, 2].

MSF/MST is widely used in computer vision, pattern recognition and data

mining applications, for example, researchers have applied MST to stereo match-15

ing and achieved top ranking result on Middlebury [3, 4]; MSF consisting various

small MSTs naturally forms data clusters of an input[5, 6, 7], like image segmen-

tation [8, 9]; an exact MST also provides upper bound for tour length estimation

of traveling salesman problems [10]. In cases when the input only contains inde-

pendent Euclidean points, building MSF/MST becomes EMSF/EMST problem.20

2



Furthermore, with the development of big data and edge-computing in real 3-

dimensional world [11], some applications require the ability to deal with big

3D data in real-time on graphics processing unit (GPU). This further requires

the capability to build large-size 3D MSF/MST in real-time.

Three classical MST algorithms like Bor̊uvka’s [1] (see [12] for translation),25

Kruskal’s (1956) [13] and Prim’s (1957) [14] algorithms establish the basis of

MST implementations. They all work sequentially on standard general graph

with predefined distance matrix (or edge list), and take quadratic time complex-

ity. The best time complexity for a sequential general MST solution is proposed

by Bernard Chazelle [15], and it takes O�Eα�E,V �� where α is the functional30

inverse of Ackermann’s function. However, it is time-consuming to apply these

general MST algorithms to build 3D EMST on the implicit complete graph

G � �V,g� whose N��N�1�
2

edge list E is unprepared and N is large.

Very few approaches directly address exact EMSF/EMST, except for some

efficient sequential algorithms like these algorithms using Delaunay triangulation35

[16], Voronoi diagram [17], K-d tree [18], dual tree [6], and a GPU parallel

algorithm using sliced spiral search [2]. They mainly take advantage of the

nearest neighbor search (NNS) [19] in Euclidean space since geometrically closest

pair of points naturally satisfy the definition of MST[6][18][20]. While, when

considering the 3D or higher K-d EMSF/EMST, previous solutions become even40

more rarer, the most recent optimal sequential EMST algorithm is the dual-tree

EMST proposed by March et al.[6].

It is not an easy trick to make an integral GPU parallel 2D/3D EMSF/EMST

algorithm and get actual computing acceleration over state-of-art sequential K-

d EMSF/EMST algorithm. This is because building K-d EMST is an iterative45

procedure including K�d NNS, tree traversal, and other graphical operations.

Parallelism of each sub-step should obey the characteristic of ”data parallelism,

decentralized control, and O�1� local memory occupied by each GPU thread”

in order to highly utilize the capability of NVIDIA GPU card series. Also,

frequent data transfer between CPU and GPU is time-consuming. To our best50

knowledge, we do not find in literature other researchers’ GPU parallel solutions

3



to 2D/3D EMSF/EMST problem.

2. Related Work

As we focus on GPU parallel EMSF/EMST algorithms, we ignore parallelism

of general MSF/MST such as [21, 22, 23, 24, 25, 26], and mainly investigate55

related EMSF/EMST algorithms[17, 18, 16, 20, 6, 2] and their operators. Actu-

ally, the most recent state-of-art sequential EMSF/EMST is proposed by March

et al. in 2010 [6], while the first GPU parallel EMSF/EMST was proposed by

Qiao et al. in 2019 [2].

Since the input graphG � �V,g� only contains vertexes, building EMSF/EMST60

naturally follows Bor̊uvka’s framework and consists of four steps illustrated in

Fig.1, which begins with each vertex of the graph G being a component (or local

MST) of a whole MSF, iteratively finds minimum weighted outgoing edge for

each component and adds all such edges to current components in one iteration.

During this procedure, size of each component grows arbitrarily and iteratively,65

and it mainly contains following operators:

� Find each component’s closest outgoing vertex. This includes two sub-

steps:

– FindMin1: Find each vertex’s closest outgoing point that belongs to

another component;;70

– FindMin2: Find each component’s shortest outgoing edge among all

sub-vertexes’ minimum outgoing weights.

� Union-find, to determine whether two nodes belongs to the same compo-

nent, connect old components and merge them into new big component.

Table 1 shows related operators to solve FindMin1 in literature, while table75

2 shows related operators to solve FindMin2.

To solve FindMin1, EMST algorithms usually use exact K-d NNS algorithm

by adding a judgment of whether the nearest points belong to different compo-

nents [17, 18, 16, 20, 6], except for the GPU parallel 2D-EMSF/EMST algorithm

4



(a) FindMin1 : Find each vertex’s

closest outgoing point. Number in

white ellipses represents each compo-

nent’ root identifier.

(b) FindMin2 : Find the node (dark

blue) with the shortest outgoing edge

of each component, called the winner

node of the component.

(c) Connect Graph: Add link to each

winner node’s and to its correspon-

dent node’s (green) adjacency list .

(d) Compact Graph: Merge these

connected local EMSTs by updating

each vertex’s root identifier.

Figure 1: The four main steps of building EMST in Bor̊uvka’s framework [2].

Table 1: Operators used to solve FindMin1 in related work. Italic fonts mean that these

operators are proposed in this paper.

-PU

o
2D NNS KD NNS 2D Component-based NNS 3D Component-based NNS

CPU

K-d tree[19]

Bentley Spiral Search [27]

K-d tree [19]

Dual tree [6]

Sliced Spiral Search [2]

GPU

K-d tree [28]

Bentley Spiral Search [29]

K-d tree [28]

K-d search

Sliced Spiral Search [2]

2-d search with

dynamic/static pruning

3-d search with

dynamic/static pruning

5



proposed by Qiao et al.[2], who proposed a sliced spiral search method that is a80

kind of component-based 2D NNS. Key difference lies in that many points will

belong to the same component when local MST grows big, so that many points’

exact K-d NNS become meaningless. And component-based K-d NNS re-

gards all vertexes of the component as a whole, and finds the whole’s closest

outgoing point that belongs to another component.85

For exact K-d NNS, except for brute force computing which we do not con-

sider in this paper, researchers often prefer to use K-d tree NNS method. K-d

tree NNS [19] and various improved tree data structures such as dual-tree [6],

VP-tree [30], Ball-tree [31] work based on hierarchical binary search tree accord-

ing to recursive K-d spatial partition. While, GPU parallelism of constructing90

high dimensional K-d tree data structure was recently solved by Hu et al. in 2015

[28], and it is complex to both consider the requirement of memory occupation

and decentralized control with which each point works independently.

(a) Cellular partition of 2D plane (b) Cellular partition of 3D Euclidean

space

Figure 2: Cellular partition of 2D/3D Euclidean space with square topology.

Other kind of exact K-d NNS, like Elias’ methods [32, 33], work based on par-

titioning the Euclidean K-dimensional space into congruent and non-overlapping95

sub-regions, cells, or bins, called cellular partition, which is conceptually

shown in Fig.2. All input Euclidean points define an axes aligned bounding box

with size of “width, height, depth, ...” of a whole Euclidean space. The quan-

tity of cells, or the individual area occupied by each cell, is scalable. Research

6



Table 2: Operators used to solve FindMin2 in related work. Italic fonts mean that these

operators are proposed in this paper.

-PU

o
Tree Traversal Union-find [35]

CPU
Deep-first Search (DFS)[36]

Breadth-first Search (BFS)[36]
common method

GPU

Breadth-first Search [22]

Two-direction Breadth-first Search [2]

Distributed dynamic link list

Union-find with parallel BFS1 [2]

Union-find with parallel Link list

interests lie in that both construction of cellular partition and NNS can be par-100

allelized with characteristic of “data parallelism, decentralized control and each

thread occupies O�1� local memory”. With cellular partition, each cell contains

a list of the points that fall within the cell’s boundaries. When a query point

q comes in, Elias’ NNS approach firstly searches the cell where q is located,

then passes to search these neighbor cells that are close to the starting cell [34].105

Bentley’s spiral search [27] belongs to a kind of Elias’ approaches through

accessing neighbor cells in a spiral manner. Once one point is found, it is guar-

anteed that there is no need to search any other cells that do not intersect the

circle of radius equals to the distance to the first point found and centered at the

query point [27, 2]. The primal GPU implementation of Bentley’s spiral search110

has been mentioned in the work proposed by Zhang et al.[29]. Qiao et al. [2]

combine Bentley spiral search with the uniqueness property in Euclidean space,

and propose sliced spiral search to build 2D EMSF/EMST. This paper, we

propose K-d search and 2D/3D component-based NNS for FindMin1, which

works based on congruent and non-overlapping square/cubic space partition.115

To solve FindMin2, since size of an independent component can not be pre-

dicted, GPU parallel tree traversal has to traverse all vertexes of a component

and select the shortest outgoing edge. Traditional depth-first search (DFS) [36]

cannot directly run on GPU since DFS works in a recursive manner which cur-

rent CUDA platform can not support. Hu et al. [28] transfer DFS recursive120

7



manner into an iterative manner using array-based priority queues on GPU for

parallel K-d tree NNS. Classical Breadth-first Search (BFS) [36] can directly

work on GPU [22], but needs a local variable to store frontier nodes whose

size depending on the input tree size. While, GPU can not support launching

large amount of independent BFSs with each thread occupying a large-size local125

variable. Harish et al.[22] explore parallelism between frontier nodes of BFS to

work in a manner of “data parallel, decentralized control and each thread oc-

cupies O�1� local memory on GPU”. However, when each frontier node works

independently and in parallel, communication problems arises for selecting the

shortest outgoing edge. Qiao et al. [2] proposed GPU two-directional BFS,130

which also adopts an iterative manner similar to Harish et al. [22] to deal with

frontier nodes from root to leaves, but adds a backtrack procedure from leaves

to the root again to select the shortest outgoing edge of a local MST. While,

this BFS iterative manner needs additional parallel reduction kernels to judge

termination at each iteration, leading to the limit of acceleration factors. This135

paper, we proposes GPU distributed linked list and CUDA kernels to implement

tree traversal.

After FindMin2, as shown in Fig.1, the shortest outgoing edge has been

found for each component, the rest graphical operations need to connect these

closest neighbor components and merge them into new big component. This140

procedure is generally accomplished by union-find algorithm [35]. GPU parallel

union-find can be implemented based on GPU parallel BFS to firstly construct

a root merging graph2, but this manner has been proved slower than sequential

union-find implementation [2]. In this paper, we implement GPU parallel union-

find with linked list and CUDA kernels.145

The following paper is organized as this: section 3 theoretically explain the

proposed 2D/3D component-based NNS based on square/cubic cellular parti-

tion; section 4 explains the proposed GPU implementation of key operators;

section 5 shows simulation results; and section 6 concludes this paper.

2https � ~~stanford.edu~ rezab~classes~cme323~S15~projects~parallel union find presentation.pdf

8



Table 3: Variables used to explain the proposed 2D/3D Component-based NNS.,

Variables Purpose Variables Purpose

q a query point p, pi,j , u, w an arbitrary point

C, Cq,

Cneighbor

Cell ceter L, step length
length/width of

a square/cubic cell

3. 2D/3D Component-based NNS based on Square/Cubic Cellular150

Partition

Based on congruent and non-overlapping cellular partition in K-d space,

sort of Elias’ NNS algorithms with respect to a query point q mainly concerns

two aspects: the way to access neighbor cells centering at the current cell Cq

where q is located, and the total quantity of neighbor cells needed to traverse155

for finding the nearest neighbor. In 2D space, the classical Bentley spiral search

manner works well to find the nearest neighbor at a little cost of accessing the

least quantity of neighbor cells. However, in 3D or higher K-d space, this spiral

manner should be re-designed to achieve that goal. Table 3 shows the variable

used to explain the proposed algorithms.160

Basic idea of component-based K-d search is to combine the advantage of

uniqueness property with NNS in K-d Euclidean space [2], if all the closest

points in separate regions possessing uniqueness property with respect to point

q belong to the same component, then q would never have chance to constitute

this component’s closest outgoing edge. While in higher K-d space, uniqueness165

property is not same to its 2D version. Based on uniqueness property, we

propose two ways to prune unnecessary cells’ search in both 2D and 3D space.

3.1. Uniqueness Property

As shown in Fig.3 (a), given a query point q in K-d Euclidean space, a

partitioned region R centering at q has the uniqueness property with respect to170

q if for every pair of points u,w > R, YwuY @max �YwqY , YuqY� [37]. In 2D space,

9



the maximum partitioned region centering at point q is the circulator sector

with 60X, while the equal case where YuqY � YwqY should be carefully treated

[2]. In K-D Euclidean space, because every 3 points construct a 2D plane, the

maximum partitioned region that has uniqueness property centering at point q175

is a partitioned region constructed by K �1 dimensional partitioned region that

possesses uniqueness property.

(a) (b) (c)

Figure 3: Slab spatial partition that possesses uniqueness property based on square/cubic

cellular partition of the 2D/3D space.

Due to the square/cubic topology of 2D/3D cellular partition, it can easily

educe other spatial partitions possessing uniqueness property. For example, in

2D square cellular partition shown in Fig.3(b), centering at the query point q180

and along the 4 coordinate axes from q, it exists 8 equal 45X circulator sectors

possessing uniqueness property. While, in 3D cubic cellular partition, centering

at q and along with the coordinate axes and vertexes of a cubic cell, a region

with bold line shown in Fig.3(c) possesses uniqueness property, the maximum

triangle with q as vertex is 53.5X in this region. Each 3D cubic cell has 6 faces185

and each face has 4 such regions. We call each 2D sector or 3D region possessing

uniqueness property centering at q as a “slab”.

However, the square/cubic topology has its limitations when expanding

uniqueness property in higher 4D or K-d space. As shown in Fig.4, start from

q, along with one axes direction in the K �th dimension and connect the furthest190

point p with coordinate (1,1) or (1,1,1) or (1,1,1,1) or (1,1,1,1,1), ∠pqph defines

10



the maximum triangle located in the region. The red lines in Fig.4 indicate the

hyperplane between q and p. Point ph indicates the intersecting point between

the hyperplane (red line) and the axes in the Kth dimension. ∠pqph equals to

60X in 4D Euclidean space, while this angle is larger than 60X in 5D space.195

(a) 2-d (b) 3-d

(c) 4-d (d) 5-d

Figure 4: Analysis of uniqueness property defined by 2D/3D/4D/5D square/cubic cellular

partition.

3.2. K-d search

Generally, working on square/cubic cellular partition shown in Fig.2, from

current cell Cq, one K-d search enters into neighbor cells along every one of the

2 �K coordinate axes directions with step length m �L (m � 1,2,3..), where L

indicates the axes-parallel distance between every two closest cell centers, and200

then expands search to the rest K � 1 dimensional space with the same step

length m � L until the stop searching criteria are satisfied, as shown in Fig.5.

11



Take 3D search as an example and make each cell center as an abstract node,

Fig.6 (a,c,e,g) shows the way to search cells along one of the 6 coordinate axes

directions.205

Figure 5: General K-d search manner

The overall stop searching criteria take advantage of hyperplane between

q and the first point p found. Given the distance dmax between q and the

first neighbor point p as shown in Fig.7, there is not need to search cells located

further than �dmax~L�1��L to the cell center Cq. This is due to the hyperplane

between q and p defines two regions: one shallow region where all points are210

closer to point p than to q, shown in Fig.7(a); another shallow region that does

not need to be searched for q’s NNS, shown in Fig.7(b).

3.3. Pruning techniques

Using pure K-d search takes too much time to find a query point q�s closest

outgoing point when a local component is too much big. The component-based215

NNS prunes many points’ closest outgoing point search according to the unique-

ness property explained in section 3.1. While, there are two ways to prune

unnecessary neighbor cells’ access.

One is a dynamical way that the algorithm searches each point’s closest

outgoing point at each iteration, once one closest point pi in one slab has been220

confirmed belonging to the same component with q, this slab is closed for later

search. The other one is a static way that the algorithm firstly searches all

the closest points pi in all separate slabs, then in later iterations there is no

K-d NNS procedure until final EMST is achieved. These two procedures are

explained together in Algorithm 2.225

12



(a) (b)

(c) (d)

Figure 6: K-d search manner to access neighbor cells one face after another and one slab by

one slab with same step length. (a-d) shows the algorithm searches four slabs after entering

one face of the cubic cell Cq where the query point q locates. Round blue points indicate cell

centers Cq ,C of each cell.

(a) (b)

Figure 7: Hyper-plane (red) between the query point q and the first neighbor point p found

in K-d Euclidean space.

13



Figure 8: Component-based 2D/3D NNS based on uniqueness property defined by

square/cubic cellular partition.

4. GPU Parallel Operators to Build EMSF/EMST

We implement all the proposed operators, like GPU parallel construction of

cellular partition, 2D/3D component-based NNS, tree traversal and union-find,

using different graph representations and CUDA kernels.

Since GPU models treat memory as general arrays [28, 21, 22], we also230

implement all graph representation and operators upon arrays, labeled as “grid”,

g @ node A, of a certain type of element or node, for example, the input points

are stored in a grid gp, each point gp has its id that is indice on the grid. Table

4 illustrates key variables used in this paper.

Taking an EMSF instance G�
� �V �,E�� shown in Fig.9(a) as an example.235

Firstly, the whole EMSF G� is represented by doubly linked vertex list (DLVL)

shown in Fig.9(b), where the i�s node i > �0,N� contains a bounded buffer

to store its edge list (also called links), and a “size” to indicate number of

links. Secondly, each local EMST component of G� is represented in two ways.

One way is disjoint set data structure (DSS) shown in Fig.10(a-d). DSS is240

implemented as an array of indices shown in Fig.10(e), where the i�s node i >

�0,N� contains a pointer to i�s parent node in the tree. The other way is link

list connecting the root and all leaves one by one, until reaching the last node

that is characterized by an index with a dummy value such as -1, as shown in

Fig.11(a-d), where the i�s node i > �0,N� stores a pointer to current node’s next245

14



Table 4: Variables used to illustrate the proposed GPU operators.

Variables Purpose Variables Purpose

gp grid of N input Euclidean Points id,tid index of a point located in gp

gcm cellular partition cellId index of a cell located in gcm

gcorr
grid of each point’s closest

outgoing point, selected by FindMin1

iwin

inex

icorres

index of a winner or next point,

or the winner’s corresponding

point located in a grid

gwin

grid of each component’s winner vertex

possessing the component’s shortest

outgoing edge, selected by FindMin2

corres
index of a point’s closest

outgoing piont

gdss grid of disjoint set trees root, ri,j root of a local EMST

gddll
grid of distributed dynamic

link list
link index of a point’s link

gdist grid of each point’s outgoing distance dist
Euclidean distance

between two points

gdlvl grid of doubly linked list L
The searching step length from

current cell Cq where q locates

gssm
grid of each point’s

component-based NNS results
Lmax

The max topological distance

need to be searched theoretically

15



node along the link list. Since local EMST of current EMSF grows dynamically

at different iterations, and all local MEST’s component lists are implemented in

one array shown in Fig.11(e), it is called distributed dynamic link list (DDLL).

(a) (b)

Figure 9: (a) EMSF instance consists of local EMSTs; (b) Data structure of doubly linked

vertex list (DLVL) to represent EMSF shown in (a).

(a) (b) (c) (d)

(e)

Figure 10: (a-d) Disjoint set trees (DSS) to represent local EMSTs shown in Fig.9(a); (e)

Data structure of DSS.

4.1. GPU Parallel Construction of K-d Cellular Partition

We construct the K-d cellular partition on GPU through assigning one thread250

to one input Euclidean point. As shown in Alg.1, each point associated with a

thread tries to find the cell where it is located. All N points can be inserted

into cellular partition in parallel.

4.2. GPU Parallel 2D/3D Search with Pruning Technique

For 2D/3D component-based NNS with dynamic/pruning technique based255

on square/cubic cellular partition, which is explained in section 3.3, we assign

16



(a) (b)

(c) (d)

(e)

Figure 11: (a-d) Link list to represent local EMSTs shown in Fig.9(a); (e) Data structure of

distributed dynamic link list.

ALGORITHM 1: Kernel: construct K-d cellular partition on GPU side with

one thread assigned to one input point.

input: gp with N input Euclidean Points

output: gcm

tid� getThreadID ;

if gp�tid� is valide then

IndexType cellId = findCell(gp�tid�) ; // find the cell where point

gp�tid� locates.

gcm�cellId� inserts (gp�tid�);

end

17



each input point a CUDA thread to find each component’s shortest outgoing

point in parallel. As shown in Alg.2, the dynamic pruning has a procedure to

find each point’s closest outgoing point, while the static way only choose to find

all separate closest point in independent slabs.260

4.3. GPU Parallel Tree Traversal with Distributed dynamic link list

Instead of using GPU parallelism of BFS or DFS for tree traversal to collect

the shortest outgoing edge of a local EMST component, we combine the disjoint

set data structure with GPU lock-free parallel link list data structure proposed

by Nyland et al. [38] to accomplish this task.265

It contains two independent GPU CUDA kernels illustrated in Alg.3 and

Alg.4. Alg.3 starts from independent point, finds root of this point and adds

itself to the root’s link list using GPU CUDA lock-free Atomic operation [38].

Alg.4 traverses independent link lists from their root nodes to collect the shortest

outgoing edge within each component.270

4.4. GPU Parallel Union-find with link list

We divide GPU parallelism of union-find algorithm into two independent

CUDA kernels. First, Union operation updates the new root of the connected

old root nodes, which can be executed in the same kernel with the Connect

operation shown in Alg.5. Second, Flattening operation updates all leave nodes’275

root to the same new root, as shown in Alg.6.

5. Experiments

Due to the fact that few algorithms exist in current literature that produce

an exact Euclidean MST, and the most optimal sequential EMST algorithm

that in current literature is the state-of-the-art “dual-tree EMST” algorithm280

[6] from Mlpack library 3. Experimental comparisons are designed as the fol-

lowing. We ignore sequential EMST implementations using Prim’s, Bor̊uvka’s,

3https://www.mlpack.org/

18



ALGORITHM 2: 2D/3D component-based NNS based on square/cubic cellular

partitions with dynamic/static pruning technique.

input: gp, gcm, gdss

output: Closest outgoing point corres, all slab points slab[j], gssm, gdis, gcorr.

tid� getThreadID ;

if gp�tid� is valide then

while L @� Lmax do

for each face do

if L A distmin or current face locates on the boundary of gcm then

current face is closed to be searched;

end

if current face has to be searched then

for each slab of current face do

check slab is previously closesd or not ;

if current slab has to be search then

for each cell in current slab do

for each point pi in current cell do

if dynamic pruning && point pi, gp�tid� in

different component then

update corres, distmin;

end

if static pruning SS (dynamic pruning && point pi,

gp�tid� in same component) then

check if pi locates in a slab�j�;

if pi in slab[j] then

update slab�j�.corres� pi;

update slab�j�.dist� dist�pi, gp�tid��;

end

end

end

end

end

end

end

end

L ++;

end

end

19



ALGORITHM 3: Kernel: construct distributed dynamic link list.

input: gcorr, gdss

output: gddll

tid� getThreadID;

if tid is valid grid index then

if gcorr�tid� x �1 then

root� gdss�tid�;

if root x tid then

old, link = gddll�root�;

do

old � link;

gddll�tid�� old;

link = atomicCAS(gddll�root�, link, tid);

while link x old ;

end

end

end

20



ALGORITHM 4: Kernel: find minimum outgoing edges by traversing each link

list.
input: gddll, gdss, gcorr, gdist

output: gwin

tid� getThreadID;

if tid is valid grid index then

root� gdss�tid�;

if root �� tid then

iwin � tid;

inex � tid;

while inex exists do

dist� gdist�inex�;

corres� gcorr�inex�;

Select minimum dist, update iwin � inex;

inex � gddll�inex�;

end

gwin�iwin�� true;

end

end

21



ALGORITHM 5: Kernel. Connect and union components.

input: gwin, gcorr, gdss, g�dss � gdss

output: gdlvl, gdss

tid� getThreadID;

if gwin�tid� is a winner node then

corres� gcorr�tid�;

gdlvl�tid�� corres; // Add corr to iwin’s adjacency list.

rwin � g�dss�tid� ;

rcorres � g�dss�corres�;

if (corres is not a winner node) Y (corres is winner node &&

gcorr�corres� x tid then

Atomic-Insert gdlvl�corres�� tid;

gdss�rwin� � rcorres;

else if rwin @ rcorres then

gdss�rcorres� � rwin;

end

end

end

ALGORITHM 6: Kernel. Flattening component.

input: gdss, g�dss � gdss

output: gdss

tid� getThreadID;

if tid is valid then

r � tid ;

while r x gdss�r� do

r � gdss�r�

end

gdss�tid�� r ; // update root

end

22



Kruskal’s algorithm since their quadratic time complexity and they have been

tested running much slower than sequential sliced spiral search [2]. While, GPU

parallel Bentley spiral search [39, 40] and the sliced spiral search [2] all work285

in 2D space, only dual-tree mlpack EMST [6] can build 3D EMSF/EMST. We

firstly compare the efficiency of our newly proposed GPU operators working on

2D input instances. Then, we provide an integral GPU parallel EMSF/EMST

algorithm, and compare it mainly with dual-tree mlpack EMST.

Source code of our proposed GPU parallel 2D/3D EMSF/EMST algorithm290

in this paper has been put on GitHub4. We implemented all proposed algorithms

using C/C++, CUDA Toolkit v9.1, and QT creator as a cross-platform com-

piler. Unless specified, code is compiled on laptop with CPU Intel(R) Core(TM)

i7-4710HQ, 2.5 GHz with 8GB of RAM running Windows, GPU card GeForce

GTX 850M. CUDA configuration is set fixedly as @@@N/128 + 1, 128AAA.295

Test benchmarks include 23 2D uniform distributed data sets, 23 2D bench-

marks for Euclidean National Traveling Salesman Problems (TSP) offered by

TSPLIB [41], and 10 larger 3D uniform distributed data sets. These data sets

simulate a wide range of possible data distribution in Euclidean space.

About evaluation items, since we focus on GPU parallelism, we put empha-300

sis on firstly, the running time of different algorithms; secondly, whether the

quantity of total edges of EMST result built for the same N points equals to

N �1; thirdly, whether total length of the same instance’s EMST result remains

the same at different executions of an GPU parallel algorithm. The last two

items have been confirmed to remain the same in all the following experimen-305

tal comparisons. Each test instance has been executed more than 10 times to

confirm the conclusion obtained.

4https � ~~wenbaoqiao.github.io~Component � based � 2D � 3D �NNS � to �GPU � parallel �

2D � 3D �EMST ~

23



Figure 12: Accumulated time of Find Min 1 with different NNS algorithms in different itera-

tions to build EMST for 2D uniform-700000 and ch71009.tsp benchmarks.

5.1. Evaluation of Independent GPU Operators

For operators to solve FindMin1, we compare GPU parallel EMST algo-

rithms using separate Bentley spiral search, pure K-d search with no pruning,310

K-d search with dynamic pruning, K-d search with static pruning technique.

Fig.12 shows the accumulated time taken by these operators at different

iterations of building EMSF/EMST for 2D uniform 700000 and ch71009.tsp

[41] benchmarks. It is clear to see that using exact NNS to find each point’s

closest outgoing point takes more time in later iterations because size of each315

component grows large, such as Bentley spiral search and K-d search with no

pruning. While, the component-based NNS take less time in later iterations

than pure NNS, such as K-d search with dynamic pruning and sliced spiral

search. The sliced spiral search has unstable performance when running on

ch71009.tsp and takes more time than K-d search with no pruning, but it takes320

less time when running on uniform 700000 instance. This is because sliced

24



Figure 13: Accumulated time of Find Min 2 with GPU two-direction BFS and distributed

dynamic link list at different iterations to build EMST for 2D uniform-700000 and ch71009.tsp

benchmarks.

25



spiral search adopt a different manner to check slabs and cells that do not need

to access, which is sensitive to input data distribution. However, the K-d search

with static pruning technique performs much more stable in different iterations.

This is because the static pruning strategy only perform component-based NNS325

at the first iteration, and does not in later iterations.

Figure 14: Accumulated time of the winner GPU kernel operators in different iterations to

build EMST for 2D uniform-700000 and ch71009.tsp benchmarks.

For operators to solve FindMin2 using GPU tree traversal algorithms, since

most related work in literature applies BFS, we mainly compare the GPU two

directional BFS [2] and our newly proposed GPU distributed dynamic link list.

Fig.13 shows the accumulated time taken by the two operators at different330

iterations of building EMSF/EMST for 2D uniform 700000 and ch71009.tsp

[41] benchmarks. It is clear to see that GPU two-direction BFS takes much

more time in later iterations when size of component grows large, while using

dynamic link list takes much more less time. This is because the iterative GPU

26



parallel BFS proposed by Harish et al.[22] and applied by Qiao et al.[2] all need335

additional parallel reduction kernels to judge temination at each BFS iteration.

While, the construction of distributed dynamic linked list uses CUDA lock-free

atomic operations, and the traversal of linked list performs in single kernel,

which is very fast when all linked lists perform in parallel.

For rest operators like connect-union and flattening, their performance mainly340

depends on parallel union-find operator, which can be implemented by GPU

BFS 5 or dynamic link list. While, there is no need to compare GPU BFS and

GPU distributed dynamic link list again. Fig.14 shows the accumulated time

of these winner operators in different iterations to build EMST for 2D uniform

700000 and ch71009.tsp benchmarks. It is clear to see that time taken by these345

winner operators grow linearly.

5.2. Evaluation of the Whole Algorithm

Combine the proposed GPU parallel K-d search with static pruning tech-

nique, tree traversal and union-find operators with dynamic link list to be a

whole GPU parallel EMSF/EMST algorithm, we name it as “K-d search with350

static pruning EMST” and compare it with current optimal sequential EMST

algorithm, namely dual-tree mlpack EMST.

In 2D space, Fig.15 shows the overall running time of these two algorithms

to build exact EMST for 23 instances with uniform data distribution and 23

national TSP instances with arbitrary data distribution. It is clear to see K-d355

search with static pruning EMST takes less time than dual-tree mlpack EMST.

In 3D space, Fig.16 also shows that K-d search with static pruning EMST

runs faster than dual-tree mlpack EMST algorithm. And since some GPU card

series share the same CUDA platform and our proposed GPU parallel algorithm

follows “data parallelism, decentralized control, and each thread occupies O�1�360

local memory”, our proposed GPU parallel EMST can run on more advanced

GPU cards. As shown in Fig.16, the running time comparison between GTX

5https � ~~stanford.edu~ rezab~classes~cme323~S15~projects~parallel union find presentation.pdf

27



850M, GTX 980M and GTX1080Ti shows our proposed algorithm can achieve

more acceleration factors along with the development of GPU hardware.

Figure 15: Overall running time comparison between of our proposed K-d search with static

pruning EMST and dual-tree mlpack EMST in 2D space.

6. Conclusion365

This paper explores GPU parallelism of building 2D/3D EMST/EMSF in

Bor̊uvka’s framework with every key step working on GPU side and the integral

implementation runs faster than current optimal sequential EMST and previous

GPU parallel EMST algorithms. Parallelism of these operators follow “data

parallelism, decentralized control and O�1� local memory for each GPU thread”,370

which enables further acceleration on more advanced GPU cards.

For FindMin1 operators, we propose a general K-d NNS search based on

congruent and non-overlapping cellular partition with square topology, and im-

prove it with pruning technique in 2D/3D space for finding a local component’s

closest outgoing point. Also, we explore two different pruning manners, one is375

28



(a)

Figure 16: Overall running time comparison between our proposed K-d search with static

pruning EMST and dual-tree mlpack EMST in 3D space. And the comparison of acceleration

factors achieved along with the development of GPU cards.

dynamic and the other is static pruning. Experimental comparison proves that

the static pruning technique save more running time.

For FindMin2 operators and union-find, we jump out of GPU parallel BFS or

DFS algorithms for tree traversal, propose to apply linked list data structure on

GPU and profit from the CUDA atomic operations to achieve higher running380

speed. Though GPU parallelism prefer coalesced memory access on arrays,

here because size of independent component can not be predicted, linked list is

a compromised option.

The proposed methods provide basis for some higher level distributed or

parallel algorithms in both 2D and 3D Euclidean space. Application to other385

Euclidean problems can be envisaged with high efficiency and within divide-

and-conquer scheme, for example 3D traveling salesman problem, hierarchical

2D/3D data clusters and apply them to 2D/3D image processing such as optical

flow or stereo matching problems.

7. Acknowledgements390

This paper is sponsored by Chinese Scholarship Council. Thank you very

much.

29



References

[1] O. Boruvka, O jistém problému minimálńım (1926).

[2] W.-b. Qiao, J.-C. Créput, Gpu implementation of bor̊uvka’s algorithm to395

euclidean minimum spanning tree based on elias method, Applied Soft

Computing 76 (2019) 105–120.

[3] L. Li, X. Yu, S. Zhang, X. Zhao, L. Zhang, 3d cost aggregation with multiple

minimum spanning trees for stereo matching, Applied Optics 56 (12) (2017)

3411–3420.400

[4] D. Scharstein, R. Szeliski, A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms, International journal of computer vision

47 (1-3) (2002) 7–42.

[5] Y. Xu, V. Olman, D. Xu, Clustering gene expression data using a graph-

theoretic approach: an application of minimum spanning trees, Bioinfor-405

matics 18 (4) (2002) 536–545.

[6] W. B. March, P. Ram, A. G. Gray, Fast euclidean minimum spanning

tree: algorithm, analysis, and applications, in: Proceedings of the 16th

ACM SIGKDD international conference on Knowledge discovery and data

mining, ACM, 2010, pp. 603–612.410

[7] C. Zhong, D. Miao, P. Fränti, Minimum spanning tree based split-and-

merge: A hierarchical clustering method, Information Sciences 181 (16)

(2011) 3397–3410.

[8] L. An, Q.-S. Xiang, S. Chavez, A fast implementation of the minimum

spanning tree method for phase unwrapping, IEEE transactions on medical415

imaging 19 (8) (2000) 805–808.

[9] Y. Xu, E. C. Uberbacher, 2d image segmentation using minimum spanning

trees, Image and Vision Computing 15 (1) (1997) 47–57.

30



[10] N. Christofides, Worst-case analysis of a new heuristic for the travelling

salesman problem, Tech. rep., Carnegie-Mellon Univ Pittsburgh Pa Man-420

agement Sciences Research Group (1976).

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and

challenges, IEEE Internet of Things Journal 3 (5) (2016) 637–646.

[12] J. Nešetřil, E. Milková, H. Nešetřilová, Otakar bor̊uvka on minimum span-

ning tree problem translation of both the 1926 papers, comments, history,425

Discrete mathematics 233 (1-3) (2001) 3–36.

[13] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling

salesman problem, Proceedings of the American Mathematical society 7 (1)

(1956) 48–50.

[14] R. C. Prim, Shortest connection networks and some generalizations, Bell430

system technical journal 36 (6) (1957) 1389–1401.

[15] B. Chazelle, A minimum spanning tree algorithm with inverse-ackermann

type complexity, Journal of the ACM (JACM) 47 (6) (2000) 1028–1047.

[16] A. Lingas, A linear-time construction of the relative neighborhood graph

from the delaunay triangulation, Computational Geometry 4 (4) (1994)435

199–208.

[17] M. I. Shamos, D. Hoey, Closest-point problems, in: Foundations of Com-

puter Science, 1975., 16th Annual Symposium on, IEEE, 1975, pp. 151–162.

[18] J. L. Bentley, J. H. Friedman, Fast algorithms for constructing minimal

spanning trees in coordinate spaces, IEEE Trans. Comput. 27 (STAN-CS-440

75-529) (1975) 97.

[19] J. L. Bentley, Multidimensional binary search trees used for associative

searching, Communications of the ACM 18 (9) (1975) 509–517.

[20] S. Rajasekaran, On the euclidean minimum spanning tree problem, Com-

puting Letters, 2004 1 (1) (2004).445

31



[21] V. Vineet, P. Harish, S. Patidar, P. Narayanan, Fast minimum spanning

tree for large graphs on the gpu, in: Proceedings of the Conference on High

Performance Graphics 2009, ACM, 2009, pp. 167–171.

[22] P. Harish, V. Vineet, P. Narayanan, Large graph algorithms for massively

multithreaded architectures, International Institute of Information Tech-450

nology Hyderabad, Tech. Rep. IIIT/TR/2009/74 (2009).

[23] S. Nobari, T.-T. Cao, P. Karras, S. Bressan, Scalable parallel minimum

spanning forest computation, in: ACM SIGPLAN Notices, Vol. 47, ACM,

2012, pp. 205–214.

[24] S. Chung, A. Condon, Parallel implementation of bouvka’s minimum span-455

ning tree algorithm, in: Parallel Processing Symposium, 1996., Proceedings

of IPPS’96, The 10th International, IEEE, 1996, pp. 302–308.

[25] K. W. Chong, Y. Han, T. W. Lam, Concurrent threads and optimal parallel

minimum spanning trees algorithm, Journal of the ACM (JACM) 48 (2)

(2001) 297–323.460

[26] D. A. Bader, K. Madduri, Designing multithreaded algorithms for breadth-

first search and st-connectivity on the cray mta-2, in: Parallel Processing,

2006. ICPP 2006. International Conference on, IEEE, 2006, pp. 523–530.

[27] J. L. Bentley, B. W. Weide, A. C. Yao, Optimal expected-time algorithms

for closest point problems, ACM Transactions on Mathematical Software465

(TOMS) 6 (4) (1980) 563–580.

[28] L. Hu, S. Nooshabadi, M. Ahmadi, Massively parallel kd-tree construc-

tion and nearest neighbor search algorithms, in: 2015 IEEE International

Symposium on Circuits and Systems (ISCAS), IEEE, 2015, pp. 2752–2755.

[29] N. Zhang, H. Wang, J.-C. Creput, J. Moreau, Y. Ruichek, Cellular gpu470

model for structured mesh generation and its application to the stereo-

matching disparity map, in: Multimedia (ISM), 2013 IEEE International

Symposium on, IEEE, 2013, pp. 53–60.

32



[30] P. N. Yianilos, Data structures and algorithms for nearest neighbor search

in general metric spaces, in: Acm-siam Symposium on Discrete Algorithms,475

1993.

[31] S. M. Omohundro, Five balltree construction algorithms, International

Computer Science Institute Berkeley, 1989.

[32] R. L. Rivest, On the optimality of elia’s algorithm for performing best-

match searches., in: IFIP Congress, 1974, pp. 678–681.480

[33] J. G. Cleary, Analysis of an algorithm for finding nearest neighbors in

euclidean space, ACM Transactions on Mathematical Software (TOMS)

5 (2) (1979) 183–192.

[34] M. Greenspan, G. Godin, J. Talbot, Acceleration of binning nearest neigh-

bor methods, Proceedings of Vision Interface 2000 (2000) 337–344.485

[35] R. E. Tarjan, J. Van Leeuwen, Worst-case analysis of set union algorithms,

Journal of the ACM (JACM) 31 (2) (1984) 245–281.

[36] T. H. Cormen, Introduction to algorithms, MIT press, 2009.

[37] G. Robins, J. S. Salowe, On the maximum degree of minimum spanning

trees, in: Proceedings of the tenth annual symposium on Computational490

geometry, ACM, 1994, pp. 250–258.

[38] L. Nyland, S. Johns, Understanding and using atomic memory operations,

in: 4th GPU Technology Conf.(GTC’13), March, 2013.

[39] N. Zhang, Cellular gpu models to euclidean optimization problems: Appli-

cations from stereo matching to structured adaptive meshing and travel-495

ing salesman problem, Ph.D. thesis, Université de Technologie de Belfort-

Montbeliard (2013).

[40] H. Wang, Cellular matrix for parallel k-means and local search to eu-

clidean grid matching, Ph.D. thesis, Université de Technologie de Belfort-

Montbéliard (2015).500

33



[41] G. Reinelt, Tsplib—a traveling salesman problem library, ORSA journal

on computing 3 (4) (1991) 376–384.

34




