Wen-Bao Qiao

Jean-Charles Créput

Component-based 2-/3-dimensional Nearest Neighbor Search based on Elias method to GPU parallel 2D/3D Euclidean Minimum Spanning Tree Problem

Keywords: Component-based nearest neighbor search, 3D Euclidean Minimum Spanning Tree, GPU Parallel 3D EMST, GPU Breadth first search, GPU union-find, GPU link list, decentralized control

We present improved data parallel approaches working on graphics processing unit (GPU) compute unified device architecture (CUDA) platform to build hierarchical Euclidean minimum spanning forest or tree (EMSF/EMST) for applications whose input only contains N points with arbitrary data distribution in 2D/3D Euclidean space. Characteristic of the proposed parallel algorithms follows "data parallelism, decentralized control and O1 local memory occupied by each GPU thread". This research has to solve GPU parallelism of component-based nearest neighbor search (component-based NNS), tree traversal, and other graph operations like union-find. For exact NNS, instead of using classical K-d tree search or brute-force computing method, we propose a K-d search method working based on dividing the Euclidean K-dimensional space into congruent and non-overlapping square/cubic cells where size of points in each cell is bounded. For component-based NNS, with the uniqueness property based on 2D/3D square/cubic space partition, we propose dynamic and static pruning techniques to prune unnecessary neighbor cells' search. For tree traversal, instead of using breadth-first-search, this paper proposes CUDA kernels working with a distributed dynamic link list for selecting a local spanning tree's shortest outgoing edge since size of local EMSTs in EMSF can not be predicted.

Introduction

Given a point set v i b V of N points in Kdimensional Euclidean space, the exact Euclidean Minimum Spanning Tree (EMST) problem is to find the lowest weight spanning tree in a complete un-directed graph G V, g, v 0 , v 1 , ...v N 1 b

V , with implicit N !N 1 2
edge list E and edge weights given by the Euclidean distance between any two points. A general minimum weight spanning tree (MST) is defined as: given a general weighted un-directed graph G V, E with N vertexes and explicit edge list E, finding a subset of E that connects all vertexes without any circles and with minimum total edges' weight [START_REF] Boruvka | O jistém problému minimálním[END_REF]. A minimum spanning forest (MSF) consists of local MSTs on each of the connected graph components of that graph G. A connected component (or just component) of an un-directed graph G is a sub-graph of G in which any two vertexes are connected by a finite or infinite sequence of edges [START_REF] Boruvka | O jistém problému minimálním[END_REF][START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF]. MSF/MST is widely used in computer vision, pattern recognition and data mining applications, for example, researchers have applied MST to stereo matching and achieved top ranking result on Middlebury [START_REF] Li | 3d cost aggregation with multiple minimum spanning trees for stereo matching[END_REF][START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF]; MSF consisting various small MSTs naturally forms data clusters of an input [START_REF] Xu | Clustering gene expression data using a graphtheoretic approach: an application of minimum spanning trees[END_REF][START_REF] March | Fast euclidean minimum spanning tree: algorithm, analysis, and applications[END_REF][START_REF] Zhong | Minimum spanning tree based split-andmerge: A hierarchical clustering method[END_REF], like image segmentation [START_REF] An | A fast implementation of the minimum spanning tree method for phase unwrapping[END_REF][START_REF] Xu | 2d image segmentation using minimum spanning trees[END_REF]; an exact MST also provides upper bound for tour length estimation of traveling salesman problems [START_REF] Christofides | Worst-case analysis of a new heuristic for the travelling salesman problem[END_REF]. In cases when the input only contains independent Euclidean points, building MSF/MST becomes EMSF/EMST problem. Furthermore, with the development of big data and edge-computing in real 3dimensional world [START_REF] Shi | Edge computing: Vision and challenges[END_REF], some applications require the ability to deal with big 3D data in real-time on graphics processing unit (GPU). This further requires the capability to build large-size 3D MSF/MST in real-time.

Three classical MST algorithms like Borůvka's [START_REF] Boruvka | O jistém problému minimálním[END_REF] (see [START_REF] Nešetřil | Otakar borůvka on minimum spanning tree problem translation of both the 1926 papers[END_REF] for translation), [START_REF]On the shortest spanning subtree of a graph and the traveling salesman problem[END_REF] [START_REF]On the shortest spanning subtree of a graph and the traveling salesman problem[END_REF] and [START_REF] Prim | Shortest connection networks and some generalizations[END_REF] [START_REF] Prim | Shortest connection networks and some generalizations[END_REF] algorithms establish the basis of MST implementations. They all work sequentially on standard general graph with predefined distance matrix (or edge list), and take quadratic time complexity. The best time complexity for a sequential general MST solution is proposed by Bernard Chazelle [START_REF] Chazelle | A minimum spanning tree algorithm with inverse-ackermann type complexity[END_REF], and it takes OEαE, V where α is the functional inverse of Ackermann's function. However, it is time-consuming to apply these general MST algorithms to build 3D EMST on the implicit complete graph G V, g whose N !N 1 2 edge list E is unprepared and N is large.

Very few approaches directly address exact EMSF/EMST, except for some efficient sequential algorithms like these algorithms using Delaunay triangulation [START_REF] Lingas | A linear-time construction of the relative neighborhood graph from the delaunay triangulation[END_REF], Voronoi diagram [START_REF] Shamos | Closest-point problems[END_REF], K-d tree [START_REF] Bentley | Fast algorithms for constructing minimal spanning trees in coordinate spaces[END_REF], dual tree [START_REF] March | Fast euclidean minimum spanning tree: algorithm, analysis, and applications[END_REF], and a GPU parallel algorithm using sliced spiral search [START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF]. They mainly take advantage of the nearest neighbor search (NNS) [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF] in Euclidean space since geometrically closest pair of points naturally satisfy the definition of MST [START_REF] March | Fast euclidean minimum spanning tree: algorithm, analysis, and applications[END_REF][18] [START_REF] Rajasekaran | On the euclidean minimum spanning tree problem[END_REF]. While, when considering the 3D or higher K-d EMSF/EMST, previous solutions become even more rarer, the most recent optimal sequential EMST algorithm is the dual-tree EMST proposed by March et al. [START_REF] March | Fast euclidean minimum spanning tree: algorithm, analysis, and applications[END_REF].

It is not an easy trick to make an integral GPU parallel 2D/3D EMSF/EMST algorithm and get actual computing acceleration over state-of-art sequential Kd EMSF/EMST algorithm. This is because building K-d EMST is an iterative procedure including Kd NNS, tree traversal, and other graphical operations.

Parallelism of each sub-step should obey the characteristic of "data parallelism, decentralized control, and O1 local memory occupied by each GPU thread" in order to highly utilize the capability of NVIDIA GPU card series. Also, frequent data transfer between CPU and GPU is time-consuming. To our best knowledge, we do not find in literature other researchers' GPU parallel solutions to 2D/3D EMSF/EMST problem.

Related Work

As we focus on GPU parallel EMSF/EMST algorithms, we ignore parallelism of general MSF/MST such as [START_REF] Vineet | Fast minimum spanning tree for large graphs on the gpu[END_REF][START_REF] Harish | Large graph algorithms for massively multithreaded architectures[END_REF][START_REF] Nobari | Scalable parallel minimum spanning forest computation[END_REF][START_REF] Chung | Parallel implementation of bouvka's minimum spanning tree algorithm[END_REF][START_REF] Chong | Concurrent threads and optimal parallel minimum spanning trees algorithm[END_REF][START_REF] Bader | Designing multithreaded algorithms for breadthfirst search and st-connectivity on the cray mta-2[END_REF], and mainly investigate related EMSF/EMST algorithms [START_REF] Shamos | Closest-point problems[END_REF][START_REF] Bentley | Fast algorithms for constructing minimal spanning trees in coordinate spaces[END_REF][START_REF] Lingas | A linear-time construction of the relative neighborhood graph from the delaunay triangulation[END_REF][START_REF] Rajasekaran | On the euclidean minimum spanning tree problem[END_REF][START_REF] March | Fast euclidean minimum spanning tree: algorithm, analysis, and applications[END_REF][START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF] and their operators. Actually, the most recent state-of-art sequential EMSF/EMST is proposed by March et al. in 2010 [START_REF] March | Fast euclidean minimum spanning tree: algorithm, analysis, and applications[END_REF], while the first GPU parallel EMSF/EMST was proposed by Qiao et al. in 2019 [2].

Since the input graph G V, g only contains vertexes, building EMSF/EMST naturally follows Borůvka's framework and consists of four steps illustrated in Union-find, to determine whether two nodes belongs to the same component, connect old components and merge them into new big component.

Table 1 shows related operators to solve FindMin1 in literature, while table 2 shows related operators to solve FindMin2.

To solve FindMin1, EMST algorithms usually use exact K-d NNS algorithm by adding a judgment of whether the nearest points belong to different components [START_REF] Shamos | Closest-point problems[END_REF][START_REF] Bentley | Fast algorithms for constructing minimal spanning trees in coordinate spaces[END_REF][START_REF] Lingas | A linear-time construction of the relative neighborhood graph from the delaunay triangulation[END_REF][START_REF] Rajasekaran | On the euclidean minimum spanning tree problem[END_REF][START_REF] March | Fast euclidean minimum spanning tree: algorithm, analysis, and applications[END_REF], except for the GPU parallel 2D-EMSF/EMST algorithm Bentley Spiral Search [START_REF] Bentley | Optimal expected-time algorithms for closest point problems[END_REF] K-d tree [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF] Dual tree [START_REF] March | Fast euclidean minimum spanning tree: algorithm, analysis, and applications[END_REF] Sliced Spiral Search [START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF] GPU K-d tree [START_REF] Hu | Massively parallel kd-tree construction and nearest neighbor search algorithms[END_REF] Bentley Spiral Search [START_REF] Zhang | Cellular gpu model for structured mesh generation and its application to the stereomatching disparity map[END_REF] K-d tree [For exact K-d NNS, except for brute force computing which we do not consider in this paper, researchers often prefer to use K-d tree NNS method. K-d tree NNS [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF] and various improved tree data structures such as dual-tree [START_REF] March | Fast euclidean minimum spanning tree: algorithm, analysis, and applications[END_REF],

VP-tree [START_REF] Yianilos | Data structures and algorithms for nearest neighbor search in general metric spaces[END_REF], Ball-tree [START_REF] Omohundro | Five balltree construction algorithms[END_REF] work based on hierarchical binary search tree according to recursive K-d spatial partition. While, GPU parallelism of constructing high dimensional K-d tree data structure was recently solved by Hu et al. in 2015 [START_REF] Hu | Massively parallel kd-tree construction and nearest neighbor search algorithms[END_REF], and it is complex to both consider the requirement of memory occupation and decentralized control with which each point works independently. CPU Deep-first Search (DFS) [START_REF] Cormen | Introduction to algorithms[END_REF] Breadth-first Search (BFS) [START_REF] Cormen | Introduction to algorithms[END_REF] common method GPU Breadth-first Search [START_REF] Harish | Large graph algorithms for massively multithreaded architectures[END_REF] Two-direction Breadth-first Search [START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF] Distributed dynamic link list

Union-find with parallel BFS 1 [2]
Union-find with parallel Link list interests lie in that both construction of cellular partition and NNS can be parallelized with characteristic of "data parallelism, decentralized control and each thread occupies O1 local memory". With cellular partition, each cell contains a list of the points that fall within the cell's boundaries. When a query point q comes in, Elias' NNS approach firstly searches the cell where q is located, then passes to search these neighbor cells that are close to the starting cell [START_REF] Greenspan | Acceleration of binning nearest neighbor methods[END_REF].

Bentley's spiral search [START_REF] Bentley | Optimal expected-time algorithms for closest point problems[END_REF] belongs to a kind of Elias' approaches through accessing neighbor cells in a spiral manner. Once one point is found, it is guaranteed that there is no need to search any other cells that do not intersect the To solve FindMin2, since size of an independent component can not be predicted, GPU parallel tree traversal has to traverse all vertexes of a component and select the shortest outgoing edge. Traditional depth-first search (DFS) [START_REF] Cormen | Introduction to algorithms[END_REF] cannot directly run on GPU since DFS works in a recursive manner which current CUDA platform can not support. Hu et al. [START_REF] Hu | Massively parallel kd-tree construction and nearest neighbor search algorithms[END_REF] transfer DFS recursive manner into an iterative manner using array-based priority queues on GPU for parallel K-d tree NNS. Classical Breadth-first Search (BFS) [START_REF] Cormen | Introduction to algorithms[END_REF] can directly work on GPU [START_REF] Harish | Large graph algorithms for massively multithreaded architectures[END_REF], but needs a local variable to store frontier nodes whose size depending on the input tree size. While, GPU can not support launching large amount of independent BFSs with each thread occupying a large-size local variable. Harish et al. [START_REF] Harish | Large graph algorithms for massively multithreaded architectures[END_REF] explore parallelism between frontier nodes of BFS to work in a manner of "data parallel, decentralized control and each thread occupies O1 local memory on GPU". However, when each frontier node works independently and in parallel, communication problems arises for selecting the shortest outgoing edge. Qiao et al. [START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF] proposed GPU two-directional BFS, which also adopts an iterative manner similar to Harish et al. [START_REF] Harish | Large graph algorithms for massively multithreaded architectures[END_REF] to deal with frontier nodes from root to leaves, but adds a backtrack procedure from leaves to the root again to select the shortest outgoing edge of a local MST. While, this BFS iterative manner needs additional parallel reduction kernels to judge termination at each iteration, leading to the limit of acceleration factors. This paper, we proposes GPU distributed linked list and CUDA kernels to implement tree traversal.

After FindMin2, as shown in Fig. 1, the shortest outgoing edge has been found for each component, the rest graphical operations need to connect these closest neighbor components and merge them into new big component. This procedure is generally accomplished by union-find algorithm [START_REF] Tarjan | Worst-case analysis of set union algorithms[END_REF]. GPU parallel union-find can be implemented based on GPU parallel BFS to firstly construct a root merging graph2 , but this manner has been proved slower than sequential union-find implementation [START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF]. In this paper, we implement GPU parallel unionfind with linked list and CUDA kernels.

The following paper is organized as this: section 3 theoretically explain the proposed 2D/3D component-based NNS based on square/cubic cellular partition; section 4 explains the proposed GPU implementation of key operators; section 5 shows simulation results; and section 6 concludes this paper. sort of Elias' NNS algorithms with respect to a query point q mainly concerns two aspects: the way to access neighbor cells centering at the current cell C q where q is located, and the total quantity of neighbor cells needed to traverse for finding the nearest neighbor. In 2D space, the classical Bentley spiral search manner works well to find the nearest neighbor at a little cost of accessing the least quantity of neighbor cells. However, in 3D or higher K-d space, this spiral manner should be re-designed to achieve that goal. Table 3 shows the variable used to explain the proposed algorithms.

Basic idea of component-based K-d search is to combine the advantage of uniqueness property with NNS in K-d Euclidean space [START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF], if all the closest points in separate regions possessing uniqueness property with respect to point q belong to the same component, then q would never have chance to constitute this component's closest outgoing edge. While in higher K-d space, uniqueness property is not same to its 2D version. Based on uniqueness property, we propose two ways to prune unnecessary cells' search in both 2D and 3D space.

Uniqueness Property

As shown in Fig. 3 (a), given a query point q in K-d Euclidean space, a partitioned region R centering at q has the uniqueness property with respect to q if for every pair of points u, w b R, wu d max wq , uq [START_REF] Robins | On the maximum degree of minimum spanning trees[END_REF]. In 2D space, the maximum partitioned region centering at point q is the circulator sector with 60 , while the equal case where uq wq should be carefully treated [START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF]. In K-D Euclidean space, because every 3 points construct a 2D plane, the maximum partitioned region that has uniqueness property centering at point q is a partitioned region constructed by K 1 dimensional partitioned region that possesses uniqueness property. and along the 4 coordinate axes from q, it exists 8 equal 45 circulator sectors possessing uniqueness property. While, in 3D cubic cellular partition, centering at q and along with the coordinate axes and vertexes of a cubic cell, a region with bold line shown in Fig. 3(c) possesses uniqueness property, the maximum triangle with q as vertex is 53.5 in this region. Each 3D cubic cell has 6 faces and each face has 4 such regions. We call each 2D sector or 3D region possessing uniqueness property centering at q as a "slab".

However, the square/cubic topology has its limitations when expanding uniqueness property in higher 4D or K-d space. As shown in Fig. 4, start from q, along with one axes direction in the K th dimension and connect the furthest

K-d search

Generally, working on square/cubic cellular partition shown in Fig. 2, from current cell C q , one K-d search enters into neighbor cells along every one of the 2 K coordinate axes directions with step length m L (m 1, 2, 3..), where L indicates the axes-parallel distance between every two closest cell centers, and 200 then expands search to the rest K 1 dimensional space with the same step length m L until the stop searching criteria are satisfied, as shown in Fig. 5.

Take 3D search as an example and make each cell center as an abstract node, Fig. 6 (a,c,e,g) shows the way to search cells along one of the 6 coordinate axes directions. The overall stop searching criteria take advantage of hyperplane between q and the first point p found. Given the distance d max between q and the first neighbor point p as shown in Fig. 7, there is not need to search cells located further than d max ~L1L to the cell center C q . This is due to the hyperplane between q and p defines two regions: one shallow region where all points are closer to point p than to q, shown in Fig. 7(a); another shallow region that does not need to be searched for q's NNS, shown in Fig. 7(b).

Pruning techniques

Using pure K-d search takes too much time to find a query point q s closest outgoing point when a local component is too much big. The component-based NNS prunes many points' closest outgoing point search according to the uniqueness property explained in section 3.1. While, there are two ways to prune unnecessary neighbor cells' access.

One is a dynamical way that the algorithm searches each point's closest outgoing point at each iteration, once one closest point p i in one slab has been confirmed belonging to the same component with q, this slab is closed for later search. The other one is a static way that the algorithm firstly searches all the closest points p i in all separate slabs, then in later iterations there is no K-d NNS procedure until final EMST is achieved. These two procedures are explained together in Algorithm 2.

GPU Parallel Operators to Build EMSF/EMST

We implement all the proposed operators, like GPU parallel construction of cellular partition, 2D/3D component-based NNS, tree traversal and union-find, using different graph representations and CUDA kernels.

Since GPU models treat memory as general arrays [START_REF] Hu | Massively parallel kd-tree construction and nearest neighbor search algorithms[END_REF][START_REF] Vineet | Fast minimum spanning tree for large graphs on the gpu[END_REF][START_REF] Harish | Large graph algorithms for massively multithreaded architectures[END_REF], we also implement all graph representation and operators upon arrays, labeled as "grid", g d node e, of a certain type of element or node, for example, the input points are stored in a grid g p , each point g p has its id that is indice on the grid. Table 4 illustrates key variables used in this paper.

Taking an EMSF instance G V , E shown in Fig. 9(a) as an example.

Firstly, the whole EMSF G is represented by doubly linked vertex list (DLVL)

shown in Fig. 9(b), where the i s node i b 0, N contains a bounded buffer to store its edge list (also called links), and a "size" to indicate number of links. Secondly, each local EMST component of G is represented in two ways.

One way is disjoint set data structure (DSS) shown in Fig. 10(a-d). DSS is implemented as an array of indices shown in Fig. 10(e), where the i s node i b 0, N contains a pointer to i s parent node in the tree. The other way is link list connecting the root and all leaves one by one, until reaching the last node that is characterized by an index with a dummy value such as -1, as shown in Fig. 11(a-d), where the i s node i b 0, N stores a pointer to current node's next

GPU Parallel Construction of K-d Cellular Partition

We construct the K-d cellular partition on GPU through assigning one thread 250 to one input Euclidean point. As shown in Alg.1, each point associated with a thread tries to find the cell where it is located. All N points can be inserted into cellular partition in parallel.

GPU Parallel 2D/3D Search with Pruning Technique

For 2D/3D component-based NNS with dynamic/pruning technique based 255 on square/cubic cellular partition, which is explained in section 3.3, we assign

GPU Parallel Tree Traversal with Distributed dynamic link list

Instead of using GPU parallelism of BFS or DFS for tree traversal to collect the shortest outgoing edge of a local EMST component, we combine the disjoint set data structure with GPU lock-free parallel link list data structure proposed by Nyland et al. [START_REF] Nyland | Understanding and using atomic memory operations[END_REF] to accomplish this task.

It contains two independent GPU CUDA kernels illustrated in Alg.3 and Alg.4. Alg.3 starts from independent point, finds root of this point and adds itself to the root's link list using GPU CUDA lock-free Atomic operation [START_REF] Nyland | Understanding and using atomic memory operations[END_REF].

Alg.4 traverses independent link lists from their root nodes to collect the shortest outgoing edge within each component.

GPU Parallel Union-find with link list

We divide GPU parallelism of union-find algorithm into two independent CUDA kernels. First, Union operation updates the new root of the connected old root nodes, which can be executed in the same kernel with the Connect operation shown in Alg.5. Second, Flattening operation updates all leave nodes' root to the same new root, as shown in Alg.6.

Experiments

Due to the fact that few algorithms exist in current literature that produce an exact Euclidean MST, and the most optimal sequential EMST algorithm that in current literature is the state-of-the-art "dual-tree EMST" algorithm [START_REF] March | Fast euclidean minimum spanning tree: algorithm, analysis, and applications[END_REF] from Mlpack library3 . Experimental comparisons are designed as the following. We ignore sequential EMST implementations using Prim's, Borůvka's, For operators to solve FindMin2 using GPU tree traversal algorithms, since most related work in literature applies BFS, we mainly compare the GPU two directional BFS [START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF] and our newly proposed GPU distributed dynamic link list.

Fig. 13 shows the accumulated time taken by the two operators at different 330 iterations of building EMSF/EMST for 2D uniform 700000 and ch71009.tsp [START_REF] Reinelt | Tsplib-a traveling salesman problem library[END_REF] benchmarks. It is clear to see that GPU two-direction BFS takes much more time in later iterations when size of component grows large, while using dynamic link list takes much more less time. This is because the iterative GPU parallel BFS proposed by Harish et al. [START_REF] Harish | Large graph algorithms for massively multithreaded architectures[END_REF] and applied by Qiao et al. [START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF] all need additional parallel reduction kernels to judge temination at each BFS iteration.

While, the construction of distributed dynamic linked list uses CUDA lock-free atomic operations, and the traversal of linked list performs in single kernel, which is very fast when all linked lists perform in parallel.

For rest operators like connect-union and flattening, their performance mainly depends on parallel union-find operator, which can be implemented by GPU BFS 5 or dynamic link list. While, there is no need to compare GPU BFS and GPU distributed dynamic link list again. Fig. 14 shows the accumulated time of these winner operators in different iterations to build EMST for 2D uniform 700000 and ch71009.tsp benchmarks. It is clear to see that time taken by these winner operators grow linearly.

Evaluation of the Whole Algorithm

Combine the proposed GPU parallel K-d search with static pruning technique, tree traversal and union-find operators with dynamic link list to be a whole GPU parallel EMSF/EMST algorithm, we name it as "K-d search with static pruning EMST" and compare it with current optimal sequential EMST algorithm, namely dual-tree mlpack EMST.

In 2D space, Fig. 15

Conclusion

This paper explores GPU parallelism of building 2D/3D EMST/EMSF in Borůvka's framework with every key step working on GPU side and the integral implementation runs faster than current optimal sequential EMST and previous GPU parallel EMST algorithms. Parallelism of these operators follow "data parallelism, decentralized control and O1 local memory for each GPU thread", which enables further acceleration on more advanced GPU cards.

For FindMin1 operators, we propose a general K-d NNS search based on congruent and non-overlapping cellular partition with square topology, and improve it with pruning technique in 2D/3D space for finding a local component's closest outgoing point. Also, we explore two different pruning manners, one is dynamic and the other is static pruning. Experimental comparison proves that the static pruning technique save more running time.

For FindMin2 operators and union-find, we jump out of GPU parallel BFS or DFS algorithms for tree traversal, propose to apply linked list data structure on GPU and profit from the CUDA atomic operations to achieve higher running speed. Though GPU parallelism prefer coalesced memory access on arrays, here because size of independent component can not be predicted, linked list is a compromised option.

The proposed methods provide basis for some higher level distributed or parallel algorithms in both 2D and 3D Euclidean space. Application to other Euclidean problems can be envisaged with high efficiency and within divideand-conquer scheme, for example 3D traveling salesman problem, hierarchical 2D/3D data clusters and apply them to 2D/3D image processing such as optical flow or stereo matching problems.

Acknowledgements

This paper is sponsored by Chinese Scholarship Council. Thank you very much.

Fig. 1 ,

 1 Fig.1, which begins with each vertex of the graph G being a component (or local MST) of a whole MSF, iteratively finds minimum weighted outgoing edge for each component and adds all such edges to current components in one iteration. During this procedure, size of each component grows arbitrarily and iteratively, and it mainly contains following operators:

 (a) FindMin1 : Find each vertex's closest outgoing point. Number in white ellipses represents each component' root identifier. (b) FindMin2 : Find the node (dark blue) with the shortest outgoing edge of each component, called the winner node of the component. (c) Connect Graph: Add link to each winner node's and to its correspondent node's (green) adjacency list . (d) Compact Graph: Merge these connected local EMSTs by updating each vertex's root identifier.

Figure 1 :

 1 Figure 1: The four main steps of building EMST in Borůvka's framework [2].

Figure 2 :

 2 Figure 2: Cellular partition of 2D/3D Euclidean space with square topology.

 circle of radius equals to the distance to the first point found and centered at the query point[START_REF] Bentley | Optimal expected-time algorithms for closest point problems[END_REF][START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF]. The primal GPU implementation of Bentley's spiral search has been mentioned in the work proposed by Zhang et al.[START_REF] Zhang | Cellular gpu model for structured mesh generation and its application to the stereomatching disparity map[END_REF]. Qiao et al.[START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF] combine Bentley spiral search with the uniqueness property in Euclidean space, and propose sliced spiral search to build 2D EMSF/EMST. This paper, we propose K-d search and 2D/3D component-based NNS for FindMin1, which works based on congruent and non-overlapping square/cubic space partition.

Figure 3 :

 3 Figure 3: Slab spatial partition that possesses uniqueness property based on square/cubic cellular partition of the 2D/3D space.

Figure 4 :

 4 Figure 4: Analysis of uniqueness property defined by 2D/3D/4D/5D square/cubic cellular partition.

Figure 5 :

 5 Figure 5: General K-d search manner

Figure 6 :Figure 7 :

 67 Figure 6: K-d search manner to access neighbor cells one face after another and one slab by one slab with same step length. (a-d) shows the algorithm searches four slabs after entering one face of the cubic cell Cq where the query point q locates. Round blue points indicate cell centers Cq, C of each cell.

Figure 8 :

 8 Figure 8: Component-based 2D/3D NNS based on uniqueness property defined by square/cubic cellular partition.

L

 max The max topological distance need to be searched theoretically node along the link list. Since local EMST of current EMSF grows dynamically at different iterations, and all local MEST's component lists are implemented in one array shown in Fig.11(e), it is called distributed dynamic link list (DDLL).

Figure 9 :Figure 10 :

 910 Figure 9: (a) EMSF instance consists of local EMSTs; (b) Data structure of doubly linked vertex list (DLVL) to represent EMSF shown in (a).

Figure 11 :ALGORITHM 1 :

 111 Figure 11: (a-d) Link list to represent local EMSTs shown in Fig.9(a); (e) Data structure of distributed dynamic link list.

Figure 13 :

 13 Figure 13: Accumulated time of Find Min 2 with GPU two-direction BFS and distributed dynamic link list at different iterations to build EMST for 2D uniform-700000 and ch71009.tsp benchmarks.

Figure 14 :

 14 Figure 14: Accumulated time of the winner GPU kernel operators in different iterations to build EMST for 2D uniform-700000 and ch71009.tsp benchmarks.

 shows the overall running time of these two algorithms to build exact EMST for 23 instances with uniform data distribution and 23 national TSP instances with arbitrary data distribution. It is clear to see K-d search with static pruning EMST takes less time than dual-tree mlpack EMST. In 3D space, Fig.16 also shows that K-d search with static pruning EMST runs faster than dual-tree mlpack EMST algorithm. And since some GPU card series share the same CUDA platform and our proposed GPU parallel algorithm follows "data parallelism, decentralized control, and each thread occupies O1 local memory", our proposed GPU parallel EMST can run on more advanced GPU cards. As shown in Fig.16, the running time comparison between GTX 850M, GTX 980M and GTX1080Ti shows our proposed algorithm can achieve more acceleration factors along with the development of GPU hardware.

Figure 15 :

 15 Figure 15: Overall running time comparison between of our proposed K-d search with static pruning EMST and dual-tree mlpack EMST in 2D space.

Figure 16 :

 16 Figure 16: Overall running time comparison between our proposed K-d search with static pruning EMST and dual-tree mlpack EMST in 3D space. And the comparison of acceleration factors achieved along with the development of GPU cards.

Table 1 :

 1 Operators used to solve FindMin1 in related work. Italic fonts mean that these operators are proposed in this paper.

	o	2D NNS	KD NNS	2D Component-based NNS 3D Component-based NNS
	-PU			
		K-d tree[19]		
	CPU			

Table 2 :

 2 Operators used to solve FindMin2 in related work. Italic fonts mean that these operators are proposed in this paper.

	o	Tree Traversal	Union-find [35]
	-PU		

Table 3 :

 3 Variables used to explain the proposed 2D/3D Component-based NNS.,

	Variables Purpose	Variables	Purpose
	q	a query point p, p i,j , u, w	an arbitrary point
	C, C q ,	Cell ceter	L, step length	length/width of
	C neighbor			a square/cubic cell
	3. 2D/3D Component-based NNS based on Square/Cubic Cellular

Partition

Based on congruent and non-overlapping cellular partition in K-d space,

Table 4 :

 4 Variables used to illustrate the proposed GPU operators.

	Variables Purpose	Variables Purpose
	g p	grid of N input Euclidean Points	id,tid	index of a point located in g p
	g cm	cellular partition	cellId	index of a cell located in g cm
	g corr	grid of each point's closest outgoing point, selected by FindMin1	i win i nex	index of a winner or next point, or the winner's corresponding
			i corres	point located in a grid
		grid of each component's winner vertex		
	g win	possessing the component's shortest	corres	index of a point's closest
				outgoing piont
		outgoing edge, selected by FindMin2		
	g dss	grid of disjoint set trees	root, r i,j root of a local EMST
	g ddll	grid of distributed dynamic	link	index of a point's link
		link list		
	g dist	grid of each point's outgoing distance	dist	Euclidean distance
				between two points
	g dlvl	grid of doubly linked list	L	The searching step length from
				current cell C q where q locates
	g ssm	grid of each point's		
		component-based NNS results		

https ¢ ~~stanf ord.edu~rezab~classes~cme323~S15~projects~parallel union f ind presentation.pdf

https://www.mlpack.org/

https ¢ ~~stanf ord.edu~rezab~classes~cme323~S15~projects~parallel union f ind presentation.pdf

About evaluation items, since we focus on GPU parallelism, we put emphasis on firstly, the running time of different algorithms; secondly, whether the quantity of total edges of EMST result built for the same N points equals to N 1; thirdly, whether total length of the same instance's EMST result remains the same at different executions of an GPU parallel algorithm. The last two items have been confirmed to remain the same in all the following experimental comparisons. Each test instance has been executed more than 10 times to confirm the conclusion obtained.