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Abstract

Automatic facial expression recognition (FER) has been extensively studied owing to its wide range of applications, such as
in e-learning platforms used to automatically collect the feedback of students regarding a particular content and to help children
with autism have a better understanding of their environment. Owing to the advances made in the fields of machine learning and
computational devices, researchers are developing more accurate and robust facial expression recognition frameworks. In this
paper, we propose a completely new framework for person-independent FER based on combining textural and shape features from
49 detected landmarks in an input facial image. The shape information is extracted using the histogram of oriented gradients
(HOG) applied on a binary patch generated by interpolating the locations of the 49 detected landmarks. The textural information
is computed from 49 sub-images, each centered on one landmark, using a new handcrafted descriptor that we also propose herein
and is referred to as Orthogonal and Parallel-based Directions Generic Quad Map Binary Patterns (OPD-GQMBP). OPD-GQMBP
encodes the relevant information based on the orthogonality and parallelism of the geometries to select the prominent pixels within
a n×n neighborhood. The proposed framework outperforms many previous state-of-the-art methods including deep-learning-based
approaches on five widely used benchmarks: CK+, KDEF, JAFFE, Oulu-Casia VIS, and RaFD, through the Leave-One-Subject-
Out evaluation protocol. In addition, the superiority of the OPD-GQMBP descriptor is fairly proven against 10 deep features (e.g.,
VGG, ResNets, DenseNet, GoogeLeNet, and Inception) and 12 recent and powerful LBP variants.

Keywords: Facial expressions recognition; Textural and shape analysis; Landmarks; Local Binary Patterns; Support vector
machines; Deep features;

1. Introduction

Believing that computing devices can autonomously per-
form complicated tasks by being trained rather than programmed,
machine learning relies on endowing machines with the cog-
nitive skills naturally acquired by the human brain. Machine
learning and artificial intelligence (AI) are dominant topics in
terms of how advanced analytics will appear in the future as
well as their expected outcomes and benefits. More precisely,
ongoing studies are oriented toward the development of machine-
learning-based algorithms capable of fulfilling brain functions
by allowing them to iteratively learn from data to improve, de-
scribe data, and predict outcomes. The perception of the human
brain is the key to understanding and interacting with the envi-
ronment based on hearing, touching, and in particular, natural
vision sensors. Similarly, through state-of-the-art computer vi-
sion, researchers are attempting to implement humans-like vi-
sual analysis capabilities. One of the most complicated human
visual analyses is facial expression recognition, which relies on
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sensing the emotion of a given person within the environment
based on the individual’s facial expression. This task serves
diverse applications that are of interest to many different mar-
kets. For example, it can be useful to help children diagnosed
with autism better understand their social environment. More-
over, such technology will allow an accurate real-time evalua-
tion of E-learning content and public services to be more easily
achieved. Furthermore, the robot industry will be able to de-
velop human-support robots qualified to adapt their interactions
according to the emotional atmosphere. In real-world scenarios,
the desired system is expected to recognize the emotion of un-
seen individuals in real time, which makes this task among the
most difficult in computer vision. In the literature, the recogni-
tion of facial expression has four different levels, as can be seen
in Figure 1, which demonstrates the level of difficulty regarding
the ways in which emotions are expressed (spontaneous versus
posed) and the person expressing it (the same person used in the
training or a different individual). Spontaneous emotions are
difficult to classify because each individual expresses a given
emotion differently compared to another person. Furthermore,
this fact often leads to interclass sample interference, meaning
that two emotion classes are represented over two images with
the same overall appearance. Moreover, the recording of spon-
taneous emotions must be applied while the subjects are un-
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aware of it, which is extremely difficult to establish because the
subjects should deliver authorization for the recording and use
of their images/videos. Therefore, there are only a few studies
that have been interested in spontaneous emotion recognition
and have focused solely on verifying the assigned labels and
whether they match the corresponding observation, as reported
by [15]. The majority of available databases for spontaneous
facial expressions have been collected from the web, based on
saving images from search engines (mainly Google and Flicker)
by specifying the emotion-related keywords. The well-known
and widely used databases of this kind are FER and AFEW. By
contrast, posed expressions are obtained by requesting the sub-
jects to perform the facial expressions in a uniform way in order
to avoid intra-class similarities that would confuse the classifi-
cation task. The subjects are usually skilled persons (actors),
and thus their expressions can be computationally classified.
The second challenge of facial expression recognition relies on
correctly decoding the observation of individuals not taking part
in the training session. Here, the objective is to implement a
person-independent application and standalone framework that
can be deployed on various platforms.

This paper deals with person-independent posed facial ex-
pression recognition (FER) and proposes an automatic FER frame-
work based on the shape and appearance descriptions. Two
popular approaches have been proposed in the literature for de-
coding facial expressions. The first is geometric-based feature
extraction. This approach relies on encoding geometric infor-
mation such as the position, distance, and angle on the facial
landmark points that should be first identified by a landmark
detector, and then extracts the feature vectors. The second ap-
proach is the appearance-based technique, which characterizes
the appearance textural information resulting from the facial
movements related to each of the emotion classes. Therefore,
a set of features is extracted and is expected to contain relevant
discriminative information to classify the different classes. The
appearance-based approach utilizes many techniques for fea-
ture extraction, including those based on different transforms
such as wavelet sub-bands, Gabor filters, an optimal matrix
factorization and a steerable pyramid transform, an indepen-
dent component analysis (ICA), a Zernike moments method,
a global Gabor-Zernike feature descriptor, a principal compo-
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Figure 1: Facial Expression Recognition difficulty levels.

nents analysis (PCA), and a linear discriminant analysis (LDA)
based Fisherface method. Introduced by Ojala’s study, local bi-
nary patterns (LBPs) constitute a new philosophy in feature ex-
traction. The motivations behind this philosophy rely on over-
coming the limitations of global features by allowing the ex-
traction of local relevant features based on pixel neighborhood
thresholding and then combining the obtained vectors to con-
struct the final image descriptor. The LBP operator was orig-
inally proposed for texture classification, although consider-
ing its discriminative power and low computational cost, it has
also been adopted in many other computer vision applications,
mainly face-related. Since Ojala’s study, many state-of-the-art
LBP variants have been proposed to enhance the original LBP
capabilities. Indeed, researchers are still searching for robust
local descriptors with a high discriminative power, and numer-
ous powerful LBP variants continue to be developed in the lit-
erature. Notable recent methods include a local optimal ori-
ented pattern (LOOP) [3], local neighborhood difference pat-
tern (LNDP) [42], and local directional ternary pattern (LDTP)
[16]. This paper introduces a new automatic FER framework
based on a hybrid approach that combines geometric and ap-
pearance concepts by extracting the textural and shape features
from facial landmarks. The proposed combination is expected
to promote an enhanced performance for person-independent
FER because we consider geometric and appearance informa-
tion that carries sufficient relevant features to describe the emo-
tional classes. The geometric representation is obtained by in-
terpolating the positions of 49 keypoints (landmarks) detected
in the input image generating a binary patch, which is exploited
to compute the shape features using the HOG method. By
contrast, the appearance description is also extracted based on
the detected landmarks instead of the whole face image, which
makes our proposed FER framework able to fulfill the person-
independent constraint. The appearance features are extracted
from 32 pixel ×32 pixel sub-images centered on each landmark
using a brand new handcrafted descriptor, which is referred to
as orthogonal and parallel-based directions–generic query map
binary patterns (OPD-GQMBP), which is also proposed in this
paper. The OPD-GQMBP handcrafted descriptor is based on
orthogonality and parallelism geometries for selecting the most
prominent neighbors. It adopts an n × n neighborhood region
to extract four feature maps based on four defined thresholding
structures for each central pixel. The four feature maps are then
decoded into one histogram. Afterwards, the 49 feature vectors
are concatenated to form the final appearance feature. During
the classification step, we use the SVC library preprocessed by
the PCA technique intended to reduce the dimensionality of the
feature vectors. The framework is evaluated on five of the most
widely used state-of-the-art benchmarks: KDEF, CK+, RaFD,
JAFFE, and OuluCasia. To ensure the person-independent eval-
uation, the leave-one-subject-out (LOSO) protocol is adopted
on all five datasets. To prove the superiority of the proposed
OPD-GQMBP descriptor for the FER, we conducted a compre-
hensive experimental comparison against 12 recent and pow-
erful LBP variants and 10 state-of-the-art deep features (e.g.,
VGG, ResNet, and Inception) using our FER framework on the
five datasets. We also compared our FER framework perfor-
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mance to those reported in the literature (from articles in jour-
nals with a high impact factor and from highly indexed confer-
ences). The major contributions of our study can be summa-
rized as follows:

• An FER system based on the coupling shape and appear-
ance information is proposed. This system applies the
Dlib package to detect 49 landmarks on the facial image
and then extracts the shape and textural features before
proceeding to the SVM-based classification stage.

• New handcrafted LBP variants our applied for a texture
analysis based on the orthogonality and parallelism ge-
ometry concepts, which are referred to as OPD-GQMBP.
This is a generic descriptor that takes the neighborhood
size as a parameter. This parameter offers the opportunity
to balance the computational speed with the discrimina-
tion performance.

• We considered five widely used benchmarks from the lit-
erature for evaluation: CK+, KDEF, JAFFE, Oulu Casia,
and RaFD. We adopted an experimental person-independent
evaluation on each dataset, using the LOSO protocol.

• The proposed FER framework has outperformed many
recent studies published in journals with a high impact
factor, including deep-learning and handcrafted frame-
works, following the LOSO protocol.

• The performance of the OPD-GQMBP descriptor is fairly
evaluated based on its comparison to 12 recent handcrafted
LBP variants and 10 deep features. The results showed
the superiority of OPD-GQMBP against all of the tested
handcrafted and deep features.

To provide readers and field-interested researchers with a
better reading experience, this paper is organized as follows.
Section 2 presents some state-of-the-art approaches devoted to
the FER problem, covering handcrafted and deep-based fea-
tures. Section 3 introduces the proposed OPD-GQMBP de-
scriptor and highlights its process to compute the textural fea-
ture vector. Moreover, this section shows the overall proposed
FER framework and explains how the proposed OPD-GQMBP
and HOG operators are applied and combined to obtain the tex-
tural and shape features from the detected landmarks of a given
input face image. Section 4 provides comprehensive experi-
ments on five widely used databases and shows a comparative
evaluation of state-of-the-art descriptors (handcrafted-based and
deep-based) and FER systems. The last section provide some
concluding remarks regarding our study and areas of future re-
search.

2. Related works

The computer vision community has conducted many stud-
ies devoted to facial expression recognition (FER) by applying
machine learning techniques. In this section, we briefly present
some state-of-the-art FER frameworks to highlight some of the

proposed architectures that rely on either handcrafted descrip-
tors or deep-learning methods. Shan et al. [31] proposed an
approach, referred to as Boosted-LBP, based on combining a
basic LBP descriptor with the Adaboost algorithm to enhance
the classification performance. They conducted experiments on
CK+, MMI, and JAFFE databases, and found that the Boosted-
LBP outperforms the basic LBP combined with a multi-class
SVM classifier. Moreover, they reported that local methods
(LBP) perform better than global methods (Gabor filters). Zhang
et al. [48] proposed a novel facial expression recognition method
using a local binary pattern (LBP) and local phase quantiza-
tion (LPQ) based on a Gabor face image. First, Gabor wavelets
are applied to capture the prominent visual attributes, which
are separable and robust to illumination changes, by extract-
ing multi-scale and multi-direction spatial frequency features
from the face image. Then, the LBP and LPQ features based
on the Gabor wavelet transform are fused for face representa-
tion. Considering that the dimensions of a fused feature are too
large, the PCA-LDA algorithm is used to extract compressed
features. Finally, the method is tested and verified using multi-
class SVM classifiers. Lekdioui et al. [20] proposed an auto-
matic FER framework based on a local appearance approach,
extracting the features from seven regions of interest (ROIs)
covering the left eyebrow, right eyebrow, left eye, right eye,
eyebrows, nose, and mouth. They evaluated the LBP, LTP,
and CLBP texture descriptors and their combination with the
HOG operator cascading with a linear SVM classifier. They
found that the concatenation of LTP and HOG leads to the best
FER performance on three datasets (CK, FEED, and KDEF).
Their framework strengths rely on extracting the appearance
features from seven sub-images defined from landmarks carry-
ing information about the facial expression class, in addition
to combining the LBP-Like descriptor with the HOG opera-
tor. However, this architecture presents certain drawbacks that
we can point out. The seven extracted sub-images have differ-
ent sizes and orientations, but their computed features have the
same length. We found that the nose region of interest is verti-
cally oriented compared to the eyebrow regions, which are hor-
izontal, and the eye regions, which are almost square. There-
fore, different amounts of information on different locations are
represented over feature vectors of the same length. Further-
more, this study did not cover an important number of hand-
crafted methods, and no deep-learning method was evaluated.
The method proposed by Makhmudkhujaev et al. [22] uses a
new handcrafted LBP descriptor referred to as local prominent
directional pattern (LPDP) for FER application. It is also an
appearance-based approach exploring the benefits of extracting
features from three patches: edge, curved edge, and corner-
like texture maps. Their study focuses only on the handcrafted
descriptor LPDP and its scheme to extract textural features.
The authors also used a thresholding parameter to discrimi-
nate significant features from insignificant patterns in feature-
less/smooth regions of a face. Afterwards, a feature selection
method is applied to reduce the dimensionality of the final fea-
ture vector because they use the spatial division on the input
image. However, this system takes as input the entire face im-
age, which makes it inconvenient for person-independent FER
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applications. In addition, no shape descriptor has been adopted
in the overall framework, relying only on LPDP extracted fea-
tures. Minchul et al. [33] used a convolutional neural network
model to achieve facial expression recognition. They adopted
and aligned cropped faces from FER-2013, SFEW2.0, CK+,
KDEF, and Jaffe with respect to the landmark position of the
eyes. The training data were augmented 10 times by flipping
them. Five types of data input (raw, histogram equalization,
isotropic smoothing, diffusion-based normalization, and differ-
ence of Gaussian) were tested. They then selected the one
that showed the highest accuracy as a target structure for fine-
parameter tuning. Finally, the CNN network with histogram
equalization images was chosen as the baseline CNN model for
further research. Yu et al. [45] proposed a method that contains
a face detection module based on an ensemble of three state-
of-the-art face detectors, JDA, DCNN, and MoT. Subsequently,
a classification module composed of an ensemble of deep con-
volutional neural networks (CNNs) was adopted based on av-
eraging the output responses. Each CNN model is initialized
randomly and pretrained on the Facial Expression Recognition
(FER) Challenge 2013 database. The pretrained models were
then fine-tuned on the training set of SFEW 2.0. To combine
multiple CNN models, they presented two schemes for learning
the ensemble weights of the network responses: minimizing the
log-likelihood loss and minimizing the hinge losses. According
to the results reported in their study, the hinge loss performs
slightly better than the log-like and single CNN models on the
validation and test sets of the FER2013 and SEFW databases.
Therefore, their framework is computationally heavy, and the
outcomes are not very promising. Jung et al. [13] proposed a
new CNN framework based on combining the temporal appear-
ance and temporal geometry extracted from two CNN models.
The faces in the input image sequences are detected, cropped,
and rescaled to a pixel resolution of 64 × 64, and 49 landmark
points are then extracted using the IntraFace algorithm. Fi-
nally, these two models are combined using an element-wise
sum of the outputs of the last fully connected layers from the
two temporal CNN models. Through several experiments con-
ducted on the CK+, MMI, and Oulu-CASIA databases as well
as numerous data from various data augmentation techniques,
the framework built showed that the two models cooperate with
each other. However, the joint model did not improve the recog-
nition of all of the facial expressions and achieved the same
performance as the temporal appearance and temporal geome-
try models of the Disgusted, Fear, Happy, and Surprised classes.
In addition, the temporal appearance CNN model outperformed
the geometry model on all tested databases. Most of the previ-
ous methods have considered the entire facial region as the in-
put information, and have paid less attention to the sub-regions
of human faces, which may lead to a large difference between
the extracted and expected representations. Indeed, when the
extracted information obtained from the entire face image is ir-
relevant, the final recognition result will be affected. Because
the judgment of the facial expression is usually based on the
information of several sensitive components in some areas of
the face, such as the eyes, nose, and mouth, in this paper, a new
method is proposed that concentrates the feature extraction on

these sub-regions, which not only allows for the extraction of
more relevant features, but will also further improve the overall
recognition rate.

3. Proposed framework

In this paper, we propose an enhanced framework for facial
expression recognition (FER). The system is based on the SVM
classifier to predict the class of a given input image. It consid-
ers 49 landmark points and extracts and combines the shape and
appearance features to be fed to the classifier. To clearly high-
light the contributions of our study and describe the workflow
of our system in detail, we first describe the new textural hand-
crafted descriptor referred to as OPD-GQMBP. We then present
how it is combined with the HOG shape descriptor to build the
overall workflow.

3.1. OPD-GQMBP: New handcarfted descriptor for FER

As discussed in the introduction, the LBP operator is ex-
tremely flexible and many of its aspects can be employed to
develop enhanced descriptors for specific tasks. In our case,
we propose a new LBP variant, referred to as OPD-GQMBP,
which is based on new neighborhood topologies leading to four
discriminant feature maps, and adopts the LBP original ker-
nel function that outputs low computational codes. The mo-
tivation behind the OPD-GQMBP descriptor relies on select-
ing orthogonal and parallel neighboring pixels that are believed
to present the most information within a sub-block. In math-
ematics, orthogonality is defined as the generalization of the
perpendicularity notion, which was adopted by [1], who pro-
posed a reduced LBP version referred to as OC-LBP, which
considers two sets of four pixels located on the orthogonal lines.
Thus, it produces only a feature histogram with a 2 × 23 fea-
ture histogram. . The OPD-GQMBP descriptor is generic and
adjustable depending on the needs of the considered applica-
tion. It adopts a n × n sub-block neighborhood, where n is
an odd integer (3,5,7,9,...), to maintain symmetric neighbor-
hoods. The concept behind this is the selection of prominent
pixels within this neighborhood. Given a central pixel Ic, as
can be seen in Figure 2, we define four pixel groups, each of
which contains n × 2 pixels forming two lines. Two sampling
groups are based on orthogonality {S G1

Ort, S G2
Ort}, whereas

the two others are based on the concept of parallelism, i.e.,
{S G1

Par, S G2
Par}. Therefore, each sampling group S G is de-

fined on two lines S Gk
t(Ic) = {Lt

k,1(Ic), Lt
k,2(Ic)} where t stands

for the type (Ort/Par) of the sampling group and k the group
number (1/2). Figure 3 shows a Cartezian coordinate system
centered on the central pixel Ic to encode the position of each
pixel considered in each sampling group within a 7 × 7 neigh-
borhood. The sampling groups are defined as follows:

S G1
Ort(Ic) =

[
LOrt

1,1(Ic) = {(x, 0)/xεT }
LOrt

1,2(Ic) = {(0, y)/yεT, }

]
(1)

S G2
Ort(Ic) =

[
LOrt

2,1(Ic) = {(x, x)/xεT }
LOrt

2,2(Ic) = {(x,−x)/xεT }

]
(2)
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Figure 2: OPD-GQMBP neighborhood topologies.
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S G1
Par(Ic) =

[
LPar

1,1(Ic) = {(x, 1)/xεT }
LPar

1,2(Ic) = {(x,−1)/xεT, }

]
(3)

S G2
Par(Ic) =

[
LPar

2,1(Ic) = {(1, y)/yεT }
LPar

2,2(Ic) = {(−1, y)/yεT }

]
(4)

where

T =
[
− n−1

2 , n−1
2

]
(5)

Here, T is the interval of values defining the coordinates
(x, y) of the pixels constructing the two lines {Lt

k,1, Lt
k,2} of each

sampling group S Gk
t(Ic).

Because all pixels within the n × n neighborhood are iden-
tified, we can proceed to the thresholding process. In this step,
we generate for each sampling group S Gk

t its feature map =k
t,

and obtain four feature maps:

=(Ic) =


=1

Ort(Ic) = Γ(S G1
Ort(Ic))

=2
Ort(Ic) = Γ(S G2

Ort(Ic))
=1

Par(Ic) = Γ(S G1
Par(Ic))

=2
Par(Ic) = Γ(S G2

Par(Ic))

 (6)

with
Γ(S Gk

t)(Ic) = ∆(Lt
k,1(Ic), Lt

k,2(Ic)) (7)

where ∆ is the Heaviside function, which was originally
used in the LBP operator defined in Eq 8, and applied the two
lines of the same group to the threshold element by element.
Thus, the length of the generated binary code for each feature
map is the size (n) of the neighborhood, and the number of
possible produced patterns is 2n. Thus, by concatenating the
patterns produced by all feature maps, we generate 4 × 2n pos-
sible patterns. After encoding each pixel in the input image and
obtaining the four feature maps, we transform them into a his-
togram vector as the final descriptor for the image, as defined
in

∆(x, y) =

1 , x ≥ y
0 , x < y

(8)

H(F) =

〈
H=1

Ort
,H=2

Ort
,H=1

Par
,H=2

Par
〉

(9)

where

H=k
t
(p) =

∑
χ∈F

δ(=k
t(χ),p) (10)

In Eq 10, p ∈ [0, 2n − 1] is a pattern used to compare to
the patterns =k

t(χ), χ is the gray-scale value of the computed
feature image F, and the delta function δ(·), which is defined as
follows (see. Eq. 11):

δ(a,b) =

{
1, if a = b;
0, otherwise (11)

To include more spatial information into the OPD-GQMBP
descriptor, the feature image is spatially divided into w× w
small non-overlapping blocks Bi. Then, all corresponding his-
tograms H(Bi) extracted from all blocks are concatenated to
form the final holistic image representation through Eq. 12.

H =

w2∏
i=1

H(Bi) (12)

where H is the final descriptor,
∏

is the concatenation op-
eration, and H(Bi) is the histogram of the OPD-GQMBP de-
scriptor computed on the ith block. Note that each elementary
histogram H(Bi) has a length of 4× 2n, whereas the dimension-
ality of H is 4 × 2n × w2.
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Figure 4: Overall view of the proposed FER framework.

3.2. FER system

After defining the neighborhood topology and threshold-
ing kernel of the OPD-GQMBP descriptor, we now present the
overall view of our proposed system for the FER task. The
idea behind this framework is to combine the shape and ap-
pearance information to provide a more accurate FER, whereas
most of the state-of-the-art proposed FER systems rely only
on one piece of information, either geometric or appearance
based. To do so, we computed the textural and shape features
based on the location of 49 detected keypoints (landmarks) on
the input face image. The shape representation is obtained by
interpolating the 49 landmarks to form curves to be further an-
alyzed using the HOG operator, whereas the appearance repre-
sentation is based on texture analysis by applying the proposed
OPD-GQMBP operator on specific sub-images of the input im-
age. To make the FER system more able to fulfill the person-
independent constraint, the appearance features are extracted
from sub-images with a pixel resolution of 32×32 and centered
on each landmark carrying sufficient and relevant information
about the expressed emotion and less irrelevant information of
the person’s face. Figure 4 illustrates the overall pipeline of the
proposed FER system. First, the input image is fed to the dlib
landmarks extractor to locate the 49 points (green color). These
locations are then interpolated to generate a binary patch of the
expressed emotion, upon which the HOG operator is applied
to compute the shape feature vector. Meanwhile, the OPD-
GQMBP descriptor (or state-of-the-art descriptors for compari-
son) was used to extract the textural features from each 32× 32
sized sub-image centered on one landmark leading to a set of
49 histograms (49 landmarks) that are further concatenated to-
gether to construct the appearance feature vector. Note that spa-
tial division was adopted to compute the OPD-GQMBP feature

vector by dividing each sub-image into non-overlapping blocks
of size w × w, as illustrated in Figure 5. The number of spa-
tial blocks that divide the sub-image depends on the consid-
ered dataset and is related to the camera resolution and image
blur. Indeed, blurred images require fewer blocks than clear im-
ages, which present more details to be detected. At the end of
the feature extraction stage, the HOG and OPD-GQMBP com-
puted histogram vectors are concatenated to compose the final
image descriptor that is further fed to a dimensionality reduc-
tion using the PCA method before proceeding to the classifica-
tion phase based on an SVM. We used the LIBLINEAR 2.30 li-
brary as a multiclass kernel-based vector machine implementa-
tion for MATLAB/Python environments. This library provides
many classification and regression solvers. We chose the sup-
port vector classification based on the Cramer and Singer solver
(Kernel = 4) as a simplified multi-class SVM. Furthermore,
this kernel allows optimized training and takes less time com-
pared to the LibSVM library implementation.

4. Experimental Analysis and Discussions

The previous sections introduced a new framework for FER
based on combining the shape and appearance features com-
puted using the HOG and our proposed OPD-GQMBP descrip-
tor. Our FER framework relies on extracting the features from
49 landmark points detected using the Dlib algorithm on each
input image, which are believed to carry relevant and sufficient
information to recognize the emotion expressed in the input im-
age. To show its effectiveness for the person-independent FER,
our system is extensively evaluated on five well-known and
widely used benchmarks in the literature: KDEF, CK+, RaFD,
JAFFE, and OuluCasia. To ensure person independence in our
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Figure 5: Texture feature extraction workflow based on the proposed OPD-GQMBP operator.

testing, we set up a LOSO protocol, where all samples of one
person were excluded from the training set and used for test-
ing. The process is repeated for N-persons, and no prior person
information is included in the training stage. As discussed in
Section 3, our paper presents two main contributions: the FER
framework itself and the OPD-GQMBP handcrafted descriptor.
To highlight the results of each of the contributions, we first
evaluated four possible configurations of the OPD-GQMBP de-
scriptor, and then compared its performance against 12 recent
handcrafted methods and 10 state-of-the-art deep features (see
Table 1) within our FER framework, keeping the same evalu-
ation protocol and conditions. Afterwards, the performance of
the proposed FER framework is compared to those presented in
previous state-of-the-art purchase, published in highly indexed
and well-known journals.

4.1. Experimental datasets

• The Japanese Female Facial Expression (JAFFE) dataset
has 213 facial expression images, representing the 7 ba-
sic emotions: Anger (30 images), Disgust (29 images),
Fear (32 images), Happiness (31 images), Sadness (31
images), Surprise (30 images), and Neutral (30 images).
Figure 6 illustrates some examples of facial expressions.
This database is extremely challenging regarding the par-
ticularity of Japanese females that have similar face fea-
tures, generating more inter-class visual features

• The Karolinska Directed Emotional Faces (KDEF) is a
widely used dataset for evaluating FER methods. It in-
cludes 70 individuals (50% men, 50% women) that uni-
formly express basic emotions over two sessions, leading
to a total of 980 images. In our experiments, we consid-
ered only one session to have only one observation per
emotion for each person (490 images), which resulted in

Neutral Happy Sad Surprise FearDisgust Angry

Figure 6: Samples of two subjects from JAFFE database

70 samples per class. Figure 7 shows the observation of
each class for a female from this database.

Neutral Happy Sad Surprise FearDisgust Angry
Figure 7: Samples of a subject from KDEF database

• The Cohn-Kanade v2 database (CK+) is a sequence-based
database. It contains 593 image sequences from 123 sub-
jects. The first image of each sequence represents the
neutral state of the subject, whereas the peak of the emo-
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tion is represented at the end of the sequence. During our
experiment, we selected only the last frame to construct
the sets of six emotions, whereas the neutral class is con-
structed by the first frame from each sequence. The An-
gry class has 45 samples; Disgust, 59; Fear, 25; Happy,
69; Neutral, 45; Sad, 28; and Surprise, 82. Some of these
samples are shown in Figure 8.

Sad Neutral Happy

DisgustAngrySurprise

Fear

Figure 8: The seven emotions of one person from CK+ database

• The Oulu-CASIA NIR and VIS expression database is
also a sequence-based dataset, including 80 subjects (South
Asian and Caucasian) with the six typical expressions.
The videos are recorded using two imaging systems: near
infrared (NIR) and visible light (VIS). Only the last frame
from each sequence of VIS in the database is consid-
ered, and the neutral expression is represented by the
first frame. Therefore, a dataset of 560 images was ob-
tained (80 samples per class). As can be seen in Figure 9,
the images are slightly blurry and unclear, and the visual
features of the South Asian individuals are quite similar,
making this a challenging dataset.

Neutral Happy Sad SurpriseFear DisgustAngry

Figure 9: Samples of two subjects from the OuluCasia database

• The Radboud Faces Database (RaFD) is composed of 67
individuals (including Caucasian, Moroccan, and Dutch
adults, and Caucasian children, both boys and girls) dis-
playing 8 emotional expressions. In addition to the seven
basic emotion expressions, this database includes the Ccon-
tempt facial expression, which can be similar to angry
and disgust emotions, but also expresses the feeling of
dislike for and superiority over another person, and/or his
that person’s actions. Moreover, the Ccontempt emotion
is not symmetric and occurs only on one side of the face.

Figure 10 displays shows the 8 facial expressions of a
person from the RaFD database.

Sad NeutralHappy

DisgustAngrySurprise Fear

Contempt

Figure 10: Samples of one subject from RaFD database

4.2. Deep-Features for Facial Expression Recognition
In this study, the proposed descriptor is compared to the 10

deep features described in the literature. Deep methods are in-
spired and rely mainly on convolutional neural networks (CNNs).
Owing to the technological progress made in the GPU compu-
tational field, a CNN has proven to be one of the most widely
used techniques for computer vision applications, such as im-
age classification, object detection, and face recognition. A
CNN typically consists of convolutional layers, pooling layers,
and fully connected layers. Convolutional layers are the core
building blocks of a CNN.

We considered 10 deep networks, which are briefly intro-
duced in the following, based on a recent survey [19]:

• AlexNet: Referring to its author Alex Krizhevsky, AlexNet
was proposed in the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC 2012). AlexNet is a deeper
configuration of a LeNet5 network. Therefore, the high
performance at this competition comes at the cost of a
high computation that was possible using only graphic
card units. It consists of five convolutional layers, two
fully connected hidden layers, and one fully connected
output layer.

• VGG: VGG network architectures were introduced by Si-
monyan and Zisserman in 2014. VGG stands for the Vi-
sual Geometry Group of Oxford University. Compared
to LeNet and AlexNet, VGG networks are conceptually
simple employing only stacked 3×3 convolutional layers
combined with a max pooling layer to reduce the volume
size, leading to two fully connected layers of 4096 nodes
each, followed by a softmax classifier. VGG19 has three
more convolutional layers than VGG16.

• ResNet: Residual learning networks were also proposed
for the ILSVRC competition in 2015, introducing the
Skip Connection concept to CNNs, which are known as
recurrent networks. Typical ResNet models are imple-
mented with double- or triple-layer skips that contain non-
linearities (ReLU) and batch normalization between them.
The skip connection technique allows the training of 152
layers or more with fewer computations then AlexNet
and VGG networks. In this study, we considered ResNet18,
ResNet50, and ResNet101.
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• DenseNet: Densely connected convolutional networks were
inspired by the ResNet topology. They incorporate dense
residual blocks composed of batch normalization, ReLU
activation, and a 3 × 3 convolution. The ResNet mod-
els use the sum function as a skip connection, whereas
DenseNet integrates the concatenation. Therefore, each
input layer receives all outputs of the earlier versions.
The concatenation process generates an output with a large
number of channels, which makes DenseNet models com-
putationally heavy.

• Inception: Google proposed its own deep learning in-
spired by LeNet, referred to as Inception, stacking more
convolutional layers deeper to achieve a better perfor-
mance, which comes at the cost of heavy computations
and a complex design. The philosophy of inception re-
lies on concatenating the responses of different convolu-
tion filters at the same layer, forming the input of the next
layer. Moreover, they used a 1 × 1 convolution filter as
a feature reduction technique before jumping to the next
layer. Google introduced four versions of the Inception
architecture, Inception.v1 known as GoogLeNet with 27
layers, Inception.v2, Inception.v3, and Inception.v4 tack-
ling batch normalization, factorization, and grid size con-
trol problems, respectively. Google proposed two ver-
sions of a residual network inspired by the performance
of ResNet, known as InceptionResNet.v1 and Inception-
ResNet.v2 based on creating the skip connections on the
previous Inception models. Inception-ResNet.v1 and
Inception-ResNet.v2 networks have the same computa-
tional cost of Inception.v3 and Inception.v4, respectively.

To employ deep learning architectures for deep feature ex-
traction in solving the FER problem, we follow the basic proce-
dure shown in Figure 11. Initially, the model was trained end-
to-end on a big dataset, mainly the Facial Expression Recog-
nition 2013 (FER2013) database. Afterwards, the model is ex-
pected to achieve a good training performance using the vali-
dation set. We then proceed to the transfer learning technique
to extract the features of the subject database that belongs to
the same application as the database used for the initial train-
ing (same classes). Once the features are obtained, we train the
SVM classifier and evaluate the performance of each deep fea-
ture. To further improve this deep-based FER architecture, the
calculated features may be concatenated with other descriptors
such as HOG, Gabor filters, and LBP descriptors before pro-
ceeding to the classification step.

4.3. Evaluation of OPD-GQMBP neighborhood size configu-
ration

The proposed OPD-GQMBP descriptor is a generic method
defined by the neighborhood size n, which can be seen as a user-
specified parameter depending on the needs of the considered
application. To find the best value for FER, we conducted an ex-
periment evaluating the performance of four configurations: n
= 3, 5, 7, and 9. For each, we evaluated the FER framework on

the five datasets using the LOSO protocol. The smaller neigh-
borhood sizes provide less computational cost, but with weak
discriminative power, and larger sizes enhance the discrimi-
native power, but require more resources to store and classify
the extracted features. For example, a neighborhood size of 3
(OPD−GQMBP3) generates only 4×23 = 32 possible patterns,
whereas neighborhood sizes of 5 (OPD−GQMBP5), 7 (OPD−
GQMBP7), and 9 (OPD − GQMBP9) produce 128, 512, and
2048 patterns, respectively. Table 2 shows the recognition rates
obtained from this experiment. It can be concluded that with a
higher neighborhood size, we obtain more discriminative fea-
ture extraction. The most effective configuration is n=7, which
managed to reach the top performance on 4 databases. Thus, the
512 generated patterns proved to be sufficient for characterizing
the seven emotional classes. Here, OPD −GQMBP9 achieved
a top accuracy of 97.53% on the CK+ database outperform-
ing OPD − GQMBP7, but suffered a performance drop on the
other datasets. Indeed, in some cases, methods that generate a
high number of patterns may cause a performance drop owing
to pattern redundancy. It is clear that with OPD − GQMBP3

the configuration cannot outperform the other configurations;
however, the recorded accuracies remained prominent regard-
ing the low computation (32 patterns only). The performances
of OPD −GQMBP3 and OPD −GQMBP5 are extremely sim-
ilar with small variations. We acknowledge that we could not
evaluate neighborhood sizes of greater than 9 owing to the re-
quired computational resources (out of memory). Therefore,
we adopt OPD − GQMBP7 in the rest of this paper because it
corresponds to the best among the tested configurations.

4.4. Comparative analysis against state-of-the-art handcrafted
and deep feature methods

The goal of this comprehensive analysis is to compare the
performance of the proposed OPD-GQMBP descriptor to those
recorded in the literature on feature extraction methods, includ-
ing handcrafted and deep-based approaches. We considered
12 recent and powerful LBP variants published in high-impact
journals and proposed for various applications, mainly texture
classification and face recognition. In addition, we evaluated
the top-10 state-of-the-art deep learning models proposed thus
far. These models were initially trained on the FER2013 database,
each of them reached a validation accuracy of above 60% on
25,000 images, which can be considered extremely significant.
We then use transfer learning to extract the features of the five
databases adopted in this study. We respected the same evalu-
ation protocol (LOSO) to provide a fair and systematic analy-
sis. Table 3 lists the performance achieved by each method or
model. We provide two metrics. The first metric is the aver-
age accuracies recorded for all runs of each database depend-
ing on the number of individuals, of which JAFFE has 10 runs,
CK+ has 106, KDEF has 70, OuluCasia has 80, and the RaFD
database has 67. The second metric is the maximum accuracy
reached for all runs per database. We highlight the top 3 aver-
age values with green color.

It can be seen from the average accuracies that the pro-
posed OPD-GQMBP descriptor managed to score the top per-
formance on all tested datasets. For the CK+ database, the
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Figure 11: Deep-feature based FER approach.

OPD-GQMBP descriptor achieved a score of 96.48% on 106
runs with a maximum recognition accuracy of 100%, maintain-
ing more than a 2% gap over the next best method, i.e., the
handcrafted MNTCDP descriptor, which managed to secure an
average accuracy of 94.36%. All of the evaluated methods were
capable of reaching a maximum accuracy of 100% on the CK+

dataset. Moreover, the majority of the handcrafted methods
performed at above 87.81% when applying the DCP descrip-
tor, whereas the deep features reached a maximum average of
88.76% with VGG19 only and 54.18% (AlexNet) as the mini-
mum average for CK+. As indicated in Table2, we found that
n=9 for the configuration of the OPD-GQMBP method scored
97.53% on CK+, which was a 1% improvement compared to
OPD-GQMBP with n=7 adopted in this evaluation. In addi-
tion, OPD-GQMBP reached 77.62% on JAFFE with a lead of
3% over the rest of the methods, with the second highest aver-
age accuracy being 74.76% for the DCP descriptor followed by
ELGS as the third-best performing method at 73.81%. Accord-
ing to the maximum accuracy on the JAFFE database, only the
OPD-GQMBP and DCP methods managed to score 100%. The
Japanese females with high facial similarities make the JAFFE
an extremely tough benchmark for FER systems. The results
demonstrate that the JAFFE database is quite challenging, par-
ticularly for deep features where the top average accuracy was
limited to 56.67%, as obtained by VGG16, whereas the hand-
crafted features granted an average accuracy of above 64.76%,
which was reached by the LOOP descriptor. For the KDEF

database, the first remark to be concluded is that the OPD-
GQMBP descriptor is the only method that breaks the 90% av-
erage performance ceiling, and the best state-of-the-art method
reached 88.37% (LDTP). The performance of the handcrafted
methods and deep methods varied from 78.57% to 88.37% and
from 65.31% to 76.73%, respectively. The lead gap on this
database was again approximately 2% in favor of the OPD-
GQMBP descriptor, which proves its discriminative power for
FER applications. Despite the quality of the recorded images
in terms of resolution, lighting conditions, and a uniform back-
ground, the KDEF database is also challenging in face of CK+.
It presents fewer individuals (fewer runs) expressing the seven
emotions in different manners, resulting in more intraclass sim-
ilarities and approaching spontaneous facial expressions. Oulu-
Casia can be considered as the toughest among the adopted
benchmarks owing to the blur images and the South Asian indi-
viduals composing this database. The OPD-GQMBP descriptor
scored 77.32% as the overall best performing method, followed
by ARCS-LBP (75.5%) and DC (74.64%) descriptors. The
lowest accuracy was recorded by the AlexNet deep network,
reaching only 29.64%. In addition, all methods achieved a
100% maximum accuracy except for MNTCDP, AlexNet, GoogLeNet,
and Inceptionv3. Moreover, only the ELGS, DC, ARCS-LBP,
and OPD-GQMBP methods exceeded a 70% average accuracy,
whereas the DCP descriptor, which had the second highest rank
on JAFFE, found its performance limited to 45.89% as the low-
est average accuracy over all handcrafted LBP-like methods.
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Table 1: Summary of the Handcrafted and Deep feature methods of the literature tested and evaluated in this paper

N◦ Abbreviation Complete name (Application) Year

1 DSLGS [5] Difference Symmetric Local Graph Structure (Finger vein recognition) 2015
2 DCP [4] Multi-Directional Multi-Level Dual-OPD-GQMBPs Patterns (Face recognition) 2015
3 DRLBP [23] Dominant Rotated Local Binary Patterns (Texture classification) 2016
4 QBP [47] Quad Binary Pattern (Target tracking) 2016
5 ELGS [9] Extended Local Graph Structure (Texture classification) 2016
6 LNDP [28] Local neighborhood difference pattern (Texture classification) 2017
7 DC [42] Rotation-invariant features based on directional coding (Texture classification) 2018
8 LCCMSP [8] Local Concave-and-Convex Micro-Structure Patterns (Texture classification) 2018
9 LDTP [16] Local directional ternary pattern (Texture classification) 2018

10 LOOP [3] Local Optimal Oriented Pattern (Spieces recognition) 2018
11 MNTCDP [14] Mixed Neighborhood Topology OPD-GQMBPs Decoded Patterns (Face recognition) 2018
12 ARCS-LBP [9] Attractive-and-Repulsive Center-Symmetric Local Binary Patterns (Texture classification) 2019

13 VGG16 Visual Geometry Group - University of Oxford - 19 Layers 2014
14 VGG19 Visual Geometry Group - University of Oxford - 16 Layers 2014
15 ResNet18 Residual Neural Network - Microsoft Research - 18 Layers 2015
16 ResNet50 Residual Neural Network - Microsoft Research - 50 Layers 2015
17 ResNet101 Residual Neural Network - Microsoft Research - 101 Layers 2015
18 AlexNet Convolutional Neural Network by Alex Krizhevsky - 8 Layers 2012
19 DenseNet Densly Connected CNN - Cornell Tsinghua Univs & Facebook - 201 Layers 2017
20 GoogLeNet Inception version1 based on LeNet - Google - 22 Layers 2015
21 Inception v3 Inception version3 - Google - 159 Layers 2015
22 InceptionResNet v2 Inception-ResNet-version2 CNN (Xception) - Google - 126 Layers 2017

Table 2: Average FER rate of each OPD-GQMBP configuration
(neighborhood size) for all databases

NS ize Config CK+ JAFFE KDEF OuluCasia RaFD

OPD −GQMBP3 95.74 73.33 88.57 73.93 96.08

OPD −GQMBP5 96.01 73.33 87.96 74.82 95.9

OPD −GQMBP7 96.48 78.57 90.2 77.32 97.39

OPD −GQMBP9 97.53 71.9 87.96 75.95 96.08

The RaFD database is collected by a set of well-trained individ-
uals that clearly express eight emotions (basic emotions + con-
tempt). Indeed, the peak average accuracy exceeded 97% by the
proposed OPD-GQMBP descriptor with a minor lead (0.19%)
against the LDTP and LCCMSP methods (97.01%). Moreover,
all of the handcrafted descriptors reached above 90%, except
for DCP (87.31%). By contrast, ResNet50 was the best among
the deep feature methods, with an average accuracy of 84.51%.
In terms of stability, the OPD-GQMBP descriptor performed
well on the five datasets, always reaching the top average accu-
racies and 100% at all times. The ELGS method also presented
a stable performance across all databases. By contrast, DCP
suffered a performance decrease on the KDEF and OuluCasia
datasets. For deep feature methods, VGG16 can be considered
as the best performing deep feature method.

The deep learning networks did not perform well on the five
benchmarks, despite reaching a validation accuracy of above
60% on 25,000 images of the FER2013 database. The prob-
lem here is that the deep learning methods should be fine-tuned
on each dataset before extracting the features to obtain satis-
factory results. The applied application in this paper is person-
independent, and to ensure that the probe images of a given
person are unseen by the framework, we should perform fine

tuning on each run and for each deep method. Hence, because
we have a set of 333 persons on the five datasets and we con-
sider 10 deep learning models, we need 3330 fine tunes to ex-
pect satisfying results from these models, which are time- and
resource-consuming. Moreover, such frameworks are intended
for real implementations and deployments, and fine tuning is
not always a possible option. In addition, the probe images will
have generally different characteristics than the trained images.

4.5. Comparison against state-of-the-art FER systems

In this subsection, we compare the results obtained by our
proposed FER framework to those achieved by previous studies
in the field of facial expression recognition. Tables 4, 5, 6, 7 and
8 list the highest accuracies on the five datasets reported in well-
indexed journals and conferences of the literature. We tried to
collect the maximum number of studies that followed the same
adopted evaluation protocol (person-independent).

As can be seen in Table 4, the proposed FER framework
outperforms all listed systems, including both handcrafted and
deep-based features in the CK+ database. We reached an ac-
curacy of 96.48% (97.53% with the OPD-GQMBP at a neigh-
borhood size of n=9), whereas the best accuracy of the other
state-of-the art methods was 94.96% achieved using LPQ with
an SVM classifier. Moreover, the majority of the published ap-
proaches reached between 90% and 94%. In the JAFFE database,
the accuracies of the other state-of-the-art methods are low com-
pared to that of CK+, where the maximum reported accuracy
is 76.46% scored by the CFER-based framework, which was
outperformed by our FER framework (77.62%). The proposed
framework managed to surpass with a significant margin all
other approaches on the KDEF dataset, except for the WCFN
(89.55%) and AlexNet (89.33%) based systems, where the mar-
gin is small (0.65% and 0.87% of our framework performance,
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Table 3: Average and maximum accuracies recorded on the five datasets by each method.

Method
JAFFE KDEF CK+ OuluCasia RaFD

Avg Max Avg Max Avg Max Avg Max Avg Max

D
ee

p
Fe

at
ur

es

VGG16 56.67 76.19 76.53 100 86.34 100 56.96 100 82.84 100

VGG19 53.81 76.19 76.73 100 88.76 100 58.57 100 81.53 100

ResNet18 35.24 57.14 72.24 100 72.67 100 52.32 100 83.02 100

ResNet50 44.76 61.9 75.71 100 77.32 100 56.96 100 84.51 100

ResNet101 52.86 71.43 70.82 100 76.79 100 53.57 100 78.17 100

AlexNet 43.81 66.67 66.94 100 54.18 100 29.64 71.43 67.54 100

DenseNet 48.1 80.95 70.2 100 76.15 100 50.36 100 77.8 100

GoogLeNet 47.14 66.67 71.63 100 69.98 100 44.64 85.71 79.66 100

Inceptionv3 39.52 57.14 65.31 100 71.22 100 44.46 85.71 70.52 100

InceptionResNetv2 47.62 66.67 76.33 100 80.17 100 55 100 81.72 100

H
an

dc
ra

ft
ed

L
B

P
V

ar
ia

nt
s

ELGS 73.81 95.24 85.71 100 92.59 100 70 100 95.34 100

DSLGS 60.95 85.71 78.57 100 91.2 100 64.64 100 91.23 100

MNTCDP 69.05 85.71 85.51 100 94.36 100 55.36 85.71 95.15 100

QBP 62.38 85.71 79.39 100 91.99 100 66.43 100 91.79 100

DRLBP 70 85.71 84.49 100 90.35 100 65.36 100 96.08 100

LNDP 69.52 95.24 86.94 100 92.86 100 68.75 100 96.08 100

DCP 74.76 100 69.18 100 87.81 100 45.89 100 87.31 100

DC 66.67 95.24 84.69 100 89.87 100 74.64 100 95.52 100

LCCMSP 71.43 95.24 86.12 100 92.28 100 69.29 100 97.01 100

LOOP 64.76 85.71 85.92 100 91.7 100 69.64 100 96.27 100

LDTP 70 90.48 88.37 100 93.3 100 67.5 100 97.01 100

ARCS-LBP 65.24 95.24 85.51 100 91.45 100 75.5 100 96.64 100

Proposed OPD-GQMBP descriptor 77.62 100 90.2 100 96.48 100 77.32 100 97.2 100

Table 4: State-of-the-art person-independent FER accuracies on CK+ database

Methods Type Avg accuracy
LPDP [22] Handcrafted 94.5
DCNN [27] Deep 94.44
DNN [26] Deep 93.52
CNN+AFM [43] Deep 89.84
AlexNet+SVM [43] Deep 86.83
GoogLeNet [43] Deep 85.71
STM-ExpLet [21] Deep 94.13
LTeP+SVM [2] Handcrafted 94.93
LPQ+SLPM+NN [41] Handcrafted 94.61
WPLBP [6] Handcrafted 91.72

Proposed Handcrafted 97.53

Table 5: State-of-the-art person-independent FER accuracies on JAFFE
database

Methods Type Avg accuracy
LTeP+SVM [2] Handcrafted 67.14
LPQ+SLPM+NN [41] Handcrafted 67.61
EDR-PCANet [39] Deep 69.4
C-classLDA-NN [18] Deep 74.73
LBP based LDA [32] Handcrafted 73.4
CFER [38] Handcrafted 76.46
Features fusion [29] Handcrafted 70

Proposed Handcrafted 77.62
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Table 6: State-of-the-art person-independent FER accuracies on KDEF
database

Methods Type Avg accuracy
AlexNet+FC6+LDA [10] Deep 89.33
HOG+SRC [34] Handcrafted 78
VGG-Face Deep [46] Deep 72.55
SCAE [30] Deep 86.73
DFD [40] Handcrafted 82.24
WCFN [44] Deep 89.55
MobileNet [11] Deep 73.74
EDR-PCANet [39] Deep 80.61

Proposed Handcrafted 90.2

Table 7: State-of-the-art person-independent FER accuracies on OuluCasia
database

Methods Type Avg accuracy
STM-ExpLet [21] Deep 74.59
LBP+Gabor+SVM [50] Handcrafted 74.37
HOG 3D [17] Handcrafted 70.63
AdaLBP [49] Handcrafted 73.54
Atlases [11] Deep 75.52

Proposed Handcrafted 77.32

Table 8: State-of-the-art person-independent FER accuracies on RaFD
database

Methods Type Avg accuracy
Visual Attention CNN [37] Deep 95.2
DS+FE+GEM+SVM [25] Handcrafted 90.8
LPQ+FE+GEM+SVM [25] Handcrafted 94.4
LBP+FE+GEM+SVM [25] Handcrafted 94.5
Metric Learning [12] Deep 95.95
BAE-BNN-3 [35] Deep 96.93
W-CR-AFM [43] Deep 96.27
Net1-Net2 [36] Deep 93.41

Proposed Handcrafted 97.2

respectively). On the OuluCasia dataset, the proposed frame-
work (77.32%) outperformed all other state-of-the-art meth-
ods, where the top accuracy was limited to 75.52%, which was
achieved by Atlases. On the RaFD database, our proposed
framework obtained 97.2%. Many studies described in the lit-
erature achieved an accuracy of nearly 97%. However, the ma-
jority applied only seven emotion classes. Overall, we conclude
that the proposed facial expression recognition framework man-
aged to outperform all of the state-of-the-art methods tested.

4.6. Confusion matrix-based analysis for the FER
The confusion matrix allows the performance of the recog-

nition according to each label (each emotion in our case). Through
this chart, we are capable of analyzing the recognition rate of
each emotion, as well as which are the easiest and most diffi-
cult emotions to recognize. In addition, this analysis allows us
to identify which emotions affect the others. Figures 12, 13, 14,
15 and 16illustrate the confusion charts generated from the re-
sults of our proposed FER framework for CK+, JAFFE, KDEF,
OuluCasia, and RaFD, respectively.

Figure 12: Confusion matrix of the seven emotions of CK+

Figure 13: Confusion matrix of the seven emotions of JAFFE

In the CK+ database, the Happy and Surprise classes were
perfectly recognized, whereas Fear and Sad experienced the
highest misclassification rate (16.0% and 14.3%, respectively).
Fear was confused three times with Happy and once with Sad.
A Neutral emotion was the most affective emotion (with a 12.5%
false-negative rate) and was predicted four times in the case of
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Figure 14: Confusion matrix of the seven emotions of KDEF

Figure 15: Confusion matrix of the seven emotions of OuluCasia

Figure 16: Confusion matrix of the eight emotions of RaFD

Sad and twice for Angry. For the JAFFE database, Happy and
Neutral were the easiest to identify with an accuracy of 86.7%,
and the hardest was Fear (60%), which was confused with all
emotions, i.e., three times with Disgust, Neutral, and Surprise,
and once with the remaining emotions. The Sad class presented
the highest false-negative rate (34.4%). The females compos-
ing this database express Angry and Sad emotions in similar
ways because five Angry samples were identified as Sad. For
the KDEF dataset, the errors were less than those of JAFFE.
Happy and Neutral once again were highly recognized emo-
tions (98.6%), but Angry was a challenging class, with a rate of
only 78%. Our FER framework confused Disgust seven times

with Fear and confused Fear six times with Sad. Happy and
Disgust did not affect any other emotion except once each for
Angry. As expected from OuluCasia, the misclassification er-
rors were extremely high. The Happiness emotion is the only
one to be highly recognized with an accuracy of 96.3%, fol-
lowed by Surprise (91.3%). The remaining accuracies were
between 66.3% and 80%. In addition, Angry and Neutral dra-
matically influenced the other emotions by 34.5% and 36.6%,
respectively. In the RaFD database, all rates were high with
perfect recognition rates for three classes (i.e., Contempt, Fear,
and Sad) in addition to Angry and Disgust, which were mis-
classified only once. However, there is a mutual confusion be-
tween Happy and Surprise because three Happy samples were
identified as Surprise and Surprise samples were identified as
Happy four times. For all databases, we determined that Happy
and Neutral are the most recognized emotions, and that Neutral
is an extremely perturbing framework, presenting high false-
negative rates on many benchmarks.

4.7. Implementation and execution time

The FER experiments presented were conducted on an Alien-
ware Aurora R8 with a 4.6 GHz Core i7-8th Processor Boost, 12
threads, and 48 GB of RAM, running with the Ubuntu 18.04.2
LTS (Bionic Beaver) operating system and equipped with two
GTX1080Ti GPUs. The developed framework is coded using
Python 3.7 and MATLAB 2019b environments. The authors
are willing to share all codes used by the community once this
paper is published. The computational cost is one of the key
performance indicators considered in machine learning appli-
cations. Therefore, we ran an experiment that calculates the
elapsed time required to predict the label of a given input image
with a pixel resolution of 762× 562, highlighting the execution
time of each step of the proposed framework:

• Dlib landmark detection.

• Shape feature extraction based on HOG descriptor.

• Appearance feature extraction using the proposed OPD-
GQMBP as well as the state-of-the-art handcrafted meth-
ods denoted as ”getFeatures”.

• PCA dimensionality reduction.

• Label prediction using the SVM library.

We excluded the deep-learning methods from this evalua-
tion because they require GPUs to perform the feature extrac-
tion; thus, it will be unfair to compare CPU-based methods with
GPU-based approaches regarding the computation power of the
GPUs. The CPU can be used to calculate the feature vector us-
ing a deep model, but it takes approximately 4 s to compute it
for an input image with a size of only 224 × 224 (three-times
smaller than the size of the original image), which is extremely
high compared to the handcrafted features. The obtained com-
putational times are included in Table 9 and illustrated graphi-
cally in Figure 17 (for greater readability). As can be seen, the
elapsed times for the landmark detection, HOG shape feature
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extraction, and SVM prediction did not change across the eval-
uated methods, where they recorded times of 15.9, 19.58, and
2.306 ms, respectively. The process of extracting the appear-
ance features was demonstrated to be the most time-consuming
within our framework (requiring more than 50% of the total
time). The fastest handcrafted method is DRLBP, which ex-
tracted the features from the 49 landmarks in 31.5 ms, whereas
LDTP took 311.6 ms to extract these features and is thus judged
as the heaviest approach. However, the DRLBP did not perform
well in terms of classification accuracy, whereas the proposed
OPD-GQMBP descriptor managed to offer an execution time
of only 90.34 ms, which is quite beneficial regarding its high
performance as demonstrated earlier. Moreover, all of the best-
performing descriptors took more than 100 ms to compute the
appearance features. Although the PCA stage is common to all
descriptors for a dimension reduction, its execution time was
variable and affected by the number of generated patterns of
each handcrafted method as a high number of patterns leads
to more computations. Nevertheless, it can be remarked that
the PCA computation times are similar for the methods shar-
ing the same sized patterns generated. The methods produc-
ing 256 patterns such as LOOP, QBP, DC, ARCS-LBP, and
DRLBP recorded a PCA computation time of approximately
11 ms. The PCA process of the proposed OPD-GQMBP de-
scriptor as well as those producing 512 patterns took approxi-
mately 20 ms, whereas LDTP and LNDP methods generating
1024 patterns took approximately 36 ms. By contrast, the PCA-
based dimensionality reduction process related to the LCCMSP
(2048 patterns) descriptor was completed within 83.5 ms. Over-
all, we can disclose that the proposed framework along with the
OPD-GQMBP method managed to predict the label of an im-
age with a pixel resolution of 762 × 562 in less than 150 ms,
allowing a processing of 7 frames per second, which is consid-
ered as a real-time feedback according to the specifications of
person-independent FER systems [7, 24].

Table 9: Elapsed time in milliseconds to compute the features and predict the
label of an input image

Method Dlib Hog getFeatures PCA SVM Total

ARCS-LBP 15.9 19.58 61.4 11.6 2.235 110.715
DC 15.9 19.58 167.3 10.1 2.235 215.115

DCP 15.9 19.58 62.37 20.4 2.235 120.485
DRLBP 15.9 19.58 31.6 11.7 2.235 81.015
DSLGS 15.9 19.58 30.8 20.6 2.235 89.115
ELGS 15.9 19.58 65.22 20.6 2.235 123.535

LCCMSP 15.9 19.58 145.72 83.5 2.235 266.935
LDTP 15.9 19.58 311.6 36.21 2.235 385.525
LNDP 15.9 19.58 34.22 35.5 2.235 107.435
LOOP 15.9 19.58 293.2 11.7 2.235 342.615

MNTCDP 15.9 19.58 101.8 20.5 2.235 160.015
OPD-GQMBP 15.9 19.58 90.34 20 2.235 148.055

QBP 15.9 19.58 35.5 12.4 2.235 85.615

5. Conclusion and Future works

In this paper, we proposed a new handcrafted descriptor,
OPD-GQMBP, along with a framework for facial expression
recognition. We considered using individual people as the most

challenging task acquiring the intention of many computer vi-
sion researchers, as can be seen from the number of studies pub-
lished in this context. The OPD-GQMBP method applies or-
thogonality and parallelism geometrics to cover the most promi-
nent pixels within a neighborhood. OPD-GQMBP is a generic
descriptor with the neighborhood size as a parameter, which
can be adjusted to obtain the most discriminative feature ex-
traction regarding the intended application. For FER, we found
that the neighborhood size of n = 7 is the best configuration
of the proposed OPD-GQMBP descriptor. With regard to the
developed FER framework, we combined the shape and tex-
ture feature extraction techniques applied considering 49 land-
marks detected by the Dlib package on each input image. This
strategy allowed a powerful FER system to outperform many
existing methods in the literature on five widely used bench-
marks. To fairly judge the performance of the OPD-GQMBP
descriptor, a comparative analysis was conducted on five bench-
marks. We assessed the performance of 12 handcrafted and
10 state-of-the-art deep feature methods applied within the de-
veloped framework and respecting the same evaluation proto-
col. Based on the analysis of the experimental results, it was
inferred that the OPD-GQMBP descriptor managed to outper-
form all other methods, including deep features, and reached
the top recognition rates. The accuracies recorded by the devel-
oped FER system combined with the proposed OPD-GQMBP
descriptor were the highest in comparison to the those reported
by the existing state-of-the-art FER systems that adopted the
same protocol (person-independent LOSO). Although it is true
that our system managed to outperform many of the state-of-
the-art systems, it needs improvement on databases containing
Asian individuals (e.g., JAFFE and Oulu CASIA) because they
tend to present similar facial features, which confuse the clas-
sifier in the case of the LOSO protocol. We believe that the
ultimate solution is to reduce the number of extracted appear-
ance features and focus on the binary patch calculated based
on the detected landmarks. This patch should incorporate more
information, and not only the landmark location, and therefore
handcraft a shape descriptor to obtain the most prominent infor-
mation. Moreover, this proposal will help in the development
of generic person-independent FER systems because the input
images will be coded into a common patch. Even though our
framework, along with the proposed descriptor, performs effi-
ciently in terms of computational time, we think that there is
room for improvement using other dimension reduction strate-
gies and/or landmark selections. We are also investigating an
enhancement of the performance of our framework by utiliz-
ing other sophisticated classifiers than an SVM and combining
learnable features with the proposed OPD-GQMBP descriptor.
In addition, we intend to extend the set of the studied emo-
tion classes with the compound classes, reaching 20 different
classes. We also considered creating a mixed database from ex-
isting databases to gather all challenges in a unique benchmark,
which will offer more challenging testing and evaluation.

15



15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9

19.58 19.58 19.58 19.58 19.58 19.58 19.58 19.58 19.58 19.58 19.58 19.58 19.58

61.4

167.3

62.37
31.6 30.8

65.22

145.72

311.6

34.22

293.2

101.8 90.34

35.5

11.6

10.1

20.4

11.7 20.6

20.6

83.5

36.21

35.5

11.7

20.5
20

12.4

5
20
35
50
65
80
95
110
125
140
155
170
185
200
215
230
245
260
275
290
305
320
335
350
365
380
395
410

ARCS-LBP DC DCP DRLBP DSLGS ELGS LDTP LNDP LOOP MNTCDP OPD-GQMBP QBP

Execution Time  Comparison

Dlib Hog

LCCMSP

getFeatures PCA SVM

Time is ms

Total Time*

*

*

*

* *

*

*

*

*

*

* *

*

215.115

110.715
120.485

89.115
89.115

123.535

266.935

385.525

342.615

107.435

160.015
148.055

85.615

Figure 17: Elapsed time in milliseconds required to compute the features and predict the label of an input image

6. Acknowledgments

The authors gratefully acknowledge the funding received
from CNSRT-Maroc (Centre National de la Recherche Scien-
tifique et Technique) and the French government (Eiffel schol-
arship).
[1] Barkan, O., Weill, J., Wolf, L., and Aronowitz, H. (2013). Fast high dimen-

sional vector multiplication face recognition. In Proceedings of the IEEE
international conference on computer vision, pages 1960–1967.

[2] Bashar, F., Khan, A., Ahmed, F., and Kabir, M. H. (2014). Robust facial
expression recognition based on median ternary pattern (mtp). In 2013 In-
ternational Conference on Electrical Information and Communication tech-
nology (EICT), pages 1–5. IEEE.

[3] Chakraborti, T., McCane, B., Mills, S., and Pal, U. (2018). Loop de-
scriptor: Local optimal-oriented pattern. IEEE Signal Processing Letters,
25(5):635–639.

[4] Ding, C., Choi, J., Tao, D., and Davis, L. S. (2016). Multi-directional
multi-level dual-cross patterns for robust face recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 38(3):518–531.

[5] Dong, S., Yang, J., Wang, C., Chen, Y., and Sun, D. (2005). A new fin-
ger vein recognition method based on the difference symmetric local graph
structure (dslgs). International Journal of Signal Processing, Image Pro-
cessing and Pattern Recognition, 8(10):71–80.

[6] Du, L. and Hu, H. (2019). Weighted patch-based manifold regulariza-
tion dictionary pair learning model for facial expression recognition using
iterative optimization classification strategy. Computer Vision and Image
Understanding, 186:13–24.

[7] Duncan, D., Shine, G., and English, C. (2016). Facial emotion recognition
in real time. Stanford University.

[8] El merabet, Y. and Ruichek, Y. (2017). Local concave-and-convex micro-
structure patterns for texture classification. Pattern Recognition.

[9] Elmerabet, Y. et al. (2019). Attractive-and-repulsive center-symmetric lo-
cal binary patterns for texture classification. Engineering Applications of
Artificial Intelligence, 78:158–172.

[10] Fei, Z., Yang, E., Li, D. D.-U., Butler, S., Ijomah, W., Li, X., and Zhou, H.

(2020). Deep convolution network based emotion analysis towards mental
health care. Neurocomputing.

[11] Guo, S., Feng, L., Feng, Z.-B., Li, Y.-H., Wang, Y., Liu, S.-L., and Qiao,
H. (2019). Multi-view laplacian least squares for human emotion recogni-
tion. Neurocomputing, 370:78–87.

[12] Jiang, B. and Jia, K. (2016). Robust facial expression recognition al-
gorithm based on local metric learning. Journal of Electronic Imaging,
25(1):013022.

[13] Jung, H., Lee, S., Yim, J., Park, S., and Kim, J. (2015). Joint fine-tuning
in deep neural networks for facial expression recognition. In Proceedings of
the IEEE international conference on computer vision, pages 2983–2991.

[14] Kas, M., Ruichek, Y., Messoussi, R., et al. (2018). Mixed neighborhood
topology cross decoded patterns for image-based face recognition. Expert
Systems with Applications, 114:119–142.

[15] Kayyal, M. H. and Russell, J. A. (2013). Language and emotion: certain
english–arabic translations are not equivalent. Journal of Language and
Social Psychology, 32(3):261–271.

[16] Khadiri, I. E., Chahi, A., merabet, Y. E., Ruichek, Y., and Touahni, R.
(2018). Local directional ternary pattern: A new texture descriptor for tex-
ture classification. Computer Vision and Image Understanding, 169:14–27.

[17] Klaser, A., Marszałek, M., and Schmid, C. (2008). A spatio-temporal
descriptor based on 3d-gradients.

[18] Kyperountas, M., Tefas, A., and Pitas, I. (2010). Salient feature and reli-
able classifier selection for facial expression classification. Pattern Recog-
nition, 43(3):972–986.

[19] Lateef, F. and Ruichek, Y. (2019). Survey on semantic segmentation using
deep learning techniques. Neurocomputing, 338:321–348.

[20] Lekdioui, K., Messoussi, R., Ruichek, Y., Chaabi, Y., and Touahni, R.
(2017). Facial decomposition for expression recognition using texture/shape
descriptors and svm classifier. Signal Processing: Image Communication,
58:300–312.

[21] Liu, M., Shan, S., Wang, R., and Chen, X. (2014). Learning expression-
lets on spatio-temporal manifold for dynamic facial expression recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1749–1756.

[22] Makhmudkhujaev, F., Abdullah-Al-Wadud, M., Iqbal, M. T. B., Ryu, B.,
and Chae, O. (2019). Facial expression recognition with local prominent

16



directional pattern. Signal Processing: Image Communication, 74:1–12.
[23] Mehta, R. and Egiazarian, K. (2016). Dominant rotated local binary pat-

terns (drlbp) for texture classification. Pattern Recognition Letters, 71:16–
22.

[24] Michel, P. and El Kaliouby, R. (2003). Real time facial expression recog-
nition in video using support vector machines. In Proceedings of the 5th
international conference on Multimodal interfaces, pages 258–264.

[25] Moeini, A. and Moeini, H. (2014). Multimodal facial expression recogni-
tion based on 3d face reconstruction from 2d images. In International Work-
shop on Face and Facial Expression Recognition from Real World Videos,
pages 46–57. Springer.

[26] Mollahosseini, A., Chan, D., and Mahoor, M. H. (2016). Going deeper
in facial expression recognition using deep neural networks. In 2016 IEEE
Winter conference on applications of computer vision (WACV), pages 1–10.
IEEE.

[27] Ouellet, S. (2014). Real-time emotion recognition for gaming using deep
convolutional network features. arXiv preprint arXiv:1408.3750.

[28] Ouslimani, F., Ouslimani, A., and Ameur, Z. (2018). Rotation-invariant
features based on directional coding for texture classification. Neural Com-
puting and Applications, pages 1–8.

[29] Poursaberi, A., Noubari, H. A., Gavrilova, M., and Yanushkevich, S. N.
(2012). Gauss–laguerre wavelet textural feature fusion with geometrical
information for facial expression identification. EURASIP Journal on Image
and Video Processing, 2012(1):17.

[30] Ruiz-Garcia, A., Elshaw, M., Altahhan, A., and Palade, V. (2017).
Stacked deep convolutional auto-encoders for emotion recognition from fa-
cial expressions. In 2017 International Joint Conference on Neural Net-
works (IJCNN), pages 1586–1593. IEEE.

[31] Shan, C., Gong, S., and McOwan, P. W. (2009a). Facial expression recog-
nition based on local binary patterns: A comprehensive study. Image and
vision Computing, 27(6):803–816.

[32] Shan, C., Gong, S., and McOwan, P. W. (2009b). Facial expression recog-
nition based on local binary patterns: A comprehensive study. Image and
vision Computing, 27(6):803–816.

[33] Shin, M., Kim, M., and Kwon, D.-S. (2016). Baseline cnn structure anal-
ysis for facial expression recognition. In 2016 25th IEEE International Sym-
posium on Robot and Human Interactive Communication (RO-MAN), pages
724–729. IEEE.

[34] St, A. (2017). Emotion recognition: The influence of texture’s descriptors
on classification accuracy. In Beyond Databases, Architectures and Struc-
tures. Towards Efficient Solutions for Data Analysis and Knowledge Repre-
sentation: 13th International Conference, BDAS 2017, Ustroń, Poland, May
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