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 24 

Abstract 25 

We are facing a biodiversity crisis at the same time as we are acquiring an unprecedented view of the 26 

world’s biodiversity. Vast new datasets (e.g. species distributions, traits, phylogenies, and interaction 27 

networks) hold knowledge to better comprehend the depths of biodiversity change, reliably anticipate 28 

these changes, and inform conservation actions. To harness this information for conservation, we need to 29 

integrate the largely independent fields of biodiversity modelling and conservation. We highlight new 30 

developments in each respective field, early examples of how they are being brought together, and ideas 31 

for a future synthesis so conservation decisions can be made with a fuller awareness of the biodiversity at 32 

stake. 33 

 34 

Main Text 35 

 36 

We need greater diversity in biodiversity conservation 37 

Aside from a small fraction of well-known species with established conservation status, most of 38 

the world’s biodiversity is poorly integrated into conservation efforts. Even for iconic clades 39 

such as birds and mammals, only a subset of species are considered in conservation despite a 40 

continuously refined understanding of the ecology and evolution of these clades[1,2]. Lesser 41 

known taxa are nearly always overlooked[3] even those most at risk of extinction[4]. First, we 42 

need to expand the focus of biodiversity in conservation programs to consider more of the tree of 43 

life, even taxa without names[5,6], especially as increasing evidence suggests ‘invisible’ 44 

diversity is important to ecosystem functioning [7]. Second, we must consider the role of species 45 

in ecosystems[8]. Biodiversity is not simply the mere sum of species, but includes complex 46 

interaction networks with fluxes of energy and nutrients[9,10]. Even conservation efforts for 47 



focal charismatic species would benefit from considering the other species enabling their 48 

existence. Biodiversity losses impact all facets of biodiversity (species, genetic diversity, 49 

functional diversity, phylogenetic diversity, see Glossary) and spatial extents ranging from 50 

local assemblages to the global pool of biodiversity. Considering these dimensions is essential to 51 

prevent widespread biodiversity loss. 52 

 53 

Conservation evaluation often falls short for under-represented biodiversity 54 

Simplified metrics likely miss many types of biodiversity 55 

Despite scientific recognition of the importance of biodiversity across multiple facets, most 56 

planning and on-the-ground conservation still focus on a simplified representation of biodiversity 57 

such as the amount or quality of habitat. Habitat-based metrics are used more often in 58 

conservation than in ecology[11], and are often the basis of conservation offsetting, wetland 59 

mitigation, conservation easements, conservation and management of listed species (alongside 60 

population abundances, connectivity, and threat information when available), and are used at a 61 

regional extent in coordinated reserve designs (e.g. Natura 2000, 62 

https://ec.europa.eu/environment/nature/natura2000/index_en.htm). Reliance on habitat metrics 63 

can overlook important biodiversity that falls outside of commonly held notions of high-quality 64 

habitat[12], and these metrics do not necessarily represent population persistence[11]. While the 65 

use of habitat metrics certainly has follow-on benefits to some diversity, its surrogacy value for 66 

even well-known species is unclear[13], and unknown for many taxa and for different 67 

biodiversity facets. 68 

 69 



In cases where multiple species are considered together in applied conservation, they are most 70 

often represented as species richness (the count of species in areas)[11]. The use of species 71 

richness cannot address the known biases in extinction risk towards certain clades (e.g. 72 

amphibians[14]) and functional types (e.g. top predators). While species richness and other 73 

species-based metrics can be an effective surrogate for phylogenetic diversity[10] or functional 74 

diversity[15], its surrogacy value depends on the conservation scenario[16] and tends to decrease 75 

in scenarios where resources are limited (i.e. few sites available for protection)[17]. We have 76 

very limited evidence for surrogacy value of different biodiversity facets outside of iconic animal 77 

groups (e.g. does aboveground animal richness relate to soil microbial diversity?). Finally, how 78 

species interact within ecosystems is almost never considered in applied conservation despite 79 

links to the important conservation goals of ecosystem functioning and resilience[9]. 80 

 81 

Independent conservation efforts fail to protect the world’s biodiversity 82 

Safeguarding multiple facets of biodiversity—especially for the purposes of preventing 83 

extinction, protecting our biological heritage, and retaining future options for society—requires 84 

an understanding of the global biodiversity pool, arguably more than for other conservation aims 85 

(e.g. managing local ecosystems or protecting ecosystem services)[18]. But conservation actions 86 

are typically local or regional, which can lead to unintended outcomes for global 87 

biodiversity[19]. First, species are declining globally[20], but not necessarily locally[21–23], 88 

leading to a homogenization of biodiversity where different areas have increasingly similar 89 

biodiversity[20]. Second, conservation priorities established for local species assemblages[16] or 90 

even for species at a national scale[19] differ from global biodiversity priorities[16,19]. Lastly, 91 

the emphasis on protecting large patches and connected habitats (e.g. species corridor 92 

initiatives), which is based on research on metapopulations and conservation genetics, risks 93 



overlooking important biodiversity (e.g. endemic species, highly functional communities) that 94 

occur in small and isolated habitat patches [24]. A more spatially-coordinated approach is needed 95 

that recognizes how local conservation efforts impact the regional and global biodiversity pool. 96 

 97 

The potential to bring together biodiversity modelling and conservation  98 

The fields of ecology and conservation planning already consider the spatial extents necessary 99 

for this coordination, but they do so in slightly different ways. In systematic conservation 100 

planning (SCP), biodiversity features (e.g. species distributions) are considered in planning units. 101 

Planning units are compared across the entire area of interest using the principles of spatial 102 

complementarity and irreplaceability. In ecology, a similar hierarchy can be found in the 103 

delineation of α-(within-site or within-ecosystem diversity), β-(differentiation of sites in a 104 

region; e.g. compositional turnover), and �-diversity (diversity of the entire region). We refer to 105 

�-diversity as the total set of biodiversity in the area of interest, which could have a regional or 106 

global extent, to better align with conservation planning. Both fields are progressing 107 

independently toward a multi-scale, multi-facetted view of biodiversity (Figure 1). Now is the 108 

time to integrate these fields to rapidly expand the amount of biodiversity data that reaches 109 

conservation practice (Figure 2).  110 

 111 

Advances in biodiversity models 112 

While steady progress has been made on addressing the major biodiversity shortfalls with 113 

increased data collection (e.g. citizen science[25], environmental DNA) and global initiatives to 114 

compile data on species occurrences (e.g. GEO-BON initiative; geobon.org, GBIF; gbif.org), 115 

traits (e.g. TRY;www.try-db.org), genetic and phylogenetic data (e.g. GenBank), and species 116 



interaction data (e.g. GloBI; globalbioticinteractions.org), major shortfalls remain[26]. 117 

Biodiversity models are essential tools to rapidly overcome these shortfalls. We consider 118 

biodiversity models to be any model that makes predictions for biodiversity (including species 119 

occurrences or abundances, traits, phylogenetic placement, or species interactions). Here, we 120 

highlight two model classes: (1) imputation models for missing biodiversity data and (2) spatial 121 

biodiversity models for predicting taxa or other biodiversity facets for unsampled locations, 122 

which often serve as an input for conservation planning (Figure 1).  123 

 124 

Imputation models 125 

Imputation models are needed to fill in the many gaps in biodiversity datasets. For example, they 126 

can generate missing trait values for taxa[27], which can be estimated from phylogenies, 127 

assuming traits have a general pattern of conserved evolution[28] or through multivariate 128 

imputation that does not rely on phylogenies[29]. Increasingly sophisticated approaches are also 129 

being used to generate phylogenies when some gene sequences are missing[30], and to combine 130 

multiple datasets into aggregated phylogenies either based on the phylogenies themselves (‘super 131 

trees’ or preferably from a combined gene matrix[31]. There is also growing interest in 132 

predicting interactions between species based on their trait attributes (e.g. predator-prey trait 133 

matching[32]) and spatial co-occurrence data[33]. Predicting species interactions across many 134 

species or at multiple locations is difficult with severely limited data, but can be addressed by 135 

combining empirical data and expert knowledge[34].  136 

 137 

While imputation models are greatly expanding the coverage of biodiversity datasets, challenges 138 

remain. Data collection is systematically geographically and taxonomically biased, which could 139 



bias predictions, especially for rare taxa. We are increasingly relying on the same datasets for 140 

different types of analyses, so there is also the danger of circularity if those analyses are later 141 

combined (e.g. using the phylogeny to predict trait values and later combining phylogeny and 142 

traits in spatial models). We need more robust tests for the impact of these biases, and to ensure 143 

that uncertainty is propagated from the original data sources to all subsequent analyses. A partial 144 

solution is to integrate methods and create a transparent and documented pipeline of analyses 145 

(Figure 2), but we still must address the underlying causes of bias and use this knowledge to 146 

guide future collection. 147 

 148 

 149 
Spatial Biodiversity models 150 
 151 
The Wallacean shortfall (inadequate knowledge of geographic distributions) greatly hinders 152 

progress in identifying conservation priorities[26]. This shortfall is particularly problematic at 153 

local scales—it is easier to define a regional or national set of species than to pinpoint the precise 154 

distributions of species at fine spatial scales[26]. Biodiversity models are essential tools to 155 

address this shortfall. In many cases, they can provide continuous coverage of species 156 

distributions at a resolution relevant for conservation purposes[35]. The most common examples 157 

are single species distribution models (i-SDMs; Fig. I), which have been and will continue to be 158 

invaluable tools for conservation applications [35]. Advanced models can additionally 159 

accommodate multiple facets (e.g. traits and phylogenies) and integrate elements of α- and β-160 

diversity (Box 1). A notable advance is the ability to combine a top-down approach focused on 161 

an entire species assemblage with a bottom-up approach focused on single species (‘sideways’ 162 

biodiversity models; Box 1, Box 2). One such model, Joint Species Distribution Models (j-163 

SDMs, reviewed in [36]), offers potential improvements by modeling all species simultaneously 164 



[37,38], enabling conditional predictions [39–41], and has a flexible hierarchy amenable to 165 

adding other information such as traits[37], phylogenies[42], geographic space[43], temporal 166 

data[44], and detection bias[45], which impact multifaceted biodiversity estimates[46]. Models 167 

that can account for species interactions[47] are an exciting arena for future developments.  168 

 169 

A key advantage of these advanced biodiversity models is the ability to process highly 170 

multidimensional datasets (e.g. many taxa, sites, and environmental variables). Combining 171 

multiple, large biodiversity datasets can quickly result in a computationally intractable problem. 172 

Solutions include dimensionality reduction in a Bayesian framework[36,48] or via machine 173 

learning[49]. However, what these approaches gain in flexibility may come at a cost in terms of 174 

generality, and the relationships derived between explanatory variables and diversity metrics are 175 

often empirical with little to no grounding in ecological theory. An important future research 176 

avenue will be to rigorously test new biodiversity models to evaluate their capacity for aiding 177 

ecological inference and for predicting to new situations (e.g. novel climates or altered 178 

ecosystems). 179 

 180 

Advances in conservation evaluation of multifaceted biodiversity 181 

While the methods described above could offer a richer representation of biodiversity and 182 

improved predictive abilities, identifying conservation solutions requires more than just 183 

biodiversity predictions. These predictions must be translated to meaningful outputs that can be 184 

used to meet defined objectives (e.g. protected area targets) or provide forecasts for decision 185 

makers. In systematic conservation planning (SCP)[50], priorities are established that efficiently 186 

meet goals for representation of biodiversity under a range of spatial or other constraints (e.g. in 187 

a spatial prioritization). Targets can be set on diversity (e.g. 10% of each species range 188 



protected[17]) or approaches without targets such as algorithms based on weighted 189 

endemism[16,19]. While i-SDMs are commonly used as inputs to spatial prioritization, more 190 

advanced biodiversity models are rarely used (see Box 2 for exceptions). Multiple biodiversity 191 

facets are also rarely considered in conservation despite decades of recognized conservation 192 

benefit of e.g. phylogenetic diversity[51]. However, in recent years methodological 193 

advances[52–54] have enabled the use of phylogenies and functional diversity [16,53] in 194 

conservation planning studies at regional[6,52] and global[16,17] extents, and initiatives such as 195 

EDGE (evolutionarily distinct and globally endangered; edgeofexistence.org) are promoting the 196 

conservation of multiple biodiversity facets. Species interactions are even more rarely 197 

considered, although emerging examples show how interactions can be used to evaluate 198 

ecological network collapse[55], and set spatial priorities[56] and management scenarios that 199 

account for predators and their prey[57] 200 

 201 

The way forward: integrating biodiversity models and conservation evaluation 202 

Modeling has a critical, yet under-appreciated role in conservation planning and practice, 203 

especially with respect to setting and achieving global conservation targets (Aichi targets for 204 

threatened species, habitat loss, and protected areas) in the Strategic Plan for Biodiversity 2011-205 

2020 and the post-2020 global biodiversity framework[58]. Models that predict the distribution 206 

of species in space and time are crucial to these global initiatives, and i-SDMs are already widely 207 

used in conservation[35]. We believe the more advanced biodiversity models have vast potential 208 

for representing not just species but entire communities, clades, or functional roles (see early 209 

examples in Box 2), but they first must be better-integrated into conservation efforts. 210 

 211 



The advantages of this integration are many. First, a combined approach retains the unique 212 

strengths of each individual approach. Conservation planning would benefit from having access 213 

to the most advanced statistical machinery including model-calibration, model validation, and 214 

the propagation of uncertainty. Such models can also incorporate more flexible hierarchical 215 

structures that account for biases in sampling biodiversity, different sources of inputs (e.g. 216 

museum location data with community-based eDNA sampling), different extents (α- and β-217 

diversity), and different resolutions of input data. They can take advantage of new data types 218 

(e.g. tracking data[59]) as they become available. Conversely, the field of biodiversity modelling 219 

would benefit from tailoring predictions for their use in tangible conservation scenarios and 220 

targets. 221 

 222 

Second, an integrated approach reduces any redundancies that arise from using similar datasets 223 

and similar approaches in an unsynchronized manner. The potential for redundancy becomes 224 

greater the larger and the more complex the representation of biodiversity becomes. Redundancy 225 

could be reduced on two fronts—the raw data inputs and the methodological similarities (e.g. 226 

combining modelling and conservation optimization algorithms as discussed below). 227 

 228 

Finally, this synthesis would make the pipeline of data-implementation more efficient and likely 229 

to result in a better representation of under-represented biodiversity in conservation. Recent calls 230 

to streamline analytical pipelines in ecology[60–62] point to increased efficiency [63] of readily 231 

available technological solutions, such as user-friendly interfaces (e.g. R Shiny, Dash). 232 

Importantly, the integration of conservation goals, targets, and scenarios into modelling would 233 

require stakeholder input into the modelling decisions[64], which could lead to increased 234 



coordination, trust and uptake of these models, decreasing the ‘black box’ problem of 235 

biodiversity models[60]. It would engage biodiversity scientists beyond academia to understand 236 

the needs of stakeholders and provide more tailored conservation guidance.  237 

 238 

Steps forward 239 

We recommend three related areas of focus to speed integration of biodiversity models and 240 

conservation: (1) adapting biodiversity models to accommodate conservation goals and 241 

scenarios, (2) combining biodiversity models and conservation optimization algorithms, and (3) 242 

re-evaluating model validation in light of conservation goals and scenarios. Recent examples 243 

show this integration is indeed possible (Box 2). 244 

 245 

In many cases, statistical methods already exist to adapt biodiversity models for use in 246 

conservation. For example, management actions (or management history) could be included as 247 

model predictors, which could then be used to make predictions for different future actions. 248 

More complex methods of scenario-building are also possible through altering various model 249 

parameters [65,66](Box 2) or even adding sub-models of ecological processes (e.g. population 250 

viability). Previously collected ‘prior’ information (information on species threat or response to 251 

management action) can be combined with newly collected data to refine model estimates[67]. 252 

The challenge will be to find the best data and models for the conservation question at hand[68], 253 

requiring close collaboration between modelers and conservation practitioners[65]. 254 

 255 

Combining conservation optimization algorithms with biodiversity models is another important 256 

step (Figure 2) that will enable relevant ecological processes to be directly considered in the 257 



conservation alternatives[65]. This integration will require some method developments, but will 258 

benefit from the similarities in data types (Figure 1), especially when definitions are 259 

synchronized (e.g. α-diversity is equivalent to diversity in planning units, β-diversity to 260 

complementarity[69], �-diversity to the total set of biodiversity). In particular, β-diversity could 261 

be used in ecological models with scenarios (Box 2) or within optimization algorithms, 262 

streamlining methods and opening the possibility of evaluating conservation value of 263 

biodiversity not represented in a single-species approach (e.g. ecological interaction 264 

networks[70]). 265 

 266 

Finally, model evaluation—while always a critical step in biodiversity modelling—is especially 267 

important with conservation scenarios that are often extrapolations to new situations (e.g. 268 

different environmental conditions, alternative restoration scenarios, poorly known taxa). Model 269 

evaluation will help address questions such as which type of model to use. For some 270 

conservation applications, a highly flexible, accurate model is likely appropriate (e.g. predicting 271 

the current distribution of a threatened species). For others, it might be preferable to have models 272 

more closely aligned with ecological theory (e.g. when predicting to novel environments such as 273 

climate change) or when the conservation question depends on a particular variable (e.g. 274 

properties of a connectivity corridor). While there are examples that evaluate the ability of 275 

advanced biodiversity models to predict rare species[71] and their interactions[72], very few 276 

studies have tested how well models extrapolate to new conditions with independent datasets, or 277 

whether they predict realistic conservation outcomes. Much more research is needed to 278 

understand how biodiversity models will perform in an applied setting.  279 

 280 
 281 



Concluding Remarks 282 

We urgently need to understand how biodiversity change impacts critical ecosystem functioning 283 

and prunes the tree of life. We propose an integration of advanced biodiversity models with 284 

conservation goals, targets, assessments, and practice. This integration would improve the ability 285 

to rapidly evaluate biodiversity data, make predictions and recommend conservation action for 286 

taxa, communities, and ecosystems. The backbone of this integration already exists with recent 287 

developments in biodiversity modelling and conservation. Early examples show this integration 288 

is possible, could be extended to a number of other conservation efforts and used to address 289 

unresolved questions of how to best protect the world’s biodiversity (see Outstanding 290 

Questions). 291 

 292 
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 299 

Glossary Box 300 

 301 

Alpha (α) diversity: quantifies local diversity, usually species richness or effective number of 302 

species (Shannon exponent) 303 

 304 



Beta (β) diversity: quantifies the dissimilarity or turnover between locations in terms of 305 

composition. Can be pairwise between locations, global (average dissimilarity across the region) 306 

or the distinctiveness of a location compared to all others in the region.   307 

 308 

Biodiversity facets: categories of biodiversity that describe relevant taxonomic or ecological 309 

information to support biodiversity evaluation, and that apply to and can be (relatively) easily 310 

measured for all or most taxa. Examples include taxonomic diversity, phylogenetic diversity, 311 

genetic diversity, trait/functional diversity and network diversity.  312 

 313 

Biodiversity models: statistical or process-based models that are used to make inferences and 314 

predictions about the effect of the environment on biodiversity, accounting for ecological 315 

processes explicitly or implicitly. Biodiversity can be represented in units ranging from 316 

individuals to entire communities and additionally represent attributes of those taxa (e.g. 317 

abundances, functional traits, phylogenetic position, threat). 318 

 319 

Complementarity (conservation planning): quantifies the difference between locations in 320 

terms of species or features represented within them (two locations are fully complementary if 321 

their pairwise β-diversity is equal to 1). 322 

 323 

Complementarity (ecology): two species are complementary if they fill different roles in an 324 

ecosystem or use resources differently.  325 

 326 



Functional diversity (FD): the diversity of functional forms in a species set (or community) 327 

measured by a variety of metrics that use dendrograms or representations in multidimensional 328 

space. 329 

 330 

Gamma (�) diversity: quantifies the total diversity across locations for an entire area of interest, 331 

which could be at regional or global scale depending on the study. 332 

 333 

Imputation model: a model that estimates values for missing data points in biodiversity datasets 334 

(e.g. trait values for a particular taxa). 335 

 336 

Irreplaceability: the extent to which a location or species is distinct from all others (opposite of 337 

redundancy). For example, a location where an endemic species occurs is irreplaceable; an 338 

irreplaceable species has a unique position in its community (in terms of function or interactions, 339 

i.e. distinctive) or in the phylogeny.  340 

 341 

Macro-ecological model: a biodiversity model that uses a top-down approach to model α- or ß-342 

diversity directly rather than modeling the distributions of the component taxa. 343 

 344 

Phylogenetic diversity (PD): The evolutionary diversity represented by sets of taxa, with the 345 

most common metric (Faith’s PD) being the branch length of the minimum spanning tree 346 

connecting a set of species on a phylogeny[51] (sets of species can be from a single area or 347 

multiple areas combined). 348 

 349 



‘Sideways’ biodiversity models: models that predict the distribution of biodiversity with a 350 

combination of bottom-up (i.e. single-taxon predictions) and top-down (i.e. models of the 351 

properties of an assemblage or community of taxa) approaches. 352 

 353 

Spatial biodiversity models: biodiversity models that are explicitly spatial, in which inferences 354 

and predictions are made for biodiversity in certain locations (e.g. planning units or grid cells). 355 

 356 

Spatial prioritization: A form of systematic conservation planning (SCP) that selects a set of 357 

areas that maximizes conservation value given other constraints (e.g. cost, protected areas, 358 

feasibility).  359 

 360 

Weighted endemism: the ratio between a species local range of occurrence and its total range. 361 

Note: this is different than the definition of endemism which is the extent to which a species 362 

range is restricted to a particular location.  363 

 364 

 365 

Figure 1. How biodiversity facets, different scales of biodiversity and conservation concerns 366 

factor into biodiversity modelling and conservation evaluation. Most modelling and evaluation 367 

involve particular target species rather than other facets of diversity (e.g. evolutionary history, 368 

species interactions). Most biodiversity models focus on ecological processes rather than 369 

explicitly considering conservation concerns, although many models are built for threatened 370 

species or species of conservation interest resulting in a mostly unidirectional flow of 371 

information from models to evaluation. In the case of spatial conservation planning, both models 372 

and evaluation use similar data inputs and spatial organization of biodiversity. Both have local 373 



scale (or planning units) and a regional or global scale. In particular, the use of metrics or 374 

algorithms to differentiate sites from one another (beta diversity in modelling, complementarity 375 

in conservation planning) are treated similarly in modelling and planning. 376 

 377 

Figure 2. The steps and information flow in a typical data-implementation pipeline (left) and a 378 

streamlined version (right) that combines models and evaluation in one step. We expect that 379 

more biodiversity information would make it through to the application stage (orange arrows) 380 

with a unified rather than disconnected method of evaluating biodiversity from the data 381 

products to their use in conservation applications, and that the increasing transparency and 382 

additional communication between biodiversity scientists and stakeholders is required by the 383 

combined approach. 384 

 385 

Figure I. (Embedded in Box 1). The dimensions of recent biodiversity models. Models can have 386 

different types of response objectives: within-site models, between-site models and models of 387 

individual species. These response objectives fall along two axes: (1) top-down approaches 388 

where α-diversity or other diversity metrics are the focus versus bottom-up where individual 389 

species are the focus (vertical axis), and (2) whether the focus is on predicting biodiversity 390 

within sites or between sites (horizontal axis). DynamicFOAM: Dynamic Framework for 391 

Occurrence Allocation in Metacommunities, GDM: Generalized Dissimilarity Modelling, MEM: 392 

macro-ecological model, i-SDM: individual or single-species distribution model, s-SDM: 393 

stacked species distribution model, j-SDM: joint species distribution model, SESAM: Spatially 394 

explicit species assemblage modelling. 395 

 396 

Box 1. Modelling biodiversity from the top-down, bottom-up and sideways 397 



Biodiversity models can be defined by their ‘response objectives’ and internal structure 398 

(particularly the response variable—what is being predicted). These response objectives can be 399 

represented with axes that describe whether the objective is a top-down versus bottom-up or a 400 

within- versus between-site depiction of biodiversity (Fig. I). Current modelling approaches can 401 

be mapped onto this space, with potentially the most information rich approaches (grey circle in 402 

Fig. I) cross-linking biodiversity facets (traits and phylogenies) while jointly predicting 403 

community composition (e.g. species abundance or occurrence), within-site community 404 

diversity, and between-site turnover.  405 

 406 

In the top-down approach, known as a macro-ecological model (MEM), α-diversity is itself is 407 

the response (e.g. species richness or phylogenetic diversity) and the input data is a site by 408 

diversity matrix. β-diversity models (e.g. GDM; Generalized Dissimilarity Modelling[73] or 409 

MBM; multi-facetted biodiversity models[49]) estimate turnover in species or phylogenetic 410 

diversity[74] between sites as a function of differences in environmental and geographic 411 

distances.   412 

  413 

Bottom-up approaches, where individual species are the response variables (single-species 414 

distribution model, i-SDM), are by far the most common type of biodiversity model used. Note 415 

that α-diversity can also be derived from aggregating models of individual species together in a 416 

stacked species distribution model (s-SDM). This feature is important for conservation planning, 417 

because both the species pool of a set of sites and diversity metrics for entire species 418 

assemblages can be calculated (e.g. endemism-based metrics). However, resulting diversity 419 



metrics are simply the sum of the parts—there is no information on species associations or 420 

community-level attributes. 421 

‘Sideways’ methods are methods that combine top-down and bottom-up approaches: Joint 422 

Species Distribution Models (j-SDMs), which are the multi-species version of i-SDMs that 423 

model effects of individual species and communities[39,40], and can include shared responses 424 

between species and can include other information such as phylogeny and traits in a hierarchical 425 

framework, and spatial and temporal dynamics[66]; Dynamic Framework for Occurrence 426 

Allocation in Metacommunities (DynamicFOAM)[75], which balances richness and turnover to 427 

predict occurrences for all species, SESAM: Spatially explicit species assemblage modelling[76], 428 

which adjusts combined s-SDM predictions based on those of macro-ecological models.  429 

 430 

Box 2. Hybrid approaches for integrating advanced biodiversity models and conservation 431 

decisions 432 

We have emphasized the need for models that join different spatial and taxonomic dimensions of 433 

biodiversity that can be combined with conservation evaluation. Here are examples from two 434 

classes of advanced biodiversity models (Box 1) that directly address applied conservation 435 

questions. There is much scope for building upon and extending these early examples.  436 

 437 
1. Macro-ecological models 438 

For taxa for which there is no abundance or time-series data, models based on α- and β-diversity 439 

(Box1) can also be used to directly design, predict, and compare conservation scenarios. For 440 

example, ß-diversity models can summarise the expected effects on future biodiversity of 441 

changes to habitat condition, extent or management, as change in effective habitat area[77]. With 442 

sophisticated models of environmental or land-use change for example, new protected areas, 443 



habitat loss[78] or degradation and climate change[79], scenarios can be planned for the most 444 

beneficial effect on biodiversity even at global extents[77], and can also be used with 445 

phylogenetic[74] or functional[49] ß-diversity. 446 

2. ‘Sideways’ biodiversity models 447 

Multi-species models that contain a hierarchy for a species-level and community (or ecosystem)-448 

level (Box 1) are widely relevant to conservation applications because they can simultaneously 449 

estimate ecological processes relevant for individual species and for larger-scale attributes (e.g. 450 

ecosystem properties). Perhaps the best example of this approach has been for evaluating 451 

management strategies in fisheries, in which models of fish species (or sets of species) are 452 

combined with ecosystem level attributes[64]. In this way, important ecological and ecosystem 453 

constraints can be considered (e.g. population dynamics in response to habitat or predators) 454 

along with management scenarios (harvest controls)[57]. Recent versions allow for evaluation of 455 

harvest impacts, survey designs, and protection scenarios for finescale habitats in a changing 456 

climate[66]. While these more elaborate designs are only possible for a subset of well-studied 457 

taxa, this will be increasingly possible with ever-improving sampling and imputation models. 458 

 459 

References 460 

1  Jetz, W. et al. (2012) The global diversity of birds in space and time. Nature 491, 444–448 461 

2  Mazel, F. et al. (2017) Global patterns of β-diversity along the phylogenetic time-scale: The 462 

role of climate and plate tectonics. Glob. Ecol. Biogeogr. 26, 1211–1221 463 

3  Eisenhauer, N. et al. (2019) Recognizing the quiet extinction of invertebrates. Nat. Commun. 464 

10, 1–3 465 



4  Davies, T. et al. (2018) Popular interest in vertebrates does not reflect extinction risk and is 466 

associated with bias in conservation investment. PLOS ONE 13, e0203694 467 

5  Asmyhr, M.G. et al. (2014) Systematic Conservation Planning for Groundwater Ecosystems 468 

Using Phylogenetic Diversity. PLoS ONE 9, e115132 469 

6  Rosauer, D.F. et al. (2018) Real-world conservation planning for evolutionary diversity in 470 

the Kimberley, Australia, sidesteps uncertain taxonomy. Conserv. Lett. 11, e12438 471 

7  Delgado-Baquerizo, M. et al. (2016) Microbial diversity drives multifunctionality in 472 

terrestrial ecosystems. Nat. Commun. 7, 10541 473 

8  Violle, C. et al. (2017) Functional Rarity: The Ecology of Outliers. Trends Ecol. Evol. 32, 474 

356–367 475 

9  Harvey, E. et al. (2017) Bridging ecology and conservation: from ecological networks to 476 

ecosystem function. J. Appl. Ecol. 54, 371–379 477 

10  Thompson, R.M. et al. (2012) Food webs: reconciling the structure and function of 478 

biodiversity. Trends Ecol. Evol. 27, 689–697 479 

11  Marshall, E. et al. (2020) What are we measuring? A review of metrics used to describe 480 

biodiversity in offsets exchanges. Biol. Conserv. 241, 108250 481 

12  Hobbs, R.J. (2016) Degraded or just different? Perceptions and value judgements in 482 

restoration decisions. Restor. Ecol. 24, 153–158 483 

13  Beier, P. et al. (2015) A review of selection-based tests of abiotic surrogates for species 484 

representation. Conserv. Biol. 29, 668–679 485 

14  González-del-Pliego, P. et al. (2019) Phylogenetic and Trait-Based Prediction of Extinction 486 

Risk for Data-Deficient Amphibians. Curr. Biol. 29, 1557-1563.e3 487 



15  Rapacciuolo, G. et al. (2019) Species diversity as a surrogate for conservation of 488 

phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nat. 489 

Ecol. Evol. 3, 53–61 490 

16  Pollock, L.J. et al. (2017) Large conservation gains possible for global biodiversity facets. 491 

Nature 546, 141–144 492 

17  Rosauer, D.F. et al. (2017) Phylogenetically informed spatial planning is required to 493 

conserve the mammalian tree of life. Proc R Soc B 284, 20170627 494 

18  Pearson, R.G. (2016) Reasons to Conserve Nature. Trends Ecol. Evol. 31, 366–371 495 

19  Pouzols, F.M. et al. (2014) Global protected area expansion is compromised by projected 496 

land-use and parochialism. Nature 516, 383–386 497 

20  Di Marco, M. et al. (2018) Changes in human footprint drive changes in species extinction 498 

risk. Nat. Commun. 9, 1–9 499 

21  Sax, D.F. and Gaines, S.D. (2003) Species diversity: from global decreases to local 500 

increases. Trends Ecol. Evol. 18, 561–566 501 

22  Vellend, M. et al. (2013) Global meta-analysis reveals no net change in local-scale plant 502 

biodiversity over time. Proc. Natl. Acad. Sci. U. S. A. 110, 19456–19459 503 

23  Cardinale, B.J. et al. (2018) Is local biodiversity declining or not? A summary of the debate 504 

over analysis of species richness time trends. Biol. Conserv. 219, 175–183 505 

24  Wintle, B. et al. (2018) Global synthesis of conservation studies reveals the importance of 506 

small habitat patches for biodiversity. Proc. Natl. Acad. Sci. 116, 201813051 507 

25  Kobori, H. et al. (2016) Citizen science: a new approach to advance ecology, education, and 508 

conservation. Ecol. Res. 31, 1–19 509 



26  Hortal, J. et al. (2015) Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. 510 

Annu. Rev. Ecol. Evol. Syst. 46, 523–549 511 

27  Wilman, H. et al. (2014) EltonTraits 1.0: Species-level foraging attributes of the world’s 512 

birds and mammals. Ecology 95, 2027–2027 513 

28  Swenson, N.G. (2014) Phylogenetic imputation of plant functional trait databases. 514 

Ecography 37, 105–110 515 

29  Penone, C. et al. (2014) Imputation of missing data in life-history trait datasets: which 516 

approach performs the best? Methods Ecol. Evol. 5, 961–970 517 

30  Bhattacharjee, A. and Bayzid, Md.S. (2020) Machine learning based imputation techniques 518 

for estimating phylogenetic trees from incomplete distance matrices. BMC Genomics 21, 497 519 

31  von Haeseler, A. (2012) Do we still need supertrees? BMC Biol. 10, 13 520 

32  Gravel, D. et al. (2013) Inferring food web structure from predator–prey body size 521 

relationships. Methods Ecol. Evol. 4, 1083–1090 522 

33  Morales-Castilla, I. et al. (2015) Inferring biotic interactions from proxies. Trends Ecol. 523 

Evol. 30, 347–356 524 

34  Braga, J. et al. (2019) Spatial analyses of multi-trophic terrestrial vertebrate assemblages in 525 

Europe. Glob. Ecol. Biogeogr. 28, 1636–1648 526 

35  Guisan, A. et al. (2013) Predicting species distributions for conservation decisions. Ecol. 527 

Lett. 16, 1424–1435 528 

36  Warton, D.I. et al. (2015) So Many Variables: Joint Modeling in Community Ecology. 529 

Trends Ecol. Evol. 30, 766–779 530 

37  Pollock, L.J. et al. (2012) The role of functional traits in species distributions revealed 531 

through a hierarchical model. Ecography 35, 716–725 532 



38  Ovaskainen, O. and Soininen, J. (2011) Making more out of sparse data: hierarchical 533 

modeling of species communities. Ecology 92, 289–295 534 

39  Clark, J.S. et al. (2014) More than the sum of the parts: forest climate response from joint 535 

species distribution models. Ecol. Appl. 24, 990–999 536 

40  Pollock, L.J. et al. (2014) Understanding co-occurrence by modelling species simultaneously 537 

with a Joint Species Distribution Model (JSDM). Methods Ecol. Evol. 5, 397–406 538 

41  Ovaskainen, O. et al. (2010) Modeling species co-occurrence by multivariate logistic 539 

regression generates new hypotheses on fungal interactions. Ecology 91, 2514–2521 540 

42  Ives, A.R. and Helmus, M.R. (2011) Generalized linear mixed models for phylogenetic 541 

analyses of community structure. Ecol. Monogr. 81, 511–525 542 

43  Ovaskainen, O. et al. (2016) Uncovering hidden spatial structure in species communities 543 

with spatially explicit joint species distribution models. Methods Ecol. Evol. 7, 428–436 544 

44  Schliep, E.M. et al. (2018) Joint species distribution modelling for spatio-temporal 545 

occurrence and ordinal abundance data. Glob. Ecol. Biogeogr. 27, 142–155 546 

45  Tobler, M.W. et al. (2019) Joint species distribution models with species correlations and 547 

imperfect detection. Ecology 100, e02754 548 

46  Jarzyna, M.A. and Jetz, W. (2016) Detecting the Multiple Facets of Biodiversity. Trends 549 

Ecol. Evol. 31, 527–538 550 

47  Staniczenko, P.P.A. et al. (2017) Linking macroecology and community ecology: refining 551 

predictions of species distributions using biotic interaction networks. Ecol. Lett. 20, 693–707 552 

48  Taylor-Rodríguez, D. et al. (2017) Joint Species Distribution Modeling: Dimension 553 

Reduction Using Dirichlet Processes. Bayesian Anal. 12, 939–967 554 



49  Talluto, M.V. et al. (2018) Multifaceted biodiversity modelling at macroecological scales 555 

using Gaussian processes. Divers. Distrib. 24, 1492–1502 556 

50  Margules, C.R. and Pressey, R.L. (2000) Systematic conservation planning. Nature 405, 557 

243–252 558 

51  Faith, D.P. (1992) Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–559 

10 560 

52  Pollock, L.J. et al. (2015) Phylogenetic diversity meets conservation policy: small areas are 561 

key to preserving eucalypt lineages. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370, 20140007 562 

53  Strecker, A.L. et al. (2011) Defining conservation priorities for freshwater fishes according 563 

to taxonomic, functional, and phylogenetic diversity. Ecol. Appl. 21, 3002–3013 564 

54  Strimas-Mackey, M. prioritizr: Systematic Conservation Prioritization in R,  565 

55  McDonald-Madden, E. et al. (2016) Using food-web theory to conserve ecosystems. Nat. 566 

Commun. 7, 1–8 567 

56  Decker, E. et al. (2017) Incorporating ecological functions in conservation decision making. 568 

Ecol. Evol. 7, 8273–8281 569 

57  Punt, A.E. et al. (2016) Exploring the implications of the harvest control rule for Pacific 570 

sardine, accounting for predator dynamics: A MICE model. Ecol. Model. 337, 79–95 571 

58  Nicholson, E. et al. (2019) Scenarios and Models to Support Global Conservation Targets. 572 

Trends Ecol. Evol. 34, 57–68 573 

59  Hays, G.C. et al. (2019) Translating Marine Animal Tracking Data into Conservation Policy 574 

and Management. Trends Ecol. Evol. 34, 459–473 575 

60  Rapacciuolo, G. (2019) Strengthening the contribution of macroecological models to 576 

conservation practice. Glob. Ecol. Biogeogr. 28, 54–60 577 



61  Golding, N. et al. (2018) The zoon r package for reproducible and shareable species 578 

distribution modelling. Methods Ecol. Evol. 9, 260–268 579 

62  White, E.P. et al. (2019) Developing an automated iterative near-term forecasting system for 580 

an ecological study. Methods Ecol. Evol. 10, 332–344 581 

63  Lowndes, J.S.S. et al. (2017) Our path to better science in less time using open data science 582 

tools. Nat. Ecol. Evol. 1, 0160 583 

64  Plagányi, É.E. et al. (2014) Multispecies fisheries management and conservation: tactical 584 

applications using models of intermediate complexity. Fish Fish. 15, 1–22 585 

65  Scroggie, M.P. et al. (2019) Optimizing habitat management for amphibians: From simple 586 

models to complex decisions. Biol. Conserv. 236, 60–69 587 

66  Thorson, J.T. et al. (2019) Spatio-temporal models of intermediate complexity for ecosystem 588 

assessments: A new tool for spatial fisheries management. Fish Fish. 20, 1083–1099 589 

67  Morris, W.K. et al. (2015) The neglected tool in the Bayesian ecologist’s shed: a case study 590 

testing informative priors’ effect on model accuracy. Ecol. Evol. 5, 102–108 591 

68  Guillera‐Arroita, G. et al. (2015) Is my species distribution model fit for purpose? Matching 592 

data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 593 

69  Bush, A. et al. (2016) Current Uses of Beta-Diversity in Biodiversity Conservation: A 594 

response to Socolar et al. Trends Ecol. Evol. 31, 337–338 595 

70  Ohlmann, M. et al. (2019) Diversity indices for ecological networks: a unifying framework 596 

using Hill numbers. Ecol. Lett. 22, 737–747 597 

71  Zhang, C. et al. (2020) Improving prediction of rare species’ distribution from community 598 

data. Sci. Rep. 10, 12230 599 



72  Flores-Tolentino, M. et al. (2020) Distribution and conservation of species is misestimated if 600 

biotic interactions are ignored: the case of the orchid Laelia speciosa. Sci. Rep. 10, 9542 601 

73  Ferrier, S. et al. (2007) Using generalized dissimilarity modelling to analyse and predict 602 

patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 603 

74  Rosauer, D.F. et al. (2014) Phylogenetic generalised dissimilarity modelling: a new approach 604 

to analysing and predicting spatial turnover in the phylogenetic composition of communities. 605 

Ecography 37, 21–32 606 

75  Mokany, K. et al. (2011) Combining α - and β -diversity models to fill gaps in our 607 

knowledge of biodiversity: Filling gaps in biodiversity knowledge. Ecol. Lett. 14, 1043–1051 608 

76  Guisan, A. and Rahbek, C. (2011) SESAM – a new framework integrating macroecological 609 

and species distribution models for predicting spatio-temporal patterns of species 610 

assemblages. J. Biogeogr. 38, 1433–1444 611 

77  Hoskins, A.J. et al. (2019) Supporting global biodiversity assessment through high-612 

resolution macroecological modelling: Methodological underpinnings of the BILBI 613 

framework. Environ. Model. Softw. 132, 104806 614 

78  Allnutt, T.F. et al. (2008) A method for quantifying biodiversity loss and its application to a 615 

50-year record of deforestation across Madagascar. Conserv. Lett. 1, 173–181 616 

79  Prober, S.M. et al. (2012) Combining community-level spatial modelling and expert 617 

knowledge to inform climate adaptation in temperate grassy eucalypt woodlands and related 618 

grasslands. Biodivers. Conserv. 21, 1627–1650 619 

 620 










