Pengfei He
email: pengfeihe606@gmail.com

Jin-Kao Hao
email: jin-kao.hao@univ-angers.fr

Iterated two-phase local search for the colored traveling salesmen problem

Keywords: colored traveling salesman problem, routing, combinatorial optimization, heuristics, local search

The colored traveling salesmen problem (CTSP) is a generalization of the popular traveling salesman problem with multiple salesmen. In CTSP, the cities are divided into m exclusive city sets (m is the number of salesmen) and one shared city set. The goal of CTSP is to determine a shortest Hamiltonian circuit (also called route or tour) for each of the m salesmen satisfying that 1) each route includes all cities of an exclusive city set and some (or all) cities of the shared city set, and 2) each city of the shared city set is included in one unique route. CTSP is a relevant model for a number of practical applications and is known to be computationally challenging. We present the first iterated two-phase local search algorithm for this important problem which combines a local optima exploration phase and a local optima escaping phase. We show computational results on 65 common benchmark instances to demonstrate its effectiveness and especially report 22 improved upper bounds. We make the source code of the algorithm publicly available to facilitate its use in future research and real applications.

1 Introduction

1
The colored traveling salesmen problem (CTSP), introduced by Li et al. [START_REF] Li | Colored traveling salesman problem[END_REF], 2 is a generalization of the popular traveling salesman problem with multiple 3 salesmen. In CTSP, the set V of n cities is divided into m exclusive city sets (m is the number of salesmen) and one shared city set S. The goal of CTSP is to determine a shortest Hamiltonian circuit (also called route or tour) for each of the m salesmen satisfying that 1) each route includes all cities of an exclusive city set and some (or all) cities of the shared city set, and 2) each city of the shared city set is included in one unique route. One observes that when we have only one salesman and the shared city set (i.e., m = 1 and S = V), CTSP degenerates to the very popular symmetric traveling salesman problem (TSP) [START_REF] Applegate | The traveling salesman problem: a computational study[END_REF]. On the other hand, if all cities are shared (i.e., m > 1 and S = V), then CTSP becomes the multiple traveling salesmen problem (MTSP) [START_REF] Bektas | The multiple traveling salesman problem: an overview of formulations and solution procedures[END_REF][START_REF] Gavish | A note on "the formulation of the m-salesman traveling salesman problem[END_REF][START_REF] Moyaux | Cost of selfishness in the allocation of cities in the multiple travelling salesmen problem[END_REF], which is a classical TSP variant. Finally, it is worth noting that CTSP is related to, but different from the site-dependent vehicle routing problem (SDVRP) [START_REF] Chao | A computational study of a new heuristic for the site-dependent vehicle routing problem[END_REF][START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF] due to the absence of capacity constraint in CTSP.

Like other TSP models, CTSP has a number of practical applications [START_REF] Li | Colored traveling salesman problem[END_REF], such as collision-free scheduling of multi-bridge machining systems [START_REF] Li | Collision-free scheduling of multi-bridge machining systems: a colored traveling salesman problem-based approach[END_REF] and rice harvesting schedules [START_REF] He | Optimisation of the harvesting time of rice in moist and non-moist dispersed fields[END_REF]. However, as a generalization of the NP-hard TSP, CTSP is computationally challenging, especially when one needs to solve large scale problem instances. Given its theoretical and practical significance, a number of studies have been reported in recent years. As the literature review in Section 2.2 shows, several algorithms have been developed for solving CTSP, including genetic algorithms [START_REF] Li | Colored traveling salesman problem[END_REF], artificial bee colony [START_REF] Dong | Artificial bee colony algorithm with generating neighbourhood solution for large scale coloured traveling salesman problem[END_REF][START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF], ant colony optimization (ACO) [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning[END_REF] and variable neighborhood search [START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem[END_REF]. We notice that existing studies except [START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem[END_REF] are based on population-based approaches. No study has investigated the conceptually simpler iterated local search approach, which is known to be very successful for solving numerous optimization problems including routing problems [START_REF] Brandão | A memory-based iterated local search algorithm for the multi-depot open vehicle routing problem[END_REF][START_REF] Nguyen | A multi-start iterated local search with tabu list and path relinking for the two-echelon location-routing problem[END_REF][START_REF] Silva | An iterated local search heuristic for the split delivery vehicle routing problem[END_REF] and other NP-hard problems [START_REF] Fu | A three-phase search approach for the quadratic minimum spanning tree problem[END_REF][START_REF] Lai | Iterated variable neighborhood search for the capacitated clustering problem[END_REF][START_REF] Zhou | An iterated local search algorithm for the minimum differential dispersion problem[END_REF]. This work fills this gap by introducing the first iterated two-phase local search (ITPLS) algorithm for CTSP. We summarize the work as follows.

First, the proposed algorithm relies on an iterated two-phase process to explore the search space. The local optima exploration phase aims to examine various local optimal solutions of increasing quality within a limited search regions. This is achieved by alternating between an inter-route optimization procedure and an intra-route optimization procedure. When this search phase is observed to get trapped in a deep local optimum, the local optima escaping phase is triggered to help the algorithm to escape the trap and guide the search to an unvisited region, from where the local optima exploration phase resumes. These two phases are repeated until a stopping condition is met.

Second, we report results of extensive computational experiments on three sets of 65 benchmark instances from the literature and show comparisons with existing reference algorithms. In particular, we present improved bestknown results (new upper bounds) for 22 instances, which are useful for future research on CTSP.

Third, we make the source code of our algorithm publicly available, which can be used by researchers and practitioners to solve other problems that can be modeled by CTSP.

The rest of this paper is organized as follows. In Section 2, we formulate the problem and present a literature review of existing studies on CTSP. In Section 3, we introduce the general framework of the proposed algorithm and its components. In Section 4, we show computational results on benchmark instances and comparisons with the state-of-the-art methods. In Section 5, we summarize the findings of the work and present research perspectives.

Problem Definition and Literature Review

In this section, we first introduce the colored traveling salesmen problem and then present the related works in the literature. City 0 (the depot) belongs to the shared set S and is visited by all salesmen.

CTSP is to find m Hamiltonian circuits (also called routes or tours) for the m salesmen, each route starting from the depot and ending at the depot to minimize the total traveling distance of the m routes. Formally, CTSP can be described by the following mathematical model [START_REF] Li | Colored traveling salesman problem[END_REF], where M = {1, 2, . . . , m} represents the set of the m salesmen.

M in F = m k=1 n-1 i=0 n-1 j=0 c ij x ijk (1)
n-1 i=1

x 0ik = 1, ∀k ∈ M (2) n-1 i=1 x i0k = 1, ∀k ∈ M (3) i j x ijk = 0, i ∈ (C k ∪ S), j ∈ V \(C k ∪ S), ∀k ∈ M (4) n-1 j=0 m k=1 x jik = 1, j = i, i ∈ V \{0} (5) l x jlk = i x ijk , i = j = l, j, i, l ∈ C k ∪ S, ∀k ∈ M (6)
u ik -u jk + n × x ijk ≤ n -1, j = i, i, j ∈ V \{0}, ∀k ∈ M (7)
In this model, the binary variable x ijk = 1 indicates that the kth salesman passes through edge (i, j), and otherwise x ijk = 0. u ik is the number of cities visited on the kth route from the depot up to city i. The objective function of CTSP is given by Eq. (1) and Eqs. (2-7) are the constraints of the problem.

Eqs. (2) and (3) require that each salesman starts from the depot and returns to the depot. Eq. (4) indicates that each salesman can only visit its own exclusive cities and the shared cities. Eq. (5) means that each city except the depot can only be visited exactly once. Eq. (6) indicates that a salesman can only arrive at its exclusive and the shared cities, and continue its route. Eqs.

(6 -7) are employed to eliminate the sub-tours for each salesman.

Literature Review

CTSP was introduced in [START_REF] Li | Colored traveling salesman problem[END_REF] to optimize routes of a dual-bridge waterjet cutting machine tool. The tool consists of two independent bridge machines with an overlapping workspace for both machines and two exclusive workspaces at both ends of the overlapping workspace for each machine only. Besides, CTSP can also formulate several practical problems arising in agricultural engineering. For example, He et al. [START_REF] He | Optimisation of the harvesting time of rice in moist and non-moist dispersed fields[END_REF] used CTSP to schedule combine-harvesters to visit geographically dispersed fields under constraints of moist fields, where moist fields can only be visited by crawler-harvesters and non-moist fields can be visited by any harvester. In this model, moist fields can be considered as exclusive cities and non-moist fields are shared cities. Another application of CTSP can be found in [START_REF] Xu | Delaunay-triangulation-based variable neighborhood search to solve large-scale general colored traveling salesman problems[END_REF].

Given its interest, the CTSP model has received increasing attention and several solution algorithms have been developed for solving the problem. In [START_REF] Li | Colored traveling salesman problem[END_REF],

Li et al. presented four genetic algorithms (basic GA, GA with greedy initialization, hill-climbing GA and simulated annealing GA), and introduced the first set of 20 small scale benchmarks based on existing symmetric TSP instances (with up to 101 vertices). They demonstrated that their algorithms performed better than the general mixed integer programming tool Lingo.

Meng et al. [START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem[END_REF] employed variable neighborhood search and reported improved results on the instances introduced in [START_REF] Li | Colored traveling salesman problem[END_REF]. Later, Pandiri and Singh [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] presented an artificial bee colony algorithm (ABC). In their work, they not only reported better results on the 20 small instances compared to the previous algorithms [START_REF] Li | Colored traveling salesman problem[END_REF][START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem[END_REF], but also presented the first results for 8 new medium scale instances (with 229 to 666 vertices). At the same time, Dong et al. [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning[END_REF] employed ant colony optimization (ACO) with multi-tasks learning. They showed that their ACO algorithm did not compete well with the ABC algorithm [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] on the set of 20 small instances. This study also provided 6 medium (with 202 to 431 vertices) and 5 large instances (with 1002 vertices). Finally, Dong et al. [START_REF] Dong | Artificial bee colony algorithm with generating neighbourhood solution for large scale coloured traveling salesman problem[END_REF] proposed another ABC algorithm and reported computational results on 26 new large instances (with 2461 to 7397 vertices).

The above studies have greatly contributed to advancing the state-of-the-art of practically solving CTSP and reported interesting computational results on benchmark instances. Meanwhile, one notices that most existing algorithms are based on bio-inspired approaches, which rely on a population of candidate solutions to explore the search space. In this work, we are interested in investigating the conceptually simpler single trajectory iterated local search approach [START_REF] Lourenço | Iterated local search[END_REF] for solving CTSP. The proposed algorithm employes an iterated two-phase procedure to examine candidate solutions by performing local optimization. As shown in Section 4, the algorithm is able to compete favorably with the current best CTSP algorithms on the benchmark instances.

An Iterated Two-Phase Local Search

We now present the iterated two-phase local search algorithm (ITPLS) for solving CTPS. After introducing the solution representation, we show the general framework of ITPLS and its composing ingredients.

Solution Representation and Search Space

As a multi-route problem, CTSP can benefit from the solution representations of MTSP including the m-tour encoding [START_REF] Singh | A new grouping genetic algorithm approach to the multiple traveling salesperson problem[END_REF], dual-chromosome encoding [START_REF] Park | A hybrid genetic algorithm for the vehicle scheduling problem with due times and time deadlines[END_REF] and one-chromosome encoding [START_REF] Tang | A multiple traveling salesman problem model for hot rolling scheduling in shanghai baoshan iron & steel complex[END_REF]. For instance, the m-tour and dual-chromosome representations were used in [START_REF] Pandiri | Two metaheuristic approaches for the multiple traveling salesperson problem[END_REF] and [START_REF] Li | Colored traveling salesman problem[END_REF] for CTSP, respectively. Besides, Pandiri and Singh [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] showed that the m-tour encoding was more space efficient than the dual-chromosome representation. In this work, we adapted the adjacency representation introduced in [START_REF] Grefenstette | Genetic algorithms for the traveling salesman problem[END_REF] for TSP (see Fig. 1) to the case of CTSP. Specifically, a solution is composed of m routes where each route is represented by an array such that city j of the route occupies position i in the array if the route goes from city i to city j. For the cities which are not on the route, the corresponding positions are filled by -1. Fig. 1 illustrates a solution with 2 routes: 0-1-3-2-7 and 0-4-5-6-8-10-9. Compared to other representations such as the m-tour encoding used in [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF], our representation has the advantage of easing the insert operation between two routes.

For example, if city 8 is deleted from route 2 and inserted behind city 1 of route 1, the time complexity for this operation is O(1) with our representation because it is unnecessary to displace other cities. This is to be contrasted to For a solution s = (s 1 , s 2 , . . . , s m), where s k (k = 1, 2, . . . , m) represents the kth route which includes the cities visited by the kth salesman, its objective value F (s) is given by the total traveling distance calculated as follows.

F (s) = m k=1 (|s k |-1 i=1 c s k (i)s k (i-1) + c s k (0)s k (|s k |-1)) (8)
where |s k | indicates the number of cities in route s k . The proposed iterated two-phase local search (ITPLS) for CTSP relies on the iterated local search framework [START_REF] Lourenço | Iterated local search[END_REF], which has been applied with success to a number of routing problems [START_REF] Brandão | A memory-based iterated local search algorithm for the multi-depot open vehicle routing problem[END_REF][START_REF] Nguyen | A multi-start iterated local search with tabu list and path relinking for the two-echelon location-routing problem[END_REF][START_REF] Silva | An iterated local search heuristic for the split delivery vehicle routing problem[END_REF]. Generally, ITPLS iterates a local optima exploration phase and a local optima escaping phase (see the illustrative flow chart in Fig. 2). As shown in Algorithm

General Procedure

Start

Greedy Randomized Initialization

The initial solution of the ITPLS is generated by a greedy randomized initialization procedure which includes two steps. The first step builds a partial route for each of the m salesmen by using its exclusive set of cities. The second step dispatches the shared cities among the m partial routes to obtain a complete solution. To build the kth (k = 1, . . . , m) partial route s k , a random city i in C k is used to initiate the greedy construction. Then the remaining cities of C k are considered in a random order and greedily inserted into s k to minimize the distance of the route. The first step terminates when all the cities of each exclusive set C k are included in the corresponding partial route. Then, the second step follows to insert greedily and probabilistically the cities of the shared set into the m routes as follows. For each city in S (except the depot 0 which is the starting city of all routes), it is inserted into the best position among all the m routes if the greedy probability P i is verified; otherwise, it is inserted into a random position of a random route. With this greedy randomized initialization procedure, we can obtain multiple diverse initial solutions.

Indeed, with P i = 0, we have a pure greedy procedure. By varying P i , we control the acceptance of random insertions. Finally, the first step has a time

complexity of O(|C max | 2 × m) where |C max | = max{|C k | : k = 1, . . . ,

Local Optima Exploration

for i ← 0 to L -1 do H 1 [i] ← 0; H 2 [i] ← 0; /* initialization of hash vectors */ end N i ← 0 /* Main search */ while N i ≤ O max do /* Enter inter-routing optimization */ δ ← F (s ⊕ Insert(•)) -F (s) /*
F (s) ← F (s) + δ(k 1 , i 1 , k 2 , i 2) H 1 [h 1 (s)] ← 1; H 2 [h 2 (s)] ← 1 /*
20 R ← ∅ end if F (s) < F (s b) then 23 s b ← s 24 N i ← 0 else 26 N i ← N i + 1 end end return s b end
on the distance minimization of each individual route. Both inter-routing optimization and intra-route optimization are based on the tabu search metaheuristic [START_REF] Glover | Tabu Search[END_REF]. Specifically, inter-route optimization uses the so-called solution based tabu search (SbTS) [START_REF] Lai | Solution-based tabu search for the maximum min-sum dispersion problem[END_REF][START_REF] Wang | Effective metaheuristic algorithms for the minimum differential dispersion problem[END_REF][START_REF] Woodruff | Hashing vectors for tabu search[END_REF] while intra-route optimization mixes the 2-opt heuristic [START_REF] Croes | A method for solving traveling salesman problems[END_REF][START_REF] Helsgaun | An effective implementation of the lin-kernighan traveling salesman heuristic[END_REF][START_REF] Lin | An effective heuristic algorithm for the travelingsalesman problems[END_REF] and a simple tabu search heuristic.

The pseudo-code of the optima exploration phase is shown in Algorithm 2

(see also the illustrative flow chart in Fig. 3), where s is the current solution composed of m routes, s b records the current best solution found during the local optima exploration phase and, R stores the set of routes modified by inter-route optimization and H i (i = 1, 2) are hash tables used as the tabu list of SbTS and explained in Section 3.4.2. After the preparatory operations including a first intra-route optimization and initialization of the hash tables (lines 3-9), the procedure enters the main 'while' loop to repeat inter-routing optimization and intra-route optimization.

At The ingredients of the local optima exploration phase, including the neighborhood, tabu strategy, and intra-route optimization, are explained in the following subsections.

Inter-route optimization

Inter-routing optimization focuses on moving cities between routes. For this, we adopt the popular Insert operator to define a neighborhood which is explored by solution-based tabu search. Specifically, Insert(k 1 , i 1 , k 2 , i 2) denotes the operation that deletes city i 2 from route s k 2 and inserts i 2 after city i 1 of route s k 1 . To ensure that each Insert operation generates a feasible solution, the displaced city i 2 must be a shared city of set S (excluding the depot). Thus

given the current solution s, applying Insert to s generates the following set N (s) of neighbor solutions.

N (s) = {s ← s ⊕ Insert(k 1 , i 1 , k 2 , i 2) : k 1 ∈ M, k 2 ∈ M, i 1 ∈ V, i 2 ∈ S\{0}} (9)
where

s ← s ⊕ Insert(k 1 , i 1 , k 2 , i 2)

Tabu strategy

With tabu search [START_REF] Glover | Tabu Search[END_REF], each visited candidate solution is recorded in a data structure called tabu list to avoid revisiting the same solution during subsequent search. In this work, we adopt the so-called solution-based tabu search [START_REF] Lai | Solution-based tabu search for the maximum min-sum dispersion problem[END_REF][START_REF] Wang | Effective metaheuristic algorithms for the minimum differential dispersion problem[END_REF][START_REF] Woodruff | Hashing vectors for tabu search[END_REF], where the tabu list is implemented with hash tables. It is worth mentioning that to our knowledge, this is the first application of this approach to a routing problem.

Specifically, the tabu list relies on two hash vectors H 1 and H 2 of length L (L is a large number, set to be 10 8 in this work) associated to two hash functions h 1 and h 2 defined by Eqs. (10) and [START_REF] Glover | Tabu Search[END_REF].

h 1 (s) = m k=1 (k × |s k |-1 i=1 s k (i)) (10)
h 2 (s) = m k=1 |s k |-1 i=2 s k (i -1) * s k (i) (11)
where

s k (i)
h 1 (s) = h 1 (s) + i 2 * k 1 -i 2 * k 2 (12)
h 2 (s) = h 2 (s) + i 2 * i 1 + i 2 * i n 1 -i 1 * i n 1 + * i n 2 -i p 2 * i 2 -i 2 * i n 2 (13)
where i n 1 is the next city after i 1 in route s k 1 , i p 2 and i n 2 are the previous and next city to i 2 in route s k 2 , respectively. Therefore, the time complexity of determining the tabu status for a neighbor solution s is O(1) based on Eqs.

(12,13).

Intra-route Optimization

Since each route can be regarded as a case of TSP, the well-known fast 2-opt heuristic for TSP [START_REF] Croes | A method for solving traveling salesman problems[END_REF][START_REF] Helsgaun | An effective implementation of the lin-kernighan traveling salesman heuristic[END_REF][START_REF] Lin | An effective heuristic algorithm for the travelingsalesman problems[END_REF]] is a natural choice for intra-route optimization. Basically the 2-opt heuristic iteratively reduces the tour distance by performing edge exchanges as follows: disconnect the current tour by removing 2 edges and reconnect the tour by 2 other edges in such a way that the new tour has a shorter distance. This process continues until no improving edge exchange exists. The 2-opt heuristic has the advantages of being simple and very fast.

For this reason, several previous studies on CTSP such as [START_REF] Pandiri | Two metaheuristic approaches for the multiple traveling salesperson problem[END_REF][START_REF] Singh | A new grouping genetic algorithm approach to the multiple traveling salesperson problem[END_REF][START_REF] Soylu | A general variable neighborhood search heuristic for multiple traveling salesmen problem[END_REF] used the 2-opt heuristic for individual route optimization. However, given that 2-opt follows the strict descent principle, it can be easily trapped in local optima.

In this work, our intra-route optimization procedure adopts an enhanced strat-Algorithm 3: Intra-route optimization Input: Set of routes to be optimized R, probability P s Output:

Set of improved routes R b 1 begin 2 R b ← ∅ 3 for each route s k in R do 4 s * k ← s k 5 if rand() > P s then /* Route-optimization with 2-opt */ ∆ ← F (s k) -F (s k ⊕ 2 -opt)
while there exist improving 2-opt move (∆ < 0) do Finally, one notices that intra-route optimization is applied at two places of the local optima exploration phase: to improve all routes of the input solution s (line 3, Algorithm 2) and to improve the two modified routes after each inter-route optimization step (line 19, Algorithm 2).

s k ← s k ⊕ 2 -opt /* perform the best improving 2-opt move */ F (s k) ← F (s k) -∆ ∆ ← F (s k) -F (s k ⊕ 2 -opt) end s * k ← s k 13 else /* Route-optimization with simple tabu search */ n i ← 0 while n i < |s k | do ∆ ← F (s k) -F (s k ⊕ 2 -opt) /* perform the best eligible 2-opt move */ F (s k) ← F (s k) -∆ s k ← s k ⊕ 2 -opt Update the tabu list if F (s * k) > F (s k) then s * k ← s k n i ← 0 else n i ← n i + 1 end end 27 end 28 R b ← R b ∪

Local Optima Escaping

When the local optima exploration phase terminates, the search is considered

Experimental Results and Comparisons

In this section, we report computational experiments on three sets of 65 benchmark instances from the literature. The benchmark instances, the experiment protocol and parameters, and computational results are presented in the following subsections.

Benchmark Instances

For CTSP, three sets of 65 benchmark instances are available in the literature.

Set I: this set contains small 20 instances, generated from six graphs by varying the number of routes and exclusive cities in each instance. The number of cities is between 21 to 101, while the number of salesmen m is between 2 and 7. These instances were introduced in [START_REF] Li | Colored traveling salesman problem[END_REF], and tested in [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning[END_REF][START_REF] Dong | Artificial bee colony algorithm with generating neighbourhood solution for large scale coloured traveling salesman problem[END_REF][START_REF] Li | Colored traveling salesman problem[END_REF][START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem[END_REF][START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF].

Set II: this set contains medium 14 instances, generated from four graphs by varying the number of routes and exclusive cities in each instance. The number of cities n is between 202 and 666, and the number of salesmen m is between 10 and 40. The 6 instances related to the two graphs with 202 and 431 cities were proposed in [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning[END_REF], while the remaining instances were presented in [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF].

Set III: this set includes large 31 instances, generated from five graphs by varying the number of routes and exclusive cities in each instance. The number of cities n in this set is between 1002 and 7397, and the number of salesmen m is between 3 and 60. The 5 instances related to the first graph were presented in [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning[END_REF], and the remaining instances were introduced in [START_REF] Dong | Artificial bee colony algorithm with generating neighbourhood solution for large scale coloured traveling salesman problem[END_REF].

Experimental Protocol

The ITPLS algorithm was coded in C++, and complied by g++ with the -O3 option1 . Our computational experiments were conducted on a computer with an AMD-6134 processor (2.3GHz and 2G RAM) under Linux.

Reference algorithms. There are five heuristic algorithms for CTSP reported in the literature.

-Genetic algorithms (GAs) [START_REF] Li | Colored traveling salesman problem[END_REF] (2014), which reported results on Set I only.

Their experiments were performed on a computer with a 3.3GHz processor and under the stopping condition of 10 minutes.

-Variable neighborhood search (VNS) [START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem[END_REF] (2017), which reported results on Set I only. Their experiments were performed on a computer with a 3.4GHz

processor and under the stopping condition of a maximum of 10000 epochs.

-Artificial bee colony (ABC) [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] (2018), which reported results on Set I and 8 out of 14 instances of Set II. Their experiments were performed on a computer with a 3.4GHz processor. The stopping condition for instances with 21 -41 cities, 51 -101 cities and 229 -666 cities was 1 second, 5 seconds, and 60 seconds, respectively.

-Ant colony optimization (ACO) [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning[END_REF] (2018), which reported results on Set I, 6 out of 14 instances of Set II and 5 out of 31 instances of Set III. Their experiments were performed on a computer with a 3.01GHz processor and the stopping condition was not indicated.

-Artificial bee colony (ABC) [START_REF] Dong | Artificial bee colony algorithm with generating neighbourhood solution for large scale coloured traveling salesman problem[END_REF] (2019), which reported results on 26 out of 31 instances of Set III. They used a computer with a 3.4GHz processor, and the stopping condition is the maximum non-updated iteration number, which was fixed to 60.

From the results reported in these studies, we identify ABC by Pandiri and

Singh [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] as the current best algorithm for CTSP and use it as our principal reference algorithm for our comparative study. Since the source code of this algorithm (and the other reference algorithms) is unavailable, we faithfully re-implemented the ABC algorithm of [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] 2 . We verified that our implementation was able to reproduce the results reported in [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] (and in fact, our ABC implementation even obtained some better results than those in [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF]).

To ensure a fair comparison, we ran our algorithm and ABC on our computer under the same cutoff limits. Specifically, we ran ITPLS 20 times with the parameter setting of Table 1 and ABC 20 times with the parameter setting

given in [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] on each instance. The cutoff time t max per run was set to be 1, 10 and 60 minutes for sets I, II and III, respectively, except t max = 240 minutes for the large instances with at least 7000 cities.

For the other algorithms (VNS [START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem[END_REF], ABC [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF], ACO [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning[END_REF], ABC [START_REF] Dong | Artificial bee colony algorithm with generating neighbourhood solution for large scale coloured traveling salesman problem[END_REF]), we replicate the published results, while excluding GAs of [START_REF] Li | Colored traveling salesman problem[END_REF] given that they are fully dominated by the other algorithms. Since the reference algorithms did not report results on all benchmark sets, their results are included only for indicative purposes.

Parameter Calibration

To calibrate the parameters of the ITPLS algorithm, we conducted a sensitivity analysis of the parameters. For this, we first identified a rough value range for each parameter and then analyzed one parameter at a time. Specifically, we varied the values of the studied parameter in its range while keeping the other parameters to their default values as shown in Table 1. The value ranges of the parameters are:

P i = {0, 0.
For each instance, we ran 20 times ITPLS with each parameter setting and the results are shown in Fig. 4, where the Avg gap and Best gap (the smaller, the better) are defined in Eqs. (14) and [START_REF] Lai | Iterated variable neighborhood search for the capacitated clustering problem[END_REF]. shows that this parameter impacts the performance of ITPLS slightly. Fig. 4(c) reveals that the simple tabu search (STS) plays an important role for intraroute optimization in ITPLS. Indeed, if only 2-opt is used (P s = 0), the results are the worst. When tabu search is also employed (P s > 0), the performances are improved considerably, with P s = 0.3 leading to the best performance (defined as the default value for ITPLS).

The values of

Computational Results

We show comparative results of our ITPLS algorithm 3 and the main ABC reference algorithm in Table 2 (Set I and Set II) and Table 3 (Set III). For each algorithm, we present the best and average objective value and the standard derivation based on 20 independent runs. We also include the best objective values reported in the literature for VNS [START_REF] Meng | Variable neighborhood search for a colored traveling salesman problem[END_REF], ABC [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF], ACO [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning[END_REF] and ABC [START_REF] Dong | Artificial bee colony algorithm with generating neighbourhood solution for large scale coloured traveling salesman problem[END_REF].

From each instance, the best (smallest) values among the compared values are indicated in boldface, while the '-' sign indicates that no result is available.

From the results reported in these tables, we can make the following comments.

For the small instances of Set I, our ITPLS algorithm and ABC (of [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] and our ABC implementation) achieve the same performance in terms of the best and average objective value as well as the standard derivation (notice that our ABC implementation and ABC [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] report strictly the same results). Moreover, both ITPLS and ABC dominate the other competitors (VNS and ACO).

For the medium instances of Set II, we observe that only very partial results are available for the compared algorithms. We thus focus on comparing ITPLS and ABC. We observe that TPLS performs slightly better than ABC by reporting 11 [START_REF] Fu | A three-phase search approach for the quadratic minimum spanning tree problem[END_REF] dominating F best (F avg) values against 9 (7) superior F best (F avg) values for ABC). Besides, the Wilcoxon signed-rank test on the F best and F avg values of ITPLS and ABC (see Table 5) indicate that the differences between the two compared algorithms in terms of F best and F avg are marginal for Set II.

For the large instances of Set III, compared with ABC, ITPLS obtains 25 [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF] superior F best (F avg) values out of the 31 instances against 6 [START_REF] Gavish | A note on "the formulation of the m-salesman traveling salesman problem[END_REF] superior F best values for ABC. The statistically significant difference in terms of the best 3 The best solution certificates are available from the link given in footnote 1. values between ITPLS and ABC is confirmed by the small p-value of 0.0012 (<0.05), while the difference in terms of average values remains marginal (pvalue of 0.0599) (see Table 5). One also notices that the 5 best results reported for ACO [START_REF] Dong | Ant colony optimisation for coloured travelling salesman problem by multi-task learning[END_REF] are greatly updated by ABC and ITPLS, while 17 of the 26 best results reported for the other ABC algorithm [START_REF] Dong | Artificial bee colony algorithm with generating neighbourhood solution for large scale coloured traveling salesman problem[END_REF] are improved by ABC (1 case) and ITPLS (16 cases). These results also consolidate the above observation that our ITPLS algorithm competes very favorably with the ABC approach as implemented in [START_REF] Dong | Artificial bee colony algorithm with generating neighbourhood solution for large scale coloured traveling salesman problem[END_REF][START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF].

To complement these results, we present in Appendix B (Table B.1) an additional comparison of ABC [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF], our ABC implementation and ITPLS under the stopping condition of [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF], i.e., a cutoff time of 1 second for instances with 21 -41 cities, 5 seconds for instances with 51 -101 cities and 60 seconds for instances with 202 -666 cities. Since ABC in [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] only reported results

on Set I and some instances of Set II, this comparison is limited to these two benchmark sets. From Table B.1, we observe that compared to ITPLS, the two ABC implementations show a better convergence on several instances with better results under these shorter cutoff time conditions. Notice that our 2.3GHz processor is slower than the 3.4GHz processor used to run the ABC algorithm in [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF].

To sum, our ITPLS algorithm is highly competitive compared with all existing approaches and its advantage is best demonstrated on medium and large instances. In particular, ITPLS is able to obtain new record-breaking results

(new upper bounds) for 4 instances of Set II and 18 instances of Set III.

Convergence Analysis

To study the behaviors of ABC [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] and ITPLS throughout the execution, we performed an experiment to obtain the running profiles of the two algorithms on four representative instances of Set II (gr202-12, gr229-30, gr431-12, gr666-20). To eliminate the possible influence of randomness, we ran each algorithm 20 times to solve each instance with the cutoff time of 600 seconds per run, and record the best objective values during the process. Fig. 5 illustrates the running profiles which show how the average best objective values found evolve with the running time. We notice that the two algorithms are able to improve the solution quality quickly in the beginning (during the first 100 to 150 seconds), but ABC converges more quickly. However, ITPLS has generally a better performance on the long term. Indeed, ABC began to slow down or even stagnate on the best solution after 150 seconds, while ITPLS continued its search to find still better solutions. This experiment indicates that ABC converges faster than ITPLS, but ITPLS can benefit more run time to find better solutions.

Additional Computational Results of ITPLS

In this section, we are interested in the following question. Can our ITPLS algorithm be used as a post-optimizer to further improve high-quality solutions provided by another method? Such a study is relevant and allows us to test the ability of an algorithm to boost another powerful method [START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF].

For this purpose, we choose solutions achieved by the ABC algorithm of [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF],

which proves to be among the best performing algorithms. For this experiment, we disabled, in ITPLS, its greedy randomized initialization procedure of Section 3.3 and ran, under the same conditions as before, the algorithm with the best solution from ABC as its starting solution (denoted by ABC+ITPLS).

The cutoff time of ABC+ITPLS is thus twice that of ITPLS. To push this study even further, we performed a complementary experiment to investigate the influence of the initial solution on the performance of ITPLS.

For this purpose, we replaced the greedy randomized initialization procedure of ITPLS by ABC (denoted by ABC+ITPLS). For this experiment, we adopted the same experimental protocol of Section 4.2. Since ABC converges faster than ITPLS, we only assigned a fraction of the total run time to ABC and used the remaining time to run ITPLS. We experimented two cases where ABC was given the first 10% and 20% of the total run time, respectively.

We use ITPLS+ABC [START_REF] Applegate | The traveling salesman problem: a computational study[END_REF] and ITPLS+ABC(2) to denote these two cases. We conducted this experiment only on Sets II and III since Set I is too easy for this study. Computational results are shown in Table C The results indicate that with the same run time, the combined use of ABC and ITPLS can reach better results than ITPLS alone in terms of the best and average values, especially for instances of Set III. In other words, highquality initial solutions can help ITPLS to find still better solutions. The pvalues from the Wilcoxon signed-rank test confirm that the improvements are statistically significant. One notices that the results of ABC+ITPLS(2) are better than ABC+ITPLS(1). Thus, ITPLS could be beneficially combined with other algorithms to find high-quality solutions that cannot be accessed by running the underlying algorithms separately. as reference values for new algorithm assessment, as initial bounds for exact algorithms). Moreover, given that CTSP can model several real problems, the code of our algorithm (that will be publicly available) can help practitioners to solve these applications.

For future research, there are several possibilities. First, given that existing studies on CTSP mainly focused on bio-inspired population frameworks, this work opens the way for designing effective algorithms based on other search frameworks such as local search and hybrid methods. Second, since CTSP is tightly related to other routing problems, it would be interesting to verify whether proven methods developed for these related problems could be effective for solving CTSP. Third, the basic idea of the proposed approach, in particular, mixing inter-route optimization and intra-route optimization is of general nature. It is worth investigating similar ideas to solve other routing problems such as the multiple traveling salesmen problem [START_REF] Bektas | The multiple traveling salesman problem: an overview of formulations and solution procedures[END_REF][START_REF] Gavish | A note on "the formulation of the m-salesman traveling salesman problem[END_REF] . Finally, to the best of our knowledge, no exact algorithm exists for CTSP in the literature.

There is thus much room for research in this direction.

2. 1

 1 Problem Definition Given a complete undirected graph G = (V, E) with a set of vertices (or cities) V = {0, 1, 2, . . . , n -1} and a set of weighted edges E where each vertex represents a city and each non-negative edge weight c ij represents the traveling distance between cities i and j (c ij = c ji). The city set V is divided into m + 1 disjoint sets: m exclusive city sets C 1 , C 2 , . . . , C m , and one shared city set S such that ∪ m k=1 C k ∪ S = V and ∩ m k=1 C i ∩ S = ∅. The cities of each exclusive set C k (k = 1, 2, . . . , m) are to be visited by the salesmen k and each city from the shared city set S is to be visited by one of the m salesmen.

 the time complexity O(|S| + |C m |) of the m-tour encoding, because cities 3, 2, 7 need to move back one position in route 1 and cities 10 and 9 need to move forward one position in route 2.

Fig. 1 .

 1 Fig. 1. Illustrative example of the adjacency representation for a CTSP solution with 2 routes

 m} and the second step is bounded by O(|S| × n). Therefore, the time complexity of the greedy randomized heuristic is O(|S| × n).

Fig. 3 . 2 :

 32 Fig. 3. Flow chart of the local optima exploration phaseThe local optima exploration phase (LOEP) is the key search component of the proposed algorithm and combines a (global) inter-routing optimization procedure and a (local) intra-route optimization procedure to explore various local optimal solutions. The inter-routing optimization aims to find better solutions by moving cities between two routes while the intra-route optimization focuses

 to be trapped in a deep local optimum. To get rid of the trap, the local optima escaping phase is launched. Our local optima escaping procedure is composed of two steps. The first step destroys the input solution s by deleting some shared cities while the second step re-inserts these deleted cities into different routes. In the first step, each shared city is deleted according to a destruction probability P d defined byP d = 1 -e -β/T2 , where β is the number of non-improvement iterations in Algorithm 1 and T is a parameter. The second step is similar to the second step of the greedy randomized initialization heuristic in Section 3.3. Each deleted city is inserted to the position which minimizes the distance if the greedy probability P a is verified; otherwise, this position is discarded. After all deleted shared cities are inserted, a new solution is obtained, which serves as the new starting solution of the next round of the local optima exploration phase. The probabilities P d and P a control the diversification degree of the algorithm. We show a sensitive analysis of these parameters in Section 4.3. The time complexity of the local optima escaping procedure is O(|S| × n). 3.6 Computational Complexity of ITPLS As shown in Algorithm 1, each iteration of ITPLS performs two subroutines: local optima exploration and local optima escaping. The local optima exploration part includes intra-route optimization and inter-route optimization. The time complexity of each iteration of intra-route optimization and interroute optimization is respectively O((|S| + |C max |) 2) and O(|S| × n), where |C max | = max{|C k | : k = 1, . . . , m}. Furthermore, the time complexity of local optima escaping is O(|S| × n).

Fig. 4 (

 4 Fig. 4(a) indicates that the probability P i in the greedy randomized heuristic does not influence much the results. As for O max (the depth of SbTS), Fig. 4(b)

Fig. 4 (

 4 d) indicates that the tabu tenure of STS also influences the performances of ITPLS, with T l = 0.3 being the best value. As shown in Fig.4(e), the number of the deleted cities in the local optima escaping phase impacts slightly the performance of ITPLS, with T = 50 being a suitable value. Finally, the probability P a used in the same phase influences the performance of ITPLS and P a = 0.4 (Fig.4(f)) is identified as the best value and used as the default value for ITPLS.

Fig. 5 .

 5 Fig.5. Convergence charts (running profiles) of ITPLS and ABC (our implementation of[START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF]) for solving four representative instances of Set II (gr202-12, gr229-30, gr431-12, gr666-20), based on 20 independent runs of each algorithm

5 Conclusions

 5 We introduced the iterated two-phase local search algorithm for the challenging colored traveling salesman problem which has a number of real applications. The proposed algorithm relies on a combination of a local optima exploration phase and a local optima escaping phase. The local optima exploration phase is responsible for finding solutions of increasing quality by alternating inter-route optimization between routes and intra-route optimization of individual route, while the local optima escaping phase uses a solution destruction-reconstruction procedure to create new starting solutions for the local optima exploration phase.Computational results of the proposed algorithm on three sets of 65 benchmark instances from the literature demonstrated its effectiveness and competitiveness compared to the existing methods. Especially, the algorithm was able to update the previous best-known results (improved upper bounds) for 22 instances (4 instances in Set II and 18 instances in Set III). These new upper bounds can be used by researchers for future research on CTSP (e.g.,

Greedy randomised initilization Local optima exploration Stop Local optima escaping

	t t 	max	Yes
		No	
	Fig. 2. Flow chart of the general ITPLS procedure		

 represents the ith city in route s k and |s k | is the number of cities in route s k .Given a candidate solution s, it is forbidden by the tabu list (i.e., excluded for consideration) if H 1 (h 1 (s) mod L) ∧ H 2 (h 2 (s) mod L) = 1; and otherwise, this solution is eligible for consideration.

Let s ← s ⊕ Insert(k 1 , i 1 , k 2 , i 2)

be a neighbor solution. The two hash values for s can be calculated by Eqs.

[START_REF] Grefenstette | Genetic algorithms for the traveling salesman problem[END_REF][START_REF] He | Optimisation of the harvesting time of rice in moist and non-moist dispersed fields[END_REF]

 s * heuristic and uses a tabu list to record the exchanged edges. As such, each time an edge is exchanged (removed or added) in the current route s k , it will not be considered by STS for the next tl consecutive iterations where tl is called the tabu tenure fixed to be T l * |s k | (T l = 0.3 in this work). STS terminates if the best route s * k is not updated within |s k | steps.

		k
	29	end
	30	return R b
	31 end
	295	egy, which applies the 2-opt heuristic and a simple tabu search (STS) heuristic
	296	in a probabilistic way (See Algorithm 3). Specifically, with probability P s , we
	297	perform STS, and with probability 1 -P s , we apply 2-opt. The STS heuristic
		used in the intra-route optimization follows the conventional attribute-based

298

tabu approach

[START_REF] Glover | Tabu Search[END_REF]

. STS relies on the same edge exchange operation as for the 299 2-opt

 Table 1 can be considered to define the default setting of ITPLS.

		8 Table 1 x 10 -3 Settings of parameters					14	-3 x 10					Avg gap
		7.5 Parameters 7 P i			Section 3.3		Description Greedy probability in initial solution 12		Values 0.1	Best gap
		5 5.5 6.5 Omax 6 Gap Ps					3.4 3.4.3		10 8 Select probability in intra-route op-Search depth of SbTS Avg gap Best gap timization Gap		50 0.3	
		T l	4.5					3.4.3		6 Parameter of the tabu tenure of STS		0.3	
		T	3.5 4					3.5			ability) used to define the destruction prob-4		50	
		Pa	3	0	0.05	0.1	0.15	0.2 Value of paramters P i 0.25 0.3 3.5	0.35 escaping 0.4 0.45 Greedy probability in local optima 0.5 20 40 60 2	80 Value of paramters O max 100 120 140 0.4	160	180	200
								(a)											(b)	
			0.025												20	x 10 -3				
													Avg gap								
			0.02										Best gap	15					
			0.015												10						Avg gap Best gap
		Gap	0.01											Gap							
																5					
			0.005																		
			0													0					
			-0.005	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.1 -5	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
								Value of paramters P s										Value of paramters T l
								(c)											(d)
			11 12	x 10 -3								Avg gap Best gap		5 4	-3 x 10					Avg gap Best gap
																3					
			10																		
																2					
			9													1					
			Gap											Gap							
			8													0					
															-1					
			7																		
															-2					
			6												-3					
			5	0	20	40	60	80	100	120	140	160	180	200	-4	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7
								Value of paramters T										Value of paramters P a
								(e)											(f)
								Fig. 4. Analysis of the effects of the parameters
		below, except P a = 0.1 (instead of its default value of 0.4) was used to solve
	435	And this setting was consistently used to conduct all the experiments reported

434

the instances with at least 7000 vertices (cities).

Table 2 .

 2 Computational results of the compared algorithms on Sets I and II. The best results are indicated in boldface

	ITPLS (this work)
	ABC (our implementation of [26])

Table 3 .

 3 Computational results of the compared algorithms on Set III. The best results are indicated in boldface

	ITPLS (this work)
	ABC (our implementation of [26])

 Since the instances of Set I are rather easy, we conducted this experiment only on Sets II and III. The results are reported in Tables 4 where Gap IT P LS = (F IT P LS+ABC -F IT P LS)/F IT P LS × 100 and Gap ABC = (F IT P LS+ABC -F ABC)/F ABC × 100, while the p-values from the Wilcoxon signed-rank test for different pairwise comparisons are shown in Table5.The results show that ITPLS can greatly raise the quality of the solutions provided by ABC in terms of the best and the average objective values and performs better than ITPLS with its greedy randomized initialization. The p-values from the Wilcoxon signed-rank test indicate that the improvements are statistically significant. This experiment demonstrates that ITPLS can be beneficially combined with other algorithms to find high-quality solutions that cannot be discovered by running the underlying algorithms separately.

Table 5

 5 Statistical results (p-values) from the Wilcoxon signed-rank test with a confidence level of 95% of different pairwise comparisons for the three benchmark sets

	Algorithm pair		Set I		Set II	Set III
		F best	Favg	F best	Favg	F best	Favg
	ITPLS vs ABC	1	1	0.3125	0.9460	0.0012	0.0599
	ABC+ITPLS vs ABC	-	-	0.0234	0.0017	1.17E-06	1.17E-06
	ABC+ITPLS vs ITPLS	-	-	0.0391	1.22E-04	7.89E-06	3.62E-04

 .1, where Gap = (F IT P LS+ABC -F IT P LS)/F IT P LS × 100, while the p-values from the Wilcoxon signed-rank test for different pairwise comparisons are shown in Table C.2.

Table C .

 C 1. Computational results of the ABC+ITPLS with sets II and III. Table C.2 Statistical results (p-values) from the Wilcoxon signed-rank test with a confidence level of 95% of different pairwise comparisons for the three sets.

		Gap		0.00	0.00	0.00	0.00	0.00	0.00			
	ABC+ITPLS(2)	Favg σ F		99963.5 109.59	173534.9 70.12	233826.95 73.96	222363.85 163.98	264184.2 117.58	319669 0	406814.5 220.55		
		F best		99871	173415	233749	222167	264146	319669	406664		
							Algorithm pair		set I	set II	set III
											F best	Favg	F best	Favg	F best	Favg
		Gap		0.00	-0.04	0.00	0.00 ITPLS vs ABC 0.00 0.00 0.00 ITPLS vs ABC+ITPLS(1)	1 -	1 -	0.3125 0.3125	0.9460 0.8552	0.0012 1.30E-06	0.0599 1.58E-06
							ITPLS vs ABC+ITPLS(2)	-	-	0.8438	0.6698	2.56E-06	1.58E-06
	ABC+ITPLS(1)	Favg σ F		99994 114.94	173520.8 81.26	233819.5 69.35	222395.05 152.4 ABC vs ABC+ITPLS(1) 264191.2 319669 406843.2 119.34 0 227.25 ABC vs ABC+ITPLS(2)	--	--	0.25 0.1289	0.7354 0.7354	3.75E-06 3.10E-06	4.97E-06 4.53E-06
		F best		99871	173353	233749	222167	264146	319669	406664		
		Instance	set II	gr202-12	gr202-25	gr202-35	gr229-10	gr229-15	gr229-20	gr229-30		

The code of our algorithm will be made available at http://www.info.univangers.fr/pub/hao/CTSP.html

Our implementation of the ABC algorithm[START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] is available from the page given in footnote 1.

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions which helped us to improve the paper. We would like to thank Prof. Jun Li, Prof. Alok Singh and Dr. Venkatesh Pandiri for providing their test problems. Support from the China Scholarship Council (CSC) for the first author is also acknowledged.

A Streamlined computation technique

This Appendix presents the streamlined computation technique for fast updates of the move gain matrix δ used by the solution-based tabu search procedure. In this procedure, all neighbor solutions are represented by s ⊕ Insert(•)

where s is the current solution. The cost variation between the two solutions (i.e., the move gain of Insert(k To accelerate this computation and update of move gains, we adapted the streamlined technique [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF], which was initially developed for the graph coloring problem.

During the first step of the solution-based tabu search procedure, we fill the gain matrix δ(•) for all neighbor solutions of s⊕Insert(•).

is performed during the search, we just need to update parts of the gain matrix. As shown in Eqs. (A.2-A.5), the gain matrix δ(•) for Insert(k

The time complexity for these operations is

O(5 × n) respectively. Therefore, the time complexity of updating the move gain matrix becomes O(n), which is significantly smaller than O(|S| × n).

This technique thus accelerates greatly the update of the move gain matrix by avoiding many unnecessary computations.

B Comparative results under the cutoff times of [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] This Appendix (Table B.1) shows detailed results of ABC [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF], our implementation of [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] and ITPLS on 34 instances of Sets I and II under the cutoff times (see column 't(s)') used in [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF]: 1 second for instances with 21 -41 cities, 5 seconds for instances with 51 -101 cities and 60 seconds for instances with 202 -666 cities. ABC in [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] was ran on a 3.4GHz processor, while our implementation of ABC and ITPLS were ran on a slower 2.3GHz processor.

Table B.1

Comparative results of ABC [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] and ABC (our implementation of [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF]) and ITPLS under the stopping conditions of ABC [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF]. Unavailable results are indicated by the symbol '-' while the best results of the compared methods are highlighted in bold.

ABC [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF] ABC (our implementation of [START_REF] Pandiri | A swarm intelligence approach for the colored traveling salesman problem[END_REF])

C Additional comparative results

This Appendix (Tables C.1 and C.2) shows comparative results of ABC+ITPLS [START_REF] Applegate | The traveling salesman problem: a computational study[END_REF] and ABC+ITPLS(2) on Sets II and III. The cutoff time per run for both algorithms was set to be same as ITPLS. ABC was given the first 10% and 20%

of the total run time, while the remaining time was allocated to ITPLS.