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Abstract

We consider a topological class of a germ of complex analytic function in two variables which
does not belong to its jacobian ideal. Such a function is not quasi homogeneous. The 0-level
of such a function defines a germ of analytic curve. Proceeding similarly to the homogeneous
case Genzmer and Paul (2011) and the quasi homogeneous case Genzmer and Paul (2016), we
describe an algorithm which computes the dimension of the generic strata of the local moduli
space of curves.

Keywords: moduli of curve, singularities.

1. Introduction.

A germ of holomorphic function f : (C2, 0) −→ (C, 0) is said to be quasi-homogeneous if
and only if f belongs to its jacobian ideal J( f ) = ( ∂ f

∂x ,
∂ f
∂y ). If f is quasi-homogeneous, then there

exist coordinates (x, y) and positive coprime integers k and l such that the quasi-radial vector field
R = kx ∂

∂x + ly ∂
∂y satisfies R( f ) = d · f , where the integer d is the quasi-homogeneous (k, l)-degree

of f Saito (1971). Based on that, the following family of functions

fM,N =

N∏
i=1

(
y + aix

) M∏
i=1

(
y + bix2)

is not quasi homogeneous. We denote by TM,N the set of holomorphic functions which are
topologically equivalent to fM,N . This topological class is the simplest one beyond the quasi-
homogeneous singularities. In Loubani (2019), we described the moduli space MM,N of fo-
liations, which is the topological class TM,N up to right-left equivalence, and gave local ana-
lytic normal forms. In this article, we study the dimension of the moduli space of the curve
S =

{
fM,N = 0

}
.

This problem is a particular case of an open problem known as the Zariski problem. Zariski prob-
lem has only some answers: Zariski (1986) for the very first treatment of some particular cases,
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Hefez and Hernandes (2009), Hefez and Hernandes (2011) and Hefez and Hernandes (2013)
for the irreducible curves, Granger (1979) and Genzmer and Paul (2011) for the homogeneous
topological class and J. Briancon and Maisonobe (1988) for some results which are particular
cases of the quasi homogeneous topological class treated later by Genzmer and Paul (2016).

Since the topological class TM,N is the simplest one beyond the quasi-homogeneous singularities,
solving Zariski problem for this class would be the first step towards solving it for the remaining
cases and consequently for the general case. In our work, we follow the strategy introduced by
Genzmer and Paul: on the moduli space of foliations MM,N , we consider the integrable distri-
bution C related to the following equivalence relation: two points inMM,N are equivalent if and
only if the separatrices of the corresponding class of foliations are in the same analytic class of
curves. In section 3, we describe the infinitesimal generators of the distribution C. The main
result of this section is proposition 3.2 in which we show the algebraic independence of some
coefficients of the O2-generator of C. Section 4 presents an algorithm to compute the dimension
of the generic strata of the local moduli space of curves (Theorem A). Finally, we give some
examples in section 5. Section 2 is devoted to recalling some needed definitions and notions.

2. Definitions and Notions.

The strategy introduced by Genzmer and Paul Genzmer and Paul (2016) is based on the
deformation theory introduced by Jean-François Mattei in Mattei (1991). In view of that, we
need to recall the following concepts.

Definition 2.1. Let F0 be a germ of holomorphic foliation at 0 ∈ C2 with isolated singularity
0. An unfolding of F0 of base P = (Cp, 0) is the data of a germ of saturated foliation Fp of
codimension 1 at the origin of (C2+p, 0) of singular set Σ(Fp) such that the leaves of Fp are
transverse to the fibers of the projection

Π : (C2+p, 0)→ P, Π(x, t) = t,

with x = (x1, x2), t = (t1, ..., tp), and such that we have the equality

i∗(Fp) = F0,

where i : (C2, 0) ↪→ (C2+p, 0) designs the embedding i(x) = (x, 0).

In other words, it is the data of a germ of holomorhic 1-form

Ω = A1(x, t)dx1 + A2(x, t)dx2 +

p∑
j=1

C j(x, t)dt j, (1)

such that

1. A1, A2 and C1, ...,Cp are germs of holomorphic functions at a neighborhood of {0},
2. Ω is integrable, i.e. Ω ∧ dΩ ≡ 0,
3. The singular set Σ(Fp) is the zero set of the ideal (A1, A2,C1, ...,Cp) ⊂ O2+p,
4.

(
C1, ...,Cp

)
is a sub-ideal of

√
(A1, A2).
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The last condition corresponds to the transversality of the leaves and the fibers.

Two unfoldings Fp and F ′p of the same base P are said to be holomorphically conjugated, or
equivalent, if there exists a germ of holomorphic automorphism φ of (C2+p, 0) such that

φ∗Fp = F ′p and Π ◦ φ = Π.

When φ is only a Ck-homeomorphism, we say that Fp and F ′p are Ck-conjugated. An unfolding
Fp is said to be trivial if it is conjugated to a constant unfolding F0 × P, i.e. defined by (1) with

Ai(x, t) ≡ Ai(x, 0), C j(x, t) ≡ 0, i = 1, 2, j = 1, .., p.

The equireducibility of an unfolding corresponds to the existence of reduction of singularities in
family as precised in Mattei (1991). An equireducible unfolding is in particular a topologically
trivial deformation Mattei (1991). This property is essential and is the only property we need
here about equireducible unfoldings because as we work with a fixed topological class, we have
to make sure that any deformation we consider does not change the class.

3. The infinitesimal generators of C.

We first recall general facts proved in Genzmer and Paul (2011), which are valid in every
topological class. Let F be a foliation defined by a holomorphic function f (or more generally
by any generic non dicritical differential form ω), and let S be the curve defined by f = 0 (or by
the separatrix set of ω). Let E : M → (C2, 0) be the desingularization map of the foliation, and
D its exceptional divisor. We denote by f̃ , F̃ and S̃ the pull back by E on M of f , F and S . The
tangent space to the point [S ] in the moduli space of curves is the first Cech cohomology group
H1(D,ΘS ) where ΘS is the sheaf on D of germs of vector fields tangent to S̃ Mattei (2000).
Denoting by ΘF the sheaf of germs of vector fields tangent to the desingularized foliation F̃ , the
inclusion of ΘF into ΘS induces a map i:

H1(D,ΘF )
i
−→ H1(D,ΘS )

whose kernel represents the directions of unfolding of foliations with trivial associate unfolding
of curves. We recall that according to Mattei (1991), the tangent space to the moduli space of
foliations is given by the cohomology group H1(D,ΘF ). Therefore, to compute the dimension
of the generic strata of the local moduli space of curves, which is equivalent to computing the
dimension of the cohomology group H1(D,ΘS ), we need to study two objects: the cohomology
group H1(D,ΘF ) and the kernel of the map i.

To study the kernel of the map i, we shall make use of a result by Genzmer and Paul Genzmer
and Paul (2011). Before stating this result, we need the following definition:

Definition 3.1. An open set U of M is a quasi-homogeneous open set (relatively to f ) if there
exists a holomorphic vector field RU on U such that RU( f̃ ) = f̃ .

The foliations induced by the elements of TM,N can be desingularized after two standard blow-
ups of points.
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Figure 1: Desingularization of fM,N for M = N = 3

Since the invariant curves of the desingularized foliations are smooth, we can always cover
D by three quasi-homogeneous open sets V2, V3 and V4. For i=2,3,4, we denote the corre-
sponding holomorphic vector field RVi by Ri to simplify the notation. The cocycle of the quasi-
homogeneity [R3,4,R2,4] of F is the element of H1(D,ΘF ) induced by (R3 − R4,R2 − R4).

Noting that H1(D,ΘF ) has a natural structure of O2-module, we have:

Theorem ( Genzmer and Paul (2011)). The kernel of the map i is generated by the cocycle of
quasi-homogeneity, i.e.:

ker(i) = {h · [R3,4,R2,4], h ∈ O2}.

In particular, the distribution induced by these directions is integrable and defines a singular
foliation C on H1(D,ΘF ).

For H1(D,ΘF ), we know from Loubani (2019) that its basis is in bijection with P which is the
open set of Cδ defined by

P =
{
(· · · , ak,i, · · · , bk′,i′ , · · · ) such that a1,i , 0, b1, j , 0, 1 and

a1,i , a1, j, b1,i′ , b1, j′ for i , j and i′ , j′
}
,

where the indexes k,i,k′ and i′ satisfy the following system of inequalities
0 ≤ k − 1 ≤ i − 1

−(N − 2) ≤ 2k − i − 1 ≤ 2i − 2
−(M − 2) ≤ k′ − i′ − 1 ≤ N − 3 + 2i′

0 ≤ k′ − 1 ≤ N − 2 + 2i′.

We also know from the same work that the dimension δ of H1(D,ΘF ) is equal to the number of
the integer points in the region QM,N in the union of the real half planes (X,Y), X ≥ 0 and Y ≥ 0,
delimited by Y − X + (M − 1) > 0 and 2Y − X − (N − 1) < 0.

For p ∈ P, we consider the saturated foliation F (M,N)
p defined by the one-form dN(M,N)

p on C2+δ,
where

N(M,N)
p = xy(y + x2)

N−1∏
i=1

y +

i∑
k=1

ak,ixyk−1

 M−2∏
i=1

y +

N−1+2i∑
k=1

bk,ixk+1

 .
We would make use of the following result:
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Figure 2: The region QM,N for M = N = 6

Theorem 3.1 ( Loubani (2019)). For any p0 in P the germ of unfolding
{
F

(M,N)
p , p ∈ (P, p0)

}
is

a universal equireducible unfolding of the foliation F (M,N)
p0 .

The universaliy means that for any equireducible unfolding Ft, t ∈ (T , t0) which defines F (M.N)
p0

for t = t0, there exists a map λ : (T , t0) −→ (P, p0) such that the family Ft is analytically
equivalent to N(M,N)

λ(t) . Furthermore, the differential of λ at the point t0 is unique. As for the
uniqueness of the map λ, it follows from the uniqueness of the normal forms which is proved
in Loubani (2019).

This theorem shows that the family of foliations
(
dN(M,N)

p

)
p∈P

defines the moduli space of folia-
tionsMM,N locally, or equivalently the family of germs of vector fields induced by the family of
germs of functions

(
N(M,N)

p

)
p∈P

defines the space H1(D,ΘF ). Thus, our study reduces to studying
the action of the distribution C on this family of functions.

Let Xm,n be the vector fields on P generated by xmyn · [R3,4,R2,4]. We give the expression of X0,0

in the basis
{

∂
∂ak,l

, ∂
∂bk,l

}
k,l

of the vector space generated by the set P:

Proposition 3.1. The O2-generator of C is given by:

X0,0 = [R3 − R4,R2 − R4]

= −1
2M+2N−1

N−1∑
i=1

i∑
k=1

(2k − 3)ak,i
∂

∂ak,i
+

M−2∑
i=1

N−1+2i∑
k=1

(k − 1)bk,i
∂

∂bk,i

 .
Proof. Let p be in P and consider the following deformation

(λ, p) ∈ (C, 1) × (P, p) 7→ Np,λ (x, y) = Np

(
λx, λ2y

)
= λ2M+2N−1Nλ·p (x, y) ,

where λ · p = λ · (ak,i, bk,i) = (λ2k−3ak,i, λ
k−1bk,i) and we denote the normal form N(M,N)

p by Np

for simplicity. This deformation is analytically trivial in λ. Hence, its related cocycle is trivial.
5



Blowing the deformation up yields

Ñp,λ (x4, y4) = λ2M+2N−1xM+N
4 y2M+N

4 (1 + x4)
N−1∏
i=1

y4 +

i∑
k=1

λ2k−3ak,ixk−1
4 y2k−2

4


M−2∏
i=1

1 +

N−1+2i∑
k=1

λk−1bk,ixk
4yk−1

4

 ,
and so we have

Ñ−1
p,λ

∂Ñp,λ

∂λ
= (2M + 2N − 1)λ−1 +

N−1∑
i=1

∑i
k=1 (2k − 3) λ2k−4ak,ixk−1

4 y2k−2
4

y4 +
∑i

k=1 λ
2k−3ak,ixk−1

4 y2k−2
4

+

M−2∑
i=1

∑N−1+2i
k=1 (k − 1) λk−2bk,ixk

4yk−1
4

1 +
∑N−1+2i

k=1 λk−1bk,ixk
4yk−1

4

.

The vector field R4 is defined as a solution on V4 of R4Ñp = Ñp. Moreover, according to Loubani
(2019), ∂

∂ak,i
and ∂

∂bk,i
are defined by the cocycle related to the vector fields X( j)

k,i and Y ( j)
k,i respec-

tively such that X( j)
k,i Ñp =

∂Ñp

∂ak,i
and Y ( j)

k,i Ñp =
∂Ñp

∂bk,i
. Setting λ = 1, we obtain

∂Ñp,λ

∂λ
|λ=1=

(2M + 2N − 1)R4 +

N−1∑
i=1

i∑
k=1

(2k − 3)ak,iX
(4)
k,i

+

M−2∑
i=1

N−1+2i∑
k=1

(k − 1)bk,iY
(4)
k,i

 Ñp,λ

= C(4)Ñp,λ.

The same computation in the other two charts leads to

C(3) =

(2M + 2N − 1)R3 +

N−1∑
i=1

i∑
k=1

(2k − 3)ak,iX
(3)
k,i +

M−2∑
i=1

N−1+2i∑
k=1

(k − 1)bk,iY
(3)
k,i


C(2) =

(2M + 2N − 1)R2 +

N−1∑
i=1

i∑
k=1

(2k − 3)ak,iX
(2)
k,i +

M−2∑
i=1

N−1+2i∑
k=1

(k − 1)bk,iY
(2)
k,i

 .
The triviality of the cocycle induced by

(
C(3) −C(4),C(2) −C(4)

)
ends the proof.

From now on, we denote by qk =
]

k+N−2
2

]
+ M− k the number of integer points in the intersection

between the region QM,N of moduli and the straight line of equation (y4 = k − 1) if N ≤ k ≤
N + 2M − 5.

We consider the following two subspaces of the vector space generated by the set P

Pa = Vect
{

∂

∂ak,i

}
i=1,...,N−1

k=1,...,i

and Pb = Vect
{

∂

∂bk,i

}
i=1,...,M−2

k=1,...,N−1+2i

.
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For 1 ≤ la ≤ N − 1 (respectively 1 ≤ lb ≤ N + 2M − 5), we denote by Pla
a (respectively Plb

b ) the
level of height la (respectively lb) of the subspace Pa (respectively Pb), i.e.

P
la
a = Vect

{
∂

∂ala ,i

}
i=la,...,N−1

P
lb
b =


Vect

{
∂

∂blb ,i

}
i=1,...,M−2

if 1 ≤ lb ≤ N

Vect
{

∂
∂blb ,i

}
i=M−1−qlb ,...,M−2

if N + 1 ≤ lb ≤ N + 2M − 5.

We have the following direct decomposition of P

P = ⊕1≤lb≤N−1
la=lb

Vect
{
Pla

a ,P
lb
b

}
⊕

lb=N+2M−5
lb=N P

lb
b .

Now, we consider the following two subsets of the region QM,N corresponding to the subspaces
Pa and Pb respectively

Ia =
{

(i, j) | 0 ≤ i ≤ N − 2 and − (N − 2) + 2i ≤ j ≤ i
}

Ib =
{

(i, j) | 0 ≤ j ≤ N − 1 and − (M − 2) + j ≤ i ≤ j − 1

N ≤ j ≤ N + 2M − 6 and − (M − 2) + j ≤ i ≤ j − 1 − (M − 2 − q j+1)
}
,

where the levels la and lb are given by the straight lines of equations x4 = la − 1 and y4 = lb − 1
respectively.

x4

y4

6

-6

-4

2

Figure 3: The Corresponding decomposition of the region QM,N for N = 5, M = 7

Let Θ0 be a holomorphic vector field with isolated singularities defining F̃ (M,N)
p0 on the two in-

tersections V2 ∩ V4 and V3 ∩ V4. We denote by
[
xi

4y j
4

]
the class of xi

4y j
4 (Θ0, 0) (respectively

xi
4y j

4 (0,Θ0)) in H1
(
D,Θ

F
(M,N)
p0

)
if (i, j) ∈ Ia (respectively (i, j) ∈ Ib).
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We can write the standard basis of H1
(
D,Θ

F
(M,N)
p0

)
as B = Ba ∪ Bb where

Ba =
{ [

xi
4y j

4

]
| (i, j) ∈ Ia

}
Bb =

{ [
xi

4y j
4

]
| (i, j) ∈ Ib

}
.

The following proposition is the basic tool for the proof of the main result of this article.

Proposition 3.2. If we decompose the vector field X0,0

X0,0 =
−1

2M + 2N − 1

N−1∑
j=0

Xa, j
0,0

 1

y j
4

 +

M−2∑
i=1

Xb,i
0,0

 y4

xi−1
4

 +

N−3∑
j=0

Ya, j
0,0

 x4

y j−1
4


 + ...

where the dots correspond to the decomposition of X0,0 at the levels la and lb with la ≥ 3 and
lb ≥ 3, then the functions Xa, j

0,0 are the zero functions for 1 ≤ j ≤ N − 2 and the functions

{Xa,0
0,0 , X

b,i
0,0,Y

a, j
0,0}i=1,...,M−2

j=0,...,N−3
are algebraically independent.

Proof. Let us write the decomposition of the first term of the cocycle
{

∂
∂a1,l

, ∂
∂b1,l

}
in the standard

basis of H1
(
D,Θ

F
(M,N)
p0

)
∂

∂a1,l
=

∑
i, j∈B

Rl
i j(p)

[
xi

4y j
4

]
,

where p ∈ P. In view of theorem 3.1 and using the notation introduced in its proof, the first term
of the cocycle associated to ∂

∂a1,l
is written

{
Φ

(3,4)
1,l ,Φ(2,4)

1,l

}
where

Φ
(3,4)
1,l = 1

(2M+N)a1,l
∏N−1

s=1 a1,s

[
Ũ(x4)
x2M−2

4
+ W(x4)

]
+ y4(...)

Φ
(2,4)
1,l = −1

(M+N)(y4+a1,l)

[
K̃(y4)
y2N−2

4
+ B(y4)

]
+ x4(...),

with W is the polynomial function of degree M − 1 satisfying the Bezout identity

Q ∧ Q′ = WQ′ + ZQ, Q(x4) = xM+N
4 (1 + x4)

N−1∏
j=1

a1, j

M−2∏
j=1

(
1 + b1, jx4

)
,

Ũ is a polynomial function in x4 defined by the equality

Ũ(x4) = xM−1
4 U(y3),

where U is the polynomial function of degree M − 1 satisfying the Bezout identity

P ∧ P′ = UP′ + VP, P(y3) = y3(y3 + 1)
N−1∏
j=1

a1, j

M−2∏
j=1

(y3 + b1, j),

and B and K̃ are polynomial functions of degree N − 1 in the variable y4 satisfying relations
similar to those satisfied by W and Ũ.
In fact, Rl

−i,0(p) is the coefficient of 1
xi

4
in the development of Φ

(3,4)
1,l in Laurent series, which is
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zero for all 1 ≤ i ≤ M − 2 and Rl
0,− j(p) is the coefficient of 1

y j
4

in the development of Φ
(2,4)
1,l which

can be written as

Φ
(2,4)
1,l =

−1
M + N

N−1∑
j=1

(−1)N+ j−1K̃(−a1,l)

aN+ j
1,l

1

yN− j−1
4

+
B(0)
a1,l

+
R(y4)
y2N−2

4

+ y4(...)

 + x4(...),

where R is a polynomial function of degree N − 1.
For simplicity, we will replace the notation Rl

0,− j(p) by Rl
0, j(p). So, we can write Rl

0, j(p) as
follows

Rl
0, j(p) =


−1

M+N

[
K̃(−a1,l)

a2N−1
1,l

+
B(0)
a1,l

]
if j = 0

1
M+N

(−1) j−1K̃(−a1,l)
a2N− j−1

1,l

if 1 ≤ j ≤ N − 2.

It is clear that Rl
0, j(p) satisfies the following relation Rl

0,0(p) = −
Rl

0,1(p)
a1,l
− 1

M+N
B(0)
a1,l

Rl
0, j(p) = (−1) j−1a j−1

1,l Rl
0,1(p) if 1 ≤ j ≤ N − 2.

Thus, we obtain the following equality

∂
∂a1,l

= − 1
M+N

B(0)
a1,l

+

N−2∑
j=0

(−a1,l) j−1Rl
0,1(p)

 1

y j
4

 +
∑
Ba
i,0

〈
∂

∂a1,l
, xi

4y j
4

〉 [
xi

4y j
4

]
+

∑
Bb
j,0

〈
∂

∂a1,l
, xi

4y j
4

〉 [
xi

4y j
4

]
.

where
〈

∂
∂a1,l

, xi
4y j

4

〉
denotes the coefficient of

[
xi

4y j
4

]
in the decomposition of ∂

∂a1,l
on the standard

basis of H1
(
D,Θ

F
(M,N)
p0

)
.

Proposition 3.1 yields a decomposition of the cocycle X0,0 in the standard basis which can be
written as

X0,0 = c

N−2∑
j=0

Xa, j
0,0

 1

y j
4

 +

M−2∑
i=1

Xb,i
0,0

 y4

xi−1
4

 +

N−3∑
j=0

Ya, j
0,0

 x4

y j−1
4




+ c


∑

Ba,i,0,1
Bb, j,0,1

N−1∑
l=1

−a1,l

〈
∂

∂a1,l
, xi

4y j
4

〉 [
xi

4y j
4

]
+

∑
Ba,i,0,1
Bb, j,0,1

N−1∑
l=2

a2,l

〈
∂

∂a2,l
, xi

4y j
4

〉 [
xi

4y j
4

]

+
∑

Bb, j,0
Ba,i,0,1

M−2∑
l=1

b2,l

〈
∂

∂b2,l
, xi

4y j
4

〉 [
xi

4y j
4

]
+

N−1∑
l=3

l∑
k=3

(2k − 3) ak,l
∂

∂ak,l

+

M−2∑
l=1

N−1+2l∑
k=3

(k − 1) bk,l
∂

∂bk,l
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where

Xa,0
0,0 = N−1

M+N B(0) +

N−1∑
l=1

Rl
0,1(p)

Xa, j
0,0 =

N−1∑
l=1

(−a1,l) jRl
0,1(p)

Xb,i
0,0 =

M−2∑
l=1

b2,l

〈
∂

∂b2,l
,

y4

xi−1
4

〉
+

N−1∑
l=1

−a1,l

〈
∂

∂a1,l
,

y4

xi−1
4

〉
Ya, j

0,0 =

M−2∑
l=1

b2,l

〈
∂

∂b2,l
,

x4

y j−1
4

〉
+

N−1∑
l=2

a2,l

〈
∂

∂a2,l
,

x4

y j−1
4

〉
+

N−1∑
l=1

−a1,l

〈
∂

∂a1,l
,

x4

y j−1
4

〉
and c is a constant given by

c =
−1

2M + 2N − 1
.

We note that the term
〈

∂
∂a2,l

, y4

xi
4−1

〉
is equal to zero for all 1 ≤ i ≤ M − 2.

Now, according to the proof of theorem 3.1, Rl
0,1(p) can be written as

Rl
0,1(p) =

1
M + N

(−1)N

a1,l
∏N−1

j=1
j,l

(
a1,l − a1, j

) .
To compute the term Xa,0

0,0 , we introduce the polynomial F0 in the variable x4 defined by

F0(x4) =

N−1∏
j=1

(
x4 − a1, j

)
.

Clearly, we have the following equality

1
F0(x4)

=

N−1∑
j=1

1(
x4 − a1, j

)∏N−1
j′=1
j′, j

(
a1, j − a1, j′

) .
So, we can write Xa,0

0,0 as

Xa,0
0,0 = N−1

M+N B(0) + 1
M+N

N−1∑
l=1

(−1)N

a1,l
∏N−1

j=1
j,l

(
a1,l − a1, j

)
= N−1

M+N B(0) +
(−1)N+1

M+N
1

F0(0) .

The initial expression of F0(x4) implies that F0(0) =
∏N−1

j=1

(
−a1, j

)
. Since, from the proof of

theorem 3.1, we have B(0) = 1
(2M+N)

∏N−1
j=1 a1, j

, we obtain the following expression of Xa,0
0,0

Xa,0
0,0 =

2M + 2N − 1
M + N

B(0),
10



which is different from zero.
Similarly, to compute the term Xa, j

0,0, we introduce the polynomial F j in the variable x4 defined by

F j(x4) =
Q(x4)
P j(x4)

where Q(x4) =
∏N−1

i=1
(
x4 − a1,i

)
and P j(x4) = (−x4) j for all 1 ≤ j ≤ N − 2. Also, we have the

following equality
1

F j(x4)
=

N−1∑
i=1

(−a1,i) j(
x4 − a1,i

)∏N−1
i′=1
i′,i

(
a1,i − a1,i′

) .
So, we can write Xa, j

0,0 as

Xa, j
0,0 =

(−1)N

M + N

N−1∑
l=1

(−a1,l) j

a1,l
∏N−1

j=1
j,l

(
a1,l − a1, j

) =
(−1)N+1

F j(0)
.

The initial expression of F j(x4) implies that Xa, j
0,0 = 0 for all 1 ≤ j ≤ N − 2.

Now, for the terms Xb,i
0,0, proceeding similarly to the proof of theorem 3.1, we can show that the

term
N−1∑
l=1

−a1,l

〈
∂

∂a1,l
,

y4

xi−1
4

〉
is equal to the coefficient of 1

xi−1
4

in the development of
N−1∑
l=1

−a1,lΦl(x4)

in Laurent series where Φl(x4) is given by

Φl (x4) =
−(2M+N+1)

(2M+N)2a1,l
∏N−1

j=1 a1, j(1+x4)

(
Ũ(x4)
x2M−2

4
+ W (x4)

)
 x4∏M−1

j=1 (1+b1, j x4)

M−2∑
j=1

b2, j

1 + b1, jx4
+

∑N−1
i=1

1
a1,i

x4
∏M−2

j=1

(
1 + b1, jx4

) 
− 1

(2M+N)a2
1,l

∏N−1
j=1 a1, j

(
Ũ(x4)
x2M−2

4
+ W (x4)

)
.

Since ∂
∂b2,l

= x4y4
∂

∂b1,l
, then we have the following relation〈

∂

∂b2,l
,

y4

xi−1
4

〉
=

〈
∂

∂b1,l
,

1
xi

4

〉
,

and so in view of the proof of theorem 3.1, the term
M−2∑
l=1

b2,l

〈
∂

∂b2,l
,

y4

xi−1
4

〉
is equal to the coefficient

of 1
xi−1

4
in the development of

M−2∑
l=1

b2,lx4Ψ
(3,4)
1,l (x4) in Laurent series where Ψ

(3,4)
1,l (x4) is given by

Ψ
(3,4)
1,l =

1
(2M + N)

∏N−1
j=1 a1, j(1 + b1,lx4)

 Ũ(x4)
x2M−3

4

+ x4W(x4)
 + y4(...).
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We can write

N−1∏
j=1

a1, j

N−1∑
l=1

−a1,lΦl(x4) = c1

(1+x4)
∏M−2

j=1 (1+b1, j x4)
Ũ(x4)
x2M−3

4

M−2∑
j=1

b2, j

1 + b1, jx4

+x4(...) + cst + ...
N−1∏
j=1

a1, j

M−2∑
l=1

b2,lx4Ψ
(3,4)
1,l (x4) =

M−2∑
l=1

b2,lx4

(2M + N)(1 + b1,lx4)
Ũ(x4)
x2M−3

4

+ x4(...) + y4(...),

where c1 =
(2M+N+1)(N−1)

(2M+N)2 and the dots stand for terms which do not contain b2, j.

The coefficient of b2,l in the sum
N−1∏
j=1

a1, j

N−1∑
l=1

−a1,lΦl(x4) +

N−1∏
j=1

a1, j

M−2∑
l=1

b2,lx4Ψ
(3,4)
1,l (x4) is given by

E (x4) =
1

x2M−3
4

Ũ(x4)
(1 + b1,lx4)

 c1

(1 + x4)
∏M−2

j=1 (1 + b1, jx4)
+ c2x4


where c2 = 1

2M+N . This implies that the coefficient of b2,l in the expression of Xb,i
0,0 is equal to the

coefficient of 1
xi−1

4
in the previous expression.

The next part of the proof is devoted to showing that if we consider the functions Xb,i
0,0 as linear

functions of the M − 2 variables b2,l, where 1 ≤ l ≤ M − 2, then their determinant is not the zero
function. Hence, for a generic choice of the variables b2,1, ..., b2,M−2, these M−2 linear functions
are independent as linear functions of M − 2 variables. Thus they are algebraically independent.
In fact, we know that Ũ is a polynomial function in x4 defined by the equality

Ũ(x4) = xM−1
4 U(y3)

where U is the polynomial function of degree M − 1 satisfying the Bezout identity

P ∧ P′ = UP′ + VP.

Since we are interested in the generic independence, we restrict the proof to the following case

M−2∏
j=1

b1, j = 1 and
(
−b1, j

)M−1
= −1 ∀1 ≤ j ≤ M − 2 if M is even

M−2∏
j=1

b1, j = −1 and
(
−b1, j

)M−1
= 1 ∀1 ≤ j ≤ M − 2 if M is odd.

So, the function P can be written as

P(y3) =



N−1∏
i=1

a1,iy3

(
yM−1

3 + 1
)

if M is even

N−1∏
i=1

a1,iy3

(
yM−1

3 − 1
)

if M is odd.
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If M is even, then using euclidean division, we find that Ũ is given by

Ũ (x4) = xM−1
4 +

M
M − 1

.

In this case, the expression E is equal to

E (x4) =
1

x2M−3
4

Ũ(x4)
(1 + b1,lx4)

 c1

1 + xM−1
4

+ c2x4

 .
From the proof of theorem 3.1, we have the following equality

Ũ(x4)
(1 + b1,lx4)x2M−3

4

=

M−2∑
j=0

d jl
1

x j
4

+
T (x4)
x2M−3

4

+ x4(...),

where T is a polynomial function in x4 of degree M − 2 and d jl is given by

d jl = (−1) j+1b2M− j−3
1,l Ũ

(
−1
b1,l

)
.

In this case, we have

d jl =
(−1) j+1

M − 1
b2M− j−3

1,l

and the polynomial T satisfies the equality

T (x4)
x2M−3

4

=

2M−3∑
j=M−1

c jl
1

x j
4

,

where
c jl = (−1) j−1b2M−3− j

1,l
M

M − 1
.

Thus, the decomposition of Xb,i
0,0, where 1 ≤ i ≤ M − 2, on the family b2,l, where 1 ≤ l ≤ M − 2,

is given by the matrix



Xb,1
0,0 Xb,2

0,0 . . . Xb,M−2
0,0

b2,1 c2d1,1 + c1d0,1 − c1cM−1,1 c2d2,1 + c1d1,1 − c1cM,1 . . . c2dM−2,1 + c1dM−3,1 − c1c2M−4,1
b2,2 c2d1,2 + c1d0,2 − c1cM−1,2 c2d2,2 + c1d1,2 − c1cM,2 . . . c2dM−2,2 + c1dM−3,2 − c1c2M−4,2
...

...
...

...
b2,M−2 c2d1,M−2 + c1d0,M−2 − c1cM−1,M−2 c2d2,M−2 + c1d1,M−2 − c1cM,M−2 . . . c2dM−2,M−2 + c1dM−3,M−2 − c1c2M−4,M−2

.

From the expressions of ci+M−2,l and di−1,l, we have the following relation

di−1,l = −
1
M

ci+M−2,l.

Since di,l = −1/b1,ldi−1,l, we can write the following

c2di,l + c1di−1,l − c1ci+M−2,l =

[
−

1
M

(
c1 −

c2

b1,l

)
− c1

]
ci+M−2,l.
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Thus, the determinant of the above matrix is equal to( M
M − 1

)M−2 M−2∏
l=1

[
1
M

(
c1 −

c2

b1,l

)
+ c1

]
Vand

(
−b1,1, ...,−b1,M−2

)
,

which is not the zero function since b1,i , b1, j for i , j.
The case where M is odd can be treated similarly.

Now, for the terms Ya, j
0,0 , we have〈

∂

∂b2,l
,

x4

y j−1
4

〉
=

〈
∂

∂b1,l
,

1

y j
4

〉
= 0

for all 0 ≤ j ≤ N − 3. Since ∂
∂a2,l

= x4y2
4

∂
∂a1,l

, we have〈
∂

∂a2,l
,

x4

y j−1
4

〉
=

〈
∂

∂a1,l
,

1

y j+1
4

〉
=

(
−a1,l

) j Rl
0,1(p)

for all 0 ≤ j ≤ N − 3.
Computations similar to those in the proof of theorem 3.1 show that the term
N−1∑
l=1

−a1,l

〈
∂

∂a1,l
,

x4

y j−1
4

〉
is equal to the coefficient of 1

y j−1
4

in the development of

N−1∑
l=1

−a1,lΨl(y4) in Laurent series where Ψl(y4) is given by

Ψl(y4) =
(M+N+1)

(M+N)2(y4+a1,l)

1 +

M−2∑
i=1

b1,i +

N−1∑
i=2

a2,iy2
4

y4 + a1,i

 [ K̃(y4)
y2N−2

4
+ B(y4)

]
+

a2,l

(M+N)(y4+a1,l)2

[
K̃(y4)
y2N−4

4
+ y2

4B(y4)
]
.

The coefficient of a2,l in the expression of
N−1∑
l=2

−a1,lΨl(y4) is given by

−ca1,l
K̃(y4)

(y4 + a1,l)2y2N−4
4

where c = 2M+2N+1
(M+N)2 . Thus, the coefficient of a2,l in Ya, j

0,0 is equal to (−a1,l) jRl
0,1(p) added to the

coefficient of 1
y j−1

4

in the previous expression. We can easily check that it is given by

(
1

M + N
+ c(2N − 2 − j)

)
(−1) jK̃(−a1,l)

a2N−2− j
1,l

− c
(−1) j

a2N−2− j
1,l

N−1∑
i=0

(−1)iiai
1,lki

where the complex numbers ki are such that K̃(y4) =
∑N−1

i=0 kiyi
4. Similarly, we can show that if we

consider the functions Ya, j
0,0 as linear functions of the N−2 variables a2,l, where 2 ≤ l ≤ N−1, then

their determinant is not the zero function. Hence, they are algebraically independent. Finally, it
is clear that considering the functions Xa,0

0,0 , Xb,i
0,0 and Ya, j

0,0 where 1 ≤ i ≤ M − 2 and 0 ≤ j ≤ N − 3
as linear functions of 1, a2,l and b2,l′ where 2 ≤ l ≤ N − 1 and 1 ≤ l′ ≤ M − 2, we can deduce that
they are algebraically independent.
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4. The dimension of the generic strata.

The dimension τ of the generic strata of the local moduli space of curves corresponds to the
codimension of the distribution C at a generic point of M. According to proposition 3.2, the fam-
ily of coefficients {Xa,0

0,0 , X
b,i
0,0,Y

a, j
0,0}i=1,...,M−2

j=0,...,N−3
of X0,0 is functionally independent: thus, any family

of r vector fields in dimension r whose coefficients are chosen among {Xa,0
0,0 , X

b,i
0,0,Y

a, j
0,0}i=1,...,M−2

j=0,...,N−3
is generically free: indeed, their determinant cannot identically vanish since it would produce
a functional relation between {Xa,0

0,0 , X
b,i
0,0,Y

a, j
0,0}i=1,...,M−2

j=0,...,N−3
. Thus, to compute the dimension of the

generic strata, we just have to browse the region of moduli and to compute at each level how
many moduli can actually be reached by the vector fields Xm,n. For the following considerations,
we recommend to refer at each step to Example 3 in section 5.

From now on, we denote by l the levels of the region of moduli in correspondence with the
decomposition of the set P introduced before. In fact, for 1 ≤ lb ≤ N − 1, it implies that it is the
level formed by la = lb of the subspacePa and lb of the subspacePb, and for N ≤ lb ≤ N+2M−5,
it is just the level formed by lb. The previous proposition shows that the first level at which the
vector field X0,0 starts action is l = 1. We note that we say a vector field Xm,n starts action at a
level l if there is at least one non zero coefficient in its decomposition on this level and all the
coefficients in its decomposition on the previous levels are zero. The main purpose of this section
is to show:

Lemma 4.1. If M,N > 2, then the vector space generated by the vector fields Xm,n which act at
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the level l = 1, ...,N + 2M − 5 admits as a basis:

l = 1
{
X0,0

}
l = 2

{
X1,0

}
l = 3

{
X2,0, X0,1

}
4 ≤ l ≤

[
N
2

]
+ 1

{
Xl−1,0, Xl−3,1, X0,l−2, ..., Xl−4,2

}
l =

[
N
2

]
+ 2

{
Xl−1,0, Xl−3,1, X0,l−2, ..., XN−l−2,2l−N

}
l = N

2 + 3 + i, 0 ≤ i ≤ N
2 − 5,

{
Xl−1,0, Xl−3,1, X0,l−2, ..., XN−l−2,2l−N ,

N even X N
2 −2+i,2, X N

2 −4+i,3, ..., X N
2 +i−2m1,m1+1

}
l = N+1

2 + 2 + i, 0 ≤ i ≤ N+1
2 − 5,

{
Xl−1,0, Xl−3,1, X0,l−2, ..., XN−l−2,2l−N ,

N odd X N−1
2 −2+i,2, X N−1

2 −4+i,3, ..., X N−1
2 +i−2m2,m2+1

}
l = N − 1

{
Xl−1,0, Xl−3,1, XN−6,2, XN−8,3, ...,

XN−4−2min([ N−7
3 ]+1,M−3),min([ N−7

3 ]+1,M−3)+1

}
l = N

{
Xl−3,1, XN−5,2, XN−7,3, ...,

XN−3−2min([ N−5
3 ]+1,M−3),min([ N−5

3 ]+1,M−3)+1

}
l = N + 1 + r, 0 ≤ r ≤ N − 4

{
XN−3, r+1

2 +1, XN−5, r+1
2 +2, ..., XN+r−2n1,n1 ,

r odd XN−1+r,0, XN−3+r,1, ..., XN, r−1
2

}∗
l = N + 1 + r, 0 ≤ r ≤ N − 4,

{
XN−2, r

2 +1, XN−4, r
2 +2, ..., XN+r−2n2+2,n2−1,

r even XN−1+r,0, XN−3+r,1, ..., XN−1, r
2

}∗
l = N + 1 + r, N − 3 ≤ r ≤ 2M − 6,

{
XN−3, r+1

2 +1, XN−5, r+1
2 +2, ..., XN+r−2n3,n3 ,

r odd XN−1+r,0, XN−3+r,1, ..., XN, r−1
2

}∗
l = N + 1 + r, N − 3 ≤ r ≤ 2M − 6,

{
XN−2, r

2 +1, XN−4, r
2 +2, ..., XN+r−2n4+2,n4−1,

r even XN−1+r,0, XN−3+r,1, ..., XN−1, r
2

}∗
.

where m1 = min
([

2i+1
3

]
+ 1,M − 3

)
, m2 = min

([
2i
3

]
+ 1,M − 3

)
, n1 =

[
N−3+2r

3

]
+ 2, n2 =[

N−3+2r
3

]
+ 3, n3 =

[
r−N+4

2

]
+ N − 2 and n4 =

[
r−N+4

2

]
+ N − 1. The asterisk (∗) means that

this family is a basis if its cardinal is less than or equal to ql, otherwise, any subfamily of cardi-
nal ql form a basis.

Since Xa,0
0,0 is a non zero coefficient among the coefficients {Xa, j

0,0} in the decomposition of X0,0,
the vector fields Xm,0 may start action on the subspace Pa. The first level of the subspace Pa

at which Xm,0 may have an action is la = m + 1 and that of the subspace Pb is lb = m + 2:
this is because Xm,0 = xmX0,0 = xm

4 ym
4 X0,0 and the levels of the subspace Pa are determined by

the powers of x4 and those of the subspace Pb are determined by the powers of y4 and since
Xm,0 = xmX0,0, its projection on the previous levels vanish. For 1 ≤ lb ≤ N − 1, la = lb, the vector
fields Xm,0 can be used to kill only one modulus at each level la = m + 1 of the subspace Pa.
For N ≤ lb ≤ N + 2M − 5, the monomial term having Xa,0

0,0 as a coefficient in the decomposition
of Xm,0 is outside the region of moduli (at these levels we are outside the subspace Pa) and so
we will see that the vector field Xm,0 acts only on the subspace Pb starting precisely at the level
lb = m + 2.

The vector fields Xm,1 may start action on the subspacesPa andPb. The first level of the subspace
Pa at which Xm,1 may have an action is la = m + 3 and that of the subspace Pb is lb = m + 3 as
well. If M = 2, then there are no moduli in the region associated to the subspace Pb, and so we
can use the vector field Xm,1 to kill one modulus at each level la = m + 3 of the subspace Pa. If
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M > 2, then for 3 ≤ lb ≤ N + 1, la = lb, the vector fields Xm,1 can be used to kill one modulus at
each level lb = m+3 of the subspace Pb. For N +2 ≤ lb ≤ N +2M−5, the monomial term having
Xa,0

0,0 as a coefficient in the decomposition of Xm,1 is outside the region of moduli, and so we will
see that this vector field acts only on the subspace Pb starting precisely at the level lb = m + 4.

For n , 0, 1, the vector fields Xm,n may start action on the subspace Pa. The first level of the
subspace Pa at which Xm,n may have an action is la = m + n + 2 and that of the subspace Pb is
lb = m + 2n + 1 which is strictly greater than m + n + 2 as n ≥ 2: in fact, Xm,n = xmynX0,0 =

xm+n
4 ym+2n

4 X0,0 and the levels of the subspace Pa are determined by the powers of x4 and those
of the subspace Pb are determined by the powers of y4. For la ≥ 4, Xm,n can be used to kill a
modulus which is exactly at the level la = m + n + 2 of the subspace Pa. However, once all the
moduli at a certain level are killed, the extra vector fields acting at this level can be used to kill
moduli at the level lb = m + 2n + 1 of the subspace Pb if the monomial term having Xa,0

0,0 as a
coefficient in the decomposition of Xm,n is inside the region of moduli. Otherwise, if it is outside
the region of moduli, then either the extra vector fields Xm,n do not act at the level lb = m + 2n + 1
but act and can be used to kill moduli at the level lb = m + 2n + 2 of the subspace Pb, or they
actually act at the level lb = m + 2n + 1 of the subspace Pb but all the moduli at this level and the
next levels are killed. This also works for the extra vector fields acting at the higher levels of the
subspace Pa.

Based on that, we denote by νm,n + 1 = m + 2n + 1 the first level of the subspace Pb at which a
vector field Xm,n may have an action.

We note that if M > 2, then killing moduli on the subspace Pb always starts at the level lb = 3
and this is because we use X0,0 to kill a modulus at the first level of the subspace Pa and X1,0 to
kill a modulus at the second level (if it exists, i.e. N > 2), so X0,1 will be used at the third level of
the subspace Pb (if N = 2 then both X1,0 and X0,1 will be used at the third level of the subspace
Pb).

Using the equations of the edges of the region of moduli, we find that the monomial term having
Xa,0

0,0 as a coefficient in the decomposition of Xm,n, which is xm+n
4 ym+2n

4 , is inside the region of
moduli when m and n satisfy the following inequalities{

n + 1 ≤ M − 1
m + 1 ≤ N − 1.

The vector fields Xm,n such that m ≥ N − 1 and n , 0 do not actually act at the level νm,n + 1 of
the subspace Pb. The following lemma shows that they act at the next level. We note that they
do not even act on the subspace Pa.

Lemma 4.2. For a fixed integer d, the vector fields Xm,n such that νm,n + 1 = d + 1 and m ≥ N −1
act at the level νm,n + 2 = m + 2n + 2 = d + 2 of the subspace Pb when there are moduli at this
level.

Proof. If m ≥ N − 1, then the vector fields Xm,n such that νm,n + 1 = d + 1 do not act at the level
νm,n + 1 = N + 1 + i where −1 ≤ i ≤ 2M−6: Xm,0 does not act at the level νm,n + 1 of the subspace
Pa and Xm,n such that n , 0 does not act at the level νm,n + 1 of the subspace Pb. They are given
by 

{
XN−1+2 j, i+1

2 − j

}
0≤ j≤ i+1

2

if i is odd{
XN+2 j, i

2− j

}
0≤ j≤ i

2

if i is even.
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If i = −1, then XN−1,0 = xN−1
4 yN−1

4 X0,0 is the only vector field Xm,n such that m ≥ N − 1 and νm,n +

1 = N which does not act at the level N of the subspace Pa (because it does not exist actually):
indeed it is the first vector field for which the monomial term having Xa,0

0,0 as a coefficient in its
decomposition , which is xN−1

4 yN−1
4 , is outside the region of moduli: it is actually at the edge of

equation (2x4 − y4 − (N − 1) = 0) of the region. Supposing that M > 2 (otherwise there are no
moduli in the region associated to the subspace Pb), the coefficient of y4 in the decomposition of
X0,0, which is Xb,1

0,0 , is different from zero. So, the vector field XN−1,0 acts at the level N + 1 of the
subspace Pb: in its decomposition, Xb,1

0,0 is the coefficient of xN−1
4 yN

4 which is the first monomial
term inside the region of moduli at the level N + 1.
If 0 ≤ i ≤ 2M − 6, such that i is odd, then since XN−1, i+1

2
= y

i+1
2 XN−1,0, the monomial term

having Xa,0
0,0 as a coefficient in the decomposition of XN−1, i+1

2
is also at the edge of equation

(2x4 − y4 − (N − 1) = 0) of the region of moduli (as y = x4y2
4). Again since M > 2, the vec-

tor field XN−1, i+1
2

, which does not act at the level N + 1 + i of the subspace Pb, acts at the level

N + 1 + (i + 1): also in its decomposition, Xb,1
0,0 is the coefficient of xN−1+ i+1

2
4 yN−1+i+2

4 which is the
first monomial term inside the region of moduli at the level N + 1 + (i + 1). Now, for the other
vector fields, we have

XN−1+2 j, i+1
2 − j =

x2 j

y j XN−1, i+1
2

= x j
4XN−1, i+1

2
.

If j + 1 ≤ M − 2, then the coefficient of y4

x j
4

in the decomposition of X0,0, which is Xb, j+1
0,0 , is

different from zero, and so the first monomial term inside the region at the level N + 1 + (i + 1)

which is xN−1+ i+1
2

4 yN−1+i+2
4 will have Xb, j+1

0,0 as a coefficient in the decomposition of XN−1+2 j, i+1
2 − j.

This means that to show that the vector fields
{
XN−1+2 j, i+1

2 − j

}
0≤ j≤ i+1

2

act at the level N + 1 + (i + 1),

it is enough to show that we have the following inequality

j + 1 ≤ M − 2

for 0 ≤ j ≤ i+1
2 , which ensures the existence of y4

x j
4

for all 0 ≤ j ≤ i+1
2 in the decomposition of X0,0.

In fact, it is enough to show that these vector fields act at the level νm,n +2 = N +1+(i+1) = d+2
when there are moduli at this level. More precisely, we need to consider the action of the r vector
fields

{
XN−1+2 j, i+1

2 − j

}
0≤ j≤r−1

at the level d + 2 if the number of points at this level is greater than

or equal to r i.e. if we have the following inequality qd+2 ≥ r where qd+2 =
]

d+N
2

]
+ M − (d + 2).

It clearly implies that j + 1 ≤ M − 2 for all 0 ≤ j ≤ r − 1.
The case where i is even can be treated similarly.

If M > 2, then the vector fields Xm,n such that n ≥ M − 1, which are extra from the region
associated to the subspace Pa, may start action at the level νm,n + 1 of the subspace Pb. In the
next lemma, which deals with the generic dimension of the distribution C, we will see that all the
moduli at such a level as well as the next levels are killed. Lemma 4.1 is equivalent to:

Lemma 4.3. If M > 2 and N ≥ 6, then for any d = 0, ...,N + 2M−6, the dimension of the vector
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space generated by the vector fields Xm,n which act at the level l = d + 1 is given by:

1 if d = 0, 1
2 if d = 2
1 + min (N − d − 1, d − 1) if 3 ≤ d ≤

[
N+2

2

]
N − d + min

(
M − 3,

[
2i+1

3

]
+ 1

)
if d = N

2 + 2 + i where
0 ≤ i ≤ N

2 − 3 and N is even
N − d + min

(
M − 3,

[
2i
3

]
+ 1

)
if d = N+1

2 + 1 + i where
0 ≤ i ≤ N+1

2 − 3 and N is odd
1 + min

(
M − 3,

[
N−3

3

]
+ 2

)
if d = N

min
(
qN+1+r,

[
N−3+2r

3

]
+

[
r
2

]
−

[
r−1

2

]
+ 2

)
if d = N + r where 1 ≤ r ≤ N − 4

min
(
qN+1+r,N − 2 +

[
r−N+4

2

]
+

[
r
2

]
−

[
r−1

2

])
if d = N + r where
N − 3 ≤ r ≤ 2M − 6.

Proof. It is clear that only X0,0 acts at the level l = 1 and X1,0 acts at the level l = 2. The
vector fields X2,0 and X0,1 act at the level l = 3 and they are linearly independent. In fact, their
decomposition is given by the following invertible matrix


X2,0 X0,1

x2
4y2

4 Xa,0
0,0 Ya,1

0,0

x4y2
4 0 Xa,0

0,0

.
For d ≥ 3, the vector field Xm,0 such that m + 1 = d + 1 acts at the level la = d + 1 of the subspace
Pa. The vector field Xm,1 such that m + 3 = d + 1 acts at the level lb = d + 1 of the subspace Pb (it
also acts at the level la = d + 1 of the subspace Pa but we will consider its action on the subspace
Pb as M > 2). The number of vector fields Xm,n such that n , 0, 1 and m + n + 2 = d + 1 is equal
to d − 2 and the number of points at the level la = d + 1 of the subspace Pa is equal to N − d − 1.
If N is even, then the first level of the subspace Pa having all the moduli killed corresponds to
d = N

2 and there are no extra vector fields at this level. For d = N
2 + 1, there are two extra vector

fields acting a the level la = d + 1. Among them, the vector field Xm,n with the smallest n is given
by X N

2 −2,2. This vector field acts on the subspace Pb starting precisely at the level lb = N
2 + 3.

Thus, if 3 ≤ d ≤ N
2 + 1, then the dimension of the vector space generated by the vector fields

Xm,n which act at the level l = d + 1 is equal to 1 + min (N − d − 1, d − 1). In fact, if 3 ≤ d ≤ N
2 ,

then their decomposition is given by the matrix



X0,d−1 X1,d−2 . . . Xd−3,2 Xd,0 Xd−2,1

xd
4y2

4 Ya,2d−3
0,0 Ya,2d−4

0,0 . . . Ya,d
0,0 0 Ya,d−1

0,0
...

...
...

...
...

...
xd

4yd−1
4 Ya,d

0,0 Ya,d−1
0,0 . . . Ya,3

0,0 0 Ya,2
0,0

xd
4yd

4 Ya,d−1
0,0 Ya,d−2

0,0 . . . Ya,2
0,0 Xa,0

0,0 Ya,1
0,0

xd−1
4 yd

4 0 0 . . . 0 0 Xa,0
0,0


which is clearly invertible. If d = N

2 + 1 and d , N − 2, then their decomposition is given by the
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matrix 

X0,d−1 X1,d−2 . . . XN−d−3,2d−N+2 Xd,0 Xd−2,1

xd
4y2d−N+2

4 Ya,N−3
0,0 Ya,N−4

0,0 . . . Ya,d
0,0 0 Ya,N−d−1

0,0
...

...
...

...
...

...
xd

4yd−1
4 Ya,d

0,0 Ya,d−1
0,0 . . . Ya,2d−N+3

0,0 0 Ya,2
0,0

xd
4yd

4 Ya,d−1
0,0 Ya,d−2

0,0 . . . Ya,2d−N+2
0,0 Xa,0

0,0 Ya,1
0,0

xd−1
4 yd

4 0 0 . . . 0 0 Xa,0
0,0


which is clearly invertible as well. We note that if d = N

2 + 1 = N − 2, then the associated matrix
is the principle submartix of the above matrix corresponding to the vector fields Xd,0 and Xd−2,1.
To know the number of vector fields which act at the level lb of the subspace Pb for N

2 + 3 ≤ lb ≤
N, we have to count the extra vector fields acting at the levels N

2 + 2 ≤ la ≤ N − 1 of the subspace
Pa. For that we write d = N

2 + j where 1 ≤ j ≤ N
2 −2, and so the number of the extra vector fields

acting at the level la = d + 1 is equal to 2 j. We can easily check that among them the number of
those which act at the level lb = N

2 + 3 + i where 0 ≤ i ≤ N
2 − 3 is equal to

[
2i+1

3

]
+ 1. We note

that at the levels N
2 + 3 ≤ la ≤ N, all the moduli are killed. Thus, if N

2 + 2 ≤ d ≤ N − 3, then
the decomposition of the vector fields which act at the level l = d + 1 is given by the following
invertible matrix



X0,d−1 X1,d−2 . . . XN−d−3,2d−N+2 Xd,0 Xd−2,1 X N
2 −2+i,2 X N

2 −4+i,3 . . . X N
2 +i−2m1,m1+1

xd
4y2d−N+2

4 Ya,N−3
0,0 Ya,N−4

0,0 . . . Ya,d
0,0 0 Ya,N−d−1

0,0
...

...
...

...
...

...
xd

4yd−1
4 Ya,d

0,0 Ya,d−1
0,0 . . . Ya,2d−N+3

0,0 0 Ya,2
0,0 ∗

xd
4yd

4 Ya,d−1
0,0 Ya,d−2

0,0 . . . Ya,2d−N+2
0,0 Xa,0

0,0 Ya,1
0,0

xd−1
4 yd

4 0 0 . . . 0 0 Xa,0
0,0

xd−2
4 yd

4 Xa,0
0,0 ∗

xd−3
4 yd

4 Xa,0
0,0

... 0
. . .

xd−1−m1
4 yd

4 0 Xa,0
0,0



,

where m1 = min
([

2i+1
3

]
+ 1,M − 3

)
. If d = N−2 (respectively d = N−1), then their decomposi-

tion is given by a matrix of the above form such that the first block matrix reduces to its principle
submatrix corresponding to the vector fields Xd,0 and Xd−2,1 (respectively Xd−2,1).
Now, for d = N − 1, the number of vector fields Xm,n such that n , 0, 1 and m + n + 2 = d + 1 is
equal to d − 2 = N − 3. Actually, if we write d as before i.e. d = N

2 + j with j = N
2 − 1, then this

number is not equal to 2 j = N − 2. The vector field among them having the greatest n is given
by X0,N−2. Since this vector field starts action at the level lb = 2N − 3 of the subspace Pb, then
we can not use the previous formula to find the number of vector fields which act at the levels
lb ≥ 2N − 2 of the subspace Pb. If we write d = 2N − 3 + j where 0 ≤ j ≤ 2M − N − 3, we can
easily check that among them the number of those which act at the level lb = d + 1 is equal to
N − 3 +

[
j+1
2

]
. For the levels lb = d + 1 = N + 1 + r where 0 ≤ r ≤ 2M − 6, we know from lemma

4.2 that among the vector fields Xm,n such that n , 0, 1 and m + 2n + 1 = d + 1, there are
[

r−1
2

]
vector fields such that m ≥ N − 1 which do not act at the level lb = d + 1. They are given by the
family 

{
Xd−4,2, ..., XN−1, r+1

2

}
if r ≥ 3 is odd{

Xd−4,2, ..., XN, r
2

}
if r ≥ 4 is even .

20



However, we also know from lemma 4.2, that at the previous level lb = dr−1 + 1 where dr−1 =

N + (r− 1), there are
[

r
2

]
+ 1 vector fields Xm,n such that m + 2n + 1 = dr−1 + 1 which do not act at

the level lb = dr−1 + 1 because m ≥ N − 1 but act at the level lb = dr + 1 where dr = N + r. They
are given by the family 

{
XN−1+r,0, ..., XN, r−1

2

}
if r is odd{

XN−1+r,0, ..., XN−1, r
2

}
if r is even .

We note that the vector fields Xm,n such that m ≥ N − 1 do not act on the subspace Pa. Thus,
if 0 ≤ r ≤ N − 4 and r is odd, then if the number of the vector fields which act at the level
lb = N + 1 + r, which is equal to n1 =

[
N−3+2r

3

]
+ 2, is less than or equal to the number of points

at this level, then their decomposition is given by the matrix



XN−3, r+1
2 +1 XN−5, r+1

2 +2 . . . XN+r−2n1,n1 XN−1+r,0 XN−3+r,1 . . . XN, r−1
2

xN+ r+1
2 −2

4 yN+r
4 Xa,0

0,0 ∗ Xb, r−1
2 +2

0,0 Xb, r−1
2 +1

0,0 . . . Xb,2
0,0

xN+ r+1
2 −3

4 yN+r
4 Xa,0

0,0 Xb, r−1
2 +3

0,0 Xb, r−1
2 +2

0,0 . . . Xb,3
0,0

...
. . .

...
...

...

xN+r−n1
4 yN+r

4 0 Xa,0
0,0 Xb,n1

0,0 Xb,n1−1
0,0 . . . Xb,n1−

r−1
2

0,0

xN+r−n1−1
4 yN+r

4 Xb,n1+1
0,0 Xb,n1

0,0 . . . Xb,n1−
r−3

2
0,0

... 0
...

...
...

xN+ r+1
2 −n1−1

4 yN+r
4 Xb,n1+ r+1

2
0,0 Xb,n1+ r−1

2
0,0 . . . Xb,n1+1

0,0



.

We note that having vector fields less than the number of points at that level is equivalent to
having the following inequality

n1 ≤ M − 2 −
r + 1

2
.

This ensures that all the entries Xb, j
0,0 in the last block matrix of the above matrix satisfy j ≤ M−2

and so they are different from zero. Otherwise, if their number is greater than the number of the
points at that level, then their decomposition is given by a principal sub-matrix of size qN+1+r of
the above matrix. So, it is invertible.
Similarly, if 0 ≤ r ≤ N − 4 and r is even, then if the number of the vector fields which act at the
level lb = N + 1 + r, which is equal to n2 =

[
N−3+2r

3

]
+ 3, is less than or equal to the number of

points at this level, then their decomposition is given by the matrix



XN−2, r
2 +1 XN−4, r

2 +2 . . . XN+r−2n2+2,n2−1 XN−1+r,0 XN−3+r,1 . . . XN−1, r
2

xN+ r
2−1

4 yN+r
4 Xa,0

0,0 ∗ Xb, r
2 +1

0,0 Xb, r
2

0,0 . . . Xb,1
0,0

xN+ r
2−2

4 yN+r
4 Xa,0

0,0 Xb, r
2 +2

0,0 Xb, r
2 +1

0,0 . . . Xb,2
0,0

...
. . .

...
...

...
xN+r−n2+1

4 yN+r
4 0 Xa,0

0,0 Xb,n2−1
0,0 Xb,n2−2

0,0 . . . Xb,n2−
r
2−1

0,0

xN+r−n2
4 yN+r

4 Xb,n2
0,0 Xb,n2−1

0,0 . . . Xb,n2−
r
2

0,0
... 0

...
...

...
xN+ r

2−n2

4 yN+r
4 Xb,n2+ r

2
0,0 Xb,n2+ r

2−1
0,0 . . . Xb,n2

0,0


.

Having vector fields less than the number of points at that level is equivalent to having the fol-
lowing inequality

n2 ≤ M − 2 −
r
2
.

This ensures that all the entries Xb, j
0,0 in the last block matrix of the above matrix satisfy j ≤ M−2

and so they are different from zero.
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Now, if N − 3 ≤ r ≤ 2M − 6 and r is odd, then the number of the vector fields which act at the
level lb = N + 1 + r is equal to n3 =

[
r−N+4

2

]
+ N − 2. If this number is less than or equal to the

number of points at this level, then their decomposition is given by the matrix



XN−3, r+1
2 +1 XN−5, r+1

2 +2 . . . XN+r−2n3,n3 XN−1+r,0 XN−3+r,1 . . . XN, r−1
2

xN+ r+1
2 −2

4 yN+r
4 Xa,0

0,0 ∗ Xb, r−1
2 +2

0,0 Xb, r−1
2 +1

0,0 . . . Xb,2
0,0

xN+ r+1
2 −3

4 yN+r
4 Xa,0

0,0 Xb, r−1
2 +3

0,0 Xb, r−1
2 +2

0,0 . . . Xb,3
0,0

...
. . .

...
...

...

xn3+1
4 yN+r

4 0 Xa,0
0,0 Xb,n3

0,0 Xb,n3−1
0,0 . . . Xb, N

2
0,0

xn3
4 yN+r

4 Xb,n3+1
0,0 Xb,n3

0,0 . . . Xb, N
2 +1

0,0
... 0

...
...

...

x
N
2

4 yN+r
4 Xb, N

2 +r
0,0 Xb, N

2 +r−1
0,0 . . . Xb, N+r+1

2
0,0



.

which is invertible for the same previous reason.
If N − 3 ≤ r ≤ 2M − 6 and r is even, then the number of the vector fields which act at the level
lb = N + 1 + r is equal to n4 =

[
r−N+4

2

]
+ N − 1. Similarly, if this number is less than or equal to

the number of points at this level, then their decomposition is given by the following invertible
matrix



XN−2, r
2 +1 XN−4, r

2 +2 . . . XN+r−2n4+2,n4−1 XN−1+r,0 XN−3+r,1 . . . XN−1, r
2

xN+ r
2−1

4 yN+r
4 Xa,0

0,0 ∗ Xb, r
2 +1

0,0 Xb, r
2

0,0 . . . Xb,1
0,0

xN+ r
2−2

4 yN+r
4 Xa,0

0,0 Xb, r
2 +2

0,0 Xb, r
2 +1

0,0 . . . Xb,2
0,0

...
. . .

...
...

...

xn4−1
4 yN+r

4 0 Xa,0
0,0 Xb,n4−1

0,0 Xb,n4−2
0,0 . . . Xb, N

2
0,0

xn4−2
4 yN+r

4 Xb,n4
0,0 Xb,n4−1

0,0 . . . Xb, N
2 +1

0,0
... 0

...
...

...

x
N
2 −1

4 yN+r
4 Xb, N

2 +r+1
0,0 Xb, N

2 +r
0,0 . . . Xb,n4

0,0


.

We note that if M is odd, then the number of the extra vector fields acting at the level la = d + 1,
where d = N

2 + j and 1 ≤ j ≤ N
2 −2, is greater than or equal to the number of the remaining points

at the horizontal line of equation (y4 = d) of the subspace Pb if j ≥ M−3
2 . This means that at the

levels lb ≥ N+3M−1
2 −3, all the moduli are killed. The vector fields Xm,n such that n ≥ M−1, which

act at the level la = m+n+2 but extra, satisfy the inequality m+n ≥ M+N−3
2 . Thus, they may start

action at the level lb ≥ N+3M−3
2 where all the moduli are killed. The number of the vector fields

Xm,n such that m + n + 2 = N + s, where s ≥ 0, is greater than or equal to the number of points at
the horizontal line of equation (y4 = N − 1 + s) of the subspace Pb if N −1 + s ≥ M−2, so at the
levels lb ≥ N + M−4, all the moduli are killed. The vector fields Xm,n such that m + n + 2 = N + s
and n ≥ M − 1, where s ≥ 0, may start action at the levels lb ≥ M + N − 2 where all the moduli
are killed. A similar argument works if M is even.

The next part of the proof is devoted to the case where N is odd. If N is odd, then the first level
of the subspace Pa having all the moduli killed corresponds to d = N+1

2 and there is one extra
vector fields at this level. We can choose the vector field Xm,n with the smallest n which is given
by X N+1

2 −3,2. This vector field acts on the subspace Pb starting precisely at the level lb = N+1
2 + 2.

Thus, if 3 ≤ d ≤ N+1
2 , then the dimension of the vector space generated by the vector fields Xm,n

which act at the level l = d + 1 is equal to 1 + min (N − d − 1, d − 1).
As in the case where N is even, to know the number of vector fields which act at the level lb of
the subspace Pb for N+1

2 + 2 ≤ lb ≤ N, we have to count the extra vector fields acting at the levels
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N+1
2 +1 ≤ la ≤ N−1 of the subspacePa. For that we write d = N+1

2 + j where 0 ≤ j ≤ N+1
2 −3, and

so the number of the extra vector fields acting at the level la = d + 1 is equal to 2 j + 1. Similarly,
we can check that among them the number of those which act at the level lb = N+1

2 + 2 + i where
0 ≤ i ≤ N+1

2 − 3 is equal to
[

2i
3

]
+ 1. Also, we note that at the levels N+1

2 + 2 ≤ la ≤ N, all the
moduli are killed.
Now, for d = N − 1, the number of vector fields Xm,n such that n , 0, 1 and m + n + 2 = d + 1
is equal to d − 2 = N − 3. If we write d as before i.e. d = N+1

2 + j with j = N+1
2 − 2, then this

number is not equal to 2 j+1 = N−2. The vector field among them having the greatest n is given
by X0,N−2. Since this vector field starts action at the level lb = 2N − 3 of the subspace Pb, then
we can not use the previous formula to find the number of vector fields which act at the levels
lb ≥ 2N − 2 of the subspace Pb. Similarly, if we write d = 2N − 3 + j where 0 ≤ j ≤ 2M −N − 3,
we can easily check that among them the number of those which act at the level lb = d + 1 is
equal to N − 3 +

[
j+1
2

]
. Thus, for the levels N + 1 ≤ lb ≤ 2M + N − 5, the same argument as the

case where N is even works.

Remark. If M > 2 and N ≤ 5, then for any d = 0, ...,N + 2M − 6, the dimension of the vector
space generated by the vector fields Xm,n which act at the level l = d + 1 is given by:

1. N = 5 

1 if d = 0, 1
2 if d = 2, 3
1 + min (1,M − 3) if d = 4
1 + min (2,M − 3) if d = 5
min (3,M − 3) if d = 6
min

(
qr+6,

[
r
2

]
+ 3

)
if d = r + 5 where 2 ≤ r ≤ 2M − 6.

2. N = 4 
1 if d = 0, 1, 3
2 if d = 2
1 + min (2,M − 3) if d = 4
min

(
qr+5, 2

[
r
2

]
−

[
r−1

2

]
+ 2

)
if d = r + 4 where 1 ≤ r ≤ 2M − 6.

3. N = 3 
1 if d = 0, 1, 2
1 + min (1,M − 3) if d = 3
min

(
qr+4, r −

[
r−1

2

]
+ 1

)
if d = r + 3 where 1 ≤ r ≤ 2M − 6.

4. N = 2 
1 if d = 0
0 if d = 1
1 + min (1,M − 3) if d = 2
min

(
qr+3, 2

[
r
2

]
−

[
r−1

2

]
+ 1

)
if d = r + 2 where 1 ≤ r ≤ 2M − 6.

We note that we can easily check that if the number of the vector fields acting at some level is
less than that at the previous level by one (which is the only possible case and it is only possible
if lb ≥ N +1), then the number of points at this level is less than the number points at the previous
level by one. So, we do not need to consider the vector fields, which are extra at some level, at
the next level.
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If we let

τ0 =

N−4∑
r=0

qN+1+r≥[ N−3+2r
3 ]+[ r

2 ]−[ r−1
2 ]+2

qN+1+r −

([
N − 3 + 2r

3

]
+

[ r
2

]
−

[
r − 1

2

]
+ 2

)

+

2M−6∑
r=N−3

qN+1+r≥N−2+[ r−N+4
2 ]+[ r

2 ]−[ r−1
2 ]

qN+1+r −

(
N − 2 +

[
r − N + 4

2

]
+

[ r
2

]
−

[
r − 1

2

])
,

where exceptionally qN+1 = M − 3, then the previous lemma implies that we have the following:

Theorem A. The dimension of the generic strata of the moduli space for curves is given by

1. if M,N , 2 and N is even:

τM,N = τ0 + 3N − 7 + (M − 3)
(

N
2 + 2

)
+

(N−4)(N−6)
4

+

N
2 −3∑
i=0

[ 2i+1
3 ]+1≤M−3

(
M − 4 −

[
2i + 1

3

])

2. if M,N , 2 and N , 3 is odd:

τM,N = τ0 + 3N − 7 + (M − 3)
(

N−1
2 + 2

)
+

(N−5)2

4

+

N+1
2 −3∑
i=0

[ 2i
3 ]+1≤M−3

(
M − 4 −

[
2i
3

])

3. if N = 3, M , 2:

τM,N = q4 + 3M + 3N − 17 +

2M−6∑
r=1

(
qr+4 −

[ r
2

]
− 2

)
4. if M = 2, N , 2:

τM,N = 2N − 5 +

[ N−1
2 ]∑

d=2

(N − 2d − 1)

5. if N = 2:

τM,N = 2 (M − 2) +

2M−6∑
r=0

qr+3≥[ r+2
2 ]+[ r

2 ]−[ r−1
2 ]

qr+3 −

([
r + 2

2

]
+

[ r
2

]
−

[
r − 1

2

])
.

5. Examples.

In this section, we present some explicit examples.
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Example 1. For N = 3, M = 2, we have τ2,3 = 1. In fact, the region of moduli QM,N is given by

y4

x4

-2

-1

1

1

Figure 4: The region QM,N for N = 3, M = 2

The vector field X0,0 is given by

X0,0 = Xa,0
0,0 + Ya,0

0,0
[
x4y4

]
+ · · · .

We have to study the action of the vector fields Xm,n satisfying m + n = d for d = 0, 1.

• For d = 0, we use the vector field X0,0 to kill one of the moduli of the first horizontal level
la = 1 (the one corresponding to the constant term).

• For d = 1, we have two vector fields X1,0 and X0,1. For the vector field X1,0, the first non
zero coefficient is that of x4y4, so we use this vector field to kill corresponding moduli,
which is the only one at the second horizontal level la = 2. The first non zero coefficient of
the vector field X0,1 is that of x4y2

4, so this vector field start acting from the third vertical
level which does not exist here.

The decomposition of the vector fields acting at the level l such that l = d+1 on the corresponding
basis is given by X0,0 for l = 1 and X1,0 for l = 2. So, we do not need to show linear independence.

Example 2. For N = 4, M = 3, we have τ3,4 = 5. In fact, the region of moduli QM,N is given by
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y4

x4

-2

2-3

3/2

Figure 5: The region QM,N for N = 4, M = 3

The vector field X0,0 is given by

X0,0 = Xa,0
0,0 + Xb,1

0,0[y4] + Ya,0
0,0 [x4y4] + Ya,1

0,0 [x4] + · · · .

The vector fields Xm,n satisfying m + n = d for d = 0, ..., 4 are given by

m + n = 0 : X0,0 (la = 1)
m + n = 1 : X1,0 (la = 2) X0,1 (lb = 3)
m + n = 2 : X2,0 (la = 3) X1,1 (lb = 4) X0,2 (la = 4)
m + n = 3 : X3,0 (la = 4) X2,1 (lb = 5) X1,2 (la = 5) X0,3 (la = 5)
m + n = 4 : X4,0 (la = 5) X3,1 (−) X2,2 (−) X1,3 (−)

X0,4 (−)

where the level in the parenthesis is the level at which the vector field acts and the dash means
that the vector field start acting at a level which odes not exist.

The decomposition of the vector fields acting at the level l such that l = d+1 on the corresponding
basis is given by:

• For l = 1, we have X0,0.

• For l = 2, we have X1,0.

• For l = 3, we have X2,0 and X0,1.


X2,0 X0,1

x2
4y2

4 Xa,0
0,0 Ya,1

0,0

x4y2
4 0 Xa,0

0,0


• For l = 4, we have X0,2.

• For l = 5, we have X0,3.
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Example 3. For N = 8, M = 7, we have τ7,8 = 49. In fact, the region of moduli QM,N is given by

x4

y4

6

-6

7/2

-7

Figure 6: The region QM,N for N = 8, M = 7

The vector field X0,0 is given by

X0,0 = Xa,0
0,0 +

5∑
i=1

Xb,i
0,0

 y4

xi−1
4

 +

5∑
j=0

Ya, j
0,0

 x4

y j−1
4

 + · · · .

The vector fields Xm,n satisfying m + n = d for d = 0, ..., 8 are given by

m + n = 0 : X0,0 (la = 1)
m + n = 1 : X1,0 (la = 2) X0,1 (lb = 3)
m + n = 2 : X2,0 (la = 3) X1,1 (lb = 4) X0,2 (la = 4)
m + n = 3 : X3,0 (la = 4) X2,1 (lb = 5) X1,2 (la = 5) X0,3 (la = 5)
m + n = 4 : X4,0 (la = 5) X3,1 (lb = 6) X2,2 (lb = 7) X1,3 (lb = 8)

X0,4 (la = 6)
m + n = 5 : X5,0 (la = 6) X4,1 (lb = 7) X3,2 (lb = 8) X2,3 (lb = 9)

X1,4 (lb = 10) X0,5 (lb = 11)
m + n = 6 : X6,0 (la = 7) X5,1 (lb = 8) X4,2 (lb = 9) X3,3 (lb = 10)

X2,4 (lb = 11) X1,5 (lb = 12) X0,6 (lb = 13)
m + n = 7 : X7,0 (lb = 9) X6,1 (lb = 9) X5,2 (lb = 10) X4,3 (lb = 11)

X3,4 (lb = 12) X2,5 (lb = 13) X1,6 (lb = 14) X0,7 (lb = 15)
m + n = 8 : X8,0 (lb = 10) X7,1 (lb = 11) X6,2 (lb = 11) X5,3 (lb = 12)

X4,4 (lb = 13) X3,5 (lb = 14) X2,6 (lb = 15) X1,7 (lb = 16)
X0,8 (lb = 17)

The decomposition of the vector fields acting at the level l such that l = d+1 on the corresponding
basis is given by:
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• For l = 1, we have X0,0.

• For l = 2, we have X1,0.

• For l = 3, we have X2,0 and X0,1.


X2,0 X0,1

x2
4y2

4 Xa,0
0,0 Ya,1

0,0

x4y2
4 0 Xa,0

0,0


• For l = 4, we have X0,2, X3,0 and X1,1.


X0,2 X3,0 X1,1

x3
4y2

4 Ya,3
0,0 0 Ya,2

0,0

x3
4y3

4 Ya,2
0,0 Xa,0

0,0 Ya,1
0,0

x2
4y3

4 0 0 Xa,0
0,0


• For l = 5, we have X0,3, X1,2, X4,0 and X2,1.



X0,3 X1,2 X4,0 X2,1

x4
4y2

4 Ya,5
0,0 Ya,4

0,0 0 Ya,3
0,0

x4
4y3

4 Ya,4
0,0 Ya,3

0,0 0 Ya,2
0,0

x4
4y4

4 Ya,3
0,0 Ya,2

0,0 Xa,0
0,0 Ya,1

0,0

x3
4y4

4 0 0 0 Xa,0
0,0


• For l = 6, we have X0,4, X5,0 and X3,1.


X0,4 X5,0 X3,1

x5
4y4

4 Ya,5
0,0 0 Ya,2

0,0

x5
4y5

4 Ya,4
0,0 Xa,0

0,0 Ya,1
0,0

x4
4y5

4 0 0 Xa,0
0,0


• For l = 7, we have X6,0, X4,1 and X2,2.


X6,0 X4,1 X2,2

x6
4y6

4 Xa,0
0,0 Ya,1

0,0 ∗

x5
4y6

4 0 Xa,0
0,0 Ya,1

0,0

x4
4y6

4 0 0 Xa,0
0,0


• For l = 8, we have X5,1, X3,2 and X1,3.


X5,1 X3,2 X1,3

x6
4y7

4 Xa,0
0,0 Ya,1

0,0 ∗

x5
4y7

4 0 Xa,0
0,0 Ya,1

0,0

x4
4y7

4 0 0 Xa,0
0,0
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• For l = 9, we have X6,1, X4,2, X2,3 and X7,0.



X6,1 X4,2 X2,3 X7,0

x7
4y8

4 Xa,0
0,0 Ya,1

0,0 ∗ Xb,1
0,0

x6
4y8

4 0 Xa,0
0,0 Ya,1

0,0 Xb,2
0,0

x5
4y8

4 0 0 Xa,0
0,0 Xb,3

0,0

x4
4y8

4 0 0 0 Xb,4
0,0


• For l = 10, we have X5,2, X3,3, X1,4 and X8,0.



X5,2 X3,3 X1,4 X8,0

x7
4y9

4 Xa,0
0,0 Ya,1

0,0 ∗ Xb,2
0,0

x6
4y9

4 0 Xa,0
0,0 Ya,1

0,0 Xb,3
0,0

x5
4y9

4 0 0 Xa,0
0,0 Xb,4

0,0

x4
4y9

4 0 0 0 Xb,5
0,0


Example 4. For N = 9, M = 6, we have τ6,9 = 47. The vector field X0,0 is given by

X0,0 = Xa,0
0,0 +

4∑
i=1

Xb,i
0,0

 y4

xi−1
4

 +

6∑
j=0

Ya, j
0,0

 x4

y j−1
4

 + · · · .

x4

y4

5

-5

-8

4

Figure 7: The region QM,N for N = 9, M = 6
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The vector fields Xm,n satisfying m + n = d for d = 0, ..., 9 are given by

m + n = 0 : X0,0 (la = 1)
m + n = 1 : X1,0 (la = 2) X0,1 (lb = 3)
m + n = 2 : X2,0 (la = 3) X1,1 (lb = 4) X0,2 (la = 4)
m + n = 3 : X3,0 (la = 4) X2,1 (lb = 5) X1,2 (la = 5) X0,3 (la = 5)
m + n = 4 : X4,0 (la = 5) X3,1 (lb = 6) X2,2 (lb = 7) X1,3 (la = 6)

X0,4 (la = 6)
m + n = 5 : X5,0 (la = 6) X4,1 (lb = 7) X3,2 (lb = 8) X2,3 (lb = 9)

X1,4 (lb = 10) X0,5 (la = 7)
m + n = 6 : X6,0 (la = 7) X5,1 (lb = 8) X4,2 (lb = 9) X3,3 (lb = 10)

X2,4 (lb = 11) X1,5 (lb = 12) X0,6 (lb = 13)
m + n = 7 : X7,0 (la = 8) X6,1 (lb = 9) X5,2 (lb = 10) X4,3 (lb = 11)

X3,4 (lb = 12) X2,5 (lb = 13) X1,6 (lb = 14) X0,7 (lb = 15)
m + n = 8 : X8,0 (lb = 10) X7,1 (lb = 10) X6,2 (lb = 11) X5,3 (lb = 12)

X4,4 (lb = 13) X3,5 (lb = 14) X2,6 (lb = 15) X1,7 (lb = 16)
X0,8 (−)

m + n = 9 : X9,0 (lb = 11) X8,1 (lb = 12) X7,2 (lb = 12) X6,3 (lb = 13)
X5,4 (lb = 14) X4,5 (lb = 15) X3,6 (lb = 16) X2,7 (−)
X1,8 (−) X0,9 (−)

The decomposition of the vector fields acting at the level l such that l = d+1 on the corresponding
basis is given by:

• For l = 1, we have X0,0.

• For l = 2, we have X1,0.

• For l = 3, we have X2,0 and X0,1.


X2,0 X0,1

x2
4y2

4 Xa,0
0,0 Ya,1

0,0

x4y2
4 0 Xa,0

0,0


• For l = 4, we have X0,2, X3,0 and X1,1.


X0,2 X3,0 X1,1

x3
4y2

4 Ya,3
0,0 0 Ya,2

0,0

x3
4y3

4 Ya,2
0,0 Xa,0

0,0 Ya,1
0,0

x2
4y3

4 0 0 Xa,0
0,0


• For l = 5, we have X0,3, X1,2, X4,0 and X2,1.



X0,3 X1,2 X4,0 X2,1

x4
4y2

4 Ya,5
0,0 Ya,4

0,0 0 Ya,3
0,0

x4
4y3

4 Ya,4
0,0 Ya,3

0,0 0 Ya,2
0,0

x4
4y4

4 Ya,3
0,0 Ya,2

0,0 Xa,0
0,0 Ya,1

0,0

x3
4y4

4 0 0 0 Xa,0
0,0
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• For l = 6, we have X0,4, X1,3, X5,0 and X3,1.



X0,4 X1,3 X5,0 X3,1

x5
4y3

4 Ya,6
0,0 Ya,5

0,0 0 Ya,3
0,0

x5
4y4

4 Ya,5
0,0 Ya,4

0,0 0 Ya,2
0,0

x5
4y5

4 Ya,4
0,0 Ya,3

0,0 Xa,0
0,0 Ya,1

0,0

x4
4y5

4 0 0 0 Xa,0
0,0


• For l = 7, we have X0,5, X6,0, X4,1 and X2,2.



X0,5 X6,0 X4,1 X2,2

x6
4y5

4 Ya,6
0,0 0 Ya,2

0,0 ∗

x6
4y6

4 Ya,5
0,0 Xa,0

0,0 Ya,1
0,0 ∗

x5
4y6

4 0 0 Xa,0
0,0 Ya,1

0,0

x4
4y6

4 0 0 0 Xa,0
0,0


• For l = 8, we have X7,0, X5,1 and X3,2.


X7,0 X5,1 X3,2

x7
4y7

4 Xa,0
0,0 Ya,1

0,0 ∗

x6
4y7

4 0 Xa,0
0,0 Ya,1

0,0

x5
4y7

4 0 0 Xa,0
0,0


• For l = 9, we have X6,1, X4,2 and X2,3.


X6,1 X4,2 X2,3

x7
4y8

4 Xa,0
0,0 Ya,1

0,0 ∗

x6
4y8

4 0 Xa,0
0,0 Ya,1

0,0

x5
4y8

4 0 0 Xa,0
0,0


• For l = 10, we have to choose four vector fields among X7,1, X5,2, X3,3, X1,4 and X8,0.



X7,1 X5,2 X3,3 X1,4

x8
4y9

4 Xa,0
0,0 Ya,1

0,0 ∗ ∗

x7
4y9

4 0 Xa,0
0,0 Ya,1

0,0 ∗

x6
4y9

4 0 0 Xa,0
0,0 Ya,1

0,0

x5
4y9

4 0 0 0 Xa,0
0,0
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