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Abstract

Rapid developments in semiconductor technology have substantially increased the computational capability of computers.
As a result of this and recent developments in theory, machine learning (ML) techniques have become attractive in many
new applications. This trend has also inspired researchers working on integrated circuit (IC) design and optimization. ML-
based design approaches have gained importance to challenge/aid conventional design methods since they can be employed
at different design levels, from modeling to test, to learn any nonlinear input-output relationship of any analog and radio
frequency (RF) device or circuit; thus, providing fast and accurate responses to the task that they have learned. Furthermore,
employment of ML techniques in analog/RF electronic design automation (EDA) tools boosts the performance of such tools.
In this paper, we summarize the recent research and present a comprehensive review on ML techniques for analog/RF circuit
modeling, design, synthesis, layout, and test.

Keywords: Artificial Neural Network, Analog and Radio Frequency, Deep Learning, Machine Learning, Artificial Intelligence,
Integrated Circuits, Synthesis, Optimization.

1. Introduction

Analog and RF devices and circuits are fundamental elec-
tronic components in the broadest type of electronic devices.
In addition to consumer electronics markets, the IC industry
is, more than ever, pressed by the enormous demand of med-
ical, healthcare, automotive, or security electronics, for ex-
ample. Analog/RF components are already present in more
than 50% of the total IC shipments yearly; thus, their de-
sign, test, and validation are fundamental tasks to meet the
stringent time-to-market constraints and production costs.
Computer-aided design (CAD) tools are quintessential in the
design of analog IC. In consumer electronics, the massifi-
cation balances the design effort of the analog/RF circuits.
However, the lack of EDA challenges the design of the custom
ICs needed to produce state-of-the-art customized equip-
ment and created barriers to innovation. The adoption of
automation mechanisms can significantly reduce their de-
velopment time while simultaneously improving their per-
formance. However, design automation in analog IC design
flow is far from being the norm, despite the enormous efforts
made by the EDA community over the past few decades. Ana-
log IC design is in sharp contrast to the digital IC design flow,
where plenty of EDA tools are available and established. Ana-
log ICs’ nonlinear behavior, the increasing complexity ob-
served in nowadays applications, and the challenges in deep
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Figure 1: Conventional and ML-based design flows.

nanometer integration technologies, only further increase
the difficulties faced on analog/RF IC design and test, plac-
ing additional pressure on analog/RF IC designers and EDA
development teams. ML has been the subject of intensive re-
search, and it is reshaping society in many different ways. ML
also opens new perspectives on how computational intelli-
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gent EDA tools for analog and RF IC design can help the IC
designers to be more productive.

Fig. 1 illustrates the general flows of the conventional and
ML-based design methodologies. When following the con-
ventional flow, the designer repeats the flow for each differ-
ent targeted specifications, even for the same problem. De-
signer’s own experience, knowledge, and instincts are of the
utmost importance, but still, the lack of formalization sub-
stantially limits knowledge dissemination and reuse. On the
other hand, the ML-based design expeditiously produces so-
lutions. The caveat is how to obtain such successful models.
This paper addresses the efforts made by the EDA research
community and how the traditional and computational in-
telligence tools can take advantage of the advances in ML.
This paper’s organization is as follows. In Section 2, the ML
foundations are briefly overviewed, including models with
different types of supervision. Section 3 presents the existent
techniques for modeling of analog/RF ICs based on ML tech-
niques. In Section 4, the focus is given on the ML synthesis,
whereas in Section 5, we outline the most recent ML tech-
niques for layout generation. Studies on fault testing and di-
agnosis that exploit ML techniques are discussed in Section 6.
Finally, in Section 7, the conclusions and future research di-
rections are drawn.

2. Background

Machine (or statistical) learning foundations are from arti-
ficial intelligence, but while the latter aims at building expert
systems, the former focus on the statistical properties of data
[1]. Bayes’ essay on Probability Theory [2] laid the theoretical
foundations for statistical learning and is the base for some
early ML techniques, such as Naive Bayes or Markov Chains.
In 1951, the first neural network machine was proposed, but
was only after Frank Rosenblatt’s perceptron [3] and back-
propagation [4], in 1958 and 1986, respectively, that artificial
neural networks (ANNs) began to receive more attention. In
the meanwhile, many other advances have been achieved,
and today many techniques to design ML systems for solving
classification and regression tasks are available. In a classi-
fication problem, the objective is to categorize the data. For
example, an email spam filter aims to assign incoming emails
to the "spam" or "no-spam" categories. Whereas in regres-
sion, the systems try to describe one or more continuous-
valued dependent variables as functions of the observations
in the data. Critically to all ML systems is their ability to gen-
eralize well to new data and avoid overfitting to the training
data. Overfitting occurs when an ML system starts to learn
the noise in the training data instead of learning the underly-
ing mechanisms that generated the data [1, 5, 6].

Another critical characteristic of ML systems is the amount
and type of supervision. In supervised learning, the data used
to train the system must include the desired solution, called
a label. The label can be categorical (in classification prob-
lems) or continuous valued (in regression problems). Some
important supervised learning algorithms are linear discrim-
inant analysis, linear regression, logistic regression, poly-

nomial regression, decision trees, support vector machines
(SVMs), and ANNs, among others. In unsupervised learn-
ing, the data is unlabeled and algorithms group data points
based on their features. Clustering, visualization, dimension-
ality reduction, and anomaly detection are examples of un-
supervised learning. Common unsupervised learning algo-
rithms are the k-means and principal component analysis
(PCA), and their variants. In Fig. 2a logistic regression (that
despite the name is a classifier) illustrates supervised classi-
fication, in Fig. 2b polynomial regression is used to model Y
as a function of polynomials of X, and in Fig. 2c, k-means is
used for clustering.

(a) (b)

(c)

Figure 2: (a) Logistic regression for the classification of two classes; (b) Poly-
nomial regression that describes Y as a function of X, solid line shows a good
regressor, dashed line shows and overfitfed regressor; (c) Group data into 3
different clusters using k-means.

There is also semi-supervised learning, where the data that
is used to train the system is partially labeled, and the sys-
tem is trained with combinations of supervised and unsuper-
vised learning algorithms. For example, deep belief networks
(DBN) build upon restricted Boltzmann machines (RBMs)
or autoencoders trained in an unsupervised manner, and
then the whole system is fine-tuned using supervised learn-
ing techniques [7]. A different approach is taken in reinforce-
ment learning (RL). In an RL system, an agent observes and
interacts with the environment by selecting and executing ac-
tions. The agent is trained to learn a policy that maximizes
the expected outcome of the actions over time [8]. These sys-
tems can teach in robots to learn motor skills [9] or play com-
plex board games [10]. It is also essential to distinguish the
application from the algorithm as the same underlying ML al-
gorithms can be applied in several or all of these approaches.
ANNs, for example, can be used in all the approaches men-
tioned above. ANNs, in the form of convolutional neural net-
works (CNNs), are incredibly efficient image classifiers in a
supervised learning setting. On the other hand, autoencoder
networks can be trained without supervision to learn latent

3



space, and deep reinforcement learning has shown impres-
sive results in beating human experts on several games [11].
ML is widespread and horizontally suited for many appli-
cations, including EDA. While most algorithms can perform
identically on curated large datasets [12], data can be diffi-
cult and expensive to acquire, and small to medium-sized
datasets are usual. Selecting the most suitable method for the
target application is an important design choice. The avail-
able options are many, and, in the next sub-sections, some
methods found in EDA are briefly described.

2.1. Clustering

Clustering algorithms are unsupervised learning algo-
rithms that group unlabeled data into K predefined clus-
ters, using some distance, d(xi , x j ) metric between the data
points. The objective of a clustering algorithm is to find the
mapping C?(x) = k,k ∈ 1,2, ..,K that minimizes (1).

W (C ) = 1

2

K∑
k=1

∑
C (xi )=k

∑
C (x j )=k

d(xi , x j ). (1)

The possible mappings between the input data points and
the clusters grow very sharply with the number of data points
and number clusters, quickly becoming intractable. There-
fore, clustering is usually solved using iterative greedy de-
scent methods, such as K-means. K-means start by assign-
ing centers (randomly or using some spreading criteria) to the
clusters, then iterates the two following steps, until no further
improvement is possible:

• for each center, identify the training points that are
closer to that center than to the other centers;

• update each cluster’s center to become the mean of the
data points identified as belonging to it.

Clustering methods can be effective solutions to reduce the
amount of data to be processed without losing too much in-
formation. In [13] clustering is used to reduce up to 10% the
data required to train an SVM classifier for analog IC fault
diagnostics, whereas in [14], fuzzy c-means groups the ele-
ments of the population during analog IC sizing optimiza-
tion to apply time-expensive Monte Carlo simulations only
to a handful of meaningful tentative solutions. While cluster-
ing can result in significant savings, determining the number
of clusters without losing information can be difficult. Also,
clustering is sensitive to the distance metric and scaling be-
tween features.

2.2. Principal Component Analysis

Another unsupervised learning algorithm is PCA. Like clus-
tering, PCA can be used to reduce the amount of data without
losing information. PCA is a linear operation that transforms
the feature space in a latent space maximizing the variance.
Formally, taking the data’s covariance, S, defined in (2), the

variance of the i th coordinate in the projected space, where
ui xn is given by uT

1 Su1 .|.

S = 1

N

N∑
n=1

(xn − x̄)(xn − x̄)T . (2)

Hence to maximize the variance of the projection and con-
straining the ‖ui‖ to prevent it from going to infinity, the so-
lution to the Lagrangian is Su1 = λ1u1, meaning that ui is
an eigenvector from S and the corresponding variance is a
maximum if the corresponding eigenvalue is the largest. The
additional principal components are the eigenvectors cor-
responding to the higher eigenvalues. By keeping only the
components with more variance, data is represented with
fewer features. [15] used PCA to reduce the number of design
variables in the optimization of an amplifier and a voltage-
controlled oscillator (VCO). PCA is a linear operator and does
not handle nonlinearity in the data, however, the kernel trick
[16] can be used to extend it to nonlinear relations in the data.

2.3. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is, like PCA, a linear
method to reduce the dimensionality. However, instead of
maximizing variability, it aims at maximizing the separa-
tion between classes. Fisher’s LDA is commonly used and
finds the linear combination L = aT X , that maximizes the
between-class covariance relative to the within-class covari-
ance, as defined in (3).

max
a

(aT SB ) subject to aT SW a = 1. (3)

The between-class variance of L is aT SB a, whereas the
within-class variance of L is aT SW a, with SB and SW being
the covariance matrix of the class centroid matrix and the
within-class covariance matrix, respectively. The solution to
the generalized eigenvalue problem in 2, results in the i th

discriminant variable being given by Li = (SB−1/2vi
)T X , for

the ith eigenvector of S1/2
B S−1

W S1/2
B with ith largest eigenvalue.

Also, like PCA, LDA can be extended using the kernel trick to
learn nonlinear mappings. In [17] kernel PCA is extended to
consider separability and used pre-process features on for an
ANN-based fault diagnosis method. Also, for fault diagnosis,
[18] uses kernel LDA to reduce dimension before training a
naïve Bayes classifier.

2.4. Decision Tree

Decision trees (DTs) formalize a decision-making process
in a directed acyclic graph. There are 2 types of nodes in DTs:
the decision nodes and the terminal nodes. The first rep-
resents decision criteria, while the latter represents the out-
come of the sequence of decisions. DTs offer a clear insight
into data, and it is easy to extrapolate conclusions from them.
The DTs are often trained with the CART (classification and
regression tree) algorithm, which splits the training set in two
subsets using a single feature k and a threshold tk , and then,
tries to minimize the cost function given by:

J (k, tk ) = ml e f t

m
Gl e f t +

mr i g ht

m
Gr i g ht , (4)
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where Gl e f t is the amount of impurity of the left/right subset
and ml e f t /mr i g ht is the number of instances in the left/right
subset. Nevertheless, complex datasets lead to over-complex
trees that end up overfitting. Random Forests improve gen-
eralization by creating ensembles of DTs where features and
data points are randomly sampled with replacement. [19]
uses DTs to automate the selection of a circuit topology given
the target specifications, as illustrated in Fig. 3. [20] use
the random forest to identify possible rare events during the
Monte Carlo simulation.

GDC
< 35dB    

50% 50% GBW

> 35dB

...< 10MHz

GDC

Power
> 20mW

< 80 dB > 80 dBGBW

< 20 mW

...
<  1MHz

Figure 3: DT for the selection of a circuit topology given the target specifica-
tions. Adapted from [19].

2.5. Naive Bayes
The Naive Bayes classifier algorithm affords fast, highly

scalable training and scoring. The Naive Bayes classifier
works by selecting the class Ĝ to a new data point represented
by features x from Rn , according to (5), where G is the set of
classes, i.e., it chooses the class with maximum a posteriori.

Ĝ = argmax
G∈G

(
p(G/x)

)
(5)

The classifier uses the Bayes rule to compute the posterior,
assuming the features’ independence, as indicated in (6).

p(G/x) =
p(G)

m∏
i=1

p(xi /G)∑
g∈G

p(g )p(x/g )
(6)

Since the denominator is a constant for a given feature vector
x, the naive Bayes classification decision rule can be formal-
ized only with the prior and the likelihood, as indicated in (7).

Ĝ = argmax
G∈G

(
p(G)

m∏
i=1

p(xi /G)

)
(7)

These classifiers are relatively easy to understand and build.
They are easily trained and do not require large datasets to
produce effective results. Despite the assumption of inde-
pendence of the feature, which is not valid for most real-life
situations, naive Bayes is a practical approach in many appli-
cations. [18] uses a naive Bayes classifier for fault diagnosis.

2.6. Support Vector Machines

SVM is a supervised learning algorithm for data separa-
tion, fitting the boundary, h(x)Tβ+β0 = 0 that maximizes
the margin, 2/‖β‖ between classes as shown in Fig. 4. h(x)
is a transformation of the feature space that enlarges the de-
cision space to improve the performance of the linear clas-
sifier, and typically translates to nonlinear boundaries in the
original space. In the case of non-separable classes, as shown
in Fig. 4 the margin is maximized subject to a total budget∑
ξi ≤ constant as defined in (8).

Figure 4: Concept of Margin for non-separable classes. The point on the

wrong side of their margin are identified by ξ
′
j = Mξ j [5].

min‖β‖ subject to

yi

(
h(xi )Tβ

)
≥ 1−ξi ∀i ,

ξi ≥ 0,
∑
ξi ≥ constant.

(8)

Where ξi represents how far a point is on the wrong side of the
margin. It is zero for points on the proper side of the margin,
and yi ∈ {1,1} is the class identifier. The solution to this prob-
lem is obtained by maximizing the dual lagrangian, expressed
in (9), subject to 0 ≥ αi ≥ C and

∑
αi yi = 0. The correspond-

ing decision boundary is given by (10).

LD =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
i ′=1

αiαi ′ yi yi ′〈h(xi ),h(xi ′ )〉. (9)

f (x) =
N∑

i ′=1
αiαi ′ yi yi ′〈h(xi ),h(xi )〉+β0. (10)

Where αi are the Lagrange multipliers, and 〈h(xi ),h(xi ′ )〉 is
the inner product in the transformed feature space, or ker-
nel function K (x, x ′). Only those observations i for which the
constraints in are exactly met have nonzero coefficients αi .
Therefore, the boundary is a linear combination of some data
points at the edge of the class, also called the support vec-
tors. SVM quickly identifies the best linear separator if the
data is linearly separable, for nonlinear patterns, the kernel
trick allows the SVM to do the separation in very high dimen-
sion spaces (even infinite). However, grasping insights from
the parameters is very hard, making hyper-parameters tun-
ning and selection of the correct kernel difficult challenges.
SVMs also underperform if the dimension of the data exceeds
the number of points. In [21], SVMs that identify infeasible
regions of the solution space avoid unnecessary circuit simu-
lation during sizing optimization.
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2.7. Artificial Neural Networks and Deep Learning

Deep learning has become quite popular in the last few
years in image processing, speech recognition, and other ar-
eas where a high volume of data is available. Its basic ele-
ment is the perceptron, a single layer of linear threshold units
(LTUs) which one computing a weighted sum of its inputs, z,
and then applying a nonlinear activation function:

hw (x) = activation(z)
= activation(W T .x)
= activation(w1.x1 +w2.x2 +·· ·wn .xn),

(11)

where x is the input vector values, and, w the vector of
weights of the linear threshold unit. This single layer of LTUs,
or perceptron, makes a prediction for each instance of x, and
thus, its training can be done by reinforcing the connection
weights that contribute to correct the prediction, according
to:

wnext step
i , j = wcur r ent step

i , j +λ(y j − ŷ j )xi , (12)

where wi , j is the weight between the ith input and the jth

output, xi the ith input value of the training instance, y j the
target jth output for the current training instance, ŷ j the pre-
dicted jth output for the current training instance, and, λ
the learning rate. An ANN is essentially a multi-layer per-
ceptron, i.e., one of more layers of LTUs, which can be effi-
ciently trained using the backpropagation training algorithm,
developed in 1986 by D. E. Rumelhart [4]. ANNs can build ef-
fective end-to-end ML systems, and they are replacing entire
processing pipelines in applications such as computer vision
and natural language processing. ANN is an extremely flexi-
ble construct. ANNs can also incorporate application-related
knowledge both in the model structure and in the cost func-
tion. These multi-faceted tools allow the implementation of
different tasks in the same network. The price paid when us-
ing ANNs is the sheer amount of hyperparameters that can be
tweaked. They go from the network’s structure and activation
functions to the optimizer that finds the best combination of
hyperparameter. Unlike SVMs, whose solutions are the opti-
mum of a convex function, ANNs weights’ optimization often
leads to local optima of the cost function. Therefore initial-
ization is also an essential part of the training. Still, ANNs are
widely used in EDA for modeling [22], synthesis [23], layout
generation [24], and fault testing [25].

3. Modeling of Analog/RF Circuits and Systems with Ma-
chine Learning Techniques

Conventional analog IC design is particularly time-
consuming due to the complicated non-linear relationship
between the design parameters and device/circuit/system
specifications. Typically, hand calculations may facilitate this
design process, which considerably narrows the design space
and provides a good starting point for the designer. Never-
theless, design time still depends on the experience of the de-
signer, who performs a large number of iterative simulations

to achieve the targeted design specifications considering ac-
curate physical properties of the circuit and devices. Further-
more, the approximation errors during modeling and the dif-
ficulty of the circuit analysis due to the countless trade-offs
dramatically increase the design time. The idea behind us-
ing ML techniques in analog/RF circuit design is to gener-
ate functional models of devices/circuits/systems that accu-
rately mimic their functional behaviors and exploit them for
different contexts. Recently, ANNs have become a viable al-
ternative to numerical modeling methods, analytical meth-
ods, and empirical models. These models can immediately
generate the solution for a pre-trained problem; hence, the
designer can bypass numerous expensive simulations. Over
the years, ML-based modeling has been utilized at different
levels (from a single device to a complicated system) and for
different applications (analog, RF, and heterogeneous). For
the reader’s convenience, the key properties of the reviewed
studies are summarized in Table 1.

3.1. ML in Analog Circuit Modeling

SVMs and ANN-based approaches are commonly em-
ployed to obtain the functional models of analog circuits.
SVMs are usually preferred in analog circuit modeling since
they do not get easily stuck at local minima and suffer from
the curse of dimensionality when the data points are deter-
mined considering the dimensions. In [26], the authors pro-
pose the use of SVMs to model analog circuits. As a kernel, the
authors choose Gaussian Radial Basis Functions. The regres-
sion method utilized is ε-SV regression. This modeling is ap-
plied to a Source Coupled FET Logic (SCFL) buffer, a resistive
mixer, and a GaAs ring oscillator. The generated models are
validated through SPICE simulations. SVMs are also the pre-
ferred method for modeling in [21]; however, the aim is not
to create a full mapping from the input space to the output
space, but to identify infeasible regions and prune them. A
committee of SVM classifiers is utilized to exclude a large por-
tion of the entire design space, and only the feasibility region
and its neighbors are sampled. The feasibility design space
is defined by the so-called geometry constraints, which in-
clude not only device sizing constraints, but also constraints
on voltage and current source values, functional constraints
which are in terms of node voltages and branch currents,
and performance constraints. An active learning approach
is employed to train the classifier, where very few samples
are taken from the large infeasible space, and most of them
are concentrated around the boundaries. This is achieved
by checking sample candidates against a committee of clas-
sifiers and discarding those candidates rejected by all. The
classifier is tested on two examples, an operational transcon-
ductance amplifier (OTA) and a mixer.

ANN-based modeling approaches have become more pro-
nounced in recent years. ANN can also be used to improve
the accuracy of the behavioral models of transistor level de-
sign, where some specifications such as, power consumption,
area overhead, etc. are not taken into account during the
behavioral simulations of the systems. [27] presents a novel
methodology for ANN aided inclusion of power consumption
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Table 1: Summary of modeling of Analog/RF device and systems with ML techniques.

Reference Application-Device Method(s) Contributions

[26] Analog Circuits-GaAs transistor SVMs (ε-SV regression)
Robust and accurate modeling of GaAs

transistors and circuits

[21] Analog Circuits-CMOS SVMs
Efficient active learning scheme for

feasibile design space selection

[27] AMS circuits-CMOS ANN (TDNN)
Robust modeling of power consumption

for AMS circuits

[22] Analog-n/d ANN (Back propogation)
A generic modeling of power consumption

for heteregenous systems

[28]
RF- microwave components

and MESFET
ANN (several)

Review of ANN based CAD for microwave
designs

[29]
RF-microwave components,

HMT and MESFETs
ANN (several)

Review of model development and nonlinear
modeling of microwave devices

[30] RF-CPW components ANN (EM based)
Efficient modeling of CPW components for

accurate performance estimations

[31]
RF-UC-PBG

rectangular waveguide
ANN (RBF-MLP)

Efficient modeling of RF devices for nonlinear
microwave applications

[32] RF-MESFET ANN (WNN-MLP)
Faster design of large signal hard- nonlinear

power transistors and circuits
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Figure 5: TDNN delay neural network model [27].

information of circuits to their purely functional models of
AMS blocks. Due to the nature of the problem, an improved
version of the Multilayer Perceptron (MLP) approach, which
is called time delay neural network (TDNN) shown in Fig. 5,
is utilized in this study. In this approach, the inputs pass
through a delay cell and are given as the inputs of the network
in order to capture the temporal changes. The flow of the
proposed approach is as follows. First, the behavioral model
(Verilog-AMS) of the circuit is constructed. Meanwhile, tran-
sistor level simulations are performed to extract signal traces
for power calculation. Then, the TDNN is trained and the
power consumption model is obtained. Once the model is
obtained, it is translated into the behavioral model compat-
ible with the circuit simulators. Finally, the first behavioral
model is integrated with the power model. As a case study,
a low power relaxation oscillator is designed and simulated

both at transistor level and with the augmented functional
model. According to the reported results, the simulation time
decreases to 12 s from 168 s while the estimation error in en-
ergy is only 2.7%.

A different application of ANN-based modeling is pre-
sented in [22], where power consumption of analog circuits is
modeled and then estimated via empirical-based ANN rather
than achieving performances through the input parameters.
The idea behind this study is to estimate the mathematical
description of the power consumption as a function of var-
ied input parameters of any analog circuit using neural net-
works. The proposed approach is generic and even suitable
for heterogeneous systems. Moreover, one can perform on-
line power consumption estimations via the proposed strat-
egy. First, analog circuit power measurements are performed
via a measurement set-up including a PC for generating dif-
ferent input patterns and saving the power data. Second, the
obtained data is used to train the ANN to obtain a continu-
ous mathematical function of the power consumption. The
neural networks include three levels: one input, one hidden,
and one output layer. The activation functions for the hidden
layer and the output layer are sigmoid and linear, respectively.
A backpropogation-based training (Levenberg-Marquardt) is
employed. Once the power model is obtained, it is com-
bined with a data flow-based generic functional model of the
circuit. Hence, both circuit performances and the instanta-
neous power consumption are obtained, which makes possi-
ble to estimate circuit performance without performing any
empirical measurements. By combining this framework with
digital power consumption estimation techniques, the power
consumption of heterogeneous systems can be predicted. A
wireless sensor system is provided as the case study, where
the main focus is to estimate the power consumption of ana-
log parts (a temperature sensor, an amplifier, an analog to
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digital converter, and a wireless transceiver.) According to the
results, the maximum and the average estimation errors are
3.06% and 1.53%, respectively.

3.2. ML in RF Circuit Modeling

Neural networks have been used for RF and microwave
modeling and design, where ANN-based passive/active com-
ponent/circuit models are then employed at higher design
levels. Thus, an accurate response of the whole system can be
obtained within shorter durations compared to the expensive
conventional approaches. In [28], ANN for RF/microwave
modeling and design is discussed from theory to practice.
The authors state that neural networks are attractive alterna-
tives to conventional methods such as numerical modeling
methods, which could be computationally expensive, or ana-
lytical methods which could be difficult to obtain for new de-
vices, or empirical modeling solutions whose range and ac-
curacy may be limited. They provide examples where neu-
ral networks are used to model signal propagation delays of
a VLSI interconnect network in printed circuit boards (PCBs),
coplanar waveguide (CPW) discontinuities, and MESFETs, all
from previous works in the literature. Finally, they illustrate
the use of CPW models to optimize microwave circuits. The
same authors present a detailed study on modelling issues
and ANN-based nonlinear modelling techniques in [29] in-
cluding small/large signal modeling of transistors and dy-
namic recurrent neural network (RNN) modeling of circuits.
Practical microwave examples are used to illustrate the re-
viewed modeling techniques.

Another method of modeling CPW circuit components
by ANN is based on electromagnetic (EM) simulations [30].
CPW transmission lines (frequency dependent Zo and εr e ),
900 bends, short-circuit stubs, open-circuit stubs, step-in-
width discontinuities, and symmetric T-junctions are indi-
vidually modeled through EM-based ANN. To train the mod-
els, a number of EM simulations that exhibit meaningful in-
put/output relationships, which directly affect the model ac-
curacy. A multilayer feedforward ANN consisting of three
layers (one input, one hidden, and one output), which uti-
lizes the error-backpropagation learning algorithm, is used.
The developed models are then employed to design a CPW
folded double-stub filter and a 50- 3-dB power-divider cir-
cuit, without performing expensive EM simulations. The pro-
posed framework is also available for the other component of
microwave/RF design.

Since EM-based ANN approaches need a relatively long
training phase for accurate modeling, the efficiency can be
low. [31] presents a solution for modeling of RF devices with
Radial Basis Function(RBF)/MLP modular structure, where
the efficient Resilient Backpropagation (Rprop) algorithm is
used during the training phase. The authors use a well-
known plan, "divide and conquer", where the propose frame-
work is provided in Fig. 6. The complicated design problem
is divided in sub-problems, distributed over the neural net-
works of the modular structure. Their claim is that this type
of modular structure can improve the efficiency of EM-based

Figure 6: The proposed framework in [31].

ANN. The RBF/MLP structure modules are organized in or-
der to take advantage of the local and global approximation
characteristics of the RBF and MLP neural networks, where
the RBF network is a local approach while the MLP network is
a global approach and acts as an output network, since it im-
proves the generalization capacity of the modular structure.
The uniplanar compact-photonic bandgap (UC-PBG) rectan-
gular waveguide and a patch antenna with PBG substrate are
used to demonstrate the developed approach. Compared to
the single usage of RBF and MLP, the combination of them
(modular model) presents a major generalization capacity,
which is independent of the number of hidden neurons.

Wavelet neural networks are chosen over simple MLP and
Gaussian radial basis (GRB) function networks In [32]. The
first example is a transistor modeling example, where 10 neu-
ral networks are used as shown in Fig. 7.
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Figure 7: Volterra-ANN device model [32].

Two of them utilize Vd s and Vg s to obtain Ids and Igs. The
remaining 8 use Vd s , Vg s , and to yield real and imaginary val-
ues for Yi j . The total number of parameters is 25 each for
the first two and 76 each for the remaining 8. The 10 neural
networks are trained separately, on 350 measurement points
for DC characteristics and 7000 measurement points for Y-
parameters. The results on test points agree perfectly with
lumped equivalent circuits. For the circuit modeling exam-
ple, 4 neural networks were utilized. The 5 inputs are ω and
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Table 2: Summary of ML-based IC circuit synthesis applications.

Reference Application Method(s) Contribution
[33] Analog Circuit Optimization KNN Large-scale data mining with boosted regressors

[34] Analog Circuit Optimization ANN +SPEA2
Efficient optimization via replacing the simulator

by ANN based model
[35] Analog Circuit Optimization ANN +GA Fast and accurate layout-aware Op-Amp synthesis

[36], [37] Analog Circuit Optimization
Bayesian Optimization

(GP+LCB+NSGA-II
BNN+LCB+MOEA/D)

Fast and accurate optimization of analog circuits
to obatine better PFs

[38] Performance Space Exploration
Bayesian Regression

(GA+SVMs)
Accelerated large-scale design space search via

multiple ML approaches

[39] Performance Space Exploration Polynomial Regression
Automatic generation of POFs for new design

context without simulation

[40] Performance Space Exploration
ANN based text mining

+Sparse regression
A global performance space search on the

Internet via knowledge harvesting

[41],[23] Analog Circuit Synthesis ANN (GRP+MLP)
Technology independent sizing of analog

building blocks

[42],[43] Analog Circuit Synthesis ANN (MLP)
Automatic generation of training dataset for

analog circuit sizing

[44] Analog Circuit Synthesis ANN
Generation of better FOMs for Op-Amps via

ANN based circuit synthesis

[45] Analog Circuit Synthesis DL+RELU
Efficient multiple performance estimation of

Op-Amps with DL based models

[46] Analog Circuit Synthesis ANN
Examining the effect of ANN hyperparameters

on analog circuit synthesis

[47] RF Circuit Synthesis GA+ANN(MLP)
Efficient synthesis of RF circuits via GA

assisted ANN

[48] Analog Circuit Synthesis
Polynomial Regression

+ ANN
Generation of reusable POFs for analog

circuit design

[49],[50] Analog Circuit Synthesis RL (L2DC)
Efficient sizing of analog circuits

(25x faster than hand design)

[51] Analog Circuit Synthesis Deep RL
Efficient layout parasitics-aware circuit synthesis

(40x faster than GA)

the real and imaginary parts of the input and output voltages,
whereas the outputs are the real and imaginary parts of the
input and output currents. This type of modeling allows the
model to take into account input and output loading. Learn-
ing was performed on 2625 measurement points and results
on new data were encouraging. The use of more generic
neural network-based models could overcome the problems
associated with lumped equivalent electrical circuit models,
which are the most common models in use. These models of-
fer the advantage of being computationally efficient and ac-
curate, but at the expense of very complex model parameter
extraction carried through numerical fitting and optimiza-
tion as well as the requirement to an accurate circuit struc-
ture.

4. Machine Learning for IC Circuit Synthesis

Conventionally, circuit synthesis is described as an auto-
matic process in order to determine the dimensions of the
devices, such that the resultant circuit meet a given target
specification on a given technology node. Considering the

type of evaluation, simulation-based approaches is the most
prevalent ones in terms of accuracy. However, the cost of
SPICE-based circuit synthesis may be expensive in terms of
computation time due to the need of running large number
simulations (ten and even hundreds of thousands) to achieve
the targeted performances. Hereby, ML-based synthesis ap-
proaches have become popular to overcome this time effi-
ciency problem. The idea behind employing ML in circuit
synthesis is to replacement of the simulations by the func-
tional model(s) generated via ML techniques; thus, the exces-
sive number of simulations can be avoided during the syn-
thesis process. A summary of reviewed papers related to ML-
based IC synthesis applications is provided in Table 2.

4.1. ML for Optimization-based Circuit Synthesis

The most established method to automate the circuit syn-
thesis is optimization-based circuit synthesis that uses an op-
timization method to explore the design space. Analog/RF
circuit optimization tools certainly accelerate the design
time, in which several nature-inspired algorithms (evolution-
ary, particle swarm, reinforcement learning, etc.) are em-
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ployed to search the design space and find an optimal so-
lution for a given circuit problem. However, a large design
space should be visited via simulations through the itera-
tions, and, more dramatically a few of them are only used
at the end of optimization process, which means that a large
portion of the simulation data is wasted during the optimiza-
tion process. Integration of ML techniques into the conven-
tional optimization loop is highly promising to mitigate this
computational cost by reuse of the simulation data in order
to learn circuit behavior and to develop a model that will re-
place the circuit simulator once the model is obtained, shown
Fig. 8. Since the model is generated by using real and filtered
(satisfying all constraints and biasing conditions) data, the
accuracy of the optimization does not degrade after the re-
placement of the simulator by the model.

In general, circuit optimization tools optimize the cir-
cuit design parameters (device dimensions, values of passive
components, and bias voltages and currents) considering the
design objectives and constraints. Conventionally, the em-
ployed ML typically emulates the circuit behavior thorough a
model as a function of design variables. On the other hand,
it is also possible to change the roles of objectives and design
variables during modeling, where the circuit design variables
are modeled as a function of design objectives. There are sev-
eral attempts that integrate the ML approaches into the con-
ventional optimization flow in the literature.

Exploiting optimization tools for dataset generation is one
application of ML-based optimization techniques [33]. The
optimizer manipulates many parameters during its course,
creating data points suitable for data mining. Then, they try
to select a model and fit it through regression. For such a
large population of high-dimensional data points, it is diffi-
cult to find a suitable functional for the regressor that can
adequately fit the data, while remaining simple enough to
allow the solution of the fitting parameters. Some authors
have suggested radial basis functions in and posynomial-
approximated signomials to this end. In this paper, a com-
mittee of regressors is built, each of which fits perfectly in
some portions of the design space, and with high error in oth-
ers, rather than struggling to build a single regressor capable
of superior fitting across a very large sample space. To com-
bine the results of the regressors, they use a k-nearest neigh-
bors (KNN) algorithm to select the best fitting K regressors,
and apply weighted averaging to combine the outputs of the
regressors, where the weights are determined by the distance
from the point to be projected. The regressors themselves
are two hidden layer feedforward networks with 10 neurons
in each hidden layer. This approach is illustrated on two ex-
amples, an RF low noise amplifier (LNA) circuit and a more
complex LNA circuit with about 50 devices. One peculiarity
of this study is that the models are developed over a single
objective synthesizer so that the synthesizer evolves towards
a small region in space. Hence, the models developed dur-
ing the last 20% of the synthesis cluster more closely about
the final solution, whereas those developed in the 20% try
to cover the whole design space, but have more error be-
cause they have more outlier points. An ANN is embed-
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Figure 8: A general flow of the ML-based analog/RF circuit optimization.

ded into a multi-objective analog sizing tool in order to in-
crease the efficiency of the optimization process in [34]. The
flow of the proposed approach is very similar to the flow il-
lustrated in Fig. 8. Strength Pareto Evolutionary Algorithm-
2 (SPEA), which is a well-known evolutionary algorithm for
multi-objective evolutionary algorithms, is employed as an
optimization engine, where SPICE is used as the performance
estimator. The optimization starts with SPICE simulations
and goes on for several tens of generations. Meanwhile, the
produced simulation data is used to train an ANN. Thanks to
the present mechanisms in the optimization tool (constraint
violation check, operating region elimination, performance
selection), a filtration is automatically applied to avoid infea-
sible solutions; thus, an accurate model can be efficiently de-
veloped. Once the ANN model is successfully trained, the op-
timization moves to a second phase, where the simulator is
replaced by the ANN model; thereafter the performance es-
timation is performed without running any simulation. Con-
ventional feed-forward neural networks are used to construct
the ANN, which has 4 layers: one input, one output, and two
hidden layers. To demonstrate the proposed approach two
different types of amplifiers, a single-stage amplifier and a
folded cascode amplifier, are optimized with both the con-
ventional and proposed tools. According to the results, the
proposed tool can reduce the execution time by up to 64.8%.

Another ANN-based methodology is proposed in [35] for
creating fast and efficient models for estimating the perfor-
mance parameters of CMOS operational amplifier topolo-
gies. The flow of the algorithm is very similar to the flow
shown in Fig. 8. A uniform sampling of the parameter set was
performed to create 3125 different sizings of the Op-Amps
to be used as training samples. Seven neural networks were
set up for seven performance parameters. These neural net-
works were of feedforward type with one hidden layer. Then,
the neural network models were used in a synthesis flow in-
side a combinatorial optimizer, namely genetic algorithms.
The approach was demonstrated on several Op-Amps and
was found to yield reasonably good results.

Bayesian optimization based approaches are commonly
used for expensive black-box functions. The approach has
two important compartments: the probabilistic surrogate
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modeling and the acquisition function. The surrogate mod-
els are used for performance prediction while the acquisi-
tion function is used to explore the space considering the
surrogate model optimally. In [36], a Bayesian based multi-
objective algorithm is proposed for automatic synthesis of
analog/RF circuits, in which Gaussian processes (GP) are
used as the online surrogate models for multiple objectives
and the lower confidence bound (LCB) functions are em-
ployed as the acquisition functions to select data points. First,
a GP model is trained using the existing simulation data. The
GP models are only updated when a new data point is se-
lected from the PF. Hereby, the circuit simulation is called to
obtain the performances. Then, the LCB functions are con-
structed and optimized by using a modified version of the
NSGA-II algorithm. The optimum of the acquisition func-
tions are selected as the next data points to be evaluated. As
the case study, a three-stage low power amplifier, a 60 GHz
transformer, and a power amplifier, are optimized with pro-
posed algorithm. According to the results, the proposed tool
achieves better PFs than the state-of-the art algorithms with
considerably lower simulation effort.

In [37], a similar multi-objective optimization approach
that uses Bayesian optimization is proposed. To model mul-
tiple performance of interest (PoI) of any analog circuit, in-
stead of GP, a single Bayesian Neural Network (BNN) is used.
To train the BNN efficiently, automatic differential variational
inference (ADVI) method [52] is employed. The BNN is then
combined with a Bayesian optimization framework, in which
a modified MOEA/D algorithm is used as optimization en-
gine. The BNN model is built with a training data set and
the acquisition function, namely LCB, is defined based on the
BNN model, which is minimized through optimization. The
proposed approach is initialized with generation of "pseudo"
Pareto points with BNN. Then, transistor-level simulations
are performed for each point to obtain the actual result. The
BNN model is recalibrated using the new transistor-level sim-
ulation results. The procedure is repeated until the conver-
gence is achieved. A charge pump and a three stage ampli-
fier circuits are used to demonstrate the proposed approach.
According to synthesis results, the proposed BNNBO method
can achieve accurate POFs with almost 0.5× reduction in
computation cost.

4.2. ML for Design Space Exploration

Design space exploration is another cumbersome prob-
lem, in which the whole design space, which is theoretically
infinite, should be scanned in order to determine the design
boundaries for a given problem. Furthermore, this process
must be repeated for new contexts, i.e., supply voltage, tech-
nology node, etc., although the problem is the same. Sev-
eral automatic sizing approaches have been developed to fa-
cilitate the search of such infinite design spaces; however,
they suffers from course of dimensionality due to the exces-
sively increased simulation workload. The use of ML tech-
niques for design space exploration is based on extracting re-
gression models of the circuit that is being optimized. Simi-
lar to the other approaches, the data for fitting the model is

collected via the simulations at the initial phase of the opti-
mization process. Then, a circuit model is developed through
fitting the obtained data to a suitable function; thus, per-
formance evaluations can be performed by using the circuit
model without SPICE simulations and the design space can
be efficiently explored.

A learning-based performance space exploration for
analog/RF circuit approach is presented in [38]. The devel-
oped methodology has a hierarchical structure, which con-
sists of three major steps: device/circuit model fitting, evalu-
ation, and design boundary determination and adjustment.
First, all geometry and biasing variables are explored and
simulated to obtain the circuit-level design variables for dif-
ferent technology nodes. Numerous simulations are per-
formed and the obtained data are used to fit the circuit behav-
ior into a model, where Bayesian regression is employed. Sec-
ond, the evaluation takes place, in which SVMs is employed
in parallel with a genetic algorithm to reduce the runtime. Fi-
nally, the sample boundaries are dynamically adjusted con-
sidering the density of feasible samples. The core of the pro-
posed software is developed with C++, where MATLAB con-
vex optimization tool and SPICE simulator are also integrated
for searching and performance estimation, respectively. To
demonstrate the proposed framework, a folded-cascode op-
erational amplifier and an RF distributed amplifier are opti-
mized and the results are compared with the results of two
different circuit synthesis approaches. According to the com-
parison results, the proposed tool successfully generates so-
lutions for given design specifications within considerably
shorter runtimes.

Design space exploration is part of a larger framework,
which is used as a design assistant tool for analog intellec-
tual property (IP)-(DATA-IP) [39]. The idea behind this study
is to generate the Pareto-optimal fronts (POFs) for different
design contexts (different load, power, etc.) for a particular
circuit without performing any simulations. The proposed
framework presents a number of different options to users:
generation of POFs with the embedded optimization algo-
rithm, using an existing POF to determine the design pa-
rameters for a given circuit problem, generation of POFs for
new contexts using the model, topology selection, and verifi-
cation with existing SPICE-based evaluation. The proposed
framework uses a Strength Pareto Evolutionary Algorithm-
2 (SPEA2) as the multi-objective optimization engine. First,
a number of POFs are generated for either different loading
or power consumption constraints via the optimization algo-
rithm. Then, the obtained POFs are fitted into a model by
using polynomial regression. Once a circuit is successfully
modelled, the POF of a new circuit context can be readily
generated without any optimization run. The framework is
also capable of verification of the solution points on the POFs
generated through the circuit model. Furthermore, all those
options are integrated and a user-friendly interface is devel-
oped. A folded cascade amplifier is selected to demonstrate
the proposed approach. According to the results, the pro-
posed design framework successfully generates the POFs for
new design context. The analog library can also be extended
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by adding new topologies and circuits.
In [40], design space exploration for large-scale analog cir-

cuits is examined via a pretty marginal way. The proposed
approach is based on harvesting the huge design knowledge
from published papers and datasheets on the Internet and
encoding the knowledge as PFs rather than using an opti-
mization based framework. Furthermore, the obtained high
dimensional PFs for large-scale analog systems also include
layout parasitics and process nonidealities since only silicon
verified results are used. The approach has two major func-
tions: harvesting the design knowledge from the Internet and
modeling of PFs by using the collected data. For data collec-
tion, an ad hoc text mining technique is adopted such that it
provides high-quality information from different sources by
analyzing the patterns based on statistical learning. The col-
lected data is then preprocessed to fit the POF for a given cir-
cuit, since many of them may not be Pareto optimal. To select
the Pareto optimal points from enormous data, an efficient
algorithm is proposed, which is based on filtration of feasi-
ble points for each performance metric and determination of
Pareto dominated ones. Then, the basis function selection
takes place. Since using a fixed set of basis functions are not
applicable to all cases, an adaptive selection mechanism is
proposed, which uses an adapted version of sparse regres-
sion with grid discretization. The algorithm basically uses a
brute-force approach by iteratively selecting of important ba-
sis function from a huge candidate pool. By using the basis
function and the model coefficients, the nonlinear function
of each performance metric is constructed and Pareto front of
interest is defined. Demonstrated examples indicate that the
proposed tool can accurately model POFs for complex and
high-level analog systems.

4.3. ML-based Circuit Synthesis

Conventionally, as the first step of the design process, a de-
signer usually selects an appropriate topology among a num-
ber of different topologies and sizes the circuit of that partic-
ular topology. The designer should re-design the circuit for
a different technology or for different specifications even if
there is no change in the topology. Typically, it is supposed
that the technology parameters are the inputs of the circuit as
well as the device dimensions. As a result, once a topology is
accurately trained via ML, the model can generate solutions
for different technologies without running any simulations.

In [41], ANN assisted technology independent design of
current steering PMOS only digital-to analog converter (DAC)
is presented. The motivation behind the study is to obtain
design parameters of a pre-trained circuit for the newer tech-
nologies without any circuit simulation effort. For that pur-
pose, a large database for the current steering DAC is con-
structed by numerous simulations for different technologies;
1.5 µm, 0.5 µm, and 0.35 µm. Static specification parameters
(SSP), Differential Nonlinearity (DNL) error, Integral Non-
linearity (INL) error, monotonicity, and gain error) are de-
fined as the inputs of the ANN while the transistor dimen-
sions are the outputs of the network. General Regression

Neural Network (GRNN) is used as the ANN approach. Ac-
cording to the results, the ANN-based design approach can
design the circuit for a newer technology. Furthermore, the
proposed methodology can achieve better specifications (im-
proved monotonicity and reduction in DNL, INL and gain er-
ror.)

Similarly, an ANN assisted technology independent sizing
of building blocks (basic current mirrors and differential am-
plifiers) for analog integrated circuits is studied in [23]. The
models are trained using different technologies; 1.5 µm, 0.5
µm, 0.35 µm, and 0.25 µm while the test data was obtained
for only 0.18 µm technology to demonstrate the technology
independency of the approach. The ANN-based models pro-
vide the corresponding circuit design parameters for a new
technology without any circuit simulation. GRNN and MLP
utilizing the Rprop algorithm are used as ANN. The proposed
approach is based on developing a relatively larger database
for different technologies, where properly sized circuits are
simulated and the results and the corresponding transistor
dimensions are recorded. Basic, cascode, Wilson, and regu-
lated Wilson current mirrors are selected for current mirror
examples while the conventional differential amplifier is se-
lected as case study circuit. For both circuit topologies, the
ANN provides the width of the transistors for the targeted
specifications. To make the approach technology indepen-
dent, as a straightforward method, the minimum channel
length is defined as input parameter as well as the perfor-
mances (i.e. reference current for mirror circuits, gain, gain-
bandwidth product, slew-rate etc.). According to the reported
results, GRNN estimates the transistor sizes for current mir-
ror circuits with 94% accuracy while MLP can estimate the
sizes for the differential amplifier circuit with 90% accuracy,
in which a 10% tolerance was determined for circuit perfor-
mances.

Generation of large training dataset is generally a problem
for ANN-based circuit optimization. The proposed approach
[42] addresses this problem for a current to voltage converter
circuit. Two levels are utilized to data generation for testing
and training and application of this data to developed ANN.
An MLP is employed as the ANN structure since it can im-
plement the arbitrary mappings between inputs, i.e., current
and gate to source voltage, and the outputs, channel length
and width. To generate the training data, SPICE simulations
are performed by varying transistor dimensions and the in-
put current. Then, the circuit is modeled through the de-
veloped ANN and the results are validated by SPICE simula-
tions. According to the presented results, the developed mod-
els can estimate output voltage of the converter with 99.69%
accuracy. The same methodology is applied for modeling
and design of inverter threshold quantization-based current
comparator in [43].The comparator is decomposed into two
stages: current to voltage comparator and inverter stages, in
which a particular MLP-based ANN is constructed for each
stage. The input current and gate to source voltage are the
inputs while transistor width and length are the outputs of
the first ANN. Considering the inverter stages, the transistor
lengths and input-output voltages are determined as the in-
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put of the system while transistor widths are explored. Ac-
cording to the post-layout simulation results, the maximum
errors were measured as 0.31% and 0.65% for stages 1 and 2,
respectively.

ANN-based circuit synthesis approach has been applied
for more complicated circuits such as a three stage Op-Amp
circuit [44]. 200 samples were generated through SPICE sim-
ulations, 150 of which were used to train the model and the
remaining 50 were used for testing. The ANN consists of four
layers: input layer, two hidden layers, and an output layer,
where dc gain, bandwidth, phase margin, slew-rate, power
consumption, etc. are defined as the input parameters, while
the transistor dimensions are defined as the output parame-
ters of the network. According to the training results, after 134
epochs, the error decreased to the desired level (less than 1%).
Then, the obtained results are validated through SPICE sim-
ulations to ensure that they still satisfy the targeted specifi-
cations. Even though considerable differences exist between
the requested specifications and the simulated performances
of the predicted sizing, all targeted design specifications are
satisfied. Furthermore, the authors also demonstrate that
they achieve high figures of merit (FOMs) for both large and
small signal operations.

Another deep learning-based circuit sizing prediction
methodology to archive the targeted specifications of Op-
Amp is presented in [45]. The methodology is based on learn-
ing the correlation between circuit specifications and circuit
elements and determining the particular sizing that satisfies
the targeted circuit performances. The flow starts with de-
termination of the prediction target. Once a circuit is deter-
mined, the prediction of circuit element values from perfor-
mances is obtained via a regression analysis. In the second
step, the data for learning phase is collected through three
sub-steps: data classification, data collection, and normal-
ization. 13 specifications, such as gain, bandwidth, power,
etc., and transistor widths are selected as the outputs and the
inputs of the network, respectively. To generate the learning
data, an initial input set consisting of 100 different elements
is randomly generated and simulated. The generated solu-
tions are evaluated against a pre-defined FOM and the out-
performing solution is selected as the initial point for the next
generation, which is also randomly generated in the range of
±30% of the initial solution. This flow is repeated until 13500
data points are obtained. Then, the obtained performance
values are normalized to prevent any error due to the differ-
ences in the units. In the third step, a feedforward learning
scheme is constructed to implement the regression models,
in which transistors sizes and performances are the inputs
and the outputs of the proposed network. In the fourth step,
the network is trained with 13400 data collected in the second
step. The remaining 10 sets are used to validate the prediction
accuracy. According to the validation results, 13 circuit per-
formances are predicted with an average accuracy of 93.3%.

The effect of ANN hyperparameters (dataset, number of
epochs, data augmentation, etc.) on the performance circuit
synthesis approaches is explored in [46]. The ANN models
have fully connected layers without weight sharing. To eval-
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Figure 9: The block diagram of the ANN array methodology [47].

uate the ANN model, 80%-90% of the datasets are allocated
for training. The remaining data is kept for model valida-
tion; meanwhile, a small portion is used to verify the prac-
tical application of the model. The number of nodes is kept
high at initial layers and decreased through the further lay-
ers to have high performance in the training data, at the cost
of overfitting, which is then addressed using L2 weight regu-
larization. Then, a grid search is applied over the hyperpa-
rameters (number of layers, number of nodes per layer, non-
linearity and regularization factor) to fine tune the model.
During the ANN data sampling for p predictions, an accep-
tance coefficient of γ=0.15 is used to expand the model va-
lidity beyond the dataset limits. The selection of solutions
from these P predictions is performed by simulating the pre-
dicted circuit sizing, and, and either using of the FOMs or us-
ing the Pareto dominance sorting. To demonstrate the pro-
posed approach, and a single stage amplifier using voltage
combiners for gain enhancement is selected. A dataset con-
sists of 16,600 different design points (before data augmenta-
tion) is used. DC Gain, bias current (IDD), gain-bandwidth
product (GBW), and phase margin (PM) are determined as
performance metrics. There different ANNs were trained in
this study: ANN-1 is trained by original dataset with 5000
epochs, ANN-2 is trained by augmented (40 times) datasets
with 5000, and ANN-3 is trained by the augmented dataset
with 500 epochs, whose weights are initialized with the ANN-
1. According to the experimental results, ANN-1 is able to find
solutions for new specifications, however, it suffers from vari-
ability and produces worse designs. On the other hand, ANN-
2 and ANN-3 generate better designs when sampled inside
the training data. On the other hand, ANN-2 shows more lim-
itations when trying to explore new specifications. ANN-3,
because it has transferred information from ANN-1, is more
flexible to new specifications, but still lags when compared to
ANN-1.

Neural networks can also be used in sequence during map-
ping circuit performances to circuit sizing [47]. The block di-
agram of the proposed synthesis methodology is shown in
Fig. 9. Compared to the previous approaches, the inputs of
the ANNs are the performances while a particular ANN is
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used to obtain each design parameter at the output. The first
neural network takes the set of desired performances as in-
puts and has only the chosen design parameter as output. A
genetic algorithm (GA) controls the learning process of this
ANN. That is, the GA selects which architecture to use (MLP
or RBF), and determines its size and which design parame-
ter should be output. Once this ANN is ready, the output be-
comes the input to a second ANN, who has the task of spec-
ifying a second design parameter as a function of the perfor-
mance criteria and of the first design parameter. This pro-
cess continues until all design parameters are covered. This
procedure was applied to a classical cascode LNA circuit. 235
valid LNA designs were randomly generated for training. 10
design parameters were targeted and 6 variables were used.
The models were observed to correctly predict the behavior
of the LNA to within 5% error.

A framework for reusable POFs for multi-objective op-
timization is presented in [48]. The proposed approach
has two-levels: context independent performance estimator
(CIPE) and circuit sizing predictor (CSP). The flow chart of the
approach is shown in Fig. 10.

CIPE (DATA-IP)

CSP (ANN)

Design
Parameters
(W, L, etc.)

Design 
Objectives

Circuit

New
 Context

P2

P1

P2

P1
Model

Estimate 
new POFs

Circuit
Performances

Optimization

Figure 10: The flow chart of the proposed tool in [48].

In the first step, DATA-IP [39] is assigned as the perfor-
mance predictor, provides circuit performances and device
sizing for new design context. Moreover, the CIPE is extended
to predict other performance metrics as well as the design ob-
jectives. The predicted outputs are then fed into an ANN,
which eventually predicts the device sizing to achieve the
corresponding design specifications. Since the input of the
CSP given by the CIPE that always follows the optimal per-
formance trade-off, there is no need for filtering the data, re-
sulting in faster training of the model. The efficient training
of the model enables the user to use it iteratively with stan-

dard automatic optimization-based tools. To demonstrate
the proposed approach, a folded cascode amplifier is used.
First, the circuit is optimized for different loading conditions
(100fF, 250fF, 350fF, and 450fF); hence, a POF set is obtained to
train the model at the CIPE level. The fronts for 150fF, 400fF,
and 500fF are used to validate the model. The training of the
model takes less than 10ms and predicting 200 samples for
a new load takes around 1ms at this level. Considering the
CSP, an ANN with 20 input variables, one hidden layer with
100 nodes, and 19 output layers for device parameters is em-
ployed. ANN operation takes 15ms to obtain the 100 sizing
solutions for the three loads took less than 15ms. Accord-
ing to the validation results the proposed tool exhibits quite
good accuracy compared to the SPICE simulations. Authors
claim that these performance trade-offs are obtained by us-
ing only 300 circuit simulations, whereas a conventional op-
timization would need almost 120K simulations to perform
the same task.

4.4. Reinforcement Learning-based Circuit Synthesis

RL is used to solve complex problems in several system-
s/applications. RL techniques are inspired by human learn-
ing mechanisms, where an agent, working as a human brain
cortex, is assigned for learning process based on iterative trial
and error process. RL is based on learning from positive and
negative assigned rewards. The learning loop of the RL ap-
proach is shown in Fig. 11. An agent is a function that trans-
forms the current (St) state and reward (Rt) into an action; en-
vironment is a function that converts an action taken in the
current (At) state into the next state (St+1) and reward (Rt+1).
This loop yields a sequence of states, actions and rewards.

Agent

Environment

Action
(At)

Reward
(Rt)

State
(St)

Figure 11: The agent-environment interaction in reinforcement learning
loop [49].

As discussed in previous section, generation of training
dataset for supervised learning to model circuits is difficult.
This is due to the fact that circuit simulation is slow, thus ren-
dering generation of a large-scale dataset as time-consuming
and that most circuit designs are proprietary IPs within in-
dividual IC companies, making it expensive to collect large-
scale datasets. As a result, RL engine that know nothing about
analog design is proposed in [49]. The RL agent first learns to
meet hard constraints, and then learns to optimize the tar-
gets. Compared with grid search-aided human design, L2DC
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can achieve 250× higher sample efficiency with comparable
performance. The RL agent generates circuits’ data by it-
self and learns from the data to search for best parameters.
The RL agents were trained from scratch without giving it any
rules about circuits. In each iteration, the agent obtains ob-
servations from the environment, produces an action (a set of
parameters) to the circuit simulator environment, and then
receives a reward to optimize the desired FOMs composed of
several performance metrics. By maximizing the reward, RL
agent can optimize the circuit parameters. The system was
demonstrated on several Op-Amp examples successfully.

A ML analog circuit sizing framework that uses deep rein-
forcement learning approach is presented in [50]. Policy gra-
dient neural network (PGNN), is built to predict the changes
of circuit parameter values, which yields the probability dis-
tribution over all valid actions. The objective of the agent is to
learn sequences of actions that will maximize its expected cu-
mulative rewards. Considering the circuit sizing problem, cir-
cuit parameters (device dimensions, voltages, capacitances,
etc.) are encoded as the states. Thereby, the actions (incre-
ment and decrement) are defined as the change of those cir-
cuit variables. To adjust the amount of change, two other
parameters are also defined: change rate and change capac-
ity. Once an action is taken, it should be evaluated to ensure
whether it satisfies the design constraints. Actions that vi-
olate the design constraints are directly eliminated without
running any simulation, resulting in significantly reducing in
the execution time. Then, the design objectives are encoded
into the rewards in order to manage the learning. To classify
the objectives, positive and negative weights are assigned for
each objective, where a positive coefficient intends to maxi-
mize the objective while the negative one aims to minimize it.
Before the simulator, a rough pre-evaluation is performed by
a symbolic filter, where the small signal parameters of devices
are extrapolated by mapping of circuit variables, which then
turns into performance estimations. If the candidate is ver-
ified by the symbolic analysis, it is simulated through SPICE
and rewarded by considering with the design objectives and
constraints. Otherwise, the reward is set to zero. To demon-
strate the proposed approach, a folded cascode amplifier is
optimized, where dc gain, the bandwidth, the phase and the
gain margins are chosen as the design specifications. Accord-
ing to the reported results, the proposed tool is able to opti-
mize the circuit satisfying all the design specifications.

Post-layout circuit parameters are found for a given target
specification using deep RL [51]. The approach can be clas-
sified under two steps: training and deployment. In the first
step of training, the performance trajectories are obtained for
a given problem, where the objective specifications are ob-
tained via SPICE simulations and given to the RL. Then, the
RL agent observes the state of the environment and operates
according to its knowledge at each step. The neural network
uses the observed and targeted specifications as well as de-
sign parameters to decide the action whether to increment,
decrement, or retain the same value for each circuit param-
eter. The environment returns a new state for calculation of
the reward. The agent iteratively operates through a trajec-

tory of multiple environment steps, accumulates the rewards
at each step, and updates the NN weights until the objective
criterion is met or the maximum iteration count is reached.
During the rewarding process, hard design constraints and
objectives that are being minimized are taken into account.
The reward increases as the RL agent’s observed performance
gets closer to the target specification. The training termi-
nates once all targeted specifications are satisfied. During de-
ployment, the trained agent is used to generate trajectories
for new specifications. Moreover, the proposed approach is
combined with a layout generator tool to perform the post-
layout extracted simulations. Once learning is performed at
schematic level; it is directly transferred to a different envi-
ronment. Here, the layout generator is employed and the
parasitic extracted netlist is given to the rained to deploy the
agent. To demonstrate the proposed approach, a transimpe-
dence amplifier, a two stage OTA, and a two stage OTA with
negative gm load are optimized. The results indicates that the
approach is almost 40× more sample efficient than a typical
genetic algorithm. Also, the proposed post-layout simulation
framework is 9.6× more sample efficient than the state-of-
the-art thanks to transfer of learning at the schematic level.

5. Machine Learning in Analog/RF Layout Synthesis

The widespread application of ML to different areas, in-
cluding analog/RF IC layout automation, opens new per-
spectives for developing push-button solutions that simulta-
neously incorporate legacy data or expert design insights in
a manner that was not possible in the previous generations
of EDA tools. These recent ML applications for layout au-
tomation range from placement tools to routing drafters, but
also, pre- and post-placement processing. Table 3 summa-
rizes the different ML techniques for layout automation that
are overview within this section.

5.1. Pre-Placement Processing

An expert IC designer can examine a circuit schematic and
instinctively recognize several building blocks (e.g., differen-
tial pairs, level-shifters, current mirrors, etc.) formed by var-
ious basic primitives (blocks), based solely on his prior ex-
perience. These primitives and larger building blocks de-
fine more complex structures (e.g., operational amplifiers or
voltage-controlled oscillators), and ultimately, are built up in
the hierarchy to form complete systems (e.g., an analog-to-
digital converters or RF transceivers). Existing methodolo-
gies able to recognize such structures are usually based on
graph representations of the netlist [58], and, take advantage
of its sub circuits defined explicitly. However, while subgraph
isomorphism operations are somewhat possible at building-
block level, the number of combinations becomes imprac-
tical at higher levels, as a countless number of circuit/sys-
tem variations can be implemented for similar functionali-
ties. ML are opening new possibilities in this recognition, as
proposed in ALIGN (Analog Layout, Intelligently Generated
from Netlists) [53]. This framework receives as input an unan-
notated netlist, and, identifies hierarchies to recognize the
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Table 3: Summary of the ML applications for layout automation.

Reference Design Step Model Training Contributions

[53]
Building block
identification

n/d n/d Alternative to subgraph isomorphism

[54] Placement
ANN with

nxWxH neurons
Weights assigned by

hill-climbing
ANN used as discrete WxH layout plane

[55] Placement
ANN with 3

hidden layers
Supervised Reproduces legacy data patterns

[56] Placement
ANN with 4

hidden layers
Unsupervised Trained with sizing data only

[57] Well definition GAN Supervised Reproduces legacy data patterns

[24] Routing
ANN used

as VAE
Semi-supervised Acquired knowledge used to assist A∗ search

building blocks of the design so that they may be appropri-
ately optimized. The primitives at the lowest levels are set,
and then, ML handles the ambiguities in the way these prim-
itives are assembled, attempting to mimic the expert IC de-
signer.

5.2. Placement by ANNs

Analog/RF IC layout design is usually split into placement
and routing. In the placement task, many requirements must
be considered to produce a robust floorplan solution against
parasitic structures or process variations, e.g., minimizing the
layout area while satisfying several topological constraints
that span from symmetry, proximity, or boundary, among
others without hindering its potential to be routed effec-
tively. Analog/RF IC placement automation has been inten-
sively studied in the last few decades, and the works proposed
usually follow a descriptive approach or an optimization-
based approach. Descriptive procedural [59] or template-
based [60] approaches are applied with a moderate level of
success on migration of legacy layouts [61] or layout-aware
sizing methodologies [62], where fast generation techniques
in-the-loop are required to be executed in-the-loop. Opti-
mization mechanisms, mostly based on simulated anneal-
ing kernels that either change the absolute coordinates of
the cells on a 2-dimensional plane [63] or perturb a topo-
logical representation that encodes the floorplan [64]. While
presenting a reduced setup time, its execution can be time-
consuming. This trade-off between setup time and compu-
tational efficiency marked the previous generations of auto-
matic placement tools, a reality that ML promises to change
by pursuing, for the first-time, flexible push-button solutions.
An initial approach based on an ANN architecture was pro-
posed in [54], whose goal was to place the cells within a seg-
mented plane of fixed size W×H. A mean-field neural network
with n×W×H neurons, where n are the number of cells to be
placed, is used. Each neuron is assigned with a binary out-
put value, whose ’1’ corresponds to the assignment of that
cell to a respective panel of the WxH plane. While an ANN
structure is used to represent the problem, the hill-climbing
algorithm is still used to solve its gradients as a new set of
cells’ dimensions are requested. The energy function being

minimized weights simultaneously several factors, includ-
ing interconnection estimates between pairs of cells, overlap,
symmetry, proximity and boundary, the later used to keep
cells inside the W×H plane. Recently, ANNs were used to
pursue the knowledge mining route on placement automa-
tion [55]. A model with 3 hidden layers with 250 to 1000 neu-
rons each was used to learn the design patterns (including
the inherent topological constraints) of more than 10.000 dif-
ferent placement solutions with conflicting guidelines among
them (validated symmetry and current-flow constraints) of
the same circuit topology. The output layer is used to pro-
vide the exact placement coordinates of each cell of the cir-
cuit for any given sizing in the 2-D plane, as illustrated in
Fig. 12. The model training is made by minimizing the mean
squared error (MSE) between the predicted floorplan and its
corresponding solution from the training set. Unlike pre-
vious deterministic knowledge mining approaches [65], this
end-to-end approach does not require to define any kind
of tie breaker manually, with the trained model embedding
reusable design patterns that generalize beyond the train-
ing data, and, provide different placement alternatives (e.g.,
different aspect-ratios) for the same circuit sizing at push-
button speed.

Figure 12: ANN architecture used to solve the map from the physical and
effective Pcells’ dimensions to the placement coordinates, where topologi-
cal constraints are implicit (shaded box) [55]. Topological constraints can be
added in the input layer for topological loss function training [56].

In [56], a nonlinear ANN model is also applied but used to
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train topological loss function on legacy sizing data only, that
learns how to fulfill the topological constraints. It promotes
the application of the acquired "knowledge" instead of penal-
izing it with high MSE errors as in [55]. Additionally, the work
took one step further towards the prediction of floorplan so-
lutions for circuit topologies, which the model has never been
trained before, by supporting different circuit topology en-
codings (with different number of devices) on the input layer
of the same ANN, reusing knowledge among topologies.

5.3. Post-Placement Processing

When designing a floorplan, experienced IC designers of-
ten have the locations of the well regions in mind, i.e., areas
where the doping is uniformly shared among a group of de-
vices. Although abutment techniques help [60], embedding
this information during automatic placement methodologies
is not always straightforward. In WellGAN [57], n-type well
definition is left for post-placement placement, where a gen-
erative adversarial network (GAN) is used to mimic the be-
havior of experienced designers, by reusing the knowledge
embedded on previous manually-crafted layouts. To extract
the information from legacy data, the oxide diffusion (OD)
layer of layouts is used as input pattern, and, an RGB chan-
nel encoding is used to differentiate the ODs, i.e., OD inside
n-type wells (red) and OD outside n-type wells (green), while
wells are assigned to the blue channel. Thus, after training,
the model receives as input images with patterns R and G,
and outputs images with RGB channels. To convert this in-
formation into a floorplan, a post-refinement stage is used
to rectilinearize and legalize the wells based on these guiding
regions, fulfilling design rules (e.g., minimum spacing, enclo-
sure, width, and area design rules). This approach was incor-
porated on MAGICAL framework [66].

5.4. Routing

Routing has a determinant impact on the post-layout per-
formance of analog/RC ICs, especially at deep nanometer in-
tegration nodes, where the increasing congestion causes dis-
proportionate growth of the interwire capacitances. Differ-
ent types of automatic analog/RF IC routers were proposed in
the last few years, based on: (1) procedures [67] or template
descriptions [68]; (2) heuristics that encode different rout-
ing techniques as constraints (e.g., wiring symmetry), and
then, path-finding algorithms (e.g., maze search [69]) are ap-
plied to draw a wire that connects two different terminals
of a net in the presence of obstacles; (3) integer linear pro-
gramming (ILP) [70], by constructing a priori high quality
routes for individual nets, and then, using ILP to commit
each net to only one of its candidate routes; and, optimiza-
tion [71], where an evolutionary algorithm performs struc-
tural and layer changes in the physical representation of a
population of independent routing solutions, allowing to op-
timize all wires of all nets simultaneously. Still, due to its
high setup configuration and customization, only procedural
or template-based approaches are usually capable of repro-
ducing the IC designer preferences. Thus, automatic routing

methodologies have not been popular among industrial IC
design environments. GeniousRoute [24] attempts to extract
routing strategies of legacy layouts and apply the acquired
knowledge in guiding a routing algorithm. Similar to Well-
GAN, in the pre-processing of the training data, placement
and routing are represented as 2-D images, where routing-
relevant information is extracted. For each data point, the
pins of the entire design and pins for the given net are
mapped into two separate 64×64 channels. These channels
are then used on a semi-supervised model training, where,
first, the ANN used as variational autoencoder (VAE) is initial-
ized in an unsupervised fashion, and only after, supervised
decoder training. GeniousRoute then uses a classical A* path-
finding algorithm assisted by the model’s inference, which
generates the routing probability map to guide search. Tradi-
tional rip-up and reroute techniques are still used to ensure
that a successful solution is attained. However, the legacy de-
sign patterns will be present on the automatically generated
routing solutions.

6. ML In Analog IC Fault Testing and Diagnosis

Specification testing and fault diagnosis are of the utmost
importance for robust circuits and systems. Analog circuit
testability analysis is significantly more complicated than its
digital counterpart. The main culprits are the diversity of
analog circuits with both linear and nonlinear characteristics
and a multitude of performance metrics that create barriers
to a standard definition of fault models. Fault diagnosis for
electronics-rich analog systems with industrial-application is
usually accomplished by monitoring the deviation of output
signals in voltage or current caused by the inevitable degrada-
tion of one or more of its components. The degradation arises
not only from inherent circuit mechanisms but also from im-
proper technician operation or environmental changes, for
example.

Researchers in the area of analog IC testing since long
turned to ML algorithms for the automation of analog spec-
ifications testing and fault identification [83]. Table 4 sum-
marizes the different ML techniques for IC fault testing and
diagnosis that are overview within this section. In [72] a fault-
model-based diagnosis for analog ICs was proposed. The
method is based on an ML-based defect filter [73] that dis-
tinguishes failing devices due to hard faults, i.e., completely
malfunction, or soft faults, i.e., failing due to parametric de-
viations. Two types of diagnosis are handled based on the de-
cision of the defect filter, and then an SVM-based multi-class
ML classifier is used to identify which catastrophic fault has
occurred, and, inverse regression functions to localize and
identify the soft faults. This approach was demonstrated on
an RF LNA. In [80], a sparse relevance vector machine [84]
with Gaussian and polynomial kernels is used for fault prog-
nostic and remains useful performance estimation. The ap-
proach uses AC voltage values over time as features to esti-
mate the health degree of the circuit. The authors define this
health degree as the cosine distance between the measured
features and those at nominal value, and its value decreases
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Table 4: Summary of the ML applications for Analog IC fault testing, diagnosis and calibration.

Reference Application Method(s) Contributions
[17] Fault Dianosis MLP Haar wavelet followed by kPCA to reduce dimensionality of features

[72],[73] Fault Dianosis SVM
A defect filter identifies hard and soft faults, and, for the soft faults

inverse regression is used to locate the fault cause
[74] Fault Dianosis ANN Wavelet and PCA to reduce dimensionality of features
[75] Fault Dianosis ANN Dictionary and PCA reduce dimensionality of features
[76] Fault Dianosis Fisher DT LDA to improve class separability while compressing the feature space
[77] Fault Dianosis Naive Bayes Wavelet followed by kLDA
[78] Fault Dianosis DBN End-to-end learning simplifies the feature engineering
[79] Fault Dianosis DBN End-to-end with integrated random sampling for data gathering

[80]
Remaining Useful

Performance
Kernel RVM

PSO is used to train a RVM that predict the trajectories of the circuits
health and predict the remaining useful performance

[81] Test Set Compression ONN
NSGA optimization to select the smallest set of features sufficient to

diagnose the CUT, resulting in a cheaper test procedure

[25] One-Shot Calibration ANN
Post-fabrication calibration to counter performance deviation due to

fabrication in a single calibration step

[82] Post-Layout Modeling BMF
Uses cheap pre-silicon simulation data, together with a small dataset

of fabricated circuits for efficient post silicon modeling

from 1 for non-fault circuits as the circuit’s elements degrade.
The sparse kernel coefficients are obtained by minimizing the
MSE using particle swarm optimization (PSO). Experiments
with a Sallen–Key bandpass filter, leapfrog filter, and nonlin-
ear rectifier circuit showed that the methodology was able to
accurately estimate the trajectories of the health degrees of
the most relevant devices and accurately predict the remain-
ing useful performance of the circuit.

6.1. Pre-Processing with Dimensionality Reduction

As the dimensionality of feature space increases, fault diag-
nosis methods started to use longer data processing pipelines
with a structure similar to that shown in Fig. 13. These meth-
ods start by collecting the raw data that is then pre-processed
and transformed, e.g., wavelet transformations are a com-
mon approach to compress the raw data into smaller but sig-
nificant coefficients [74]. The next step is dimensionality re-
duction, which is done with PCA or LDA and their kernel ex-
tensions, and finally, the classifier is trained.

In [75], the authors define the fault dictionary exercising
each analog structure with different input signals. This fault
dictionary is essentially a table that contains all the fault
characteristics of the circuit-under-test (CUT), and, used as
a lookup table. PCA is then used to perform an orthogonal
transformation of the fault space to a lower dimension, and
a quantitative measure of distance separation, designated
Bhattacharyya coefficient, is used to selection of the relevant
features. The ANN is trained in this reduced space, and then,
used to classify the applied input signal in the CUT, as faulty
or fault-free output. A distinguishing factor in this work is the
use of the rider optimization algorithm to train the ANN. This
algorithm follows the analogy that a group of riders race to-
wards a target objective. The approach was tested in differ-
ent analog structures, including a triangular wave generator,
a low noise bipolar transistor amplifier, a differentiator, and

Data Acquisition
(AC, DC, MC Simulation,  

Measurement) 

Feature Extraction
(Wavelet, dictionary, ...) 

Feature Selection and 
Dimensionality Reduction
(PCA, kPCA, LDA, KLDA, ...)

Train Classifier
(DT, SVM, NB, ANN, ...)

Figure 13: Common pipeline used on recent fault diagnosis systems.

a solar power converter. The experiments showed promising
accuracy levels above 95%. [17] applied Haar wavelet trans-
form to obtain the coefficients for low- and high-frequency
components of the time-response. Then, a modified kernel
PCA that selects the kernels to maximize class separability
following a criterion similar to LDA. The authors use an MLP
multi-class classifier with a one-hot encoding at the output.
The cost function optimized during training is not specified.
The method is applied for a single and double fault model on
a Sallen-Key bandpass filter, a biquad high-pass filter, and a
nonlinear rectifier circuit, achieving a 100% accuracy rate on
the two first with just 5 principal components. In [85] sinu-
soidal excitation [76] is used to gather voltage amplitude fea-
tures for the CUT. Then LDA is used to increase class sepa-
rability, and an oblique Fisher decision tree [86] is induced.
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The authors also use fuzzification to soften the hard deci-
sion criteria of the DT and increase the performance of the
classifier. The method was applied to an active filter and an
audio amplifier circuit. In [77], the authors further extend
the data processing pipeline that starts from raw time signals
that describe the faults. The signals are then subject to cross
wavelet transform to obtain time-frequency coefficients that
produce time-frequency matrix representations. These ma-
trices may present redundant patterns. A variation of the lo-
cal binary pattern that considers the 8-Kirsch masks identi-
fies repeating patterns regardless of rotations. Then, the ex-
tracted features are selected. First features are selected us-
ing the Hilbert-Schmidt independence criterion. Then kernel
LDA produces lower dimensionality features that are used to
train a Naive Bayes classifier. Despite the simplicity of clas-
sifier Naive Bayes, the involved pre-processing and feature
selection scheme shows promising results on the two analog
circuits tested. As a downside, the feature pre-processing is
computationally demanding, which limits its use in real-time
monitoring systems. The authors also identify some limita-
tions in finding the most discriminative features of nonlinear
circuits.

6.2. Shorten the ML pipeline with DBNs

Unlike the previously described fault diagnose approaches
that measure, analyze, and collapse the high-dimensional
raw systems’ output signals (obtained as time-domain,
frequency-domain, or time-frequency simulation) into a
lower-dimensional feature set to help to isolate the fault. In
[78], DL is applied to identify a hierarchical structure that
captures the different levels of semantic representations of
the raw output signals. As only the response of the circuit
under test is monitored, it does not suffer from the acces-
sibility problems to internal nodes of analog ICs, common
to equation-based approaches. A Gaussian–Bernoulli (GB)-
DBN classifier is trained in a semi-supervised learning ap-
proach. This framework, shown in Fig. 14, is composed of
two training phases on raw data, pre-training, performed in
an unsupervised fashion and independently on the different
layers of a stacked RBM, and then, fine-tuning, performed
in a supervised fashion, where all the RBM layers are fine-
tuned with respect to the classification errors. The objective
is to obtain a latent space that enlarges the interclass distance
for different fault classes and reduces the intraclass distance
among each fault, improving the classifier’s ability to iden-
tify them. This approach was experimentally validated on
two typical analog filter circuits, learning more discriminative
features than traditional feature extraction, and thus, produc-
ing better diagnostic results with a smaller dataset. [79] adap-
tively extracts features from Monte Carlo sampling and then
uses them to train a general-purpose DBN classifier, while
simultaneously embedding dimensionality reduction into it.
The sampling is embedded into the methodology flow, dis-
carding most of the human involvement in feature prepara-
tion. The complete flow is composed by the following steps:
(1) firstly, for the CUT are identified the potential fault modes,

RBM

Output 
Layer

Directed 
Network

Unsupervised learning

Supervised learning

Figure 14: DBN structure, showing hidden RBM that are trained in unsuper-
vised learning.

nominal parameters, and their tolerances; (2) for each poten-
tial fault mode obtain via simulation the raw time-series sig-
nals, from time-domain transient, and Monte Carlo analysis;
(3) build the dataset using the raw time-series signals, where
each time-series signal of each Monte Carlo sample corre-
sponds to one input instance; (4) data engineering for ML
model construction and separation of the dataset into train-
ing and test sets; (5) used the data to train the DBN, which is
accomplished by a layer-by-layer unsupervised pre-training
stage and a fine-tuning stage using backpropagation; and (6)
the DBN is then used to for fault classification. The exper-
imental results conducted over a Sallen-Key bandpass filter
and four-opamp biquad high-pass filter, show higher classi-
fication accuracy when compared with existing data-driven
methods, with lower dependency on the data. In this method,
the use of raw time-series signals directly enables the detec-
tion of faults whose effects are only reflected in segments of
the time series output signals.

6.3. Post-Fabrication Automatic Calibration

In other works, more than fault identification and diagno-
sis, ML is used for specification testing and calibration of ana-
log circuits against process variation. These methods ensure
quality electronic devices and systems while reducing test
costs. The latter also increases production yield. [81] uses ML
to identify a subset of tests that is sufficient for performance
testing. A circuit that fails any test in the subset is immedi-
ately discarded. Those that pass all tests in the subset are then
classified, using KNN and ontogenic neural networks trained
using the tests on the subset. The selection of the subset of
tests is made by NSGA-II multi-objective optimization that
explores the trade-off between test cost and accuracy. The
method was applied on an RF device and showed that test-
ing the RF circuit without RF specific testing equipment was
able to detect most of the failing devices. Including some RF
testing allowed the method to detect all failing devices with
less than 10% of the cost. In [25], the authors propose a One-
Shot calibration mechanism, similar to the one in Fig. 15 that
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relies on an ANN predictor trained to estimate the perfor-
mance given the test measurements and the settings of the
tuning knobs. The dataset is built of 67 fixed combinations
of turning knobs for each measured circuit. Statistical sam-
pling mechanisms [87] can also be used to build the train-
ing set. Once the system is in place, the CUT is measured, if
performance is not within specifications, it used the trained
regressor to search for the best settings of the tuning knobs.
The method was applied to an RF power amplifier and was
able to recover 96% of devices failing specifications. How-
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Figure 15: One-shot calibration of fabricated circuits.

ever, in practice, the number of silicon measurements that
can be made to create the training data is limited. Still, accu-
rate modeling of parasitic and losses related to all the testing
setup is intricate and prevents the direct use of simulation-
based data to train the model. Nonetheless, there is valuable
information that can be gathered from simulations. Heed-
ing to this, in [82], the authors used Bayesian model fusion,
as indicated in Fig. 16. Simulation-based data defines a prior
that reduces the amount of post-fabrication measurements
needed to build an accurate performance regressor.

Simulation data

Prior knowledge

Bayesian inference

Few post-silicon 
measurements
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Figure 16: BMF for post-layout modeling.

7. Conclusion and Future Directions

Recently, ML-based techniques have been efficiently uti-
lized in several applications, where enhanced learning ca-
pability makes them unique to solve any complex/nonlinear
problem. IC design has also benefited from ML techniques at
different design levels, from device modeling to test of man-
ufactured chips.

The attempts in device/circuit/system modeling have
aimed to generate accurate models at different levels of ab-
straction and replace the simulator, especially in RF ap-
plications, by these models; hence, the human effort and
the design time can be mitigated. Furthermore, creating
technology-independent models can enable their use in fur-
ther technologies for a given problem. Considering the as-
cending popularity of ANNs, researchers may revisit their ap-
plication to analog/RF IC modeling, where variability and re-
liability problems have not been fully addressed in this man-
ner. Furthermore, the capability of technology-free modeling
of CMOS devices via ANNs will undoubtedly contribute to ap-
pearance of analog/RF IPs in EDA tools.

ML-based modeling of analog/RF devices and circuits has
paved the way for ML-based circuit sizing. The main prob-
lem with the reported sizing approaches is the trade-off be-
tween the accuracy and the efficiency of the synthesis pro-
cess. Symbolic/analytical model-based approaches are quite
efficient, but, they suffer from poor accuracy of those models,
while simulation-based approaches are quite precise. How-
ever, they are computationally expensive. Incorporation of
ML modeling with conventional sizing algorithms has be-
come a remedy for this bottleneck, in which the circuit per-
formances are accurately modeled via ML techniques, and
the generated models are employed during the evaluation of
circuits. Furthermore, putting this mechanism into the opti-
mization loop may move the efficiency further, where a por-
tion of the initial solutions are used as the filtered data (sat-
isfying all constraints) to train the model; thus, the learn-
ing phase is automatically carried-out without any external
effort. ML-based circuit synthesis also enables fast and ac-
curate search of the vast analog/RF design space for multi-
/many-objective optimization tools. Recent progress in this
area shows that the proposed approaches are still immature,
and several developments are needed, i.e., integration pro-
cess, selection of NN, and intermediate model verification,
etc. Moreover, the efficiency problems with variability- and
reliability-aware circuit synthesis can be solved via ML-based
synthesis, in which the generated models may be reused dur-
ing these analyses. Hierarchical synthesis of analog/RF cir-
cuits will be an important part of the future directions. The
feasibility of the conventional bottom-up approaches may
become much more efficient, since the transitions from dif-
ferent levels of hierarchy can be facilitated through the devel-
oped accurate ML-based models.

Automatic layout generation for analog/RF ICs suffers
from similar problems with sizing approaches. Several
ML-based methodologies, mostly on floorplan design, have
been proposed. While the previous generation of au-
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tomatic placement tools was marked by the high setup
(descriptive/template-based approaches) versus high com-
putational effort (optimization-based approaches) trade-off,
ML-based methodologies, mostly via ANNs, are attempting
to change this reality by pursuing flexible push-button solu-
tions. On top of it, the models can also be based on previ-
ous legacy knowledge. Future research directions in this field
will most likely be focused on how to reuse those design pat-
terns learned and generalize them well beyond the training
data. These generalization capabilities are also expected to
be achieved for newer circuit topologies. Still, an actual prob-
lem is how to generate a dataset robust enough for that pur-
pose. While acquiring robust sizing data for several topolo-
gies is still quite feasible, acquiring validated legacy layouts
is not straightforward. The approach taken recently was to
use other EDA tools to generate synthetic data. Nonetheless,
some (error-prone) mechanism or human inspection is still
necessary to consider them "legacy-proved". For automatic
routing, the application of ML is still taking its first steps,
yet promising. Before working on the proper deep models,
the most urgent matter to be researched is data engineering,
how to concisely and accurately represent routing data on a
dataset, which data is relevant to be fed to the model, and,
how far it could be generalized. The problems of acquiring
robust legacy data previously found on placement, are only
further aggravated here. While a handful of robust manually
routed designs can still be acquired and used, the necessity of
tens of thousands will ultimately rely on previous EDA tools,
e.g., template-based, heuristic-based of ILP routing proce-
dures.

The use of ML for fault diagnosis is well established in the
research community. Several classification methods appear
in the literature. There is no particular method standing out,
but supervised learning is the most common approach. Fault
diagnosis ML systems often show a pipeline that includes
feature transformation and pre-processing, such as wavelet
transform, discriminative feature selection, such as LDA or
Kernel LDA, and the classification algorithm, such as Naive
Bayes, SVM, or ANNs. A few works explore semi-supervised
learning, using DBNs that embed the feature selection in the
classifier. However, the latent variables are more obscure and
harder to understand their physical meaning. Future devel-
opment for ML-based fault diagnosis should strive further to
address fault localization, aging, and time-dependent perfor-
mance effects, and identify the right strategy for hyperparam-
eter tuning. The hyperparameter tuning and training strate-
gies have a significant impact on the performance of the clas-
sifiers, but there are not many criteria given in the literature.
Another major challenge is to decrease the computation re-
quirements, as the current state-of-the-art approaches are
too sophisticated for real-time or embedded applications.

ML techniques can also be employed to ease the transi-
tions between design levels, e.g., incorporating layout infor-
mation into sizing, ultimately, leading to widespread use of
analog/IPs. Besides, the use of ML in analog/RF IC design is
still in its infancy and there is room for further developments.
The aforementioned future directions are not exclusive and

many new developments can be expected in the near future.
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[34] G. İslamoğlu and et. al., “Artificial Neural Network Assisted Analog IC
Sizing Tool,” in 16th International Conference on Synthesis, Modeling,
Analysis and Simulation Methods and Applications to Circuit Design
(SMACD). IEEE, 2019, pp. 9–12.

[35] G. Wolfe and R. Vemuri, “Extraction and use of neural network models
in automated synthesis of operational amplifiers,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 2,
pp. 198–212, 2003.

[36] W. Lyu, F. Yang, C. Yan, D. Zhou, and X. Zeng, “Multi-objective bayesian
optimization for analog/rf circuit synthesis,” in Proceedings of the 55th
Annual Design Automation Conference, 2018, pp. 1–6.

[37] Z. Gao, J. Tao, F. Yang, Y. Su, D. Zhou, and X. Zeng, “Efficient perfor-
mance trade-off modeling for analog circuit based on bayesian neu-
ral network,” in 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2019, pp. 1–8.

[38] P.-C. Pan, C.-C. Huang, and H.-M. Chen, “Late Breaking Results: An Effi-
cient Learning-based Approach for Performance Exploration on Analog
and RF Circuit Synthesis,” in 56th ACM/IEEE Design Automation Confer-
ence (DAC), 2019, pp. 1–2.

[39] E. Kaya, E. Afacan, and G. Dundar, “An Analog/RF Circuit Synthesis and
Design Assistant Tool for Analog IP: DATA-IP,” in 15th International
Conference on Synthesis, Modeling, Analysis and Simulation Methods
and Applications to Circuit Design (SMACD). IEEE, 2018, pp. 1–9.

[40] J. Tao, C. Liao, X. Zeng, and X. Li, “Harvesting design knowledge from
the internet: High-dimensional performance tradeoff modeling for
large-scale analog circuits,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 35, no. 1, pp. 23–36, 2015.

[41] R. Vural and et. al., “Process independent automated sizing methodol-
ogy for current steering dac,” International Journal of Electronics, vol.
102, no. 10, pp. 1713–1734, 2015.

[42] V. Bhatia and et. al., “Modelling a simple current to voltage converter
using ANN,” in IEEE 1st International Conference on Power Electronics,
Intelligent Control and Energy Systems (ICPEICES). IEEE, 2016, pp. 1–4.

[43] V. Bhatia, N. Pandey, and A. Bhattacharyya, “Modelling and design of
inverter threshold quantization based current comparator using arti-
ficial neural networks.” International Journal of Electrical & Computer
Engineering (2088-8708), vol. 6, no. 1, 2016.

[44] A. Jafari, S. Sadri, and M. Zekri, “Design optimization of analog in-
tegrated circuits by using artificial neural networks,” in 2010 Interna-
tional Conference of Soft Computing and Pattern Recognition. IEEE,
2010, pp. 385–388.

[45] N. Takai and M. Fukuda, “Prediction of element values of OpAmp for
required specifications utilizing deep learning,” in International Sym-
posium on Electronics and Smart Devices (ISESD). IEEE, 2017, pp. 300–
303.

[46] N. Lourenço and et. al., “On the exploration of promising analog ic de-
signs via artificial neural networks,” in 15th International Conference on
Synthesis, Modeling, Analysis and Simulation Methods and Applications
to Circuit Design (SMACD). IEEE, 2018, pp. 133–136.

[47] E. Dumesnil, F. Nabki, and M. Boukadoum, “RF-LNA circuit synthesis
using an array of artificial neural networks with constrained inputs,” in
IEEE International Symposium on Circuits and Systems (ISCAS), 2015,
pp. 573–576.

[48] N. Lourenço and et. al., “Using Polynomial Regression and Artificial
Neural Networks for Reusable Analog IC Sizing,” in 16th International
Conference on Synthesis, Modeling, Analysis and Simulation Methods
and Applications to Circuit Design (SMACD). IEEE, 2019, pp. 13–16.

[49] H. Wang and et. al., “Learning to design circuits,” arXiv preprint
arXiv:1812.02734, 2018.

[50] Z. Zhao and L. Zhang, “Deep reinforcement learning for analog circuit
sizing,” in IEEE International Symposium on Circuits and Systems (IS-
CAS). IEEE, 2020, pp. 1–5.

[51] K. Settaluri and et. al., “AutoCkt: Deep Reinforcement Learning of Ana-
log Circuit Designs.”

[52] A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei, “Au-
tomatic differentiation variational inference,” The Journal of Machine
Learning Research, vol. 18, no. 1, pp. 430–474, 2017.

[53] K. Kunal and et. al., “Align: Open-source analog layout automation from
the ground up,” in Proceedings of the 56th Annual Design Automation
Conference (DAC), 2019, pp. 1–4.

[54] R. He and L. Zhang, “Artificial neural network application in analog lay-
out placement design,” in Canadian Conference on Electrical and Com-
puter Engineering. IEEE, 2009, pp. 954–957.

[55] D. Guerra and et. al., “Artificial Neural Networks as an Alternative for
Automatic Analog IC Placement,” in 16th International Conference on
Synthesis, Modeling, Analysis and Simulation Methods and Applications
to Circuit Design (SMACD). IEEE, 2019, pp. 1–4.

[56] A. Gusmao and et. al., “Semi-Supervised Artificial Neural Networks to-
wards Analog IC Placement Recommender,” in IEEE International Sym-
posium on Circuits and Systems (ISCAS), 2020, pp. 1–5.

[57] B. Xu and et. al., “Wellgan: Generative-adversarial-network-guided well
generation for analog/mixed-signal circuit layout,” in 56th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2019, pp. 1–6.

[58] M. Eick and et. al., “Comprehensive generation of hierarchical place-
ment rules for analog integrated circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 2,
pp. 180–193, 2011.

[59] A. Bhaduri and et. al., “Parasitic-aware synthesis of RF LNA circuits con-
sidering quasi-static extraction of inductors and interconnects,” in The
47th Midwest Symposium on Circuits and Systems. MWSCAS’04, vol. 1.

22



IEEE, 2004, pp. I–477.
[60] R. M. Martins, N. C. Lourenço, and N. C. Horta, Generating analog IC

layouts with LAYGEN-2. Springer Science & Business Media, 2012.
[61] S. Bhattacharya, N. Jangkrajarng, and C.-J. Shi, “Multilevel symmetry-

constraint generation for retargeting large analog layouts,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 25, no. 6, pp. 945–960, 2006.

[62] R. Martins and et. al., “Two-step RF IC block synthesis with preopti-
mized inductors and full layout generation in-the-loop,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 38, no. 6, pp. 989–1002, 2018.

[63] ——, “Current-flow and current-density-aware multi-objective opti-
mization of analog IC placement,” Integration, vol. 55, pp. 295–306,
2016.

[64] A. Patyal and et. al., “Analog placement with current flow and symmetry
constraints using PCP-SP,” in 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). IEEE, 2018, pp. 1–6.

[65] P.-H. Wu and et. al., “A novel analog physical synthesis methodology
integrating existent design expertise,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 2, pp. 199–
212, 2014.

[66] B. Xu and et. al., “MAGICAL: Toward Fully Automated Analog IC Lay-
out Leveraging Human and Machine Intelligence,” in IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), 2019, pp. 1–8.

[67] E. Chang and et. al., “BAG2: A process-portable framework for
generator-based AMS circuit design,” in IEEE Custom Integrated Cir-
cuits Conference (CICC), 2018, pp. 1–8.

[68] A. Unutulmaz, G. Dündar, and F. V. Fernández, “A template router,”
in 20th European Conference on Circuit Theory and Design (ECCTD).
IEEE, 2011, pp. 334–337.

[69] E. Yilmaz and G. Dundar, “Analog layout generator for CMOS circuits,”
IEEE Transactions on computer-aided design of integrated circuits and
systems, vol. 28, no. 1, pp. 32–45, 2008.

[70] C.-Y. Wu, H. Graeb, and J. Hu, “A pre-search assisted ILP approach to
analog integrated circuit routing,” in 33rd IEEE International Confer-
ence on Computer Design (ICCD), 2015, pp. 244–250.

[71] R. Martins, N. Lourenco, and N. Horta, “Routing analog ICs using a
multi-objective multi-constraint evolutionary approach,” Analog Inte-
grated Circuits and Signal Processing, vol. 78, no. 1, pp. 123–135, 2014.

[72] K. Huang, H. Stratigopoulos, and S. Mir, “Fault diagnosis of analog cir-
cuits based on machine learning,” in Design, Automation Test in Europe
Conference Exhibition (DATE 2010), 2010, pp. 1761–1766.

[73] H. Stratigopoulos and et. al., “Defect filter for alternate rf test,” in 14th
IEEE European Test Symposium, 2009, pp. 101–106.

[74] M. Aminian and F. Aminian, “A modular fault-diagnostic system for
analog electronic circuits using neural networks with wavelet transform
as a preprocessor,” IEEE Transactions on Instrumentation and Measure-
ment, vol. 56, no. 5, pp. 1546–1554, 2007.

[75] D. Binu and B. S. Kariyappa, “RideNN: A New Rider Optimization
Algorithm-Based Neural Network for Fault Diagnosis in Analog Cir-
cuits,” IEEE Transactions on Instrumentation and Measurement, vol. 68,
no. 1, pp. 2–26, 2019.

[76] Feng Li and Peng-Yung Woo, “Fault detection for linear analog IC-the
method of short-circuit admittance parameters,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol. 49,
no. 1, pp. 105–108, 2002.

[77] W. He and et. al., “A Naive-Bayes-Based Fault Diagnosis Approach for
Analog Circuit by Using Image-Oriented Feature Extraction and Selec-
tion Technique,” IEEE Access, vol. 8, pp. 5065–5079, 2020.

[78] Z. Liu and et. al., “Capturing high-discriminative fault features for
electronics-rich analog system via deep learning,” IEEE Transactions on
Industrial Informatics, vol. 13, no. 3, pp. 1213–1226, 2017.

[79] G. Zhao and et. al., “A novel approach for analog circuit fault diagnosis
based on Deep Belief Network,” Measurement, vol. 121, pp. 170–178,
2018.

[80] C. Zhang and et. al., “A multiple heterogeneous kernel RVM approach
for analog circuit fault prognostic,” Cluster Computing, vol. 22, no. 2,
pp. 3849–3861, 2019.

[81] H. Stratigopoulos and et. al., “RF Specification Test Compaction Using
Learning Machines,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 18, no. 6, pp. 998–1002, 2010.

[82] F. Wang and et. al., “Bayesian Model Fusion: Large-Scale Performance
Modeling of Analog and Mixed-Signal Circuits by Reusing Early-Stage
Data,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 35, no. 8, pp. 1255–1268, 2016.

[83] V. Rajan, Jie Yang, S. Chakrabarty, and K. Pattipati, “Machine learning
algorithms for fault diagnosis in analog circuits,” in SMC’98 Conference
Proceedings. IEEE International Conference on Systems, Man, and Cy-
bernetics, 1998, pp. 1874–1879.

[84] M. E. Tipping, “Sparse bayesian learning and the relevance vector ma-
chine,” J. Mach. Learn. Res., vol. 1, p. 211–244, 2001.

[85] Y. Cui, J. Shi, and Z. Wang, “Analog circuits fault diagnosis using multi-
valued Fisher’s fuzzy decision tree (MFFDT),” International Journal of
Circuit Theory and Applications, vol. 44, no. 1, pp. 240–260, 2016.

[86] A. López-Chau and et. al., “Fisher’s decision tree,” Expert Systems with
Applications, vol. 40, no. 16, pp. 6283–6291, 2013.

[87] F. Cilici and et. al., “Efficient generation of data sets for one-shot sta-
tistical calibration of RF/mm-wave circuits,” in 16th International Con-
ference on Synthesis, Modeling, Analysis and Simulation Methods and
Applications to Circuit Design (SMACD), 2019, pp. 17–20.

23




