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Abstract

This article considers an inter-temporal optimisation problem in a general form

and gives conditions ensuring the convergence to in�nity of the economy. These

conditions can be easily veri�ed and applied for a large class of problems in the

literature. Some applications for di�erent economies are given as illustrative

examples.
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1 Introduction

Initiated by Bellman [4], the dynamic programming literature has rapidly become a

workhorse of economic dynamic analysis. The traditional approach, culminating
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in Stokey and Lucas (with Prescott) in [26], gives a good explanation for and

prediction of many economic phenomena. The theory of dynamic programming

described in Stokey and Lucas (with Prescott) [26] is based on a relatively strong

structure of convexity. One of its implications is that in general, the economy

converges to a steady state independently of the initial state.

Many studies have shown con�gurations where this strong convex structure is not

satis�ed. Clark [7], Majumdar and Mitra [21], Majumdar and Nermuth [20], and

Skiba [25] consider economies where production functions exhibit an early phase

of increasing returns, usually known as convex-concave functions. Dechert and

Nishimura [10] extend their works to a general non-concave production function.

These works prove the existence of a critical level of capital stock, usually named

the "Dechert-Nishimura-Skiba" point1. Beginning with a level capital stock under

the Dechert-Nishimura-Skiba point, the economy shrinks and collapses to zero,

otherwise it increases to a steady state2.

Kamihigashi and Roy [16] extend the analysis to a larger class of production func-

tion, by assuming only the upper-semi continuity. They characterise the critical

point below which the economy collapses in the long run and above which survival

(bounded away from zero) is possible.

Another line of the literature studies conditions allowing the convergence to in�nity

of the economy. Jones and Manuelli [12], [13] work with concave production

function which keeps su�ciently high productivity even with a large accumulation

of capital. Under this condition, the economy always converges to in�nity.

Kamihigashi and Roy [17] relax not only the concavity but also the continuity of

production, and prove that under the condition that the productivity is su�ciently

high for a large accumulation of capital stock, if the initial state of the economy

is higher than a critical level, it will increase to in�nity3.

Majumdar and Nermuth [21], Dechert and Nishimura [10], Mitra and Ray [22],

1For a more detail survey, see Akao et al [1].
2For an analysis in continuous time, see Akao et al [2].
3In order to cover the case where the production function is not continuous, their condition

is stated on the properties of upper and under derivatives of this function.
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and Kamihigashi and Roy [17] use the notion of net gain function, representing

the discounted net returns on investment. They prove that the economy always

evolves to increase the value of net gain function. It is interesting and surprising

to see how the use of this notion provides such rich results, and it gives us deep

insights in economic dynamics.

Roy [24] studies an economy with wealth e�ects, where the utility depends not

only on the consumption but also on the capital level. He proves that the if the

sum of the marginal rate of substitution between capital-consumption and the

productivity overcomes the discount rate, beginning with a su�ciently high level

of capital accumulation, the economy does not stop accumulating and, hence,

converges to in�nity.

In this article, we consider the same question about conditions ensuring sustained

growth, in the generalised case, i.e. where the dynamics of the economy can be

characterised as a solution of

max

[
∞∑
s=0

δsV (xs, xs+1)

]
,

where δ ∈ (0, 1) is the discount factor and V denotes the payo�s function.

Under mild conditions, the following condition is su�cient for characterising sus-

tained growth:

V2(x, x) + δV1(x, x) > 0, (1.1)

for every x large enough4.

The intuition for (1.1) is that, if choosing between saving and remaining in status

quo, the saving choice always prevails, then sustained growth is possible.

The results in this article allow us to gather a large class of cases studied in

the literature under the same viewpoint. It can also be applied to situations

where Kamihigashi and Roy's [17] techniques for one-sector economy can not be

4The notations V1(x, y) and V2(x, y) denote respectively the partial derivatives corresponding
to the �rst and the second arguments.
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used, for example, two-sector economies, the economy with wealth e�ects presented

by Roy [24] and the capitalism spirit of Kamihigashi [15], or an economy with

accumulation of human capital, presented in this article.

The article is organised as follows. Section 2 presents the fundamentals of the

model. Under the tail-insensitivity condition, an optimal solution exists and, un-

der the super-modularity condition, its monotonicity is ensured. Section 3 studies

the conditions ensuring sustained growth, with the main one being (1.1). Section

4 concludes. Examples and proofs are given in the Appendix.

2 Fundamentals

2.1 The model

Time is discrete: s = 0, 1, 2, . . . . The discount factor is 0 < δ < 1. The technology

of this economy is characterised by a correspondence Γ : R+ → R+. For x0 ≥ 0,

denote by Π(x0) the set of feasible paths {xs}∞s=0 satisfying xs+1 ∈ Γ(xs) for all

s ≥ 0.

Given capital stocks at some consecutive dates xs and xs+1, the corresponding

payo� utility level at date s is V (xs, xs+1), where V is a real function whose

domain of de�nition is the graph of Γ: the set (x, y), such that y ∈ Γ(x).

For a given x0 ≥ 0, the economy solves the following inter-temporal optimisation

problem

max

[
∞∑
t=0

δsV (xs, xs+1)

]
,

s.c xs+1 ∈ Γ(xs),∀ s ≥ 0.

Denote by v the value function of this problem:

v(x0) = sup
Π(x0)

[
∞∑
s=0

δsV (xs, xs+1)

]
.
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2.2 Existence of solution and the Bell-man functional

equation

Assumption A1 establishes standard conditions ensuring the existence of a so-

lution for the maximisation problem. For the detailed comments about these

conditions, curious readers can refer to Le Van and Morhaim [18].

Assumption A1. i) The correspondence Γ is non-empty, convex, compact val-

ued, ascending5 and upper semi-continuous.

ii) The function V is continuous on Graph(Γ) and di�erentiable on its interior,

strictly increasing with respect to the �rst argument and strictly decreasing

with respect to the second one.

iii) Non-triviality: for every x0 > 0, there exists {xs}∞s=0 ∈ Π(x0) such that

∞∑
s=0

δsV (xs, xs+1) > −∞.

iv) Tail-insensitivity: Fixed x0 > 0, for every ε > 0, there exists T0, a neigh-

bourhood V of x0, such that for every x′0 ∈ V, any {x′s}∞s=0 ∈ Π(x′0), any

T ≥ T0:

∞∑
s=T

δsV (x′s, x
′
s+1) < ε.

The conditions (i), (ii) and (iii) are usual in the literature, characterising the

main properties of the technology, the trade-o� between consume today and invest

tomorrow, and ensuring that the problem is not trivial.

The most important condition is the tail-insensitivity one. This condition not only

states that the value function should be �nite, but also allows the satisfaction of

upper semi-continuity, which is important for the existence of a solution.

Under A1, the value function is strictly increasing and upper-semi continuous.

5For x ≤ x′, y ∈ Γ(x), y′ ∈ Γ(x′), we have min{y, y′} ∈ Γ(x) and max{y, y′} ∈ Γ(x′).
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This continuity ensures the existence of a solution for the optimisation problem.

For the details about the proof of Proposiiont 2.1, curious readers are referred to

Stokey and Lucas (with Prescott) [26], chapter 4.

Proposition 2.1. Assume A1. Then:

i) The value function v is strictly increasing and upper-semi continuous.

ii) A solution exists.

iii) The value function satis�es the Bellman equation:

v(x0) = max
x1∈Γ(x0)

[
V (x0, x1) + δv(x1)

]
.

iv) A sequence {xs}∞s=0 is a optimal if and only if for all s ≥ 0,

v(xs) = V (xs, xs+1) + δv(xs+1).

From now on, for x0 ≥ 0, we denote by φ the optimal policy correspondence:

φ(x0) = argmax
x1∈Γ(x0)

[
V (x0, x1) + δv(x1)

]
.

Proposition 2.1 has a consequence that φ(x0) is a non-empty, compact valued

correspondence6.

2.3 Super-modularity and monotonicity

In this section, we will study the monotonicity of optimal path and optimal policy

correspondence. It is intuitive to assume super-modularity, a property stating the

complementarity of capital accumulations.

6As in Dechert and Nishimura [10], under super-modularity condition, for x1 ∈ φ(x0), the set
φ(x1) is single-valued. Moreover, the value function v is di�erentiable at x1. This implies that
almost everywhere, the correspondence φ is single-valued and the value function is di�erentiable.
A generalisation of this result for con�gurations with uncertainty is given in Nishimura et al [23].
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Assumption A2. The payo� function V is strictly super modular.7

Under the super-modularity property, the optimal policy correspondence is "in-

creasing", as stated in Proposition 2.1. This is an important result helping the

understanding of optimal paths' behaviour. The super-modularity implies that

every optimal path is strictly monotonic. The result and proof of Lemma 2.1 are

similar to the one-sector con�guration studied in Dechert and Nishimura [10], and

Amir [3].

Lemma 2.1. Assume A1 and A2. Then

i) For every x0 < x′0, and x1 ∈ φ(x0), x′1 ∈ φ(x′0), we have x1 < x′1.

ii) Every optimal path is either strictly monotonic or constant.

A direct consequence of Lemma 2.1 is that every optimal path converges either

to some real value, or to in�nity. Moreover, Lemma 2.1 allows us to characterise

a general feature of optimal paths, stated in Proposition 2.2. If, for some initial

state x0, the optimal path converges to in�nity, then the same property is also

satis�ed for every greater initial level of capital stock, thanks to the monotonicity

of optimal policy correspondence. If such an initial state x0 does not exist, every

optimal path is bounded from above.

Proposition 2.2. Assume A1 and A2. Then only one of the following holds:

i) There exists x ≥ 0, such that for every x0 ≥ x, every optimal path beginning

from x0 is strictly increasing and converges to in�nity.

ii) for every x0 ≥ 0, every optimal path beginning from x0 is bounded from above.

7The (strict) super-modularity is de�ned as: for every (x, x′) and (y, y′) that belong to
Graph(Γ), V (x, y) + V (x′, y′)(>) ≥ V (x′, y) + V (x, y′) is veri�ed whenever (x′, y′)(>) ≥ (x, y).
When V is twice di�erentiable, (strict) super modularity sums up to positive cross derivatives:
V12(x, y)(>) ≥ 0 for every x, y. See Amir [3].
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3 The sustained growth condition

Under Assumption A1, a solution exists. Under Assumption A2, optimal paths

are monotonic. Hence, each optimal path converges either to a steady state, or to

in�nity. If, for some x0, there is an optimal path beginning from x0 that converges

to in�nity, then this property is veri�ed for every optimal path beginning from

x′0 > x0.

In this section, we discuss the condition ensuring the possibility of sustained

growth, i.e., the convergence to in�nity of the economy. To �x ideas and to sim-

plify the exposition, we also assume that the payo� function V is bounded from

below. The case where V is unbounded from below will be discussed in Section

3.3.

3.1 The condition

The main idea runs as follows: staying in the status quo is better than dimin-

ishing the capital accumulation and remaining unchanging after that. Under this

situation, the economic agents prefer to save and the capital increases.

Definition 3.1. The state x > 0 satis�es condition C if x ∈ int (Γ(x)) and

V2(x, x) + δV1(x, x) > 0. (3.1)

The signi�cance of condition C is intuitive: for every capital accumulation level

x, between the choice of staying in status quo and saving a little, the economy

prefers the latter.

Proposition 3.1 states our �rst main result. The idea runs as follows8. Assume

that condition C is satis�ed for every x > 0. Suppose there is a strictly decreasing

8The idea is inspired by similar consideration in Cao and Werming [6].
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optimal path from some x0 > 0. For every T ,

v(x0) ≥
∞∑
s=0

δsV (x0, x0)

=
V (x0, x0)

1− δ

> V (x0, x1) +
δV (x1, x1)

1− δ

> V (x0, x1) + δV (x1, x2) +
δ2V (x2, x2)

1− δ
· · ·

>
T∑
s=0

δsV (xs, xs+1) +
δT+1V (xT+1, xT+1)

1− δ
.

Let T converges to in�nity. As V is bounded from below, the right-hand-side of

the inequality converges to v(x0), which leads us to a contradiction.

3.2 The Sustained growth

In this subsection, we prove that if the condition C is satis�ed for every x > 0,

then the sustained growth is ensured.

Proposition 3.1. Assume A1 and A2. Assume that every x > 0 satis�es con-

dition C.

Then every optimal path beginning from x0 > 0 is strictly increasing and converges

to in�nity.

In opposition to the condition for sustained growth, we can also characterise the

one under which the economy is always bounded.

Proposition 3.2. Assume A1 and A2. Suppose that there exists some x̃ such

that for every x > x̃, either x ≤ min Γ(x), or x ∈ int(Γ(x)) and

V2(x, x) + δV1(x, x) < 0.

Then for every x0, every optimal path beginning from x0 is bounded.
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3.3 No unbounded payoff function

By the importance of logarithmic function, in many studies, the payo� function

V is assumed to be unbounded from below. Moreover, it is possible that, for

example in economies with a convex-concave production function, the condition

C is satis�ed only for a su�ciently large level of capital accumulation. This section

provides a partial response to these concerns. First, we relax the condition that

V is bounded from below.

Under a suitable conditions, without the boundeness hypothesis of payo� function,

the condition C ensures sustained growth. Condition (3.2) states that although

the payo� function is unbounded from below, the speed of convergence to minus

in�nity when x converges to zero is not too fast9. Under this condition, extinction

does not occur along optimal paths.

Proposition 3.3. Assume A1 and A2.

i) Suppose that for every x that is su�ciently small, the condition C is satis�ed.

Moreover,

lim
x→0

[
V (x, 0)− V (x, x)

]
= 0. (3.2)

Then every optimal path beginning from x0 > 0 is bounded away from zero.

ii) Assume further that for every x > 0, the condition C is satis�ed. Then every

optimal path beginning from x0 > 0 is strictly increasing and converges to

in�nity.

Part (ii) in Proposition 3.3 is a direct consequence of (i). As optimal paths are

bounded away from zero, they can not be decreasing. Hence, under condition C,

every optimal path converges to in�nity.

9For example, in the one sector economy in Kamihigashi and Roy [17], (3.2) is satis�ed for
logarithmic utility function and a production function satisfying Inada condition at zero.
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Corollary 3.1. Assume A1 and A2. Suppose that for every x > 0, the function

V (x, ·) is concave in respect to the second argument. Moreover,

lim
x→0

xV2(x, x) = 0. (3.3)

Then every optimal path beginning from x0 > 0 is bounded away from zero.

Corollary 3.1 follows from the result that under the concavity hypothesis, (3.3)

implies (3.2).

In the economic literature, it is possible that for some small value of capital stock,

the condition C is not satis�ed. Proposition 3.4 establishes conditions ensuring

sustained growth for cases where the economy begins with a su�ciently large level

of capital.

Proposition 3.4. Assume A1 and A2. Suppose that for every x su�ciently

large, the condition C is satis�ed. Moreover, there exists x > 0 such that

∫ ∞
x

(
V2(y, y) + δV1(y, y)

)
dy =∞.

Then there exists x such that every optimal path beginning from x0 > x is strictly

increasing and converges to in�nity.

Corollary 3.2 follows from Proposition 3.4.

Corollary 3.2. Assume A1, A2. Suppose that,

lim
x→∞

V (x, x) =∞.

Suppose that for some ε > 0, the following inequality is satis�ed for every x that

is su�ciently large:

−V2(x, x)

δV1(x, x)
≤ 1− ε.

Then there exists x such that every optimal path beginning from x0 > x is strictly

increasing and converges to in�nity.
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4 Conclusions

This article establishes conditions ensuring sustained growth. The threshold be-

yond which the economy converges to in�nity is characterised. The conditions,

in our subjective opinion, are simple and easy to verify. Conditions under which

extinction does not occur along optimal paths are precise. We can apply them in

a large class of inter-temporal optimisation problems.

The strict super-modularity in condition A2 is not only for technical convenience.

If the utility function satis�es only the super-modularity (but not strict), the

optimal paths exhibit complicated behaviours. For example, in Kamihigashi and

Roy [16], the instantaneous utility function is linear, and the optimal path reaches

one steady state in a �nite time and can jump between di�erent steady states

afterwards10. A careful consideration for this case is interesting, but that must be

the subject of another work.

5 Appendix

5.1 Applications

In this section, we discuss some applications. For the details of the models, see

Kahimigashi and Roy [17], Roy [24], Dana and Le Van [9] and Crettez et al [8].

The detailed proofs can be found in the online version of this article [11].

5.1.1 One sector economy

For the details, see Kahimigashi and Roy [17]. The payo� function is de�ned as

V (x, y) = u
(
f(x)− y

)
.

10The monotonicity is not veri�ed.
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We have

V2(x, x) + δV1(x, x) = −u (f(x)− x) + δu (f(x)− x) f ′(x)

= u′ (f(x)− x) (δf(x)− 1) .

The condition C is equivalent to f ′(x) > 1
δ
. This is the same condition in Kami-

higashi and Roy [17].

Proposition 5.1. Assume that

i) lim infx→∞ f
′(x) > 1

δ
.

ii) The utility function is unbounded from above.

Then there exists x ≥ 0, such that for every x0 ≥ x, every optimal path beginning

from x0 is strictly increasing and converges to in�nity.

Proposition 5.1 is a direct consequence of Proposition 3.4. It adds a comple-

mentary feature to the result of Kamihigashi and Roy [17], which requires that

limc→∞ u
′(c)c <∞ and hence rules out the constant elasticity and constant elas-

ticity of marginal utility functions.

5.1.2 A two-sector economy

Consider the two-sectors economy in Dana and Le Van11 [9]. One sector produces

consumption good, characterised by function f , and the other one produces capital

good, characterised by function g. Both functions are concave.

De�ne ζ(x) = g−1(x), the inverse function of g. This function is convex. The

payo� function is:

V (x, y) = u
[
f
(
x− ζ(y)

)]
.

The condition C is equivalent to ζ ′(x) < δ. Proposition 5.2 is a consequence of

Proposition 3.4.

11Chapter 4, page 92.
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Proposition 5.2. Assume that δ(1 + λ) > 1. Then, for every x > 0, ζ ′(x) < δ

and the optimal path beginning from x is strictly increasing, converges to in�nity.

5.1.3 The economy with wealth effects

Consider the model of economic growth with wealth e�ects, presented in Kamihi-

gashi [15] and Roy [24]. In this set up, the utility function depends on consumption

level and capital stock level.

The indirect function is V (x, y) = u (f(x)− y, x). This function is concave. The

Euler condition is equivalent to

f ′(x) +
ux (f(x)− x, x)

uc (f(x)− x, x)
>

1

δ
.

This is the same condition as in Roy [24]. By Roy [24], for x that is su�ciently

large, the optimal policy function h satis�es h(x) ≥ x. We weaken the condition

U1 of Roy by the following one: either ucx(c, x) ≥ 0 for every (c, x), or ucx(c, x) ≤ 0

for every (c, x). By Proposition 3.1, we obtain the same result in Roy [24].

Proposition 5.3. Denote by x∗ the biggest steady state (if steady state does not

exist, let x∗ = 0). Assume also that for some x > x∗ we have

f ′(x) +
ux (f(x)− x, x)

uc (f(x)− x, x)
>

1

δ
.

Then every optimal path beginning from x0 > x∗ is strictly increasing and converges

to in�nity.

5.1.4 Optimal growth with investment enhancing labour

We consider the optimisation problem presented by Crettez et al [8], considering

an economy with investment enhancing labour. The labour force is divided in one

part to the production sector, and in other part to enhancing labour, for example

the labour allocated to the �nancial sector.
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The payo� function is de�ned as

V (x, y) = maxu (F (x, y)) ,

where

F (x, y) = max
0≤z≤1

(
f(x, 1− z)− y

φ(z)

)
.

The condition C is equivalent to

φ (z(x, x)) f1(x, 1− z(x, x)
)
>

1

δ
.

Proposition 5.4 is a consequence of Propositions 3.1 and 3.4.

Proposition 5.4. Assume that u is unbounded from above and

lim inf
x→∞

(
− 1

φ
(
z(x, x)

) + δf1(x, 1− z(x, x)
))

> 0.

Then for a large enough x, every optimal path beginning from x is strictly increas-

ing and converges to in�nity.

Although the productivity is low, sustained growth may occur if the �nancial

sector is su�ciently e�cient.

5.1.5 Optimal growth with human capital

In this section, we consider a economy where investing in human capital may yield

a sustainable economic growth, presented in Tran [27]. There is no physical capital.

The economic agent divides the production in consumption and investment in

15



human capital, and solves the inter-temporal maximization:

max

[
∞∑
t=0

δtu(ct)

]
,

s.c ct + st+1 ≤ f(ht),

ht+1

ht
= ϕ(st+1).

The quantities ct, st are respectively the consumption and the saving at period

t and ht is the human capital at the same period. The function ϕ represents

the technology of human capital formation. It is supposed to be continuous and

strictly increasing.

Let ψ(s) = ϕ−1(s). It is the inverse function of φ. The payo� function is de�ned

as

V (x, y) = u
(
f(x)− ψ

(y
x

))
.

The condition C is equivalent to

u′ (f(x)− ψ(1))

(
δf ′(x)− (1− δ)ψ

′(1)

x

)
> 0.

Proposition 5.5. i) Suppose that f ′(x) > 1−δ
δ

ψ′(1)
x

, for every x > 0. For every

initial level of human capital, the economy converges to in�nity.

ii) Suppose that the utility function u is unbounded from above. Assume that

lim inf
x→∞

f ′(x) > 0.

Then, there exists h ≥ 0 such that for all h0 > h, every optimal path beginning

from h0 is strictly increasing and converges to in�nity.
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5.2 Proofs

5.2.1 Proof of Lemma 2.1

This proof is in line with Dechert and Nishimura [10].

Suppose that there exists x0 < x′0, x1 ∈ φ(x0), x′1 ∈ φ(x′1) and x1 ≥ x′1. Hence

x′1 ∈ Γ(x0) and in the same de�nition as Amir [3]:

(x′0, x1) = (x0, x1) ∨ (x′0, x
′
1),

(x0, x
′
1) = (x0, x1) ∧ (x′0, x

′
1).

We have

V (x0, x1) + δv(x1) ≥ V (x0, x
′
1) + δv(x′1),

V (x′0, x
′
1) + δv(x′1) ≥ V (x′0, x1) + δv(x1).

Combining these two equations we obtain

V (x0, x1) + V (x′0, x
′
1) ≥ V (x0, x

′
1) + V (x′0, x1),

which is contradictory to the super-modularity assumption A2.

The monotonicity of optimal paths is a direct consequence of the monotonicity of

the optimal policy correspondence.

5.2.2 Proof of Proposition 2.2

Assume that for some x, there exists an optimal path {xs}∞s=0 beginning from x

that converges to in�nity. Then by induction, using Lemma 2.1, for all x0 > x,

every optimal path {xs}∞s=0 beginning from x0 satis�es xs > xs for every s ≥ 0.

Hence, the sequence {xs}∞s=0 is strictly increasing and lims→∞ xs =∞.
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5.2.3 Proof of Proposition 3.1

Consider x0 > 0 and an optimal path {xs}∞s=0 beginning from x0. By Proposition

2.1, the sequence {xs}∞s=0 is strictly increasing, decreasing or constant. Suppose

that this sequence is strictly decreasing: xs > xs+1 for all t ≥ 0.

First, we prove that for all s ≥ 0,

V (xs, xs)

1− δ
> V (xs, xs+1) +

δV (xs+1, xs+1)

1− δ
.

Indeed, for xs+1 < y < xs, consider the function:

h(y) = V (x, y) +
δ

1− δ
V (y, y).

Since xs ∈ int(Γ(xs)), by the continuity and the compact-valued properties of

the correspondence Γ, xs ∈ int(Γ(xs+1)). The function h is well de�ned and

di�erentiable.

We have,

h′(y) = V2(x, y) +
δ

1− δ
(
V1(y, y) + V2(y, y)

)
≥ V2(y, y) +

δ

1− δ
(
V1(y, y) + V2(y, y)

)
=

1

1− δ
(
V2(y, y) + δV1(y, y)

)
> 0.

Hence, h(xs) > h(xs+1), which implies

V (xs, xs)

1− δ
> V (xs, xs+1) +

δV (xs+1, xs+1)

1− δ
.
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As the constant sequence (x0, x0, . . . ) belongs to Π(x0), we have:

v(x0) ≥ V (x0, x0)

1− δ

> V (x0, x1) +
δ

1− δ
V (x1, x1)

> V (x0, x1) + δV (x1, x2) +
δ2

1− δ
V (x2, x2)

· · ·

>
T∑
s=0

δsV (xs, xs+1) +
δT+1

1− δ
V (xT+1, xT+1).

Letting T converge to in�nity, the right-hand-side of the inequality converges to

v(x0): a contradiction.

Therefore the sequence {xs}∞s=0 is either strictly increasing or constant. Suppose

that this sequence does not converge to in�nity, then lims→∞ xs = x̃. By the upper

semi-continuity of the value function v, we have x̃ ∈ φ(x̃): the limit value x̃ is a

steady state. By the Euler equation, we have

V2(x̃, x̃) + δV1(x̃, x̃) = 0,

a contradiction. The proof is completed.

5.2.4 Proof of Proposition 3.2

Fix a su�ciently large x0. Suppose that there is an strictly increasing optimal path

beginning from x0. As, for a su�ciently large x, we have V2(x, x) + δV1(x, x) < 0,

the function h(y) = V (x, y) + δV (y,y)
1−δ is decreasing in [x,∞). Using the same

argument in the proof of Proposition 3.1, we obtain:

v(x0) ≥ V (x0, x0)

1− δ

>
T∑
s=0

δsV (xs, xs+1) +
δT+1V (xT+1, xT+1)

1− δ
,
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which converges to v(x0) when T converges to in�nity: a contradiction.

5.2.5 Proof of Proposition 3.3

(i) Fix x0 > 0 and an optimal path {xs}∞s=0 beginning from x0. Assume that this

path converges to zero. This implies that for all 0 < x < x0, every optimal path

beginning from x is strictly decreasing and converges to zero.

First, we prove the following claim: under (3.2),

lim
x→∞

[
v(x)− V (x, x)

1− δ

]
= 0.

Indeed, �x any ε > 0. By (3.2), for a su�ciently small x, we have

V (x, 0) < V (x, x) + (1− δ)ε.

Consider an optimal path {x′s}∞s=0 beginning from x. We have

v(x) =
∞∑
s=0

δsV (x′s, x
′
s+1)

≤
∞∑
s=0

δsV (x, 0)

<
V (x, x)

1− δ
+ ε.

As ε is chosen arbitrarily, the claim is proven.

We prove the second claim: for every 0 < x < x0, the following inequality is

satis�ed:

v(x0)− v(x) <

∫ x

x

V1(y, y)dy.

Consider T such that xT > x ≥ xT+1.
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For 0 ≤ s ≤ T − 1 we have

v(xs)− v(xs+1) = V (xs, xs+1) + δv(xs+1)− v(xs+1)

≤ V (xs, xs+1) + δv(xs+1)− V (xs+1, xs+1)− δv(xs+1)

= V (xs, xs+1)− V (xs+1, xs+1)

=

∫ xs

xs+1

V1(y, xs+1)dy

≤
∫ xs

xs+1

V1(y, y)dy.

The last inequality comes from the super-modularity: since V satis�es the increas-

ing di�erences property, V1(y, y) ≥ V1(y, xs+1) for y ≥ xs+1.

For s = T , observe that by the ascending property and the continuity of Γ,

xT+1 ∈ Γ(x). We then have

v(xT )− v(x) ≤ V (xT , xT+1) + δv(xT+1)− V (x, xT+1)− δv(xT+1)

= V (xT , xT+1)− V (x, xT+1)

=

∫ xT

x

V1(y, xT+1)dy

≤
∫ xT

x

V1(y, y)dy.

This implies

v(x0)− v(x) =
T−1∑
s=0

(v(xs)− v(xs+1)) + (v(xT )− v(x))

≤
T−1∑
s=0

∫ xs

xs+1

V1(y, y)dy +

∫ xT

x

V1(y, y)dy

=

∫ x0

x

V1(y, y)dy.

The second claim is proven.
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Now, we chose a su�ciently small x such that

v(x)− V (x, x)

1− δ
<

1

1− δ

∫ x0

x

(
V2(y, y) + δV1(y, y)

)
dy.

Let ε = v(x)− V (x,x)
1−δ .

We have

V (x0, x0)− V (x, x) ≤ (1− δ)v(x0)− (1− δ)v(x) + (1− δ)ε

≤ (1− δ)
(
v(x0)− v(x)

)
+ (1− δ)ε

≤ (1− δ)
∫ x0

x

V1(y, y)dy + (1− δ)ε.

This implies

∫ x0

x

(V1(y, y) + V2(y, y)) dy ≤ (1− δ)
∫ x0

x

V1(y, y)dy + (1− δ)ε,

which is equivalent to

∫ x

x∗
(V2(y, y) + δV1(y, y)) dy ≤ (1− δ)ε,

a contradiction.

The sequence {xs}∞s=0 is bounded away from zero.

(ii) Fix any x0 > 0. Suppose that there exists an optimal path {xs}∞s=0 beginning

from x0 that is decreasing or constant. In the former case, by part (i), this path is

bounded away from zero. Using the same arguments in the proof of Proposition

3.1, we have limT→∞ δ
TV (xT , xT ) = 0, which implies V (x0, x0) > (1 − δ)v(x0):

a contradiction. In the later case, since x0 ∈ int(Γ(x0)), the Euler equation give

V2(x0, x0) + δV1(x0, x0) = 0: a contradiction.
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5.2.6 Proof of Corollary 3.1

By the concavity of V (x, ·) with respect to the second argument, we have

V (x, 0)− V (x, x) ≤ −xV2(x, x).

Then (3.3) implies (3.2).

5.2.7 Proof of Proposition 3.4

Fix any x > 0 such that every x0 > x satis�es condition C. Fix x > x such that

v(x)− V (x, x)

1− δ
<

∫ x

x

(
V2(y, y) + δV1(y, y)

)
dy.

Consider some x0 > x and an optimal path {xs}∞s=0 beginning from it. If there

exists T such that xT ≥ x > xT+1, using the same arguments as in the proof of

Proposition 3.3, we obtain

(1− δ)
∫ x

x

(
V2(y, y) + δV1(y, y)

)
≤ (1− δ)v(x)− V (x, x),

a contradiction.

Hence, the path {xs}∞s=0 is bounded from below by x. Using the same arguments

as in the proof of Proposition 3.1, the sequence {xs}∞s=0 must be strictly increasing

and converges to in�nity.

5.2.8 Proof of Corollary 3.2

Obviously, the condition in the statement implies that V2(x, x) + δV1(x, x) > 0 for

x > x∗. As V2(y, y) ≤ 0 for all y and

V (x, x)− V (x∗, x∗) =

∫ x

x∗

(
V1(y, y) + V2(y, y)

)
dy,
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we have

∫ ∞
x∗

V1(y, y)dy =∞.

The condition in the statement also implies that for x > x∗,

V2(x, x) + δV1(x, x) ≥ εV1(x, x).

Hence

∫ ∞
x∗

(V2(y, y) + δV1(y, y)) dy ≥
∫ ∞
x∗

V1(y, y)dy

=∞.

The proof is completed by applying Proposition 3.4.
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