open science

Prevalence of canine hip dysplasia in 17 breeds in France, a retrospective study of the 1993-2019 radiographic screening period

J.-P. Genevois, A. Baldinger, Pierre Moissonnier, Anthony Barthélemy, C. Carozzo, E. Viguier, Thibaut Cachon

To cite this version:

J.-P. Genevois, A. Baldinger, Pierre Moissonnier, Anthony Barthélemy, C. Carozzo, et al.. Prevalence of canine hip dysplasia in 17 breeds in France, a retrospective study of the 1993-2019 radiographic screening period. Revue Vétérinaire Clinique, 2020, 55, pp.123-146. 10.1016/j.anicom.2020.09.003. hal-03493735

HAL Id: hal-03493735

https://hal.science/hal-03493735

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Original Article

Prevalence of canine hip dysplasia in 17 breeds in France, a retrospective study of the 1993-2019 radiographic screening period

J-P. Genevois ${ }^{1,2 \&}$, A. Baldinger ${ }^{1,2^{* \&}}$, P. Moissonnier ${ }^{1,2}$, A. Barthélemy ${ }^{3}$, C. Carozzo ${ }^{1,2}$, É. Viguier ${ }^{1,2}$ and T. Cachon ${ }^{1,2 \&}$

${ }^{1}$ Surgery Unit, Lyon Veterinary Teaching Hospital, Université de Lyon, VetAgro Sup, Marcy l'Etoile, France
${ }^{2}$ Research Unit ICE, UPSP A104-2016, Université de Lyon, VetAgro Sup, Marcy l'Etoile, France
${ }^{3}$ Intensive Care Unit (SIAMU), Université de Lyon, VetAgro Sup, Marcy l'Etoile, APCSe, France
*Corresponding author
Email: jp.genevois@free.fr Tel: +33661181769

Line 116: XXX stands for JPG
\&These authors contributed equally to this work

Prevalence of canine hip dysplasia in 17 breeds in France, a retrospective study of the 1993-2019 radiographic screening period

Summary

Canine hip dysplasia is a complex developmental disease of the coxo-femoral joint and one of the most common orthopedic conditions in dogs. Due to the genetic contribution, most of the programs fighting against hip dysplasia recommend selective breeding that excludes affected dogs. In France, the phenotypic screening of coxo-femoral joint conformation remains a strategy for breeders to establish selection decisions.

We compared the hip dysplasia prevalence in affected breeds over several periods of time to evaluate the effectiveness of the hip dysplasia control program in France.

17 breeds were studied, based on the assessment of 8022 dogs, during the 1993-2019 screening period, which was divided into several intervals for analysis.

The prevalence varied widely from 8.8% (Hovawart) to 49.2% (American Staffordshire Terrier). It decreased over time in 10 breeds, the decrease being significant in the Picardy shepherd dog. An increase in prevalence was noted in 7 breeds, although the differences were not statistically significant.

Our results are in accordance with several recent studies showing that long-term selection policies may help decreasing the hip dysplasia prevalence in some breeds. The complementary use of more recent tools such as estimated breeding values and genomics would probably help breeders achieve more substantive results.

Keywords: Hip dysplasia, dog, phenotypic screening

Résumé

La dysplasie de hanche est une affection complexe de l'articulation coxo-fémorale particulièrement courante chez le chien. Compte tenu de l'héritabilité de l'affection, la plupart des programmes de lutte contre l'affection recommandent d'exclure les chiens affectés de la reproduction. En France, le dépistage phénotypique de la dysplasie de hanche est utilisé par les éleveurs dans leurs plans de sélection.

Afin d'évaluer l'efficacité du programme de contrôle de la dysplasie de hanche en France, nous avons étudié l'évolution de la prévalence de l'affection chez 17 races, sur la base de l'évaluation radiographique de 8022 chiens, au cours de la période 1993-2019 (divisée en plusieurs intervalles pour l'analyse).

La prévalence de la dysplasie de hanche varie de $8,8 \%$ (Hovawart) à $49,2 \%$ (American Staffordshire Terrier). Pour 10 races, elle a diminué au fil du temps, la diminution étant statistiquement significative chez le Picardy shepherd dog. Une augmentation de prévalence est observée pour 7 races, mais les différences ne sont pas statistiquement significatives. Nos résultats sont conformes à plusieurs études récentes qui montrent que la politique de sélection des reproducteurs permet de diminuer la prévalence de la dysplasie de hanche dans un certain nombre de races. L'utilisation complémentaire d'outils plus récents tels que les valeurs estimées de reproduction et la génomique permettrait probablement d'obtenir des résultats plus conséquents.

Introduction

Canine hip dysplasia (HD) is a complex developmental disease of the coxo-femoral joint and is one of the most common orthopedic conditions in dogs [1].

Osteoarthritis results from the varying degree of hip laxity of the coxo-femoral joint leading to subluxation of the femoral head, a shallow acetabulum and flattening of the femoral head [2]. These anatomical abnormalities lead to an inflammatory reaction with secondary degenerative joint disease associated with pain and lameness ranging from mild to severe $[1,3]$. The multifactorial characteristics of this medical condition are the results of genetic and environmental contributions (nutrition, growth rate, overall body weight). Studies have shown that the degree of heritability varies from 0.11 to 0.68 among different dog breeds [4].

Due to the genetic predisposition, excluding affected dogs from breeding has been shown to reduce the prevalence of HD [5]. The heritability of HD and the response to selection is however breed dependent. The higher the heritability, the greater is the expected genetic improvement over time when selective breeding is practiced [6].

In France, a program intending to reduce HD prevalence was introduced in 1971 under the responsibility of each breed club and supervised by the French Kennel Club (SCC: Société Centrale Canine) [7]. Currently, phenotypic screening for coxo-femoral joint conformation remains a strategy for breeders for making selection decisions [8]. Radiographic screening for HD is based on a conventional ventrodorsal hip extended radiograph in anaesthetized or deeply sedated dogs. According to the Fédération Cynologique Internationale (FCI), a fiveclass system is used in continental Europe, Asia, Russia and parts of South America (Table 1). The grades are defined descriptively based on the size of the Norberg angle (NA), depth of the acetabulum, degree of subluxation and signs of secondary joint disease [9].

The minimum age for official screening is 12 months, except in large and giant breeds, in which it is 18 months [7]. For each breed, an official reader is appointed by the breed club to analyse the radiographs. Several control programs have been conducted in different countries over the last 25 years, and their ability to reduce hip dysplasia has shown variable results. While several reports identified a decrease in HD prevalence [5,7,10-16], others failed to identify any significant progress [17-20].

The aim of our observational study was to compare the HD prevalence in affected breeds over several periods of time to evaluate the effectiveness of the hip dysplasia control program in France. This study is complementary of a first one [16], which was recently published and related to 10 other breeds, over the 1997-2017 screening period.

Materials and methods

Data

From 1993 to 2019, 50955 standard radiographs of extended hindlimbs submitted by breeders or owners were evaluated independently by the same examiner (XXX) for HD assessment. All the data were computerized and recorded in a single electronic database to allow further analysis. For the present study, and for each selected breed, the incidence of each of the 5 scoring classes (Table 1) was extracted from the database for each year covered in this retrospective study. Breeds were excluded if the single panelist changed before the end (2019) of the study period, or if the total number of radiographs read per breed was insufficient (i.e. <200).

Scoring protocol

All dogs were scored according to the FCI 5 class grading scale (Table 1). Each joint was assigned to one of five grades (A-E) that are defined descriptively; the final grade refers to the worst joint. A and B are considered as normal joints (non-dysplastic), and grades C, D and E represent mild, moderate and severe dysplasia, respectively. To evaluate and compare the HD prevalence over time, each breed was divided into 2 cohorts, depending on the length of their screening period.

Statistical analysis

For each breed and each period, HD prevalence (expressed as \%) was obtained by dividing the number of dogs that scored C-D and E by the total number of dogs evaluated for the breed.

Within each breed, HD prevalence was compared among the periods using their 95% confidence interval $(95 \% \mathrm{CI})$ calculated by the Wilson/Brown method. The 95% CI assumes
binomial data. Statistical analyses were performed by one author (AB) using a commercial software program (Prism 6, GraphPad Software, La Jolla, USA, CA).

Results

Overall, 8022 records for 17 breeds were included in the study : American Akita, Altdeutscher Schaferhund, American Cocker Spaniel, American Staffordshire Terrier, Picardy shepherd dog, French pointer, Chow Chow, Czechoslovakian Wolfdog, Dalmatian, English Springer Spaniel, Blue Picardy spaniel, Picardy spaniel, Hovawart, Rhodesian Ridgeback, Giant Schnauzer, Schnauzer and Irish Setter.

The overall prevalence of HD was evaluated in each breed mentioned above. The study period extended from 1993 to 2019 for 8 breeds. For the remaining 9 breeds, the official panelist changed during the screening period, and the study period was therefore shorter, as listed in Table 2.

The different periods of screening used to evaluate and compare HD prevalence over time in each breed are listed in Table 3.

The HD prevalence for each breed varied from 8.8% (Hovawart) to 49.2% (American Staffordshire Terrier). The overall HD prevalence associated with the FCI 5-class grading scale in all breeds is listed in Table 4. The overall HD prevalence is presented in Fig 1.

The prevalence of the different grades according to the FCI scale and prevalence of HD over the different periods of time are shown for each breed in Figs 2-18.

A diminishing prevalence of HD was noted in 10 breeds in this study (Picardy shepherd dog, Blue Picardy spaniel, Czechoslovakian Wolfdog, Giant Schnauzer, American Akita, American Cocker Spaniel, Irish Setter, French pointer, Rhodesian Ridgeback, and Hovawart).

The decrease in HD prevalence (Table 5) was significant in the Picardy shepherd dog. In this breed, between 1993 and 2019, the HD prevalence dropped from 39.9% to 25.1%.

For all 10 breeds with a decrease in HD prevalence, a marked decrease in the D-E grades was noted, except for the Hovawart in which the C and D grades decreased (no E grade remained stable. For the Rhodesian Ridgeback, a decrease in the C grade in association with the D and grades was noted. For the American Akita, it was a decrease in C and E grades.

A non-significant increase in HD prevalence was observed in 7 breeds (American Staffordshire Terrier, Chow Chow, English Springer Spaniel, Schnauzer, Altdeutscher Schaferhund; Table 5).

In 3 of these 7 breeds with an increased HD prevalence, there was an increase in the C grade associated with a decrease in D grade (Altdeutscher Schaferhund, English Springer Spaniel, American Staffordshire Terrier).

A stable HD prevalence was observed for the Picardy spaniel and for the Dalmatian (for which it remains rather low).

Discussion

A diminishing prevalence of HD was noted in 10 breeds in this study. Among them, the Picardy shepherd dog showed a significant change in HD prevalence over the study period. These results support the fact that a long-term purely phenotypic selection mode against hip dysplasia based on radiographic screening control might be efficient in decreasing the HD prevalence.

The increase in the C grade noted in 3 breeds (Altdeutscher Schaferhund, English Springer Spaniel, American Staffordshire Terrier) with an increased HD prevalence is difficult to explain, and the situation is most likely different from breed to breed. The altdeutscher schaferhund breed club forbids mating D or E scored individuals and strongly recommends, when using a C scored dog for breeding, to mate it with an A. As for the other breed clubs, there are no special breeding recommendations on their website, but the clubs try to promote both hip radiographic screening and using best scored dogs for breeding through selection grids, in accordance with the French Kennel Club.

We may consider that, for a while, the selection was potentially not strong enough in some breeds. We could also assume that, for the English Springer Spaniel, for instance, the increase in the B grade led to an increase in B to B mating (instead of A to A or A to B mating), which, due to the genetic recombination, could result in an increased risk of obtaining C scoring dogs in the offspring. However, the variation between the initial and final period in terms of HD prevalence noted in these breeds was 3\%, except in the American Staffordshire Terrier (7\% variation). Yet, this increase among the several periods remained slight and not significant.

A previous study demonstrated that when all dogs in a breed have nearly the same hip phenotype, almost no selection pressure can be applied to improve hip quality based on hip radiograph screening [14]. According to the results of the present study, this was potentially the case for the Picardy spaniel and the Dalmatian, which demonstrated slight changes in HD prevalence.

Overall, 12 breeds had a prevalence of moderate and severe HD (D-E grades) lower than 10% which is consistent with the results of a recent survey [21]. Five breeds (Picardy shepherd dog, Blue Picardy spaniel, Picardy spaniel, Chow Chow and American Staffordshire Terrier) had a prevalence of D-E grades lower than 25%. In these breeds, there is still a margin for improvement, though in the Picardy shepherd dog, Blue Picardy spaniel and Picardy spaniel the situation is not easy to handle because these breeds have a reduced number of individuals and breeders and thus a limited number of annual births. As for the Picardy shepherd dog for example [22], just after World War II, the breed was restored using some well typed individuals, crossbred with bouvier des Flandres. Two subjects issued from this selection can be found in the ancestry of current registred dogs [23]. Therefore it most likely that there is only a very slight genetic diversity in the small number of bergers picards. The total population was estimated around 1200 registred dogs in the 1990s. The number of annual births, these last 5 years, was between 138 and 210, averaging 5-6 puppies per letter.

These results are consistent with previous studies indicating that selective breeding using classifications of hip joint phenotypes might improve hip conformation in several breeds of dogs [5,7,10-16], although other studies showed different findings, and the efficiency of using screening programs to reduce the prevalence of HD has been questioned [17-20].

These results must be interpreted with caution since the evaluation of coxo-femoral joint status is not mandatory for breeding in France [7]. In a 1993-2002 survey [24], it was
demonstrated that in France, only 2 to 19% of the dogs were screened for HD. Although the number of screened dogs has increased since this period, it is likely that, depending on the breed, a small fraction of all breeding dogs undergo a hip radiograph. Moreover, there is an unknown proportion of veterinarian (or owner) prescreening of the radiographs with obvious hip dysplasia, leading to the lack of presentation of the "worst" radiographs for official screening. Therefore, our data reflect only those dogs whose owners and breeders submitted radiographs for analysis. This proportion varies from 20 to 40% in Switzerland [25]. In Scandinavian countries, all breeding animals in control-program breeds are screened, and both dam and sire hip radiographs need to be submitted for screening to be registered by the Kennel Club [13, 17,18]. In these countries, an HD control program gives a good overall prevalence for each breed. A study demonstrated that an improvement in hip quality can be achieved by selection based on the subjective scoring of radiographs when all dogs of a breed are evaluated [14].

Therefore, the lack of breeding restrictions in France and other countries [5] (United Kingdom, United States of America) and the associated lower scoring rate might explain the smaller degree of progress for some breeds. As previously mentioned, the true prevalence of HD could be higher than that depicted by our results because they reflect only the results of the radiographs submitted for official screening [7].

Most of the French breed clubs that are involved in a HD control program encourage breeders to have their breeding stock and offspring radiographed through a scoring grid which takes into account the fact that the dog and/or some of its offspring have been submitted to radiographic hip scoring and the results of the scoring. Every result from an official hip scoring that is communicated by the breed club to the French Kennel Club (SCC) is mentioned on the dog's pedigree, which is now a 5-generation pedigree document. The result is also registered on an open access internet portal created by the SCC named LOF Select.

This portal enables breeders to access the characteristics of every registered dog, look for a breeding dog, and create virtual matings. Furthermore, the SCC is involved in a program to calculate and set up estimated breeding values, to help breeders choose their breeding stock. A project to create a reproductive ability certification, which would involve health characteristics (including hip status) is under study. It would undoubtedly increase the number of radiographed dogs.

The HD screening system is based on a subjective evaluation of radiographic findings. Panelist dependent variation is possible, and it has been demonstrated that significant intraand inter-observer variation in classification may occur [26]. In our study, all breeds were evaluated by the same single panelist, which avoided interobserver variability, yet an intraobserver variability over the long study period cannot be totally excluded.

In our study, multiple anesthesia/sedation protocols were used. No standardized protocols have been proposed for performing hip radiographs, as it has been decided that, for security reasons, the best protocol is the one the veterinarian is comfortable using. A Scandinavian study [27] showed that acepromazine should not be used for sedation because it causes a very poor myoresolution. A study concerning the type of chemical restraint used by French veterinarians performing HD screening radiographs $[28,29]$ showed that these protocols are acceptable based on the FCI standard requirements for HD screening.

A study demonstrated a strong association between the radiographic scoring of hip status and subsequent incidence of veterinary care and mortality related to HD in five breeds of dogs. It demonstrated that the selection of breeding stock based on the screening results with regard to hip status can be expected to reduce the risk of clinical problems related to HD [30] which also emphasizes the interest in and effect of selection based on hip radiograph screening to reduce the HD prevalence.

It is, however, unlikely that the HD prevalence can be reduced much further based only on the radiographic screening control. Several other approaches to assessing the coxo-femoral joint status have been proposed, such as hip joint laxity measurements (distraction methods, distraction Norberg angle) and the use of estimated breeding values.

Distraction methods were first described by the PennHip organization [31] and have been shown to be reliable screening methods for predicting hip joint degeneration [32]. A recent study [33] evaluated the correlation between the distraction angle (DI) and the distraction Norberg angle measured at 4 months of age, and the official FCI hip score determined at 12 months of age. It was shown that the distraction Norberg angle had a fair correlation with the DI at 4 months and therefore reflects hip passive laxity. It also demonstrated that 98% of hips with a distraction Norberg angle higher than 85° at 4 months had an A, B or C FCI score at 12 months of age. D and E FCI scores at 12 months cannot be reliably predicted from the 4 month value of DI or distraction Norberg angle.

To reduce the incidence of HD, many researchers have recommended the use of estimated breeding values (EBV) to improve the rate of genetic progress in terms of selection against HD [17,34,35,37].

A study showed that the EBV is more accurate and abundant than the phenotype [34] and provides more reliable information on the genetic risk of disease for a greater proportion of the population. An efficient selection mode is to include information about the hip status of relatives because the inheritance of HD is still unclear, and dogs with phenotypic normal hip joints may carry genes leading to HD in their offspring [36]. A recent study confirmed that using phenotypic health information and selecting sires and dams from pedigrees free from HD improves hip joint health and therefore reduces the HD prevalence [37,38].

There is a great deal of research based on genomics and distraction Norberg angle testing related to canine HD [39-42], some of which is linked to similar human pathology [43]. It is
beyond the scope of this study to address this very specific research area, but it is likely that, in the foreseeable future, new tools will complement radiographic examination of the coxofemoral joint in order to prevent canine HD.

Conclusions

This study confirms that long-term selection based on hip radiograph screening can be expected to reduce the HD prevalence in some breeds and that phenotypic selection for hip conformation may be effective, although it is dependent on the voluntary participation of breeders and owners. The true prevalence of HD in the breeds presented in this study is probably higher than those reported in our results. To achieve a further decrease in the HD prevalence, the use of EBV and genomic selection should be considered.

Acknowledgement

The authors want to thank Dr. Thomas Lecoq for his assistance with this manuscript.

Conflicts of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

References

Due to the large number of references about canine hip dysplasia, this review references are limited to the most appropriate to our study.

1. Riser WH. The dysplastic hip joint: radiologic and histologic development. Veterinary Pathology. 1975; 12:279-305.
2. Henricson B, Norberg I, Olsson SE. On the etiology and pathogenesis of hip dysplasia: a comparative review. Journal of Small Animal Practice. 1966; 7:673-88.
3. Ginja M, Silvestre A, Gonzalo-Orden J, Ferreira A. Diagnosis, genetic control and preventive management of canine hip dysplasia: a review. The Veterinary Journal. 2010; 184(3):269-76.
4. Breur GJ, Lust G, Todhunter RJ. Genetics of canine hip dysplasia and other orthopaedic traits. The Genetics of the Dog Ruvinsky A and Sampson J, ed CABI Publ, Wallingford, UK. 2001:267-98.
5. Ohlerth S, Geiser B, Flückiger M, Geissbühler U. Prevalence of canine hip dysplasia in Switzerland between 1995 and 206 - A retrospective study in 5 common large Breeds. Frontiers in Veterinary Science. 2019; 6:378 doi: 10.3389/fvets.2019.00378
6. King MD. Etiopathogenesis of canine hip dysplasia, prevalence and genetics. Veterinary Clinics of North America: Small Animal Practice. 2017; 47:753-67 doi: 10.1016/j.cvsm.2017.03.001
7. Genevois JP, Remy D, Viguier E, Carozzo C, Collard F, Cachon T, et al. Prevalence of hip dysplasia according to official radiographic screening, among 31 breeds of dogs in France. Veterinary and Comparative Orthopaedics and Traumatology. 2008; 21:21-24
8. Korec E, Hancl M, Bydzovska M, Chalupa O, Korcova J. Segregation analysis of canine hip dysplasia in Cane Corso Italiano dogs. Approaches in Poultry, Dairy and Veterinary Sciences. 2018; 2: 1-3 DOI: 10.31031/APDV.2018.02.000539
9. Flückiger M. Scoring radiographs for canine hip dysplasia - the big three organisations in the world. European Journal of Companion Animal Practice. 2007; 17:135-140
10. Janutta V, Hamann H, Distl O. Genetic and phenotypic trends in canine hip dysplasia in the German population of German shepherd dogs. Berliner und Münchener tierärztliche Wochenschrift. 2008 ; 121:102-9
11. Hou Y, Wang Y, Lust G, Zhu L, Zhang Z, Todhunter RJ. Retrospective analysis for genetic improvement of hip joints of cohort labrador retrievers in the United States: 1970-2007. PLoS ONE. 2010 ; 5:e9410. doi: 10.1371/journal.pone. 0009410
12. Swenson L, Audell L, Hedhammar A. Prevalence and inheritance of and selection for hip dysplasia in seven breeds of dogs in Sweden and benefit: cost analysis of a screening and control program. Journal of the American Veterinary Medical Association. 1997; 210: 207-14
13. Kaneene JB, Mostosky UV, Padgett GA. Retrospective cohort study of changes in hip joint phenotype of dogs in the United States. Journal of the American Veterinary Medical Association. 1997; 211: 1542-4
14. Leighton EA, Holle D, Biery DN, Gregor TP, McDonald-Lynch MB, Wallace ML, Reagan JK, Smith GK. Genetic improvement of hip-extended scores in 3 breeds of guide dogs using estimated breeding values: Notable progress but more improvement is needed. PLOS ONE. 2019; 14 e0212544. doi: 10.1371/journal.pone. 0212544
15. James HK, McDonnell F, Lewis TW. Effectiveness of canine hip dysplasia and elbow dysplasia improvement programs in six UK Pedigree Breeds. Frontiers in Veterinary Science. 2020; 6:490 doi: 10.3389/fvets.2019.00490
16. Baldinger A, Genevois JP, Moissonnier P, Barthélemy A, Carozzo C, Viguier E, Cachon T. Prevalence of canine hip dysplasia in 10 breeds in France, a retrospective study of the 1997-2017 radiographic screening period. Plos One 2020. 15(7): e0235847. https://doi.org/10.1371/journal. pone. 0235847
17. Leppanen M, Mäki K, Juga J, Saloniemi H. Factors affecting hip dysplasia in German shepherd dogs in Finland: efficacy of the current improvement programme. Journal Of Small Animal Practice. 2000; 41:19-23. doi: 10.1111/j.1748-5827.2000.tb03130.x
18. Leppanen M, Saloniemi H. Controlling canine hip dysplasia in Finland. Preventive Veterinary Medicine. 1999; 42: 121-131. doi : 10.1016/s0167-5877(99)00059-8
19. Mäki K, Groen AF, Liinamo AE, Ojala M. Genetic variances, trends and mode of inheritance for hip and elbow dysplasia in Finnish dog populations. Animal Science. 2002; 75:197-207. doi: 10.1017/S1357729800052966
20. Willis MB: A review of the progress in canine hip-dysplasia control in Britain. Journal of the American Veterinary Medical Association. 1997; 210: 1480-2
21. Hedhammar A. Swedish experiences from 60 years of screening and breeding programs for hip dysplasia - Research, success and challenges. Frontiers. 2020; 7: 228 doi: $10.3389 / f v e t s .2020 .00228$
22. Clerc B, de Geyer G, Laforge H, Maisonneuve P, Michaud B, Quignon P, et al. La rétinopathie du Berger de Picardie dans la population canine française : état des connaissances Rev Vét Clin 2020;55:11-29.
23. Pêcheur C. Contribution à l'étude des rétinopathies chez le Berger picard. Université Cl. Bernard-Lyon 1(médecine, pharmacie); 1990.
24. Genevois JP, Fau D, Carozzo C, Chanoit G, Viguier E, Remy D. Dépistage officiel de la dysplasie coxo-fémorale : détermination, au sein de 16 races canines en France, de la
population faisant l'objet d'un dépistage radiographique systématique. Etude rétrospective sur la période 1993-2002. Revue de médecine vétérinaire. 2005; 156 : 299-300.
25. Flückiger M, Friedrich GA, Binder H. A radiographic stress technique for evaluation of coxofemoral joint laxity in dogs. Veterinary Surgery. 1999; 28: 1-9. doi: 10.1053/jvet.1999.0001
26. Smith GK, Lafond E, Gregor T, Lawler D, Nie R. Within- and between- examiner repeatability of distraction indices of the hip joints in dog. American Journal of Veterinary Research. 1997; 58: 1076-7
27. Malm S, Strandberg E, Danell B, Audell L, Swenson L, Hedhammar A. Impact of sedation method on the diagnosis of hip and elbow dysplasia in Swedish dogs. Preventive Veterinary Medicine. 2007; 78: 196-209. doi: 10.1016/j.prevetmed.2006.10.005
28. Genevois JP, Chanoit G, Carozzo C, Remy D, Fau D, Viguier E. Influence of anaesthesia on canine hip dysplasia score. Journal of veterinary medicine. A, Physiology, pathology, clinical medicine. 2006 ; 53 :415-417. doi : 10.1111/j.14390442.2006.00845.
29. Maitre P, Genevois JP, Remy D, Carozzo C, Arnault F, Buttin P et al. Description of the type of chemical restraint used by French veterinarians to perform hip dysplasia screening radiographs. Veterinary and Comparative Orthopaedics and Traumatology. 2010; 23:245-249. doi: 10.3415/VCOT-10-01-0004
30. Malm M, Fikse F, Egenvall A, Bonnett BN, Gunnarsson L, Hedhammar A. Association between radiographic assessment of hip status and subsequent incidence of veterinary care and mortality related to hip dysplasia in insured Swedish dogs. Preventive Veterinary Medicine. 2010; 93: 222-232. doi:10.1016/j.prevetmed.2009.09.017
31. Powers MY, Karbe GT, Gregor TP, McKelvie P, Culp WT, Fordyce HH, Smith GK. Evaluation of the relationship between Orthopedic Foundation for Animals' hip joint scores and PennHIP distraction index values in dogs. Journal of the American Veterinary Medical Association. 2010; 1: 532-41. doi: 10.2460/javma.237.5.532.
32. Smith GK, Gregor TP, Rhodes WH, Biery DN. Coxofemoral joint laxity from distraction radiography and its contemporaneous and prospective correlation with laxity, subjective score, and evidence of degenerative joint disease from conventional hip-extended radiography in dogs. American Journal of Veterinary Research. 1993; 54: 1021-42
33. Taroni M, Genevois JP, Viguier E, Pillard P, Livet V, Cachon T, et al. Comparison of early measurements of the distraction index, Norberg Angle on distracted view and the official radiographic evaluation of the hips of 215 dogs from two guide dog training schools. Veterinary and Comparative Orthopaedics and Traumatology. 2018; 31:445451. doi: $10.1055 / \mathrm{s}-0038-1668087$
34. Lewis TW, Blott SC, Wooliams JA. Comparative analyses of genetic trends and prospects for selection against hip and elbow dysplasia in 15 UK dog breeds. BMC Genetics. 2013; 14: 16. doi: 10.1186/1471-2156-14-16.
35. Ginja MMD, Silvestre AM, Gonzalo-Orden JM, Ferreira AJA. Diagnosis genetic control and preventive management of canine hip dysplasia: a review. Veterinary Journal. 2010; 184:269-76. doi:10.1016/j.tvj1.2009.04.009
36. Dennis R. Interpretation and use of BVA/KC hip scores in dogs. Companion Animal Practice. 2012. 34:178-94. doi: 10.1136/inp.e2270
37. Oberbauer AM, Keller GG, Famula TR. Long-term genetic selection reduced prevalence of hip and elbow dysplasia in 60 dog breeds. PLOS ONE. 2017, 12 e0172918. doi: 10.1371/journal.pone. 0172918
38. Wang S, Strandberg E, Viklund A, Windig JJ, Malm S, Lewis T et al. Genetic improvement of canine hip dysplasia through sire selection across countries. The Veterinary Journal. 2019, 248:18-24. doi: 10.1016/j.tvj1.2019.03.009
39. Guo G, Zhou Z, Wang Y, Zhao K, Zhu L, Lust G et al. Canine hip dysplasia is predictable by genotyping. Osteoarthritis Cartilage. 2011; 19:420-9. doi: 10.1016/j.joca.2010.12.011
40. Mikkola L, Holopainen S, Pessa-Morikawa T, Lappalainen AK, Hytonen MK, Lohi H, et al. Genetic dissection of canine hip dysplasia phenotypes and osteoarthritis reveals three novel loci. BMC Genomics. 2019; 20:1027. doi: 10.1186/s12864-019-6422-6
41. Bartolomé N, Segarra S, Artieda M, Francino O, Sanchez E, Szczypiorska M, et al. A Genetic Predictive Model for Canine Hip Dysplasia: Integration of Genome Wide Association Study (GWAS) and Candidate Gene Approaches. PLOS ONE. 2015; 10 doi:10.1371/journal.pone. 0122558
42. Manz E, Tellhelm B, Krawczak M. Propective evaluation of a patented DNA test for canine hip dysplasia (CHD). PLOS ONE. 2017; 12 doi: 10.1371/journal.pone. 0182093
43. André C, Guaguère E, Chaudieu G, Genevois JP, Devauchelle P. The importance of dogs for comparative pathology and genetics: Examples of shared resources and programmes. 2017; 52: 55-70. doi :10.1016/j.anicom.2017.07.002

Tables:

Table 1. FCI (Fédération Cynologique Internationale) five-class grading scale system for hip dysplasia

Table 2. Hip dysplasia screening period for 9 breeds
Table 3. Division of each period of time to create cohorts for each breed
Table 4. Number of evaluated dogs (N) for the 17 breeds with HD prevalence ($\mathrm{C}+\mathrm{D}+\mathrm{E}$) associated with FCI 5 class grading scale

Table 5. HD prevalence over several periods of time compared within each period using their 95\% confidence intervals (upper and lower limits). Bold italic results are statistically significant. $\mathrm{A}+\mathrm{B}=$ nondysplastic, $\mathrm{C}+\mathrm{D}+\mathrm{E}=$ dysplastic

Figures:

Fig 1. Hip dysplasia prevalence (C-D-E grades) in 17 dog breeds
Fig 2. Distribution of 5 classes (A) and prevalence of HD (B) in the American Staffordshire Terrier from 2011 to 2019.

Fig 3. Distribution of 5 classes (A) and prevalence of HD (B) in the Picardy spaniel from 1993 to 2019.

Fig 4. Distribution of 5 classes (A) and prevalence of HD (B) in the Picardy shepherd dog from 1993 to 2019.

Fig 5. Distribution of 5 classes (A) and prevalence of HD (B) in the Chow Chow from 1993 to 2019.

Fig 6. Distribution of 5 classes (A) and prevalence of HD (B) in the Blue Picardy spaniel from 1993 to 2019.

Fig 7. Distribution of 5 classes (A) and prevalence of HD (B) in the Czechoslovakian Wolfdog from 2005 to 2019.

Fig 8. Distribution of 5 classes (A) and prevalence of HD (B) in the English Springer Spaniel from 1993 to 2019.

Fig 9. Distribution of 5 classes (A) and prevalence of HD (B) in the Giant Schnauzer from 1993 to 2019.

Fig 10. Distribution of 5 classes (A) and prevalence of HD (B) in the Altdeutscher Schaferhund from 2013 to 2019.

Fig 11. Distribution of 5 classes (A) and prevalence of HD (B) in the American Akita from 2003 to 2019.

Fig 12. Distribution of 5 classes (A) and prevalence of HD (B) in the American Cocker Spaniel from 2000 to 2019.

Fig 13. Distribution of 5 classes (A) and prevalence of HD (B) in the Schnauzer from 1993 to 2019.

Fig 14. Distribution of 5 classes (A) and prevalence of HD (B) in the Irish Setter from 1998 to 2019.

Fig 15. Distribution of 5 classes (A) and prevalence of HD (B) in the French pointer from 1993 to 2019.

Fig 16. Distribution of 5 classes (A) and prevalence of HD (B) in the Dalmatian from 2003 to 2019.

Fig 17. Distribution of 5 classes (A) and prevalence of HD (B) in the Hovawart from 2010 to 2019.

Fig 18. Distribution of 5 classes (A) and prevalence of HD (B) in the Rhodesian Ridgeback from 1997 to 2019.

A

B

B

A

B

\mathbf{A}

100\%
90\%
80\%
70\%
60\%
50\%
40\%
30%
20\%
10\%
0\%

B

B

A

B

B

\mathbf{A}

B

\mathbf{A}

B

\mathbf{A}

B

B

\mathbf{A}

B

A

B

B

Table 1. FCI (Fédération Cynologique Internationale) five-class grading scale system for hip dysplasia

Grade	Interpretation
A	No signs of hip dysplasia
B	Near normal hip joints
C	Mild hip dysplasia
D	Moderate hip dysplasia
E	Severe hip dysplasia

Table 2. Hip dysplasia screening period for 9 breeds

Breed	Screening period for hip dysplasia
Altdeutscher Schaferhund	$2013-2019$
American Akita	$2003-2019$
American Cocker Spaniel	$2000-2019$
American Staffordshire Terrier	$2011-2019$
Czechoslovakian Wolfdog	$2005-2019$
Dalmatian	$1998-2019$
Irish Setter	$2010-2019$
Hovawart	$1997-2019$
Rhodesian Ridgeback	

Table 3. Division of each period of time to create cohorts for each breed

Breeds		
Altdeutscher Schaferhund	$2013-2016$	$2017-2019$
American Akita	$2003-2011$	$2012-2019$
American Cocker Spaniel	$2000-2009$	$2010-2019$
American Staffordshire Terrier	$2011-2015$	$2016-2019$
French pointer	$1993-2006$	$2007-2019$
Picardy shepherd dog	$1993-2005$	$2006-2019$
Chow Chow	$1993-2005$	$2006-2019$
Czechoslovakian Wolfdog	$2005-2012$	$2013-2019$
Dalmatian	$2003-2011$	$2012-2019$
English Springer Spaniel	$1993-2005$	$2006-2019$
Picardy spaniel	$1993-2005$	$2006-2019$
Blue Picardy spaniel	$1993-2005$	$2006-2019$
Giant Schnauzer	$1993-2005$	$2006-2019$
Hovawart	$2010-2014$	$2015-2019$
Irish Setter	$1998-2008$	$2009-2019$
Rhodesian Ridgeback	$1997-2008$	$2009-2019$
Schnauzer	$1993-2005$	$2006-2019$

Table 4. Number of evaluated dogs (N) for the 17 breeds with HD prevalence ($\mathrm{C}+\mathrm{D}+\mathrm{E}$) associated with FCI 5 class grading scale

Breed	N	A	B	C	D	E	HD Prevalence $(\mathrm{C}+\mathrm{D}+\mathrm{E})$
American Staffordshire Terrier	436	20.2%	30.6%	34.6%	12.6%	2.0%	49.2%
Picardy spaniel	350	37.9%	22.6%	16.9%	14.3%	8.3%	39.5%
Picardy shepherd dog	715	34.4%	30.2%	17.2%	14.0%	4.2%	35.4%
Chow Chow	728	55.8%	9.9%	15.0%	12.5%	6.8%	34.3%
Blue Picardy spaniel	262	43.5%	27.0%	14.8%	10.5%	4.2%	29.5%
Czechoslovakian Wolfdog	250	50.0%	23.2%	17.5%	7.3%	2.0%	26.8%
English Springer Spaniel	673	54.5%	20.0%	16.7%	6.8%	2.0%	25.5%
Giant Schnauzer	648	62.0%	13.5%	15.0%	7.5%	2.0%	24.5%
Altdeutscher Schaferhund	500	46.6%	31.2%	16.8%	4.8%	0.6%	22.2%
American Akita	453	70.2%	10.7%	14.5%	3.6%	1.0%	19.1%
American Cocker Spaniel	263	52.5%	28.6%	15.5%	2.3%	1.1%	18.9%
Schnauzer	217	58.2%	19.5%	16.7%	5.1%	0.5%	22.3%
Irish Setter	802	70.9%	13.7%	10.2%	4.0%	1.2%	15.4%
French pointer	617	75.0%	10.7%	10.5%	3.2%	0.6%	14.3%
Dalmatian	248	78.0%	11.5%	6.9%	3.2%	0.4%	10.5%
Rhodesian Ridgeback	575	87.1%	4.0%	5.6%	2.8%	0.5%	8.9%
Hovawart	285	85.8%	5.4%	6.7%	2.1%	0.0%	8.8%

Table 5. HD prevalence over several periods of time compared within each period using their $\mathbf{9 5 \%}$ confidence intervals (upper and lower limits). Bold italic results are statistically significant. $\mathrm{A}+\mathrm{B}=$ nondysplastic, $\mathrm{C}+\mathrm{D}+\mathrm{E}=$ dysplastic

Breed	Grade scale	Period 1			Period 2		
		95\% confidence intervals					
		Mean (\%)	Upper limit	Lower limit	Mean (\%)	Upper limit	Lower limit
American Staffordshire Terrier	A+B	54.4	60.8	47.7	47.2	53.6	40.5
	C+D+E	45.6	52.3	39.2	52.8	59.5	46.4
Picardy spaniel	A+B	60.4	68.0	52.3	60.5	67.1	53.9
	C+D+E	39.6	47.7	32.0	39.5	46.1	32.9
Picardy shepherd dog	A+B	60.1	64.3	55.7	74.9	80.2	68.7
	C+D+E	39.9	44.3	35.7	25.1	31.3	19.8
Chow Chow	A+B	67.0	72.6	60.7	65.2	69.3	60.9
	C+D+E	33.0	39.3	27.4	34.8	39.1	30.7
Blue Picardy spaniel	A+B	70.0	77.8	60.9	71.1	77.7	63.4
	C+D+E	30.0	39.1	22.2	28.9	36.6	22.3
Czechoslovakian Wolfdog	A+B	64.8	74.4	52.9	76.5	81.9	69.5
	C+D+E	35.2	47.1	25.6	23.5	30.5	18.1
English Springer Spaniel	A+B	76.5	81.4	70.4	73.3	77.2	69.0
	C+D+E	23.5	29.6	18.6	26.7	31.0	22.8
Giant Schnauzer	A+B	73.4	77.1	69.3	81.4	86.6	74.9
	C+D+E	26.6	30.7	22.9	18.6	25.1	13.4
Schnauzer	A+B	78.8	85.2	70.6	76.5	84.0	67.5
	C+D+E	21.2	29.4	14.8	23.5	32.5	16.0
Altdeutscher Schaferhund	A+B	79.5	84.7	73.3	77.7	81.9	72.4
	C+D+E	20.5	26.7	15.3	22.3	27.6	18.1
American Akita	A+B	77.8	84.2	69.8	82.2	86.0	77.8
	C+D+E	22.2	30.2	15.8	17.8	22.2	14.0
American Cocker Spaniel	A+B	72.1	83.4	59.0	82.8	87.2	77.2
	C+D+E	27.9	41.0	16.6	17.2	22.8	12.8
Irish Setter	A+B	81.9	86.0	77.1	86.0	88.7	82.7
	C+D+E	18.1	22.9	14.0	14.0	17.3	11.3
French pointer	A+B	83.4	87.3	78.4	87.5	90.6	83.7
	C+D+E	16.6	21.6	12.7	12.5	16.3	9.4
Dalmatian	A+B	89.1	93.8	81.5	89.8	93.7	83.8
	C+D+E	10.9	18.5	6.2	10.2	16.2	6.3
Rhodesian Ridgeback	A+B	87.4	91.2	82.1	93.1	95.4	90.2
	C+D+E	12.6	17.9	8.8	6.9	9.8	4.6
Hovawart	A+B	89.5	93.5	83.8	93.1	96.9	93.0
	C+D+E	10.5	16.2	6.5	6.9	7.0	3.1

