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Abstract  

The utilization of renewable biomass as feedstock for biofuel production has been gaining prestige to 

mitigate carbon emissions. This paper aims to render an optimization model for designing a resilient and 

reliable biomass-to-biofuel supply chain network in which multi-modal terminals, biorefineries, and their 

connection link could be faced with disruption. For this purpose, risk-averse optimization, transitional 

probabilities, and spatial statistics models are employed. What is more, to overcome the repercussions of 

uncertain demand and the availability of raw materials, risk pooling and M/M/1 queuing system are 

considered. Finally, since the proposed model is an NP-hard problem, two meta-heuristic algorithms called 

improved ray optimization and colliding bodies optimization are employed to solve the proposed model. 

Computational results reveal that by increasing 20% of the conversion rate of biomass to biofuel, which leads 

to increase biomass supply, biofuel production increases by 20.88%, and the SC cost declines by 9.32% due to 

the better capacity distribution of bio-refineries. Also, the proposed model increases by 20.87% in the total SC 

costs under random disruptions than the risk-neutral model, although the failure costs of SC decline by 

80.45%. 

Keywords: Biomass supply chain; Disruption; Risk measures; Risk pooling; Congestion; Meta-heuristic  

 

1. Introduction 

Nowadays, biofuels production based on cellulosic feedstock has been gaining prestige as sustainable 

renewable energy (Zahraee et al. 2019). In order to achieve a purpose of producing 16 billion gallons of 

cellulosic ethanol in 2022, nothing more than 200 million Mg of biomass will be demanded per annum, 

regarding the ratio of transformation of cellulosic ethanol that is almost equal to 70–90 gallons per Mg of dry 

cellulosic biomass (Lim et al. 2019). However, there are a limited number of mercantile cellulosic ethanol 

facilities owing to a lack of reliable resources to supply feedstock for them and economical technology (Jin et 

al. 2019).  

On the one hand, facilities and transportation infrastructure encounter various disruption risks from 

both natural and human-made disasters. In either circumstance, the supply chain (SC) possibly encounters 

significant losses (Wang et al. 2020). Hence, in order to mitigate the repercussions of disruptions and losses, 

creating resilient and reliable SCs is one of the crucial measures. In terms of resiliency, there are two main 

approaches in the literature, including risk-neutral and risk-averse, such that the risk-averse approach can 

provide more robustness of solutions than the other, especially under an uncertain condition (Yu et al., 2017). 

In this regard, a number of risk measurement methods, including value at risk and conditional-value-at-risk, 

have been applied to incorporate the risk preference. It is worth noting that the second approach can provide 

a healthy circumstance to quantify the decision-makers’ risk preferences and resiliency (Zhu et al. 2020). In 

terms of reliability, there are four main approaches in the literature, including constant (Salimi and Vahdani, 

2018) and variable transitional probabilities (Mohammadi et al. 2020) for assignment decision, scenario-

based stochastic programming (Yu et al. 2018) and Monte Carlo simulation (Ngan et al. 2020). The first three 

approaches are typically applied for a mathematical framework, whereas simulation techniques are usually 

used when it is impossible to provide a closed-form mathematical model. It is worth noting that the variable 
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transitional probabilities approach can provide a more reliable general framework in the face of disruptions 

of facilities (Ulucak, 2020).  

On the other hand, there is a broad range of concerns regarding biomass supply planning, including 

seasonality, widespread and scattered resources, and uncertainty. In this regard, uncertainty in demands due 

to the competitive business environment significantly influences biofuel SC performance (Ji et al. 2020). One 

of the efficacious approaches to surmount this challenge is a risk-pooling strategy, which can provide a 

healthy service level of inventory (Momenikiyai et al. 2018). In addition, due to the availability of raw 

materials such as harvesting periods of biomass, biorefineries are typically congested. This not only increases 

SC costs but also decreases the efficiency of biorefineries. From this point of view, a queuing system could be 

employed to alleviate the repercussions of congestion issues (Poudel et al. 2018). 

As far as reliable SC is concerned, Cui et al. (2010) developed variable transitional probabilities for 

assignment decision to provide a reliable decision for the location-allocation problem under the risk of 

disruptions. Vahdani et al. (2012) investigated the disruption of collection centers in a closed-loop SC to offer 

a reliable iron and steel SC. Besides, they utilized an M/M/1 queuing system to estimate the scrap processing 

facility's capacity. Marufuzzaman et al. (2014) considered the disruptions of two types of facilities, including 

intermodal hub and biorefinery, to design a reliable three-echelon biofuel SC. Poudel et al. (2016) introduced 

a spatial statistics model to estimate connection links' reliability, so as to design a reliable biofuel SC, where 

the disruption links between two types of facilities were considered. This approach can accurately predict the 

failure probability of connection links when historical data concerning disruptions or disasters might not be 

attainable. Yildiz et al. (2016) introduced three different methods to compute the cumulative index of 

reliability for a facility and the facility's arcs input to present a reliable SC. Poudel et al. (2018) extended 

Marufuzzaman et al. (2014) research by considering an M/M/1 queuing system to tackle the facility 

congestion due to the feedstock seasonality aspect. Salimi and Vahdani (2018) investigated the disruptions of 

one type of facility and connection links to render a reliable biofuel SC. In this regard, they utilized the spatial 

statistics model proposed by (Poudel et al. 2016) to estimate connection links' reliability and risk pooling 

method to overcome demand uncertainty. Tolooie et al. (2020) considered the disruption of collection 

centers. They utilized a scenario-based stochastic programming model to provide a reliable SC, where a 

number of scenarios were also defined to tackle the uncertain demand.   

As far as resilient SC is concerned, Gong et al. (2014) presented some restoration strategies to develop a 

resilient supply chain (RSC) to tackle the challenges of infrastructure disruptions, including supply, 

communications, and transportation. Also, a two-stage scenario-based solution approach was also proposed 

to plan restoration measures. Rezapour et al. (2017) investigated the influence of supplier's disruption to 

render an RSC under competition. They proposed a stochastic model by defining three scenarios, including 

holding emergency stock, devoting back-up capacity, and multiple-sourcing. Zahiri et al. (2017) considered 

sustainable and resilient factors in designing an SC under technology disruption at the production facility. To 

this end, they introduced five factors to consider resiliency, including node critically, flow complexity, node 

complexity, customer de-service level, and reassignment policy. Fattahi et al. (2017) proposed a multi-stage 

scenario-based stochastic programming approach to design a responsive and resilient SC to surmount the 

challenges of facilities' capacities disruptions, in which responsiveness risk and delivery lead-time were 

considered as two main constraints. To render a resilient scheme for customer assignment in a location-

allocation problem, an optimization model was developed by Yu et al. (2017), where the risks were 

considered by absolute-semi deviation and conditional value-at-risk. What is more, they computed the 

variable transitional probabilities for assignment decisions based on (Cui et al. 2010). Margolis et al. (2018) 

introduced an integrated framework to provide a trade-off between entire SC connectivity maximization and 

total SC cost minimization to design an RSC under facility disruption. Elluru et al. (2019) studied the 

repercussions of facility disruption and route blockage to offer an RSC by introducing proactive and reactive 

mechanisms. The proactive method included preventive measures and the reactive one contained re-routing 

and expanding facility capacity. Pavlov et al. (2019) proposed a new framework to optimize the network 
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redundancy and contingency planning under facility and supply disruptions, so as to design a resilient and 

sustainable SC based on the synchronization of structure and flow-oriented approach. Hasani (2021) 

presented a multi-objective scenario-based stochastic programming model under facility disruption to design 

a green and resilient SC. In addition, a robust optimization approach was employed to tackle the uncertainty 

of demands and various costs. As a final point, in an attempt to illustrate the research gap, a comparative 

table of the investigated studies on resilient and reliable SC network design is presented in Table 1.
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                          Table 1. A comparative literature review on resilient and reliable supply chain network design    

Authors and Year Features  

Transitional probabilities for assignment decision Probability of link failure 

Risk pooling Congestion Risk measure  

Solution approach 

Parameter 
Variable & 

Level assignment  
Constant parameter  Spatial statistics  Commercial solver1 Exact2 

Heuristic/  

Meta-

heuristic 

Vahdani et al. (2012) Reliable �        �    

Marufuzzaman et al. (2014) Reliable �         �   

Gong et al. (2014) 
     Resilient &  
    Restorative  

�   �      �    

Poudel et al. (2016) Reliable    �      �   

Yildiz et al. (2016) Reliable �   �        �  

Rezapour et al. (2017) 
     Resilient & 

Competitive 
�        �    

Fattahi et al. (2017) 
     Resilient & 

Responsive 
�           

Zahiri et al. (2017) 
      Resilient & 

Sustainable  
�          �  

Poudel et al. (2018) Reliable �      �     �  

Salimi and Vahdani (2018)        Reliable �    �  �      �  

Margolis et al. (2018)       Resilient �          �  

Elluru et al. (2019)       Resilient �        �    

Pavlov et al. (2019) 
      Resilient & 
    Sustainable 

�          �  

Tolooie et al. (2020)       Reliable �          �  

Hasani (2021) 
      Resilient & 
        Green 

�          �  

Current research 
     Reliable & 
       Resilient 

�  �   �  �  �  �  �   �  

1.Lingo, GAMS, CPLEX and AMPL 
2.Benders decomposition, Lagrangian relaxation and column generation 
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As can be seen, researchers have conducted several studies related to the presentation of a resilient or 1 

reliable supply chain, in which other considerations such as sustainability, responsiveness, green, restoration, 2 

and competition have been reflected. However, considerations of both resiliency and reliability have not been 3 

considered. Additionally, two practical approaches related to reliability and resiliency, including variable 4 

transitional probabilities for assignment decision and conditional value-at-risk, have not been used to 5 

overcome the concerns of facility disruption and risk preference in supply chain network design. What is 6 

more, so as to consider the reliability and resiliency in the literature, one of the following three assumptions 7 

has been considered: 1) failure of one type of facility, 2) failure of two types of facilities, and 3) failure of one 8 

type of facility and its connection path to another facility, while it is clear that the possibility of failure of both 9 

facilities and their connection path is much more likely, which has not been investigated so far. Furthermore, 10 

considerations of probabilistic demand for products to control inventory level and availability of raw 11 

materials to overcome the congestion challenge in biorefineries have not been considered simultaneously. It 12 

should be noted that changes in demand can lead to alterations in transportation fleet planning, so fleet 13 

management is probably a vital requirement. However, this issue has not been addressed in the context of 14 

demand uncertainty. 15 

Hence, in this paper, a mathematical model is proposed to design a resilient and reliable biomass-to-16 

biofuel SC, in which multi-modal terminal and biorefineries as the two major facilities and the connecting link 17 

between them could be disrupted. To overcome the concerns of facility and connection link disruptions, two 18 

practical approaches, including the variable transitional probabilities method and the spatial statistics model, 19 

are employed, respectively. In this regard, in order to consider risk preference as the factor of resiliency, the 20 

conditional value-at-risk approach is applied. What is more, the risk-pooling and the congestion effects on 21 

facilities are considered to take advantage of inventory systems, cost savings, and to overcome demand 22 

uncertainty and seasonality effects of raw material. Also, since the proposed model is an NP-hard problem, 23 

two new meta-heuristic algorithms called improved ray optimization and colliding bodies optimization are 24 

employed to solve the proposed model. 25 

This paper's remnant is structured as follows: A framework of the proposed model is provided in Section 26 

2. The proposed solution approaches are explained in Section 3. Numerical results and sensitivity analysis, 27 

and management insights are provided in Section 4. Lastly, the paper is concluded in Section 5. 28 

 29 

2. Problem definition and formulation   30 

A multi-echelon biomass-biofuel SC is considered in this paper, including different feedstock resources, 31 

chipping terminals, multi-modal terminals, biorefineries, and customers. The primary feedstock resources 32 

include corn-stover, forest residues, and municipal solid waste (MSW). In this regard, the former one is 33 

typically available from September to November; the latter one is typically unavailable from December to 34 

February, and the third one is usually available all year round. It should be pointed out corn-stover provides 35 

in bale format, so it requires no additional decreasing scale in chipping terminals. Also, corn-stover can be 36 

transported directly to biorefineries if the chipping terminal is located near to biorefineries (Quddus et al. 37 

2018). Since, in practice, facilities and transportation infrastructure encounter various disruption risks from 38 

both natural and human-made disasters, the possibility of disruption is considered for multi-modal terminals, 39 

biorefineries, and connection links among them. It should be noted that the failure probabilities of these 40 

facilities and connection links are independent. In an attempt to estimate the probability of link failure with 41 

respect to the disaster disruption data, a spatial statistics model is applied. This model can identify a subset of 42 

connection links, which requires to be strengthened to enhance post-disaster connectivity under a limited 43 

amount of budget and can provide an accurate prediction of failure probability of connection links when 44 

historical data concerning disruptions or disasters might not be attainable. Moreover, in terms of reflecting 45 

the disruption of facilities in an optimization model, two approaches are considered. They include constant 46 

and variable transitional probabilities for assignment decisions. Such that the first one is considered for the 47 

disruption of multi-modal terminals, and the second one is considered for the disruption of biorefineries.  48 
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Additionally, in an attempt to compute resilient location and assignment solutions, two efficient risk 1 

measurement methods, including absolute-semi deviation (ASD) and conditional value at risk (CVaR), are 2 

applied to incorporate the risk preference of decision-makers (DMs). These approaches can provide a more 3 

reliable general framework in the face of disruptions of facilities. Furthermore, in an attempt to mitigate the 4 

repercussions of fluctuating demand, a risk-pooling strategy has been applied as one of the rewarding 5 

approaches to manipulate such demand uncertainty. Regarding the seasonal aspect of feedstocks, the impact 6 

of congestion is reflected in this study by an M/M/1 queuing system. The aim of this study is to minimize the 7 

expected total cost under the considerations mentioned above. In this regard, a broad range of decisions, 8 

including the amount of shipping biomass, the number of required vehicles, location, allocation and capacities 9 

of facilities, customer assignment probability, and the reliability improvement achieves by fortifying 10 

connection links, are determined. Also, Fig. 1 renders a guideline for better demonstrating the relationships 11 

among the whole, decision, and mathematical perspectives, and Fig.2 depicts a graphic demonstration of the 12 

investigated problem. It should be pointed out corresponding sets, indices, parameters, and decision 13 

variables to formulate the problem can be found in the nomenclature. The main assumptions of the current 14 

research are as follows: 15 

 16 
 17 

Fig1. A guideline for demonstrating different levels of planning  18 

• The demand of customers is normally distributed with specified mean and variance.   19 

• Each biorefinery follows a continuous review policy (�, �)  with a service level constraint. 20 

• Disruptions of multi-modal terminals and biorefineries are mutually independent.   21 

• Disruptions of facilities and connection links are mutually independent. 22 

• The DM holds a predefined preference over the planning horizon.   23 

• There are no other rivals in each region. 24 

 25 
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 1 

 2 

Fig.2.The graphic demonstration of the investigated problem 3 

 4 

2.1. Spatial statistics model of link failure probability 5 

Assume that connection link (�, �) can be compartmented into 	
�  segments, each of them has a failure 6 

probability of �ℓ for ℓ � 1,2, … , 	
� , so �
�  can be estimated as �
� � maxℓ��,�,…,��� �ℓ, and the continuous 7 

spatial statistics model is as follows (Poudel et al., 2018): 8 

�(�) � � � �(�) 9 

(1) 10 

where � signifies long-latitude synchronizes for the potential location of biomass configuration, � signifies the 11 

average probability of disaster event and �(�) signifies spatial process with predefined mean and a 12 

covariance configuration, so semi-variogram function �( ) is as follows:                                               13 

�( ) � 12 Var#�(�) $ �(� �  )% 14 

(2) 15 

Given the perceived historical data of failure probability, i.e., �(��), … . , �(��), the empirical estimation of  �( ) 16 

is as follows (Poudel et al., 2018):                                              17 

�'( ) � 12|)( )| * +�(�,) $ �-�
./�
0(1)  18 

(3) 19 

where )( ) signifies the set of location pair -�, , �
. with a synchronize difference  , an |)( )| signifies the 20 

number of dissimilar pairs. In what follows, let � � -�(��), … , �(��).2
as the set of existing historical data of 21 

failure probability. The Ordinary Kriging predictor for a location �3 is a linear estimator in the form 22 

of �'3�(�3) � 42�, where 4 signifies the unknown coefficients of weight to be estimated. For this purpose, 23 

define 4 � (4�, … , 4�)2 as follows (Poudel et al., 2018):  24 
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 Min 8 � 9 :-42�(�) $ �(�3).�; 1 

S.t.: 2 

* 4,
�

,�� � 1. 3 

(4) 4 

 This problem can be solved by utilizing the Lagrangian method as follows: 5 

arg =>	?,@8 � A�B=>	?,@ C9 :-42� $ �(�3).�; $ 2D E* 4,
�

,�� $ 1FG 6 

(5) 7 

Let H � I�-�, $ �
.J and �(�3) � #�(�3 $ ��), … , �(�3 $ ��)%2as a semi-variogram matrix of available data and 8 

semi-variogram vector between �3 and K��, … , ��L. The obtained estimation by Ordinary Kriging is as follows 9 

(Poudel et al., 2018):  10 

 �'3�(�3) � 42�(�) 11 

(6) 12 

where 13 

42 � M�(�3) � N 1 $ N2ΓP��(�3)N2ΓP�N Q2 ΓP� 14 

(7) 15 

2.2. Risk pooling  16 

In this paper, a continuous review policy (�, �) is employed in order to manage the service level of 17 

inventory in biorefineries. This policy presumes that a replenishment order with the constant quantity (�) is 18 

issued on each moment the level of inventory is at or underneath the constant reorder point (�). Assume that 19 

the demand of each customer B ∈ S is )~(�U, VU�), and VU�/�U � X, ∀B ∈ S, for a constant X ≥ 0 (Daskin et al., 20 

2002). As in Snyder and Shen, (2011), if there were no disruptions, the optimal expected inventory cost at 21 

biorefinery � is calculated by Eq. (8): 22 

\� � -]2D � �̂ � D �_`]a �X.b* �UU  23 

(8) 24 

As regards in Zhang et al., (2016), the approximation of expected inventory cost under disruption is 25 

calculated as follows: 26 

\2 � * \��∈c d* * �UeU�f_U�fU∈g
hP�
f�3 � * d* * \iU�eU�f_U�f

hP�
f�3U∈g�∈c  27 

(9) 28 

where \i U� � �U\�� .  29 

This approximation's quiddity propels the expectation for entire the failure states to the square-root term's 30 

interior. 31 

2.3. Congestion effect  32 
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In the course of peak harvesting periods of biomass, biorefineries are congested, and this phenomenon 1 

leads to increase dramatically the costs of the supply chain. The repercussions of congestion on total supply 2 

chain costs and the performance of biorefineries become more intensive once the total feedstock flow 3 

approaches the capacity of a biorefinery, which can be modeled as an M/M/1 queuing system. An M/M/1 4 

model expresses the queue length in a system with a single server, unrestricted capacity, and unrestricted 5 

customer population, where arrivals and service times are ascertained by a Poisson process and an 6 

exponential distribution, respectively. So, the system-wide average waiting time subject to steady-state 7 

circumstances can be characterized as -j�/(k� $ j�). for the whole network, where j�  and k� are the total 8 

input flow to and the capacity of biorefinery �, respectively, such that once the amount of input feedstock at a 9 

biorefinery increases, this proportion will increase exponentially (Poudel et al., 2016). Hence, the congestion 10 

cost of the investigated system is calculated as follows:  11 

    12 * k3 M ∑ mno,�,∈pq � ∑ ∑ mnr�r∈sn∈t∖KnoL � ∑ ∑ ∑ mnr
�
∈vr∈sn∈t∖KnoL � ∑ ∑ mno,
�
∈v,∈pq∑ wAx�yx�x∈£ $ -∑ mno,�,∈pq � ∑ ∑ mnr�r∈sn∈t∖KnoL � ∑ ∑ ∑ mnr
�
∈vr∈sn∈t∖KnoL � ∑ ∑ mno,
�
∈v,∈pq .Q�∈c  13 

(10) 14 

Since this congestion term is a nonlinear term, a linearization technique, which was proposed by Elhedhli 15 

and Wu (2010), is utilized to linearize it. See Appendix A for the explanation about equivalent linearization 16 

form.   17 

 18 

2.4. Resilient strategy and risk measures  19 

Generally speaking, there are two main kinds of decision-making approaches in cost-effective 20 

optimization, including the return-risk trade-off analysis and utility maximization. In the first one, the risk is 21 

particularity computed via a risk measure that illustrates loss with a real number. Since this approach can 22 

comfort the realization of risk, it has been comprehensively employed in theoretical and practical studies. 23 

Whereas the second one demonstrates some theoretical gravity, it explains the risk indirectly. The mean-24 

variance analysis was proposed by Markowitz (1952) as a modern portfolio theory in the context of return-25 

risk trade-off analysis in which variance is reflected as the risk measure. In this regard, another measure of 26 

downside risk called Value-at-Risk (VaR) has gained prestige in financial risk management since the middle of 27 

the 1990s. Nevertheless, this approach has been impeached regarding three perspectives. Firstly, it is not 28 

subadditive in the expected distribution, so it is not a comprehensible risk measure from Artzner et al. 29 

(1999). It may also not be comfortable in terms of optimization due to bearing several local extrema for 30 

discrete distributions. Finally, it is only a percentile of the loss distribution, so it cannot articulate the extreme 31 

nature losses surpassing it. The CvaR was introduced as the mean of the tail distribution surpassing VaR, 32 

which has been employed in various fields in recent years. This method offers a number of better features 33 

than VaR as a risk measure. Firstly, minimizing CVaR can be attained without predesignating the equivalent 34 

VaR by minimizing a more flexible auxiliary function, and in parallel, VaR can be computed as a spin-off 35 

(Rockafellar and Uryasev, 2000, 2002). In addition, the formulation of CVaR minimization rendered by 36 

Rockafellar and Uryasev (2000, 2002) typically leads to convex and even linear programs. In this regard, 37 

another risk measure called absolute semi deviation (ASD) was also proposed to illustrate the entire extent of 38 

risk-averse preferences, which the mean-risk method is unable to render it (Zhu and Fukushima, 2009).  39 

Therefore, CVaR and ASD are considered as coherent risk measure approaches in order to compute resilient 40 

location and customer assignment solutions and incorporate the risk preference of DMs. The CVaR method is 41 

formulated as follows:  42 

CVaR`(|) � 9K||| ≥ VaR`(|)L 43 

(11) 44 
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Generally speaking, the conservatism degree of DM is denoted by } ∈ (0,1). Indeed, once } → 1, the 1 

measure concentrates on more extreme losses.   2 

Proposition 1. (Rockafellar and Uryasev, 2000). Assume | has support contained in #0, ����%, so  3 

 4 CVaR`(|) � inf�∈#3,����%K� � (1 $ })P�9#(| $ �)�%L 5 

(12) 6 

where (| $ �)� � maxK| $ �, 0L. 7 

 8 

Proposition 2. (Kusuoka demonstration (Shapiro, 2013)). Absolute-semi deviation is calculated as 9 

follows:  10 

ASD(|) � K9#|̅ $ |%Pr (|)L � �� (|̅ $ �)Pr (|)(��)��
P� � 11 

(13) 12 

where |̅ � 9(|) � � ���P� Pr (|)(��), which has a Kusuoka demonstration as follows:  13 

 14 ASD(|) � 9(|) � 49K#| $ 9(|)%�L � inf�∈ℝ sup�∈#3,�% 9#| � 4�(� $ |) � 4#| $ �%�%, 15 

(14) 16 

where the degree of DM’s risk-averse attitude is denoted by the constant 4 ∈ #0,1%.  17 

As mentioned before, the investigated biomass-to-biofuel SC consists of a set of customers S, indexed 18 

by B, and a set of candidate biorefinery locations �, indexed by �. The unit transportation cost of biofuel 19 

demand from biorefinery � to customer B is given by w�U . Each created biorefinery � is encountered to 20 

disruption with probability 0 ≤ �� < 1. In this research, it is assumed  ��  in identified a priori. It is assumed 21 

that each customer is allocated to up to ¢ ≥ 1 biorefineries. When a biorefinery fails, the related customer B 22 

can be served by a biorefinery at level � (� ≤ ¢ $ 1) once biorefineries at level 0,1, … , � $ 1 have completely 23 

failed (Snyder and Daskin, 2005), so ¢ is denoted as the number of back-up biorefineries for a customer. 24 

Related with each customer B is a cost £U that signifies the compensation cost of unfulfilled demand. In order 25 

to model this, a dummy biorefinery � that has fixed cost ¤¥ � 0, failure probability �¥  �  0, and unit 26 

transportation cost w¥U � £U for all customers B ∈ S is defined (Yu et al., 2017). Let �¥ � � ∪ K�L. Therefore, 27 

the assignment probability variables can be calculated as follows: 28 

 eU�f � (1 $ ��) * ��1 $ ��  eU�(fP�)_U�(fP�)cP�
���        29 

(15) 30 

where Eq. (15) demonstrates the transitional connection between biorefinery 	 and biorefinery � from 31 

level  � to level � $ 1 with failure probability �� . Since � ∈ #1, ¢%, Eq. (15) can be written as Eq. (16) (Yu et al., 32 

2017):  33  eU�f � (1 $ ��) ��1 $ ��  eU�(fP�)       34 

(16) 35 

Given that customer B is served by biorefinery 	 at level � $ 1, so for the classic risk-neutral model, the 36 

aim is to minimize the expected costs. It should be noted that the considered unit transportation cost 37 

emergency is § times much as much as wnr
� , where the risk coefficient § ≥ 1 and § � 1 signifies the risk-38 

neutral case.  39 

 40 
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min ¨ � * * ¤xryxrr∈sx∈© � * * ¤x
yx

∈vx∈© � * * ¤x�yx��∈cx∈© � * * *-wn,r � en,.r∈s mn,r,∈p∖KpªLn∈t∖KnoL1 

� * *-wno,� � eno,.�∈c mno,�,∈pq
� * * *-wnr� � �nr.�∈c mnr�r∈sn∈t∖KnoL � * * «
�_
��∈c
∈v � * * wex�ex��∈cx∈¬2 

� * d* * \iU�eU�f_U�f
hP�
f�3U∈g�∈c � * k3­��∈c3 

� * * * * wnr
�-1 $ �
.(1 $ ��) ®1 $ -�
� $ ∆
�.° mnr
��∈c
∈vr∈sn∈t∖KnoL4 

� * * * wnr��∈cr∈sn∈t∖KnoL ±§ *I�
 � �� � (�
� $ ∆
�) $ I�
�� � �
-�
� $ ∆
�. � ��-�
� $ ∆
�.J
5 

� �
��(�
� $ ∆
�)Jmnr
�² � * * *-wno,
� � eno,.�∈c
∈v,∈pq
-1 $ �
.(1 $ ��) ®1 $ -�
� $ ∆
�.° mno,
�6 

� * * wno,� ±§ *I�
 � �� � (�
� $ ∆
�) $ I�
�� � �
-�
� $ ∆
�. � ��-�
� $ ∆
�.J
�∈c,∈pq
7 

� �
��(�
� $ ∆
�)Jmno,
�² � * * * eU�f_U�f�U³w�U
h

f�3�∈cU∈g  8 

(17) 9 

The objective function (17) minimizes the total biomass-to-biofuel SC costs. The first to third terms 10 

calculate the opening costs of chipping terminals, multi-modals, and biorefineries, respectively. The fourth 11 

term calculates the transportation and procurement costs of biomass from forest residues and MSW suppliers 12 

to chipping terminals. The fifth term calculates the transportation and procurement costs of biomass from 13 

corn-stover suppliers to biorefineries. The sixth term calculates the chipping costs and transportation costs 14 

between chipping terminals and biorefineries. The seventh term computes the fixed costs of utilized 15 

containers. The eighth term calculates the production costs in biorefineries, and the ninth one computes the 16 

expected inventory cost under disruption in biorefineries. The tenth term calculates the congestion costs in 17 

biorefineries. The eleventh term calculates the regular transportation costs for forest residues and MSW 18 

biomasses, when multi-modal terminals, biorefineries and connection links between them are available. The 19 

twelfth term represents the transportation cost under disruption scenarios. The thirteenth term calculates 20 

the regular transportation costs for corn-stover biomass, when multi-modal terminals, biorefineries and 21 

connection links between them are available. The fourteenth term represents the transportation cost under 22 

disruption scenarios. The fifteenth term calculates the total expected uncertain costs. 23 

 24 

2.4.1. CVaR-based risk-averse model  25 

Concerning the description of CVaR and objective function (17), the CVaR-based risk-averse model is 26 

represented as Eqs. (18)-(20). It should be noted that network constraints (Subsection 2.5) are added to 27 

complete this model.  See Appendix B for the explanation about obtaining the subsequent model.    28 

min(´,µ,�,¶,∆)∈· ¸¹ � * ºU(», |)U∈g ¼ 29 

(18) 30 
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S.t.:  1 

½U�f ≥ _U�f�U³w�U $ �U    ∀B, �, � 2 

(19) 3 ½U�f ≥ 0  ∀B, �, � 4 

(20) 5 

where ¹ is the remnant of the objective function (17). Indeed Eq. (18) is the total costs of the biomass SC 6 

and the risk values for whole customers. 7 

 8 

2.4.2. ASD-based risk-averse model  9 

Concerning the description of ASD and objective function (17), the ASD-based risk-averse model is 10 

represented as Eqs. (21)-(23). It should be noted that Eqs (19) and (20) and network constraints (Subsection 11 

2.5) are added to complete this model.  See Appendix C for the explanation about obtaining the subsequent 12 

model.    13 

min(´,µ,�,¶,∆)∈·,½,�,¾ ¸¹ � * ¾UU∈g ¼ 14 

(25) 15 

S.t.:  16 

¾U ≥ * * eU�fI_U�f�U³w�U � 4½U�fJh
f�3�∈c  ∀B ∈ S 17 

(26) 18 

¾U ≥ * * eU�fI_U�f�U³w�U � 4-�U $ _U�f�U³w�U. � 4½U�fJh
f�3�∈c  ∀B ∈ S 19 

(27) 20 

where ¹ is the remnant of the objective function (21). Indeed Eq. (25) is the total costs of the biomass SC 21 

and the risk values for whole customers. 22 

 23 

2.5. Network constraints  24 

In this section, the other required constraints are provided to complete optimization model of 25 

investigated problem.    26 

 27 * mno,� � * * mno,
�
∈v�∈c ≤ �no,�∈c       ∀> ∈ ¿À  28 

(28) 29 * mn,rr∈s ≤ �n,              ∀^ ∈ Á ∖ K �̂L , ∀> ∈ ¿Â ∪ ¿� 30 

(29) 31 

Constraint (28) represents the amount of biomass transported from corn-stover suppliers are restricted 32 

by its availability. Constraint (29) represents the amount of biomass transported from forest residues and 33 

MSW suppliers are restricted by its availability. 34 

* �nmn,r,∈pÃ∪p�
� * mnr��∈c � * * mnr
��∈c
∈v       ∀^ ∈ Á ∖ K �̂L, ∀� ∈ Ä 35 

(30) 36 
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* ºn,∈pq
mno,� � * * ºnr∈s mnr�n∈t∖KnoL � * * * ºnmnr
�
∈vr∈sn∈t∖KnoL � * * ºnmno,
�
∈v,∈pq

� * ex�xÅ©     ∀� ∈ � 1 

(31) 2 * ex� ≥ * * �UeU�f_U�ff∈hU∈gx∈©                   ∀� ∈ � 3 

(32) 4 

Constraints (30) and (38) denote the flow balance between facilities. Constraint (31) represents the 5 

expected amount of biofuel distributed to the customers is restricted by the amount of biofuel produced in 6 

biorefineries. Constraint (32) ensures that the total amount of forest residues and MSW biomasses 7 

transported to chipping terminals is restricted by chipping capacity. 8 

* * mn,r,∈pÃ∪p�n∈t∖KnoL ≤ * wAxryxrx∈©     ∀� ∈ Ä 9 

(33) 10 * * mno,
��∈c,∈pq
� * * * mnr
��∈cr∈sn∈t∖KnoL ≤ * wAx
yx
x∈©  11 

(34) 12 * mno,�,∈pq
� * * mnr�r∈sn∈t∖KnoL � * * mno,
�
∈v,∈pq

� * * * mnr
�
∈vr∈sn∈t∖KnoL ≤ * wAx�yx�x∈©         ∀� ∈ � 13 

(35) 14 * mno,
�,∈pq
� * * mnr
�r∈sn∈t∖KnoL ≤ wAe
�_
�      ∀� ∈ Æ, ∀� ∈ � 15 

(36) 16 

Constraints (33) to (35) ensure that these facilities have been opened by the time they could provide 17 

related service. Besides, constraint (34) ensures that the total amount of biomass transported to multi-modal 18 

terminals is restricted by multi-modal terminal capacity. Constraint (35) ensures the total amount of biomass 19 

transported to biorefineries is restricted by biorefinery capacity. Constraint (36) ensures the amount of 20 

biomass transported to biorefineries cannot transgress the capacity of containers. 21 

* yxrxÅ© ≤ 1            ∀� ∈ Ä 22 

(37) 23 * yx
xÅ© ≤ 1         ∀� ∈ Æ 24 

(38) 25 * yx�xÅ© ≤ 1         ∀� ∈ � 26 

(39) 27 ex� ≤ ewAx�yx�                         ∀a ∈ 8, ∀� ∈ � 28 

(40) 29 

Constraints (37) to (39) ensure that, at most, one capacity level of chipping terminal, multi-modal terminal 30 

and biorefinery can be selected. Constraint (40) restricts the capacity of biofuel production in biorefineries 31 

and ensures that a biorefinery has been opened by the time it could produce biofuel. 32 

* * �
�∆
��∈c
∈v ≤ Ç 33 

(41) 34 
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∆
�≤ ∆�
�                ∀� ∈ Æ, ∀� ∈ � 1 

(42) 2 _
� ≤ * min �È wAx
wAe
�É , È wAx�wAe
�É�x∈© yx
 ∙ yx�           ∀� ∈ Æ, ∀� ∈ � 3 

(43) 4 

Constraint (41) restricts the total budget of fortification. Constraint (42) restricts the amount of reliability 5 

improvement on connection links. Constraint (43) restricts the maximum number of containers that can be 6 

shipped through an active connection link and ensures that multi-modal terminal and biorefinery have been 7 

opened by the time this connection could provide related service. 8 

eU�3 � 1 $ ��                   ∀B ∈ S, ∀� ∈ � 9 

(44) 10  eU�f � (1 $ ��) * ��1 $ ��  eU�(fP�)_U�(fP�)cP�
���     ∀B ∈ S, ∀� ∈ �, ∀ 1 ≤ � ≤ ¢   11 

(45) 12 * _U�f�∈c � * _U¥�f
��3 � 1             ∀B ∈ S, 0 ≤ � ≤ ¢ 13 

(46) 14 _U�f ≤ * yx�x∈©                             ∀B ∈ S, ∀� ∈ �, 0 ≤ � ≤ ¢ $ 1 15 

(47) 16 

The equations of transitional probability are provided by constraints (44) to (45). Constraint (46) ensures 17 

that for each customer B and each level �, either customer B is allocated to an ordinary biorefinery at level � 18 

or it is allocated to the dummy biorefinery � at some levels A ≤ �. Constraint (47) guarantees that customers 19 

are only allocated to open biorefineries. 20 

* _U�fhP�
f�3 ≤ 1                         ∀B ∈ S, ∀� ∈ � 21 

(48) 22 * _U¥fh
f�3 � 1                          ∀B ∈ S  23 

(49) 24 eU�f ∈ #0,1%, mn,r, mno,�, mnr� , mnr
� , mno,
�, _
� , ex� , ∆
�≥ 0, yxr , yx
 , yx� , _U�f ∈ K0,1L 25 

(50) 26 

Constraint (48) ensures that each customer B is not allocated to a given biorefinery � at more than one 27 

level. Constraint (49) ensures that each customer to be allocated to the dummy biorefinery at some level, to 28 

obtain the opportunity that the whole open biorefineries fail and the customer encounters the cost of lost 29 

sales. Constraint (50) denotes the types of decision variables.  Additionally, so as to linearize constraint (43), 30 

there is   31 

yx
 ∙ yx� � Ëx�
 32 

Moreover, a set of constraints (51) will be eked to other constraints  33 

Ëx�
 ≤ yx
     ∀a, �, � 34 Ëx�
 ≤ yx�      ∀a, �, � 35 Ëx�
 ≥ yx
 � yx� $ 1     ∀a, �, �  36 

(51) 37 
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3. Solution approaches  1 

Owing to the fact that the proposed optimization model is an NP-hard problem, two new meta-heuristic 2 

algorithms called improved ray optimization and colliding bodies optimization are employed to solve the 3 

proposed model. The first one was proposed by Kaveh et al., (2013) and the second one was proposed by 4 

Kaveh and Mahdavi (2014).  5 

3.1. Improved Ray Optimization (IRO) Algorithm 6 

RO is a population-based meta-heuristic algorithm attributed to the refraction of Snell’s light law, once 7 

light moves from a lighter to a darker medium, which as proposed by Kaveh and Khayatazad (2012). The 8 

improved version of this algorithm was proposed by Kaveh et al., (2013), in which a new approach to 9 

overcome the shortcomings of the original version was considered, which was related to generating new 10 

solution vectors through eliminating the restriction of variable numbers. Moreover, the technique that evokes 11 

the violated agents into the feasible search space is improved. The steps of IRO are as follows: 12 

Step 1: Initialization  13 

Initialize the total number of iterations and number of light rays (LRs) randomly, including beginning 14 

point matrix and step size matrix. In what follows, the objective function (Á>�) and the penalized objective 15 

function (»Á>�) are created after evaluating the initial population. Then, the light ray memory matrix (8¢_Í), 16 

the objective function memory (Á>�_Í) and penalized objective function memory (»Á>�_Í) are formed.    17 

Step 2: Origin or cockshy point making and convergent step 18 

Return the matrix of LRs to the starting points through eking the ���e�>_� matrix, such that if each LR 19 

existed in the search space, do it inside the search space. After that, appraise and update the new LRs, and 20 

update Á>�, »Á>�, 8¢_Í, Á>�_Í and »Á>�_Í. Subsequently, the normal vectors are generated. These ones begin 21 

from the origin point and terminate in the existing position of LRs. In what follows, the ���e�>_� for each LR is 22 

generated and modified, which will be utilized in the next iteration.  23 

Step 3: Stopping criteria  24 

For this purpose, there are two possible alternatives, including the maximum number of iterations and 25 

the maximum number of objective function evaluations. In the current research, the first one is considered as 26 

the stopping criterion.     27 

3.2. Colliding Bodies Optimization (CBO) Algorithm 28 

Kaveh and Mahdavi (2014) proposed CBO as a new population based meta-heuristic algorithm, which 29 

was inspired by the physics laws concerning energy and momentum that govern the collisions accrued among 30 

solid bodies. The concept of this algorithm is simple, and there are not inner parameters that the values of 31 

them can affect the performance of CBO. Initially, a set of candidate solutions are generated randomly within 32 

the search space namely the number of colliding bodies (CBs), so the matrix of CBs are formed by these 33 

objects. In what follows, Á>� and »Á>� are created after evaluating the initial objects. The mass with larger 34 

values for the candidate solutions and less »Á>� is suitable for minimization problems, so the mass matrix of 35 

the objects is created. 36 

These objects are classified into two groups, including stationary and moving in order to perform the 37 

collision process, such that the better ones are considered as the stationary group of objects. For this purpose, 38 

they are sorted in a rising order based on their »Á>�. Indeed, the first moiety is selected as the stationary 39 

objects, and before collision process their velocity will be zero. The remnant of them will constitute the 40 

moving objects. Also, in order to perform the collision process, they will proceed toward the equivalent 41 

stationary objects, so their velocity before this process is calculated. In what follows, after the collision 42 

process, the new velocities of them are calculated. Hence, after collision process, the new velocities are 43 
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considered as the ���e�>_� for two aforementioned objects. It should be noted that the stopping criterion of 1 

CBO is the maximum number of objective function evaluations.  2 

3.3. Solution representation  3 

One of the crucial considerations of rendering a meta-heuristic algorithm is to decide how to characterize 4 

the solution in order to search the solution space (Mohammadi et al., 2014; Niakan et al., 2015; Vahdani et al. 5 

2018a,b; Abad et al., 2018). For this purpose, two main solution schemes are presented including the 6 

following sections, although the other ones can be structured based on the concept of these solution schemes. 7 

The first one is concerned with the location decision of chipping terminal, which is demonstrated by a (Î × Ð) 8 

matrix, in which Î signifies the number of rows and Ð denotes the number of potential chipping terminals. 9 

The first row is filled with random numbers that belong to #0,1%, such that the first maximum � numbers are 10 

considered as located chipping terminals (Fig. 3). The second row is filled with random integer numbers that 11 

belong to #1, 8%. For instance, Two of five chipping terminals should be located, which are the first and fourth 12 

chipping terminals, and their capacities are the second and first levels. Similarly, this structure is utilized for 13 

the location decisions of multi-modal terminals and biorefineries.  14 

Chipping terminals 

1 2 3 4 5 

0.94 0.45 0.02 0.67 0.11 

 � � 2 
 

 

1 0 0 1 0 

2 1 3 1 2 

Fig. 3. Chipping terminal location 15 

The second one is concerned with the transported biomass of type ^ ∈ Á ∖ K �̂L between supplier > ∈ ¿ ∖16 K>�L and chipping terminals, which is demonstrated by a (Ñ × Ð) matrix, in which Ñ signifies the number of 17 

suppliers > ∈ ¿ ∖ K>�L and Ð denotes the number of located chipping terminals. In Fig. 4 suppliers 1 and 4 18 

supply the feedstock of located chipping terminal 1; suppliers 2, 5 and 6 supply the feedstock of located 19 

chipping terminal 4, and supplier 3 supplies the feedstock of located chipping terminal 3. Also, the amount of 20 

feedstock between each of them is specified. Similarly, this structure is utilized for the other supply decisions 21 

among facilities.  22 

 23 

 Biomass of type 

 Ò ∈ Ó ∖ KÒNL 

Chipping Terminals 

1 2 3 4 5 

1 0 0 1 1 

S
u

p
p

li
e

rs
 

1 81 27 95 79 67 

2 90 54 48 95 75 

3 12 95 80 65 74 

4 91 96 14 03 39 

5 63 15 42 84 65 

6 9 97 91 93 17 

Fig. 4. Amount of biomass between supplier and chipping terminal  24 

 25 

4. Computational results  26 

4.1. Numerical results  27 
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Several numerical examples are investigated in this section to illustrate the proposed model's accuracy 1 

and validity and meta-heuristic algorithms. The proposed model is coded in GAMS software and solved with 2 

BARON solver, and the employed meta-heuristic algorithms are coded in C++ software. Also, the specification 3 

of instances, especially the values of the model's key parameters, which is provided in Table 2, is adapted 4 

from Quddus et al. (2018). Additionally, the obtained results by GAMS and meta-heuristic algorithms are 5 

presented in Tables 3-5, which are related to the small, medium, and large size instances, respectively. It is 6 

worth noting that these results are based on the CVaR formulation of the proposed model, and a maximum 7 

CPU time of 15000 seconds is considered for GAMS's solution. Furthermore, the gap percentages of the 8 

optimality and CPU time are presented in Appendix D. 9 

 10 

Table 2. The values of input parameters  11 

Parameters Values Parameters Values ¤x
, ¤x
 , ¤xr ~uniform $(7,32) M ∆�
� ~uniform (0.6,0.7) eno, , en,  
~uniform $(25,35) dry 

ton «
�  ~uniform $(4,6)/ton £U $5/gallon  w�U, wn,r, wno,� , wnr� , wnr
� , wno,
� 
~uniform $(1,2) ºn ~uniform (70,75) gallons/dt �no, , �n, ~uniform $(0.7,3)/M ton  �  ~uniform (0.28,0.34)/gallons Ç ~uniform $(5,10) M �U  ~uniform (2,20) MG a� ~uniform (15,22)  VU� ~uniform (1,2) MG 

 12 

Table 3. Computational results on 10 small instances 13 

CBO IRO GAMS (BARON solver) 
Structure |Ñ|/|Ô|/|Ð|/|Õ|/|Ö|/|×|/|Ó|/|Ø| Problem 

No. CPU 

time  

(Second) 

Objective 

 function 

value 

CPU 

time  

(Second) 

Objective  

function 

value 

CPU 

time  

(Second) 

Objective 

 function 

value 

25.05 1,889,410 33.18 1,889,410 56.43 1,889,410 6/6/6/6/10/3/3/3 P1 

33.18 2,477,100 39.05 2,477,100 74.12 2,477,100 8/8/8/8/15/3/3/2 P2 

40.24 3,371,982 46.22 3,371,982 99.07 3,371,982 10/10/10/10/15/3/3/3 P3 

47.63 3,714,563 50.11 3,714,563 125.61 3,714,563 12/12/12/12/15/4/3/3 P4 

51.76 4,661,750 55.08 4,661,750 147.08 4,661,750 14/14/14/14/18/3/3/4 P5 

58.41 5,955,200 61.14 5,955,200 169.44 5,955,200 16/16/16/16/20/4/3/4 P6 

55.17 6,818,679 64.17 6,818,679 214.99 6,818,679 18/18/18/18/22/4/3/2 P7 

63.39 7,031,681 70.44 7,031,681 251.57 7,031,681 20/20/20/20/25/3/3/3 P8 

70.67 7,167,088 77.63 7,167,088 295.22 7,167,088 24/24/24/24/28/3/3/3 P9 

68.24 7,297,406 81.31 7,297,406 387.65 7,297,406 25/25/25/25/30/4/3/4 P10 

 14 

Table 4. Computational results on 10 medium instances 15 

CBO IRO GAMS (BARON solver) 
Structure |Ñ|/|Ô|/|Ð|/|Õ|/|Ö|/|×|/|Ó|/|Ø| Problem 

No. CPU 

time  

(Second) 

Objective 

 function 

value 

CPU 

time  

(Second) 

Objective 

 function 

value 

CPU 

time  

(Second) 

Objective 

 function 

value 

71.45 8,585,706 95.15 8,511,608 481.03 8,054,133 30/30/30/30/40/4/3/4 P11 
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79.23 9,312,893 106.13 9,138,169 598.10 8,607,110 35/35/35/35/45/4/3/4 P12 

88.04 10,649,619 100.61 10,686,294 1344.41 9,912,155 40/40/40/40/45/4/3/3 P13 

85.46 10,976,303 115.46 10,941,191 1641.30 10,031,808 45/45/45/45/55/4/3/2 P14 

93.61 13,143,053 117.86 12,931,198 2813.66 11,513,844 50/50/50/50/60/4/3/4 P15 

97.45 14,436,145 122.51 14,180,906 4105.35 12,266,159 55/55/55/55/65/3/3/3 P16 

109.98 15,957,361 111.90 16,227,209 6710.72 13,981,741 60/60/60/60/75/4/3/4 P17 

116.55 17,470,083 136.38 17,311,409 10031.45 14,557,189 65/65/65/65/80/3/3/4 P18 

109.51 17,043,090 127.81 17,987,225 12355.98 15,203,470 70/70/70/70/85/4/3/4 P19 

127.37 20,078,749 148.53 20,250,261 14782.69 16,814,964 75/75/75/75/95/3/3/3 P20 

 1 

Table 5. Computational results on 10 large instances 2 

CBO IRO GAMS (BARON solver) 

Structure |Ñ|/|Ô|/|Ð|/|Õ|/|Ö|/|×|/|Ó|/|Ø| Problem 

No. CPU 

time  

(Second) 

Objective 

 function 

value 

CPU 

time  

(Second) 

Objective 

 function 

value 

CPU 

time  

(Second) 

Objective 

 function 

value 

156.31 21,803,168 187.42 20,225,573 15000 - 95/95/95/95/110/4/3/4 P21 

174.06 32,132,686 202.13 26,316,696 15000 - 110/110/110/110/125/4/3/4 P22 

189.27 36,510,578 197.47 31,987,540 15000 - 125/125/125/125/140/3/3/3 P23 

200.02 76,462,184 218.04 66,828,811 15000 - 140/140/140/140/170/3/3/3 P24 

227.56 48,343,604 251.67 45,435,718 15000 - 155/155/155/155/185/4/3/5 P25 

219.65 57,827,401 280.26 52,685,314 15000 - 170/170/170/170/200/4/3/3 P26 

246.21 69,257,460 347.99 58,395,835 15000 - 185/185/185/185/210/4/3/4 P27 

276.43 65,959,660 412.75 63,076,436 15000 - 200/200/200/200/225/4/3/4 P28 

295.75 88,967,262 534.83 67,810,413 15000 - 215/215/215/215/230/4/3/4 P29 

311.31 87,888,761 632.61 83,220,113 15000 - 250/250/250/250/250/4/3/5 P30 

 3 

The results reveal no difference among the objective function values, which was obtained by GAMS and 4 

meta-heuristic algorithms for the small size instances, although these algorithms both run much faster than 5 

GAMS in all instances. In the medium-size cases, GAMS required much more CPU times than these algorithms, 6 

also in this circumstance, IRO performs slightly better than CBO in terms of objective function values, 7 

although CBO runs faster than IRO. Furthermore, in terms of objective function value, there is a gap between 8 

the employed algorithms and GAMS. These gaps range from 5.68% to 20.43% and 6.60% to 20.0.1 in IRO and 9 

CBO, respectively. What is more, while GAMS cannot solve large size instances in a reasonable time, the 10 

necessitated CPU times of IRO are more than the ones required in CBO, although IRO offers better solutions in 11 

whole cases compared to CBO. In what follows, in an attempt to specify whether there are statistically 12 

significant differences amongst performances of GAMS, IRO, and CBO, the ANOVA method is utilized, such 13 

that the obtained results are presented in Appendix E. The computational results reveal that at a 95% 14 

confidence level, there are no significant differences amongst the means of objective function values for small 15 

and medium test problems, which were obtained by GAMS and two solution methods (P-values=0.833, 16 

0.489>0.05). This investigation is conducted to compare GAMS and two solution methods with regard to CPU 17 

times. The computational results reveal that at a 95% confidence level, there are significant differences 18 

amongst the means of CPU times for small and medium-size instances, which have been obtained by GAMS 19 

and two solution methods (P-value=0.010<0.05), while there is no significant difference between IRO and 20 

CBO for large size instances (P-value=0.077>0.05). In order to provide further investigation, Fisher’s least 21 

significant difference method is utilized, where the obtained results are presented in Appendix E. Moreover, 22 

the interval plots are depicted and given in Appendix E to better show the comparisons of means of objective 23 

function values and CPU times.    24 
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 1 

4.2. Sensitivity analyses  2 

In an attempt to illustrate the validity and correctness of the proposed model's behavior concerning changing 3 

parameters, a broad range of sensitivity analyses is provided in this section. They are included conversion 4 

rate, risk level, the comparison risk-averse and risk-neutral models, supply feedstock.  5 

 6 

4.2.1. Conversion rate  7 

In this section, the influence of the conversion rate on the investigated SC is demonstrated. As shown in 8 

Table 2, this rate is considered moderately low for biomass to convert to biofuel. This conversion rate could 9 

be enhanced by considering improved processes, ranging from the acquisition novel of catalyst to anaerobic 10 

digestion; new technology can also facilitate this improvement. Therefore, this is a persuading circumstance 11 

to examine the influence of the conversion rate on the investigated biomass-to-biofuel SC performance. For 12 

this purpose, the behavior of the SC is examined concerning changing biomass-to-biofuel conversion rate, 13 

such that two managerial factors, including SC costs and production level, are considered for this concern. It is 14 

worth noting, the improvements in conversion rate could realize without any further charge. As can be seen 15 

in Figs 5 and 6, at the higher amount of this rate, the SC costs for producing the identical amount of biofuel 16 

would be smaller, now that fewer biomasses would be utilized and carried. Also, the biofuel production 17 

increases by 20.88%, and the SC cost declines by 9.32% for a 20% improvement in this rate, so improving this 18 

conversion rate can be a crucial factor in managing biomass-to-biofuel SC. In this situation, the capacities of 19 

bio-refineries are regulated and administrated to minimize the total transportation costs since, in slight 20 

biomass variations, two bio-refineries with capacities of 130 and 90 MG are employed. Nevertheless, 21 

increasing the variation leads to a change in bio-refineries' capacities to 100, 70, and 50 MG. The total 22 

production capacities for bio-refineries were not changed by these variations, although the capacities are 23 

regulated to various areas for different suppliers to minimize transportation costs. 24 

 25 

 26 
Fig 5. The influence of conversion rate on biofuel production and SC costs  27 
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 1 

 2 

 3 

 4 
 5 

Fig 6. The influence of conversion rate on number of containers and shipping biomass  6 

 7 

4.2.2. Risk level and attitude   8 

In this subsection, a number of comparative analyses are conducted in order to illustrate the behavior of 9 

the proposed model under risk-neutral and risk-averse attitudes. As a consequence of the similarity between 10 

CVaR and ASD, the investigations have been made on the CVaR model without any generality loss. For this 11 

purpose, the probability of failure of the biorefinery is assumed �� ∈ #0.01,0.05% and risk level } takes value 12 

in K0.5,0.7,0.9,0.95L for CVaR. The obtained results are provided in Table 6 and Figs 7 to 9. As can be seen, the 13 

SC costs increase once the problem size rises, such that this trend is more intense for the risk-averse model. 14 

Indeed, this circumstance is predictable, now that DMs with risk-averse attitudes prefer to more reliable 15 

biorefinery to serve customers, although it might lead to rising transportation costs. It is worth noting that 16 

the failure cost is in contrast to SC cost. Indeed, these attitudes' comparisons reveal that the percentage of 17 

declined disruption costs is continually higher than the percentage of increased transportation costs. 18 

Therefore, a trade-off between these factors would be made by DMs according to their risk-averse attitudes. 19 

Consequently, for the higher amount of α, the proportion of declined disruption costs and increased 20 

transportation costs rises, signifying that the risk-averse model's obtained solution is more reliable than the 21 

neutral one.   Moreover, the proposed model increases by 20.87% in the total SC costs under random 22 

disruptions than the risk-neutral model. This is because of opening three new facilities, and allocating some 23 

customers to more distant but more reliable bio-refineries, so transportation costs are augmented, although 24 

the failure costs of SC decline by 80.45%. 25 

Table 6. Comparative analyses on different risk attitude (} � 0.9) 26 
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Risk-neutral 

attitude  
Risk-averse attitude   

Structure |Ñ|/|Ô|/|Ð|/|Õ|/|Ö|/|×|/|Ó|/|Ø| Problem. No. 

2,911,369 3,371,982 10/10/10/10/15/3/3/3 P1 

9,884,082 11,513,844 50/50/50/50/60/4/3/4 P2 

21,761,138 26,316,696 110/110/110/110/125/4/3/4 P3 

37,413,841 45,435,718 155/155/155/155/185/4/3/5 P4 

49,935,427 63,076,436 200/200/200/200/225/4/3/4 P5 

62,365,653 83,220,113 250/250/250/250/250/4/3/5 P6 

 1 
Fig 7. The percentage of increased transportation costs comparing to risk-neutral model  2 

  3 
Fig 8. The percentage of decreased disruption costs comparing to risk-neutral model 4 
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  1 
Fig 9. Relative ratio of decreased disruption costs and enlarged transportation costs   2 

4.2.3. Feedstock supply 3 

In order to illustrate the effect of supply feedstock on different decisions of the biomass-to-biofuel SC, a 4 

number of examinations are provided in this section. The concerned decisions are related to the number of 5 

multi-modal terminals, the unit cost of biofuel, the number of utilized containers between multi-modal 6 

terminals and biorefineries, and biofuel production. The obtained results are shown in Table 7. As can be 7 

seen, a 5% increase in feedstock supply declines the unit cost of biofuel by 14.81% ($/gallon) due to the 8 

better capacity distribution of bio-refineries as discussed in the sensitivity analysis of conversion rate. 9 

Similarly, this reduction is almost 23.64% due to a 15% increase in feedstock supply. Additionally, the 10 

number of containers and multi-modal terminals are affected by these changes, such that the numbers of 11 

multi-modal terminals approximately increase by 29% due to a 15% increase in feedstock supply with the 12 

intention of transporting these feedstocks, which results in a further 7.52% increase in the utilized 13 

containers, so the amount of biofuel production has also been affected.   14 

 15 

Table 7. The influence of feedstock supply on biomass-to-biofuel SC 16 

Feedstock changes 
Items 

15% 5% 0% -5% -15% 

3.65 4.07 4.78 5.35 6.02 Unit cost of biofuel ($/gallon) 

18 16 14 12 9 Number of multi-modal terminals 

90,740 82,785 78,769 75,461 67,442 Number of utilized containers 

676.02 616.75 586.83 562.18 502.45 Produced Biofuel (MG) 

 17 

5. Conclusions  18 

In this study, a novel mathematical model for designing a biomass-to-biofuel supply chain network was 19 

proposed in which multi-modal terminals and biorefineries as the two major facilities and the connecting link 20 

between them could be disrupted. To gain resilience and reliable framework and surmount the repercussions 21 

of the disruptions, risk-averse optimization, transitional probabilities, and spatial statistics models were 22 

employed. Since the demand for investigated SC faces uncertainty and SC encounters seasonality of raw 23 

materials, risk pooling and M/M/1 queuing system were considered to tackle these challenges. Finally, since 24 

the proposed model is an NP-hard problem, two new meta-heuristic algorithms called improved ray 25 

optimization and colliding bodies optimization were employed to solve the proposed model. The Obtained 26 
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results unfold that by increasing 20% of the conversion rate of biomass to biofuel, biofuel production 1 

increases by 20.88%, and the SC cost declines by 9.32%. Although the proposed model increases by 20.87% 2 

in the total SC costs, it decreases by 80.45% in the failure costs of SC. What is more, a 5% increase in 3 

feedstock supply declines the unit cost of biofuel by 14.81% ($/gallon) due to the better capacity distribution 4 

of bio-refineries. To extend this study, there are two main topics, including considering districting regions 5 

and service sharing within these regions to mitigate total costs, enhance the SC's efficiency, and reflect vehicle 6 

routing considerations among facilities to provide a better plan for transporting decisions. 7 

Nomenclature 8 

 9 

Sets and indices  10 ¿Ü: Set of corn-stover suppliers  ¿Ý: Set of forest residues suppliers  ¿Þ: Set of MSW suppliers  ¿: Set of entire biomass supply resources, i.e., ¿ � ¿Ü ∪ ¿Ý ∪ ¿Þ    Á: Set of biomass types ( �̂ for corn-stover, �̂ for forest residues and ß̂ for MSW) Æ: Set of multi-modal terminals Ä: Set of chipping terminals  �: Set of biorefineries S: Set of customers  8: Set of capacities  9: Emergency biorefinery ¢: Backup level for customers 0 ≤ ¢ ≤ |�| 
 11 

Parameters   12 ¤x
: Opening cost for a multi-modal terminal with capacity a at location � ¤x�: Opening cost for a biorefinery with capacity a at location � ¤xr: Opening cost for a chipping terminal with capacity a at location � eno,: Unit cost of procurement for the biomass of type �̂ at location > ∈ ¿ ∖ K>�, >ßL en,: Unit cost of procurement for the biomass of type ^ ∈ Á ∖ K �̂L at location > ∈ ¿ ∖ K>�L «
� : Fixed cost of container for transporting biomass from multi-modal terminal � to biorefinery � w�U: Unit transportation cost of biofuel from biorefinery � to customer B wn,r: Unit transportation cost for the biomass of type ^ ∈ Á ∖ K �̂L from supplier > ∈ ¿ ∖ K>�L to chipping 

terminal � ∈ Ä wno,�: Unit transportation cost for the biomass of type �̂ from supplier > ∈ ¿ ∖ K>�, >ßL to biorefinery �  wnr�: Unit transportation cost for the biomass of type ^ ∈ Á ∖ K �̂L from chipping terminal � to biorefinery � wnr
� : Unit transportation cost for the biomass of type ^ ∈ Á ∖ K �̂L from chipping terminal � through multi-

modal terminal � to biorefinery � wno,
�: Unit transportation cost for the biomass of type �̂ from supplier > ∈ ¿ ∖ K>�, >ßL through multi-modal 

terminal � to biorefinery � �nr: Unit cost of chipping for biomass ^ ∈ Á ∖ K �̂L at chipping terminal � wex�: Unit cost of production of bio-fuel at biorefinery � with capacity a �no,: Available amount of biomass of type �̂at supplier > ∈ ¿ ∖ K>�, >ßL �n, : Available amount of biomass of type ^ ∈ Á ∖ K �̂L at supplier > ∈ ¿ ∖ K>�L wAe
� : Capacity to transport biomass containers from multi-modal terminal � to biorefinery � wAxr: Biomass storage capacity at chipping terminal � with capacity a 
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wAx
: Biomass storage capacity at multi-modal terminal � with capacity a wAx�: Biomass storage capacity at biorefinery � with capacity a ewAx �: Biofuel production capacity at biorefinery � with capacity a Ç: Total available budget for fortification  ∆�
�: Maximum reliability that could be obtained for arc (�, �) �
�: Cost related to the mitigation of reliability for arc (�, �) £U: Unit compensation cost of unfulfilled demand for customer B ºn: Rate of conversion (tons/gallons) from biomass of type ^ ∈ Á to bio-fuel �n: Rate of conversion (tons/ tons) to chip biomass of type ^ ∈ Á ∖ K �̂L  �
: Probability of failure of multi-modal terminal � ��: Probability of failure of biorefinery � �
�: Probability of failure of arc (�, �) 

�̂: Fixed inventory ordering cost at biorefinery �  �: Per unit per year inventory holding cost at biorefinery � �U: Mean customer demand B  VU�: Variance of customer demand B a�: Order lead time from biorefinery � k3: Congestion cost  }: Service/ Risk level  _`: Standard normal deviate  ³, D: Weight coefficients allocated to transportation and inventory costs of biofuel, respectively 

 1 

 Decision variables    2 mn,r: Amount of biomass of type ^ ∈ Á ∖ K �̂L transported from supplier > ∈ ¿ ∖ K>�L to chipping terminal � mno,�: Amount of biomass of type �̂ transported from supplier > ∈ ¿ ∖ K>�, >ßL to biorefinery � mnr�: Amount of biomass of type ^ ∈ Á ∖ K �̂L transported from chipping terminal � to biorefinery � mnr
�: Amount of biomass of type ^ ∈ Á ∖ K �̂L transported from chipping terminal � through multi-modal 

terminal � to biorefinery � mno,
�: Amount of biomass of type �̂ transported from supplier > ∈ ¿ ∖ K>�, >ßL through multi-modal terminal � 

to biorefinery � _
�: Number of containers utilized to transport biomass from multi-modal terminal � to biorefinery � ex�: Amount of biofuel produced at biorefinery � with capacity a ∆
�: Reliability improvement gained by fortifying arc (�, �) yxr: 1 if a chipping terminal with capacity a is opened in location �; 0 otherwise  yx
: 1 if a multi-modal terminal with capacity a is opened in location �; 0 otherwise yx�: 1 if a biorefinery with capacity a is opened in location �; 0 otherwise _U�f: 1 if biorefinery � is assigned to customer B at level �; 0 otherwise  eU�f: Probability that biorefinery � is assigned to customer B at level �   

 3 

Supply chain (SC) 4 

Improved ray optimization (IRO) 5 

Colliding bodies optimization (CBO) 6 

Resilient supply chain (RSC) 7 

Municipal solid waste (MSW) 8 

Absolute-semi deviation (ASD) 9 
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Conditional value at risk (CVaR) 1 

Decision makers (DMs) 2 

Value-at-risk (VaR) 3 

Colliding bodies (CBs) 4 

Objective function (Á>�)  5 

Penalized objective function (»Á>�)  6 

Light ray memory matrix (8¢_Í),  7 

Objective function memory (Á>�_Í)  8 

Penalized objective function memory (»Á>�_Í)  9 

Appendix A. Linearization of Eq. (10). 10 

To linearize the congestion term, let a new decision variable ­ � K­�L�∈c as follows.  11 

­� � ∑ mno,�,∈pq � ∑ ∑ mnr�r∈sn∈t∖KnoL � ∑ ∑ ∑ mnr
�
∈vr∈sn∈t∖KnoL � ∑ ∑ mno,
�
∈v,∈pq∑ wAx�yx�x∈£ $ -∑ mno,�,∈pq � ∑ ∑ mnr�r∈sn∈t∖KnoL � ∑ ∑ ∑ mnr
�
∈vr∈sn∈t∖KnoL � ∑ ∑ mno,
�
∈v,∈pq . 12 

So this equation can be written as follows:  13 

* mno,�,∈pq
� * * mnr�r∈sn∈t∖KnoL � * * * mnr
�
∈vr∈sn∈t∖KnoL � * * mno,
�
∈v,∈pq

� à ­�1 � ­�á * wAx�yx�x∈© � * wAx� à ­�1 � ­�á yx�x∈©  14 

Now another continuous variable â � Kâx�Lx∈©,�∈c is defined as follows:  15 

âx� � à ­�1 � ­�á yx�               ∀a ∈ 8, ∀� ∈ � 16 

Once ∑ yx�xÅ© � 1, we have: 17 

* âx�xÅ© � ­�1 � ­�                ∀� ∈ � 18 

when yx� � 0, this equation compels âx� � 0, which is compelled by utilizing further constraints 0 ≤ âx� ≤19 yx�   ∀a ∈ 8, ∀� ∈ �. 20 

Appendix B. Proof of Eqs. (18)-(20). 21 

In order to provide CVaR-based risk-averse model, let ã � -mn,r ∪ mno,� ∪ mnr� ∪ mnr
� ∪ mno,
�., ∆� -∆
�., 22 | � -_
� ∪ _U�f., » � -ex� ∪ eU�f. and ä � -yxr ∪ yx
 ∪ yx�. signify the solutions of the proposed model, and a 23 

particular set · is defined that  24 

· � K(ã, ä, |, », ∆): ConstraintsL 25 

Such that it signifies the feasible region common to the whole of proposed model, in what follows, we are 26 

concerned to control the risk of transportation costs for each customer B. With respect to the definition of 27 

CVaR, the metrics for risks of uncertain costs for customer B subject to risk level } are as follows (Yu et al., 28 

2017):  29 

ºU(», |) � min�è∈ℝ C�U � (1 $ })P� * * eU�f-_U�f³�Uw�U $ �U.�
h

f�3�∈c G 30 
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This problem can be reformulated as min(´,µ,�,¶,∆)∈·+¹: ºU(», |) ≤ éU, ∀B ∈ S/, where the inward constraints 1 

impel the risk value for each customer lower a predefined level éU for all B ∈ S. In order to linearize CVaR 2 

model, a linearization method is applied, which was proposed by Krokhmal et al., (2002) and Uryasev (2000). 3 

Let ½U�f  substitute the nonlinear terms -_U�f�U³w�U $ �U.� and adding Eqs. (19) and (20) (Yu et al., 2017).  4 

In what follows, by describing � � -�U. and ½ � -½U�f., Eq. (18) can be obtained.  5 

Appendix C. Proof of Eqs. (21)-(23). 6 

In order to provide CVaR-based risk-averse model, regarding to Eq. (14), the risk of transportation costs 7 

for each customer B in terms of ASD with risk level 4 is as follows (Yu et al., 2017):  8 

êU(», |) � inf�è∈ℝ sup�∈#3,�% C* * eU�fI_U�f�U³w�U � 4�-�U $ _U�f�U³w�U. � 4-_U�f�U³w�U $ �U.Jh
f�3�∈c G 9 

 10 

Hence, the risk-averse optimization problem in terms of ASD is as follows: 11 

min(´,µ,�,¶,∆)∈· ¸¹ � * êU(», |)U∈g ¼ 12 

This problem can be reformulated as:  13 

min(´,µ,�,¶,∆)∈·+¹: êU(», |) ≤ éU, ∀B ∈ S/ 14 

 15 

By utilizing the aforementioned linearization method, we have:  16 

êU(», |) � inf�è∈ℝ sup�∈#3,�% C* * eU�fI_U�f�U³w�U � 4�-�U $ _U�f�U³w�U. � 4½U�fJh
f�3�∈c G17 

� inf�è∈ℝ max C* * eU�fI_U�f�U³w�U � 4½U�fJh
f�3�∈c , * * eU�fI_U�f�U³w�U

h
f�3�∈c18 

� 4-�U $ _U�f�U³w�U. � 4½U�fJG 19 

In order to primary ASD model, let ¾U substitute the max operator and adding Eqs. (22) and (23) (Yu et al., 20 

2017).  In what follows, by describing ¾ � -¾U., Eq. (21) can be obtained.  21 

Appendix D. Gap results  22 

 23 

Table D1. Optimality and CPU time gap percentages for ten small instances 24 

ÖëìÑØí(îïð) 

 � àÑØí $ îñíîñí á × Nòò 

ÖëìÖóôÐ(îïð) 

 � àÖóôÐ $ îñíîñí á × Nòò 

ÖëìîñíPÑØí(íõö÷øùúû÷)  

 � àîñí $ ÑØíÑØí á × Nòò 

Öëìîñí(íõö÷øùúû÷)  

 � àîñí $ ÖóôÐÖóôÐ á × Nòò 

ÖëìÑØí(íõö÷øùúû÷) 

 � àÑØí $ ÖóôÐÖóôÐ á × Nòò 

Structure |Ñ|/|Ô|/|Ð|/|Õ|/|Ö|/|×|/|Ó|/|Ø| Problem 

No. 

32.46 125.27 0.0 0.0 0.0 6/6/6/6/10/3/3/3 P1 

17.69 123.39 0.0 0.0 0.0 8/8/8/8/15/3/3/2 P2 

14.86 146.20 0.0 0.0 0.0 10/10/10/10/15/3/3/3 P3 

5.21 163.72 0.0 0.0 0.0 12/12/12/12/15/4/3/3 P4 

6.41 184.16 0.0 0.0 0.0 14/14/14/14/18/3/3/4 P5 

4.67 190.09 0.0 0.0 0.0 16/16/16/16/20/4/3/4 P6 

16.31 289.69 0.0 0.0 0.0 18/18/18/18/22/4/3/2 P7 
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11.12 296.86 0.0 0.0 0.0 20/20/20/20/25/3/3/3 P8 

9.85 317.74 0.0 0.0 0.0 24/24/24/24/28/3/3/3 P9 

19.15 468.07 0.0 0.0 0.0 25/25/25/25/30/4/3/4 P10 

 1 

Table D2. Optimality and CPU time gap percentages for ten medium instances 2 

ÖëìÑØí(îïð) 

 � àÑØí $ îñíîñí á × Nòò 

ÖëìÖóôÐ(îïð) 

 � àÖóôÐ $ îñíîñí á × Nòò 

ÖëìîñíPÑØí(íõö÷øùúû÷)  

 � àîñí $ ÑØíÑØí á × Nòò 

Öëìîñí(íõö÷øùúû÷)  

 � àîñí $ ÖóôÐÖóôÐ á × Nòò 

ÖëìÑØí(íõö÷øùúû÷) 

 � àÑØí $ ÖóôÐÖóôÐ á × Nòò 

Structure |Ñ|/|Ô|/|Ð|/|Õ|/|Ö|/|×|/|Ó|/|Ø| Problem 

No. 

33.17 573.24 0.87 6.60 5.68 30/30/30/30/40/4/3/4 P11 

33.95 654.89 1.91 8.20 6.17 35/35/35/35/45/4/3/4 P12 

14.28 1427.04 -0.34 7.44 7.81 40/40/40/40/45/4/3/3 P13 

35.10 1820.55 0.32 9.42 9.06 45/45/45/45/55/4/3/2 P14 

25.91 2905.73 1.64 14.15 12.31 50/50/50/50/60/4/3/4 P15 

25.72 4112.78 1.80 17.69 15.61 55/55/55/55/65/3/3/3 P16 

1.75 6001.76 -1.66 14.13 16.06 60/60/60/60/75/4/3/4 P17 

17.01 8506.99 0.92 20.01 18.92 65/65/65/65/80/3/3/4 P18 

16.71 11182.97 -5.25 12.10 18.31 70/70/70/70/85/4/3/4 P19 

16.61 11506.10 -0.85 19.41 20.43 75/75/75/75/95/3/3/3 P20 

 3 

Table D3. Optimality and CPU time gap percentages for ten large instances 4 

ÖëìÑØí(îïð) 

 � àÑØí $ îñíîñí á × Nòò 

ÖëìîñíPÑØí(íõö÷øùúû÷) 

 � àîñí $ ÑØíÑØí á × Nòò 

Structure |Ñ|/|Ô|/|Ð|/|Õ|/|Ö|/|×|/|Ó|/|Ø| Problem No. 

19.90 7.80 95/95/95/95/110/4/3/4 P21 

16.13 22.10 110/110/110/110/125/4/3/4 P22 

4.33 14.14 125/125/125/125/140/3/3/3 P23 

9.01 14.41 140/140/140/140/170/3/3/3 P24 

10.60 6.40 155/155/155/155/185/4/3/5 P25 

27.59 9.76 170/170/170/170/200/4/3/3 P26 

41.34 18.60 185/185/185/185/210/4/3/4 P27 

49.31 4.57 200/200/200/200/225/4/3/4 P28 

80.84 31.20 215/215/215/215/230/4/3/4 P29 

103.21 5.61 250/250/250/250/250/4/3/5 P30 

Appendix E. Statistical results  5 

The results of ANOVA, Fisher’s test and interval plots are provided in this section.  6 

Table E1. ANOVA computational results for small and medium cases with regard to the objective function  7 

Source DF SS MS F P-Value 

Algorithms 2 9.60215E+12 4.80108E+12 0.18 0.833 

Error 57 1.49065E+15 2.61518E+13   

Total 59 1.50026E+15    

 8 

Table E2. ANOVA computational results for large cases with regard to the objective function  9 

Source DF SS MS F P-Value 

Algorithms 1 2.39227E+14 2.39227E+14 0.5 0.489 

Error 18 8.63484E+15 4.79713E+14   

Total 19 8.87406E+15    

 10 



28 

 

 1 

vTable E3. ANOVA computational results for small and medium instances with regard to CPU time 2 

Source DF SS MS F P-Value 

Algorithms 2 101052830 50526415 7.45 0.001 

Error 57 386528674 6781205   

Total 59 487581504    

 3 

Table E4. ANOVA computational results for large instances with regard to CPU time 4 

Source DF SS MS F P-Value 

Algorithms 1 46909 46909 3.51 0.077 

Error 18 240549 13364   

Total 19 287458    

 5 

Table E5. Fisher 95% individual confidence intervals in small and medium instances in terms of the CPU time 6 

Algorithms Lower Upper Significant difference at 95% level 

GAMS & IRO -4395 -1097 Yes 

GAMS & CBO -4409 -1111 Yes 

IRO & CBO -1662 1636 No 

 7 

 8 
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Fig E1. Interval plots of the objective function values and CPU times 1 
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