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Abstract 20 

Plastoquinone-9 is an essential component of photosynthesis, carrying electrons in the linear 21 

and alternative electron transport chains, and a redox sensor regulating state transitions and 22 

gene expression. However, a large fraction of the plastoquinone pool is located outside the 23 

thylakoid membranes, in the plastoglobules and the chloroplast envelopes, reflecting a wide 24 

range of functions beyond electron transport. Here we describe new functions of 25 

plastoquinone in photoprotection, as a potent antioxidant, and in chloroplast metabolism, as 26 

a co-factor in the biosynthesis of chloroplastic metabolites. We point out the requirement 27 

for a tight environmental control of plastoquinone biosynthesis and for active exchange of 28 

this compound  between the thylakoid membranes and the plastoglobules. Through its 29 

multiple functions, plastoquinone connects photosynthesis with metabolism, light 30 

acclimation and  stress tolerance. 31 

  32 

Plastoquinone-9 and its Variants in Plants 33 

Plastoquinone (PQ) is an essential component of the chloroplasts in plants, being involved in 34 

photosynthetic electron transport. Plants deficient in PQ are impaired in photosynthesis and 35 

therefore they are not viable photoautotrophically or suffer pleiotropic effects [1,2]. The 36 

basic structure of PQ is a benzoquinonic ring attached to a polyisoprenoid side chain. The 37 

main form of PQ in plants is PQ-9 which contains a nonaprenyl side chain (Fig. 1). However, 38 

some minor PQ forms with shorter side chains were reported in some plant species, such as 39 

PQ-3, PQ-4 and PQ-8 [3-5]. Plants can also contain small amounts of 40 

demethylplastoquinones [5] as well as several forms generated by non-enzymatic oxidation 41 

of PQ-9, especially by singlet oxygen (1O2) oxidation, such as hydroxyplastoquinone (PQ-C), 42 

containing one hydroxyl group in the prenyl side chain [3,6] and trihydroxyplastoquinone 43 

with three hydroxyl groups  [7]. The fatty acid ester of PQ-C, named PQ-B, has also been 44 

found in small amounts in arabidopsis leaves (Arabidopsis thaliana) under high light stress 45 

[8]. Similarly to PQ-9, both PQ-B and PQ-C can function as electron acceptors of photosystem 46 

II (PSII) in thylakoid membranes [9]. Recent details of other important functions for PQ has 47 

come to light, such as photoprotection, antioxidant reservoir or metabolite biosynthesis, 48 

which are described in this review. 49 

 50 
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PQ Biosynthesis 51 

The biosynthetic pathway of PQ-9 is composed of two main stages [5,10,11]. The first stage 52 

leads to the biosynthesis of precursors of the benzoquinone ring and of the prenyl side 53 

chain. The second stage includes the condensation of ring and side chain and subsequent 54 

modifications (Fig. 2). 55 

 56 

The benzene quinone ring precursor for PQ-9 is homogentisic acid synthesized from tyrosine 57 

by the enzymes TYROSINE AMINOTRANSFERASE and 4-HYDROXYPHENYLPYRUVATE 58 

REDUCTASE. On the other hand, the prenyl side chain is synthesized from glyceraldehyde 3-59 

phosphate and pyruvate through the methylerythritol 4-phosphate (MEP) pathway in the 60 

chloroplasts and/or from Acetyl-coA through the mevalonate (MVA) pathway in the 61 

cytoplasm. Through these pathways, PQ-9 biosynthesis is linked to the isoprenoid pathway 62 

that leads to the synthesis of carotenoids and chlorophylls [12,13]. The resulting isoprene 63 

precursor IPP (isopentenyl-pyrophosphate) and its isomer DMAPP (dimethylallyl-64 

pyrophosphate) are converted into intermediate diphosphate precursors that ultimately 65 

lead to the C45 solanesyl diphosphate through the catalytic action of SOLANESYL 66 

DIPHOSPHATE SYNTHASE (SPS). In arabidopsis, the latter enzyme could form a complex with 67 

FIBRILLIN 5, possibly to facilitate release of the solanesyl moiety from the enzyme [14]. In 68 

the second stage, solanesyl diphosphate is attached to homogentisate by HOMOGENTISATE 69 

SOLANESYL TRANSFERASE, leading to the intermediate 2-dimethylplastoquinone which is 70 

converted to PQ-9 through the catalytic activity of VTE3 (phytylbenzoquinol 71 

methyltransferase). Finally, a fraction of the PQ-9 pool can be converted to 72 

plastochromanol-8 under the catalysis of VTE1 (tocopherol cyclase) [15].  73 

 74 

The PQ-9 biosynthesis pathway is parallel to the biosynthesis pathway of tocopherol (vitamin 75 

E), sharing a number of common enzymes such as VTE3 and VTE1 (Fig. 2).  In the latter 76 

pathway, homogentisate is condensed to phytyldiphosphate to generate MPBQ (2-methyl-6-77 

phytyl-1, 4-benzoquinol) which is converted to α-tocopherol via the action of VTE3, VTE1 78 

and VTE4 (γ-tocopherol methyltransferase). Condensation of homogentisate with 79 

geranylgeranyl diphosphate leads to α-tocotrienol, a unsaturated forms of vitamin E, 80 

through the sequential activity fo VTE3, VTE1 and VTE4 (Fig. 2). The various steps of PQ-9 81 
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and tocopherol biosyntheses occur in different compartments of the chloroplast, therefore 82 

requiring their tight cooperation as well as complex transport systems [16]. 83 

 84 

Regulation of PQ Content in Plants 85 

Although the environmental regulation of PQ-9 content in plants is poorly documented, the 86 

PQ-9 levels appear to be highly responsive to changes in the environmental conditions. For 87 

instance, when grown in high light, arabidopsis plants accumulated high PQ-9 levels 88 

compared to low light conditions [15,17]. In sun-exposed leaves of beech and fig tree, a 89 

considerable accumulation of PQ-9 was observed throughout the vegetation period from 90 

Spring to Summer [11]. This phenomenon was less marked for tocopherols.  When 91 

Arabidopsis plants were transferred from low light to high light, a transitory depletion of PQ-92 

9 occurred, followed by a considerable accumulation which was not observed for 93 

tocopherols [18]. Accordingly, labelling studies with 14C showed that PQ has a much faster 94 

turnover than tocopherols [19]. The in vivo half-life of PQ was also reported to be much 95 

shorter than that of ubiquinone [20]. PQ-9 losses in high light-exposed leaves were 96 

accompanied by the accumulation of oxidized forms of PQ-9 such as (multi)hydroxylated PQs 97 

[7]. Moreover, high light-induced loss of PQ-9 in arabidospis leaves was found to be 98 

drastically enhanced in a 1O2-overproducing mutant (ch1), suggesting a role for this ROS in 99 

PQ-9 photodegradation [18]. Genes coding for enzymes of the PQ-9 biosynthetic pathway 100 

were induced during light acclimation [18,21], in line with PQ-9 accumulation. In microalgae 101 

too, high light induced PQ-9 accumulation which is attributable to a stimulated biosynthesis 102 

as indicated by the net loss of PQ-9 in the presence of pyrazolate, a PQ-9 synthesis inhibitor 103 

[22]. High temperature is another factor that has been reported to trigger PQ-9 and 104 

plastochromanol-8 accumulation in leaves [23]. However, the combination of high light and 105 

low temperature was found to be the most effective to induce the expression of the VTE1 106 

and VTE4 genes and to cause PQ-9 accumulation [24]. This condition is known to promote 107 

high excitation pressure on the photosystems, ROS production and photooxidative stress 108 

[25]. 109 

 110 

The picture emerging from those data is that PQ-9 is consumed under oxidative stress 111 

conditions, presumably as a result of ROS scavenging by PQ-9 (see below), and that marked 112 

stimulation of de novo biosynthesis can counterbalance this phenomenon, finally resulting in 113 
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increased PQ-9 levels when plants are acclimated to the prevailing stress conditions. 114 

Moreover, large accumulations of PQ-9 under pro-oxidative environmental conditions 115 

support the idea that this compound plays a protective role against oxidative stress in plants. 116 

 117 

PQ Localization in Plant Cells 118 

PQ-9 is a lipid-soluble compound located in different lipidic structures of the chloroplasts: 119 

the thylakoid membranes, the plastoglobules and the chloroplastic envelopes [17,26,27]. 120 

Small amounts of PQ-9 were also reported in root plastids [28]. In normal growth conditions, 121 

up to 50% of the PQ-9 pool in plant leaves is located in the thylakoid membranes where it 122 

participates in electron transport from PSII to the cytochrome b6/f. The number of PQ-9 123 

molecules per PSII has been estimated to be around 10-15 [27,29,30] although some lower 124 

values were reported [31]. The total PQ-9 concentration in plants can vary considerably with 125 

the environmental conditions, but the amount of photochemically active PQ-9 in the 126 

thylakoid membrane seems to be rather constant [27], possibly representing an optimal 127 

value for photosynthesis. As a corollary, the PQ-9 pool is predominantly located outside the 128 

thylakoid membranes, i.e. the plastoglobules and the envelopes, under stress conditions that 129 

induce strong accumulations of PQ-9. This could be related to the dense packing of thylakoid 130 

membranes with proteins, with an estimated occupancy of 70-80% [32], likely restricting PQ-131 

9 diffusion. An organization of the photosynthetic electron chain in supercomplexes has 132 

been hypothesized, involving microdomains of PSII, PQ-9 and cytochrome b6/f which 133 

facilitate rapid diffusion of mobile PQ-9 over short distances in the thylakoid grana [33]. 134 

Possibly, these microdomains of PSII and cytochrome b6/f complexes may accommodate a 135 

limited number of PQ-9 molecules involved in rapid exchange between the two complexes. 136 

Such localization of PQ-9 in small microdomains could explain why the reduction rate of 137 

flash-oxidized cytochrome f is unaffected by the fatty acid saturation levels and the bulk lipid 138 

fluidity of the thylakoid membranes [34]. Consequently, under conditions that can induce 139 

marked accumulations of PQ-9 (e.g. high light), the extra PQs are stored in the 140 

plastoglobules which function as PQ reservoirs [27]. A similar phenomenon was observed 141 

when PQ-9 biosynthesis was artificially boosted by overexpressing SPS1: the PQ-9 142 

concentration in the thylakoid membranes was virtually unchanged compared to the wild 143 

type while the size of the photochemically non-active pool outside the thylakoid membrane 144 

(plastoglobules, envelopes) was strongly enhanced [18]. This multi-site localization of PQ-9 145 
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may indicate multiple functions for this molecule, going beyond its ‘traditional’ role in 146 

photosynthetic electron transport. 147 

 148 

PQ in Photosynthesis 149 

PQ-9 has long been viewed exclusively as a photosynthetic electron carrier, shuttling 150 

electrons from PSII to cytochrome b6/f [35,36]. In brief, a PQ-9 molecule firmly bound to the 151 

QA site of the PSII protein D1 transfers electrons between pheophytin and another PQ-9 152 

molecules loosely bound at the QB site of the D2 protein. After two-electron reduction and 153 

proton uptake, the formed PQH2 molecule (plastoquinol) dissociates from the QB pocket and 154 

enters the mobile PQ pool in the thylakoid membrane. Re-oxidation of PQH2 coupled with 155 

proton translocation proceeds at the cytochrome b6/f complex in the so-called Q cycle. PQ-9 156 

is thus involved both in the intersystem electron flow and the establisment of the 157 

transthylakoidal pH gradient. Despite the association of PQ-9, PSII and cytochrome b6/f in 158 

supercomplexes, the oxidation of plastoquinol at the Qo site of the cytochrome b6/f 159 

complex is considered to be the slowest step in the linear electron transport chain with a 160 

turnover time of 3.3 to 5 ms [37]. In comparison, upstream electron transports from H2O to 161 

PSII centers and from QA to diffusible PQ occur with turnover times in the range 1-2 ms 162 

[38,39]. Downstream transfer from cytochrome b6/f to PSI is significantly faster with half 163 

times of a few hundreds of μs [40]. 164 

 165 

In the chloroplasts of vascular plants, PQ-9 is at the crossroad of the linear electron 166 

transport chain with other electron pathways such as the chlororespiratory pathway and the 167 

cyclic electron flow around PSI [41] (Fig. 3). The chlororespiratory chain involves electron 168 

transfer reactions from stromal reductants to oxygen, catalyzed by the NADPH 169 

dehydrogenase complex NDH [42] and a plastid quinol terminal oxidase PTOX [43]. 170 

Chlororespiratory electron transport could have a regulatory role by poising the redox state 171 

of the PQ-9 pool, which is crucial for various processes including cyclic electron flow, 172 

carotenoid biosynthesis, protein phosphorylation and gene expressions [43]. For instance, 173 

lack of PTOX in the Arabidopsis immutans mutant led to a variegated phenotype with white 174 

sectors deprived from photosynthetic pigments [44,45]. This is attributed to a block of 175 

carotenogenesis in the absence of PQ-9 reoxidation by PTOX, resulting in photooxidative 176 

damage [46]. PTOX could also act as a safety valve by preventing overreduction of the PQ-9 177 
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pool and excessive excitation pressure on PSII [47].  Nevertheless, chlororespiration appears 178 

to be a quantitatively minor process [43], hence limiting its role in photoprotection. In plant 179 

cells, the vast majority of respiratory activity takes places in the mitochondria, segregated 180 

well away from photosynthetic electron transport in the chloroplasts. By contrast, in 181 

cyanobacteria, the thylakoid membranes are the major sites of respiratory electron 182 

transport as well as photosynthesis [48]. The respiratory electron transport chain shares 183 

some components with the photosynthetic electron transport chain including PQ-9 and 184 

cytochrome b6/f . This gives a role for the respiratory complexes in redox poising, by 185 

donating or removing electrons to prevent excessive oxidation or reduction of the PQ-9 pool.   186 

 187 

Cyclic electron flow around PSI is a mechanism that recycles electrons from PSI to the PQ 188 

pool. This recycling occurs through two different pathways that transfer electrons from 189 

ferredoxin to PQ-9: one pathway depends on the PROTON GRADIENT REGULATION 5 (PGR5) 190 

and PGR-like 1 (PGRL1) proteins, and the other one depends on the NDH complex [49,50]. 191 

Both cyclic pathways have physiological roles in sustaining photosynthesis under fluctuating 192 

light [51]. An important element in this role is to avoid overreduction of the PQ-9 pool and 193 

full reduction of the PSI reaction centers during high light pulses, thus limiting PSI 194 

photodamage.  195 

 196 

An electron cycle can also occur within PSII via cytochrome b559 and β-carotene [52], 197 

protecting PSII from photodamage under conditions in which the primary electron-donation 198 

pathway leading to water oxidation is inhibited. Under the latter conditions, 199 

cytochrome b559 is preferentially photooxidized. Oxidized cytochrome b559 is then capable of 200 

accepting an electron from a reduced PQ-9 on the electron acceptor side of PSII, thus 201 

forming a cyclic pathway of electron transfer that connects the donor and acceptor sides of 202 

PSII to remove excess oxidizing equivalents (Fig. 3).  Since cytochrome b559 is a potential 203 

protector of PSII against photoinhibition [52], reduction of this compound by PQH2-9 could 204 

be a component of the photoprotective action of the PQ-9 pool.  205 

 206 

PQ Redox State, Signaling and Biosynthesis of Chemical Compounds 207 

The multiple electron fluxes intersecting at the PQ-9 level (Fig. 3) modulate the redox state 208 

of the PQ-9 pool which appears to play a crucial role in various metabolic regulations. In 209 
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particular, imbalances in the excitation of the two photosystems are sensed by the PQ-9 210 

pool redox state, giving rise to phosphorylation of the major light-harvesting chlorophyll-211 

protein complex of PSII (LHCII) [41,53]. Actually, a reduced redox state associated with an 212 

over-excitation of PSII relative to PSI favors the binding of PQH2 to the Qo site of cytochrome 213 

b6/f complex and leads to the activation of a protein kinase, STATE TRANSITION 7 (STN7), 214 

which phosphorylates LHCII [54]. The primary activation of STN7 for LHCII phosphorylation 215 

appears to depend on its interaction with the stromal side of cytochrome b6/f whereas its 216 

inactivation could be controlled by PQH2-9 occupancy and turnover at the cytochrome Qo 217 

site [55]. The LHCII phosphorylation event causes the migration of the phosphorylated 218 

complex to PSI, thus rebalancing the excitation energy between PSII and PSI in favor of PSI (a 219 

mechanism called ‘state 1-state 2 transition’). Oxidation of the PQ-9 pool leads to the 220 

reverse reaction by dephosphorylation of LHCII by a phosphatase (state 2-to-state 1 221 

transition).  It is not yet clear  whether the phosphatase activity is constitutive or regulated 222 

by PQ. In land plants, the STN7 kinase and the state transitions are important for adaptation 223 

and growth under conditions in which light quality and quantity change frequently [56].  224 

 225 

Besides state transitions, the redox state of the PQ-9 pool has also been correlated with 226 

changes in gene expressions adjusting the stoichiometry and antenna size of the 227 

photosystems in the longer term [57,58]. For instance, a strongly reduced pool triggers 228 

repression of Lhcb1 gene expression while an oxidized pool induces expression.  This was 229 

shown in experiments where the PQ-9 redox state was modulated by changes in light 230 

intensity or by electron transport inhibitors [57,58].  Although a detailed description of the 231 

molecular events translating the PQ-9 redox state into transcriptomic changes is still 232 

pending, the available data indicate that PQ-9 pool reduction/oxidation levels play an 233 

important regulatory role in balancing excitation energy between the photosystems both by 234 

short-term and long-term mechanisms. The STN7 kinase and its regulation by the PQ redox 235 

state play a key role in both mechanisms [59]. STN7 appears to be positioned at the 236 

beginning of a phosphorylation cascade that communicates the photosynthetic needs to the 237 

chloroplast and nuclear genomes, resulting in the expression regulation of a distinct set of 238 

genes. However, redox regulation of photosynthesis is complex, involving several other 239 

regulators, such as thioredoxin, acting with PQ-9 in a cooperative manner [60].  240 

 241 
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Because ROS homeostasis is controlled by STN7, the role of PQ-9 in photosynthetic 242 

acclimation could be indirect though modulation of ROS signaling [61]. A more direct link 243 

with ROS signaling is also possible. Indeed, it is believed that oxygen can be reduced by 244 

plastosemiquinone (PQH°, a radical resulting from by the reduction of PQ-9 by one electron) 245 

to superoxide and that the latter ROS can be reduced to hydrogen peroxide by PQH2 [62]. 246 

Since hydogen peroxide is a long-distance signaling molecule playing a role in chloroplast-to-247 

nucleus communication  [63], hydrogen peroxide formation in the PQ pool could participate 248 

in chloroplastic retrograde signaling and changes in photosynthetic gene expression. 249 

  250 

The redox state of the PQ-9 pool is also involved in the biosynthesis of various metabolites. 251 

Phytoene desaturase in the carotenoid biosynthesis pathway requires PQ-9 oxidation by 252 

PTOX [44,45]. The plastoglobular PQ-9 pool is reduced by a type II-dehydrogenase (NDC1) 253 

that was found to be essential for vitamin K biosynthesis [64]. Plastochromanol-8 is 254 

synthesized from reduced PQ-9 by VTE1 in the plastoglobules, and this reaction is impaired 255 

when NDC1 is absent and the delivery of reduced PQH2 is limiting. Synthesis of 256 

plastochromanol from PQ is physiologically important because plastochromanol exerts 257 

antioxidant activities, particularly in seeds [65]. Incidentally, plastochromanol-8 is a long-258 

chain homolog of α-tocotrienol (Fig. 1). Recently, oxidized PQ was shown to be required for 259 

the activity of PROTOPORPHYRINOGEN IX OXIDASE as the electron acceptor [66]. This 260 

interaction between PROTOPORPHYRINOGEN IX OXIDASE and the PQ pool is proposed to 261 

function as a feedback loop between photosynthetic electron transport and chlorophyll 262 

biosynthesis. 263 

 264 

 265 

Antioxidant Functions 266 

PQ-9 and its derivative plastochromanol-8 are close to vitamin E (tocopherols and 267 

tocotrienols) both by their chemical structure and their biosynthesis pathway (Figs. 1 and 2). 268 

Another similarity with vitamin E is their potent antioxidant activity. In liposomes, PQ-9, both 269 

in the reduced and oxidized states, and plastochromanol-8 inhibit lipid peroxidation with an 270 

efficacy at least as high as that of tocopherols [67]. In fact, PQ-9 possesses a number of 271 

features that are likely to make this compound an excellent antioxidant. First, it is present in 272 
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high amounts as a diffusible molecule in thylakoids. The concentration of total PQ-9 in 273 

unstressed Arabidopsis leaves (~600 ng cm-2, [27]) is noticeably higher than 274 

tocopherol + plastochromanol levels (~150 ng cm-2). Leaf enrichment in PQ-9 relative to 275 

tocopherols can be even amplified during long-term acclimation of plants to high light 276 

intensities [11,18]. Second, the PQ-9 side chain bears several double bonds contrary to 277 

tocopherols (Fig. 1). Double bonds are known to be preferential targets of 1O2 for oxidation 278 

[68], and therefore the unsaturated side-chain of PQ-9 could provide a possibility for PQ-9 to 279 

quench 1O2 by a chemical mechanism. Accordingly, 1O2 quenching by PQ-9 both in the 280 

reduced and oxidized states was shown in vitro in organic solvents [69]. Comparison of PQ 281 

molecules with different lengths of the side chain showed that the 1O2 chemical quenching 282 

activity increased with the chain length [7]. Long-chain PQs are more efficient in 1O2 283 

scavenging due to higher number of carbons prone to 1O2 oxidation. Moreover, the 284 

localization of PQ-9 within the hydrophobic interior of lipidic membranes [70,71] could make 285 

this molecule a better 1O2 quencher than α-tocopherol which is located at the membrane 286 

surface [72]. Nevertheless, antioxidant activity is also provided by the phenolic group of 287 

reduced PQ-9 |73], so that reduced PQ-9 is likely to be a better 1O2 quencher than oxidized 288 

PQ-9. In isolated thylakoid membranes, maintenance of the PQ-9 pool in the reduced state 289 

by electron transport inhibitors enhanced the protection against lipid peroxidation and 290 

pigment bleaching [74]. Reduced PQ-9 can also scavenge superoxide and hydrogen peroxide 291 

[75,76]. Third, in thylakoid membranes, photosynthetic electron transport relies on the 292 

interaction between PQ-9 and the PSII reaction centres which are the main 1O2 generators 293 

during photosynthesis [77]. It was initially hypothesized that, in the thylakoid membranes, 294 

PQ-9 is located in the fluid bilayer-midplane region allowing rapid lateral movements 295 

between cytochrome b6/f and PSII complexes [78]. However, as mentioned above, more 296 

recent data favor a close compartmentization of PSII, PQ-9, and cytochrome b6/f complex in 297 

membrane microdomains [33,79]. Moreover, PQ-9 diffusion towards/from PSII was recently 298 

proposed to occur via several entries/exits in the PSII reaction centers with an exchange 299 

cavity where PQ-9 can diffuse around [80]. The intimacy and closeness of PQ-9 and PSII are 300 

likely to augment the opportunities for PQ-9 to scavenge 1O2 produced in the reaction 301 

centers. Consequently, PQ-9 could constitute a first line of defense against photosynthesis-302 

produced ROS, supplementing the action of the β-carotene molecules bound to the PSII 303 

centers. 304 
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 305 

In Chlamydomonas reinhardtii, addition of PQ homologues to cultures grown in the presence 306 

of PQ biosynthesis inhibitors prevented degradation of D1 and the associated 307 

photoinhibition of PSII, confirming the photoprotective role of PQ in microalgae [81]. The 308 

finding that SPS1 overexpression in Arabidopsis concomitantly boosts the PQ-9 biosynthesis 309 

pathway and the plant tolerance to photooxidative stress demonstrates that this class of 310 

molecules does fulfill a protective role in planta [18]. Moreover, 1O2 concentration was much 311 

lower in the SPS1-overexpressing transgenics compared to the wild type [7,27], in line with 312 

the 1O2 quenching capacities of PQ-9. This was accompanied by the accumulation of oxidized 313 

forms of PQ-9, such as PQ-C and trihydroxylated PQ-9, as expected if the antioxidative action 314 

of PQ-9 relies on chemical scavenging. Since chemical quenching involves oxidation of the 315 

quencher, PQ-9 is expected to be consumed during its antioxidant activity, as indeed 316 

observed in plants exposed to photooxidative stress conditions [18]. In the vte1 mutant, the 317 

total PQ-9 levels are constitutively lower than in WT, and this can be attributed to the 318 

chronic oxidation of PQ-9 in the absence of tocopherol [27]. The increased levels of PQ-C in 319 

the vte1 mutants compared with WT corroborate this interpretation. When SPS1 is 320 

overexpressed in the vte1 background, tolerance to photooxidative stress was restored 321 

indicating that PQ-9 can functionally replace tocopherols and plastochromanol-8 (which are 322 

both missing from vte1 plants) [27]. Increased production of 1O2 from the PSII centers in 323 

the ch1 mutant was associated with an accelerated loss of PQ-9 compared to the wild type 324 

[18], supporting the idea that consumption of PQ-9 in high light results from 1O2 oxidation.  325 

 326 

PQ-9 is partially converted to plastochromanol-8 in planta [15]. Comparison of the 327 

arabidopsis vte2 mutant (deficient in tocopherols but containing plastochromanol) and the 328 

vte1 vte2 double mutant (deficient in both tocopherol and plastochromanol) showed that 329 

plastochromanol-8 plays a crucial antioxidant role for seed survival and early seedling 330 

development [65]. However, adult vte1 vte2 plants did not exhibit obvious phenotype, 331 

questioning the function of this compound in well-developed plants. The lack of phenotype 332 

could be related to the amounts of pastochromanol found in plant shoots which are modest 333 

compared to PQ-9. Moreover, over-accumulation of plastochromanol-8 is VTE1-334 

overexpressing Arabidopsis lines did not result in an increased tolerance to photooxidation 335 

[18].  The exact function of this PQ-9 derivative in plant leaves remains to be clarified. 336 
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 337 

The Dynamics of PQ Partitioning Between Thylakoid Membranes and Plastoglobules 338 

When arabidopsis plants were suddenly exposed to high light stress, loss of PQ-9 concerned 339 

principally the thylakoidal pool [27], as expected since the photosystems are the main 340 

source of 1O2 in high light. Moreover, PQ-C was detected predominantly in the thylakoid 341 

fractions, confirming that 1O2 oxidation of PQ-9 occurs at this level. This is in agreement with 342 

a study by Szymanska and Kruk [15] who showed a selective decrease in the photochemically 343 

active PQ-9 pool in arabidopsis leaves exposed to high light stress. However, a significant 344 

reduction of the total PQ-9 concentration was observed in the photochemically nonactive 345 

pool when the photostress was severe and PQ-9 degradation was very pronounced such as 346 

in the vte1 background [27]. Therefore, a dynamic exchange of PQ-9 molecules must be 347 

assumed between the thylakoids and their storage sites in the plastoglobules and the 348 

envelopes to compensate the oxidative degradation of PQ-9 molecules during their ROS 349 

scavenging activity in the thylakoid membranes. Accordingly, plastoglobules have been 350 

shown to be physically coupled to thylakoids in a way allowing bidirectional channelling of 351 

lipid metabolites [82,83]. However, experimental data measuring the nature and the rate of 352 

this metabolite exchange are not available. In particular, we do not know if a carrier system 353 

is involved in this exchange. In this context, it is worth mentioning that reduced PQ-9 354 

showed a high mobility in lipid membranes compared with α-tocopherol [84]. Nevertheless, 355 

the rate of this transfer appeared to be slow compared with the rate of PQ-9 oxidation 356 

under severe high light stress because it could not maintain the pool size of photochemically 357 

active PQs to the control levels measured in low light [27]. Possibly, the protein crowding in 358 

the thylakoid membrane is a limiting factor in the PQ transfer from the plastoglobules to the 359 

lipidic environment of PSII.  360 

 361 

Some progress has been recently made in regards with the control of PQ exchange between 362 

the thylakoid membranes and the plastoglobules. A predicted atypical kinase PROTON 363 

GRADIENT REDUCTION 6 (PGR6, also called ABC1K1) in the plastoglobules was shown to be 364 

required for PQ homeostasis [85]. PGR6 appears to regulate the transfer of PQ-9 molecules 365 

from the plastoglobules to the thylakoid membranes: when the pgr6 knockout mutant was 366 

transferred to a moderately elevated light intensity, the photoactive PQ-9 pool in the 367 

thylakoid membranes was selectively depleted, reducing photosynthetic efficiency. Another 368 
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plastoglobular kinase (ABC1K3) has been found to have the opposite effect, limiting PQ-9 369 

availability for electron transport in the thylakoid membranes [86]. The amounts of PQ-9 was 370 

increased in the plastoglobules and decreased in the thylakoids by the abc1k1 abc1k3 371 

double mutation [87]. Thus, a complex regulation of PQ distribution within the chloroplast 372 

appears to occur, determining photosynthesis efficiency and tolerance to high light. These 373 

observations suggest that, apart from the absolute concentration of PQ-9, its mobility and 374 

exchange between storage and active pools are critical. The targets of the ABC1K1 and 375 

ABC1K3 kinases are still unknown and remain to be identified. 376 

 377 

Because PQ-9 somehow functions as a sacrificial antioxidant consumed during oxidative 378 

stress, it must be resynthesized for the pool being refilled. Accordingly, most genes of the 379 

PQ-9 biosynthesis pathway are strongly upregulated during acclimation of arabidopsis to 380 

high light intensities [18,21]. This induction of PQ-9 biosynthesis genes was accompanied by 381 

a concomitant rise in the size of the total PQ-9 pool, whereas there was less effect on the 382 

tocopherol content [15,18]. However, we cannot exclude metabolization and recycling of 383 

oxidized forms of PQ-9. The plastoglobules are known to contain a repair system allowing 384 

the reconversion of α-tocoperol quinone to α-tocopherol [88]. A similar repair system could 385 

exist for PQ-9 considering the presence of oxidoreductases in the plastoglobules, including 386 

NDC1 [64].  387 

 388 

Some Applications of the Antioxidant Properties of PQ 389 

Contrary to ubiquinone [89,90], the antioxidant properties of PQ-9 have not yet been 390 

exploited directly in biotechnological applications, e.g. to enhance plant stress tolerance. 391 

However, conjugates of reduced PQ with various cations (SkQ) have been designed to 392 

penetrate mitochondrial cell membranes [91]. Thanks to the antioxidant activity associated 393 

with the plastoquinol part of the molecule, these derivatives can protect animal and human 394 

cells from death from oxidative stress [92] and are effective as anti-aging treatments [93,94]. 395 

The development of pharmaceuticals based on SkQ is in progress. In particular, SkQ1 (10-(6-396 

plastoquinonyl) decyltriphenylphosphonium) can be used for the treatment of dry eye 397 

syndrome, the early stage of cataract and macular degeneration [95]. SkQ1 has also been 398 

applied to plants with some beneficial effects, such as reduced ROS production in the 399 

mitochondria and prevention of cell death [96]. However, treatment of plants with SkQ1 had 400 
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no effect on ROS produced in the chloroplasts in the light and perturbed photosynthetic 401 

electron transport in the µM concentration range. Other PQ analogs with antiproliferative 402 

and proapoptotic activities, such as chlorinated PQ and amino benzoquinone, have also been 403 

developed for medical purposes [94, 97]. 404 

 405 

 406 

Concluding Remarks and Future Perspectives 407 

PQ-9 is a unique component of the photosynthetic machinery with multiple functions in the 408 

operation, regulation and protection of photosynthetic electron transport pathways (Fig. 4). 409 

The dual function of PQ in photosynthesis and photoprotection may stem in the evolution of 410 

photoautotrophic organisms. Quinones are widely distributed in nature, being present in 411 

nearly all living organisms [5]. From an evolutionary perspective, it is interesting to note that 412 

quinonic compounds were detected in interstellar dusts [98], suggesting the involvement of 413 

this type of compounds in early chemical and biological evolutionary steps.  Quinones have 414 

also been detected in carbonaceous meterorites, and it has been proposed that such 415 

compounds delivered by meteoritic infall in the prebiotic environment could have played a 416 

role in the development of primitive cellular life [99]. Actually, isoprenoids are amongst the 417 

most ancient organic chemicals which are believed to be necessary constituents in the early 418 

formation of membranes and their evolution [100]. Accordingly, polycyclic aromatic 419 

hydrocarbons such as chrysene quinone were experimentally shown to stabilize and reduce 420 

permeability of a simulated prebiotic membrane [101]. In animal and bacterial cells, 421 

quinonic compounds are present in a variety of membranes supporting physiological roles 422 

other than in respiratory electron transport [102,103], including management of oxidative 423 

stress [104]. Moreover, quinones, and in particular PQ-9, have been shown to affect the 424 

mechanical properties of lipid membranes, increasing membrane stability and changing 425 

permeability [105,106]. The quinone moiety of the molecule appears to be essential for 426 

these effects. In the bacteria Listeria monocytogenes, isoprenoid quinone concentration 427 

modulates membrane fluidity as a mechanism for adaptation to low temperature [107]. One 428 

can thus speculate that the PQ ancestor initially played protective and structural roles in 429 

biological membranes which were preserved during evolution and were maintained while 430 

new essential roles were subsequently acquired in electron and proton transport.  431 

 432 
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Considering its antioxidative properties, PQ-9 could be a good target for future 433 

developments of plants more tolerant to environmental constraints. A first exemple in this 434 

approach is the successful increase in the stress tolerance of Arabidopsis plants 435 

accumulating PQ-9 by SPS1 gene overexpression [18]. Possibly, the concomitant 436 

manipulation of other enzymes of PQ-9 biosynthesis could further amplify this effect. On the 437 

other hand, inhibition of the flow of PQ-9 from their storage site in the plastoglobules to the 438 

thylakoid membranes  by inactivation of the PGR6 enzymes impaired plant acclimation to 439 

high light intensities [85]. Therefore, improvement of the PQ-9 exchange rate between the 440 

thylakoid membranes and the plastoglobules could constitute another possible way to 441 

improve the acclimation capacities of plants to environmental fluctuations. This will require, 442 

however, a better understanding of the molecular mechanism underlying the partitioning of 443 

PQ-9 within the chloroplast. Because of its multiple functions in the chloroplasts, PQ-9 could 444 

provide an attractive target for improving photosynthesis efficiency and robustness (see 445 

outstanding questions).  446 

 447 
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Figure legends 729 

 730 

Figure 1. Chemical structure of plastoquinone-9, plastochromanol-8, α-tocopherol and α-731 

tocotrienol. 732 

 733 

Figure 2. Biosynthesis pathways of plastoquinone (in red), plastochromanol-8 (in black) and 734 

vitamin E (α-tocopherol (in green) and α-tocotrienol (in blue)) in plants.  735 

Metabolites: DP, diphosphate; HGA, homogentisate; GGDP, geranylgeranyl disposphate, 736 

HPP, hydroxyphenylpyruvate; IPP, isopentenyl-pyrophosphate; MSBQ, 2,3-dimethyl-6-737 

solanesyl-1,4-benzoquinol; MPBQ, 2-methyl-6-phytyl-1, 4-benzoquinol; DMPBQ, 2,3-738 

dimethyl-6-phytyl-1,4-benzoquinone; MGGBQ, 2-methyl-6- geranylgeranyl Benzoquinone; 739 

DMGGBQ, 2,3-dimethyl-6-geranylgeranyl benzoquinone.  740 

Enzymes: HST, homogentisate solanesyl transferase; HPT, homogentisate phytyl transferase; 741 

VTE1, tocopherol cyclase; VTE3, phytylbenzoquinol methyltransferase; VTE4, γ-tocopherol 742 

methyltransferase; HGGT, homogentisate geranylgeranyl transferase; HPPD, 743 

hydroxyphenylpyruvate dioxygenase; SPS, solanesyl diphosphate synthase. 744 

 745 

Figure 3. Schematic representation of the photosynthetic electron flows  intersecting at the 746 

PQ-9 pool: linear electron flow (in black), cyclic electron flow around PSI (in blue), cyclic 747 

electron flow around PSII (in green) and chlororespiration (in red). b559, cytochrome b559; 748 

Fd, ferredoxin; PC, plastocyanin.   749 

 750 

Figure 4. Scheme illustrating functions of PQ-9 in plants modulated by the dynamic 751 

partitioning of the PQ-9 molecules between the photochemically active pool in the thylakoid 752 

membranes and the photochemically non-active pool stored in the plastoblobules.  753 
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