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A UNIFORM RESULT FOR THE DIMENSION OF FRACTIONAL

BROWNIAN MOTION LEVEL SETS

LARA DAW

Abstract. Let B = {Bt : t ≥ 0} be a real-valued fractional Brownian motion of in-
dex H ∈ (0, 1). We prove that the macroscopic Hausdor� dimension of the level sets
Lx = {t ∈ R+ : Bt = x} is, with probability one, equal to 1−H for all x ∈ R.

Keywords: Level sets; Fractional Brownian motion; Local times; Macroscopic Hausdor�
dimension.

1. Introduction

Let B = {Bt : t ≥ 0} be a fractional Brownian motion of index H ∈ (0, 1), that is, a
centered, real-valued Gaussian process with covariance function

R(s, t) = E (BsBt) =
1

2

(
|s|2H + |t|2H − |s− t|2H

)
, s, t ≥ 0.(1)

Since E
[

(Bs −Bt)2
]

= |s− t|2H , it is an immediate consequence of the Kolmogorov�Centsov
continuity theorem that B admits a continuous modi�cation. Throughout this note, we will
always assume that B is continuous. It is also immediate (see, e.g., [9]) that B is a self-similar
process of exponent H, that is, for any a > 0,

{Bat : t ≥ 0} d
=
{
aHBt : t ≥ 0

}
,

where X
d
= Y means that two processes X and Y have the same distribution. Moreover, B

has stationary increments, that is, for every s ≥ 0 ,

{Bt+s −Bs : t ≥ 0} d
= {Bt : t ≥ 0} .

This article is concerned with estimating the size of the level sets of B, which are de�ned
for any x ∈ R as

Lx = {t ≥ 0 : Bt = x} .(2)

This line of research started with the seminal work of Taylor [13], who was the �rst to study
the Hausdor� dimensions of the level sets in the case of a standard Brownian motion. His
results were extended later on by Perkins [11] who showed that, with probability one, the level
sets Lx have a Hausdor� dimension 1

2 for all x ∈ R. Hence, the local structure of the level sets
in the Brownian case is well understood.

Another method to describe the geometric properties of the sample paths of a given process
is in terms of its sojourn times. Here, the goal is to study the dimension of the amount of
time spent by the stochastic process inside a moving boundary, that is, of the form

E(φ) := {t ≥ 0 : |Bt| ≤ φ(t)} ,

Date: October 7, 2020.

1

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S016771522030287X
Manuscript_9c76c2f8ab29960c1d068b86b9791cbe

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S016771522030287X
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S016771522030287X


2 LARA DAW

where φ : R+ → R is an appropriate function.
Strongly related to our note, we mention the recent work of Nourdin, Peccati and Seuret

[10], in which a speci�c large scale dimension is computed for the sojourn times

Eγ := {t ≥ 0 : |Bt| ≤ tγ} , 0 < γ < H,(3)

of the fractional Brownian motion B. Note that this choice for φ is completely natural here
because, on the one hand, the fractional Brownian motion is selfsimilar (hence the choice of a
power function for φ) and, on the other hand, it satis�es a law of iterated logarithm as t→∞
(hence the range (0, H) for γ). Actually, [10] extended to the fractional Brownian motion the
results given by Seuret and Yang [12] in the framework of the standard Brownian case.

In general, de�ning a notion of fractal dimension for a subset of Rd involves taking into
consideration the microscopic (i.e. local) properties of this set. However, many models in
statistical physics are based on the Euclidean lattice Zd; in this case, it may look more natural
to rely on the macroscopic (i.e. global) properties of the set to de�ne a notion of dimension.
This is what Barlow and Taylor proposed in [1, 2]. Their dimension, called macroscopic

Hausdor� dimension, has proven to be relevant in many contexts. This is the one that was
used in [10, 12], and also the one we will use in the present note, because it can give a good
intuition about the geometry of the set into consideration, precisely whether it is scattered or
not. Precise de�nitions will be given in Section 2.1. At this stage, we only mention that we
denote this macroscopic Hausdor� dimension by DimH .

Our note can be considered as an addendum to [10]. Let Lx be the level sets associated
with a fractional Brownian motion. In [10], the following is shown.

Theorem 1. Fix x ∈ R. Then
P(DimHLx = 1−H) = 1.

Our aim is to extend Theorem 1 from �∀x, P(. . .) = 1� to �P(∀x : . . .) = 1�. To this end,
new and non-trivial arguments are required. We will prove the following.

Theorem 2.

P(∀x ∈ R : DimHLx = 1−H) = 1.(4)

We note that our Theorem 2 also recovers Seuret-Yang's result [12, Theorem 2] (Brownian
motion), and provides a proof that we �nd more natural.

Throughout the note, every random object is de�ned on a common probability space
(Ω,A,P), and E denotes the expectation with respect to P.

2. Preliminaries

This section gathers the di�erent tools that will be needed in order to prove Theorem 2.

2.1. Macroscopic Hausdor� Dimension. Following the notations of [7, 8], we consider the
intervals S−1 = [0, 1/2) and Sn = [2n−1, 2n) for n ∈ N. For E ⊂ R+, we de�ne the set of
proper covers of E restricted to Sn by

In(E) =

{
{Ii}mi=1 : Ii = [xi, yi]withxi, yi ∈ N, yi > xi,

Ii ⊂ Sn and E ∩ Sn ⊂
⋃m
i=1 Ii.

}
For any set E ⊂ R+, ρ ≥ 0 and n ≥ −1, we de�ne

νnρ (E) = inf

{
m∑
i=1

(
diam(Ii)

2n

)ρ
: {Ii}mi=1 ∈ In(E)

}
,(5)
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where diam([a, b]) = b− a.
The key point in the de�nition of νnρ (E) is that the sets Ii are non-trivial intervals with

integer boundaries; in particular, the in�mum is reached.

De�nition 3. Let E ⊂ R+. The macroscopic Hausdor� dimension of E is de�ned by

DimHE = inf

ρ > 0 :
∑
n≥−1

νnρ (E) < +∞

 .(6)

We observe that DimHE always belongs to [0, 1], whatever E ⊂ R+. Indeed, consider the
family Ii = [2n−1 + i − 1, 2n−1 + i], 1 ≤ i ≤ 2n−1, which belongs to In(E) and satis�es∑m

i=1

(
diam(Ii)

2n

)ρ
≤ 1

22n(1−ρ). Thus, νn1+ε(E) ≤ 2−nε for all ε > 0, implying in turn that

DimHE ≤ 1 + ε for all ε > 0. As a result, we have that DimHE ∈ [0, 1].
In (5), the covers are chosen to have length larger than 1. This shows that the macroscopic

Hausdor� dimension does not rely on the local structure of the underlying set.
The dimension of a set is unchanged when one removes any bounded subset, since the series

in (6) converges if and only if its tail series converges. Consequently, the dimension of any
bounded set E is zero. But the converse is not true, for example DimH({2n, n ≥ 1}) = 0.

The macroscopic Hausdor� dimension not only counts the number of covers of a set but
also it gives an intuition about the geometry of the set. Precisely, the more the points of the
set are spread-out, the larger its dimension. For instance for 0 < α < 1, de�ne the two sets
Aα and Bα by for all n ≥ 1,

Aα ∩ Sn =

{
2n−1 + k

2n−1

2nα
: k ∈ {0, ..., 2nα − 1}

}
;

Bα ∩ Sn =

{
2n−1 +

k

2nα
: k ∈ {0, ..., 2nα − 1}

}
.

Even though both sets have same cardinality but DimHAα = α whereas DimHBα = 0.
These features make the macroscopic Hausdor� dimension an interesting quantity describing

the large scale geometry of a set; in particular, it appears to be well suited for the study of
the level sets Lx.

As we will see in our upcoming analysis, it might be sometimes wise to slightly modify the
way DimHE is de�ned, to get a de�nition that is more amenable to analysis. For this reason,
let us introduce, for any E ⊂ R+, ρ > 0, ξ ≥ 0, and n ≥ −1, the quantity

(7) ν̃nρ,ξ(E) = inf

{
m∑
i=1

(
diam(Ii)

2n

)ρ ∣∣∣∣log2diam(Ii)

2n

∣∣∣∣ξ : {Ii}mi=1 ∈ In(E)

}
.

The di�erence between νnρ (E) and ν̃nρ,ξ(E) is that we introduce a logarithmic factor in the
latter. This modi�cation has actually no impact on the de�nition of DimHE, as stated by the
following lemma.

Lemma 4. Let ξ ≥ 0. For every set E ⊂ R+,

DimHE = inf

ρ > 0 :
∑
n≥−1

ν̃nρ,ξ(E) < +∞

 .(8)
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Proof. De�ne d̃ξ = inf
{
ρ > 0 :

∑
n≥−1 ν̃

n,ξ
ρ (E) < +∞

}
. For n ≥ −1, consider {Ii}mi=1 ∈

In(E). As Ii ⊂ Sn, one has diam(Ii) ≤ 2n−1, implying in turn that

∣∣∣∣log2diam(Ii)

2n

∣∣∣∣ξ ≥ 1.

Thus, ν̃nρ,ξ(E) ≥ νnρ (E) and then DimHE ≤ d̃ξ.
If DimHE = 1, the conclusion is straightforward. So, let us assume that DimHE < 1

and let us �x ε > 0 small enough and ρ < 1 such that ρ > DimHE + ε. Since the function

x 7→ xε |log2 x|
ξ is continuous on (0, 1] and tends to zero as x tends to zero, it follows that

there exists c > 0 such that

|log2 x|
ξ ≤ cx−ε, ∀x ∈ (0, 1]

We deduce that, for all {Ii}mi=1 ∈ In(E),

m∑
i=1

(
diam(Ii)

2n

)ρ ∣∣∣∣log2diam(Ii)

2n

∣∣∣∣ξ ≤ c m∑
i=1

(
diam(Ii)

2n

)ρ−ε
By taking the in�mum over all {Ii}mi=1 ∈ In(E) and recalling the de�nitions (5) and (7), one

deduces that ν̃nρ,ξ(E) ≤ cνnρ−ε(E), implying in turn d̃ξ ≤ ρ− ε. Letting ρ tend to DimHE + ε
yields the result.

�

2.2. Local Time of Fractional Brownian Motion. As we will see, the use of the local
time will play a key role throughout the proof of Theorem 2.

Provided it exists, the local time x 7→ Lxt of a given process (Xt)t≥0 is, for each t, the
density of the occupation measure µt(A) = λ({s ∈ [0, t] : Xs ∈ A}) associated with X, where

λ stands for the Lebesgue measure; otherwise stated, one has Lt = dµt
dλ . In what follows, we

shall also freely use the notation Lt([a, b]) to indicate the quantity Lt(b)− Lt(a).
The case where X is Gaussian (and centered, say) has been widely studied in the literature.

For instance, we can refer to the survey by Dozzi [5]. One of the main striking results in the
Gaussian framework is the following easy-to-check condition that ensures that (Lxt )t∈[0,T ],x∈R
exists in L2(Ω) :

(9) I :=

∫ ∫
[0,T ]2

ds dt√
R(s, s)R(t, t)−R(s, t)2

< +∞,

where R(s, t) = E (XsXt); morever, in this case we have the Fourier type representation:

Lxt =
1

2π

∫
R
dy

∫ t

0
du eiy(Bu−x).(10)

If X is Gaussian, selfsimilar of index H and satis�es (9), then it is immediate from (10)
that its local time at level x also have some selfsimilarity properties in time with index 1−H,
but with a di�erent level as stated below. More precisely, one has, for every c > 0:

(Lxct)t≥0,x∈R
d
= c1−H(Lc

−Hx
t )t≥0,x∈R.(11)

When X stands for the fractional Brownian motion B of Hurst index H ∈ (0, 1), it is
immediate that (9) and (11) are satis�ed. But we can go further. A consequence of Berman's
work [4] is that the local time associated to B is β−Hölder continuous in t for every β ≤ 1−H
and uniformly in x. On their side, German and Horowitz (see [6, Theorem 26.1]) proved
that, for all �xed t, the local time (Lxt )x∈R admits the Hölder regularity in space stated in the
following lemma.
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Lemma 5 (Spatial Hölder continuity of local time). Assume X is a fractional Brownian

motion of Hurst index H ∈ (0, 1) and consider its local time (Lxt )x∈K , where K is a given

compact interval in R. Then, for all β ∈
(
0, 12

(
1
H − 1

) )
and for all t ≥ 0,

P

(
sup
x,y∈K

|Lxt − L
y
t |

|x− y|β
<∞

)
= 1.(12)

As we will see, Lemma 5 will be one of our main key tools in order to prove Lemma 8 (which
is one of the steps leading to the proof of Theorem 2).

2.3. Filtration of Fractional Brownian Motion. A last crucial property of the fractional
Brownian B that we will use in order to to prove Theorem 2, is that the natural �ltration
associated with B is Brownian. We mean by this that there exists a standard Brownian motion
(Wu)u≥0 de�ned on the same probability space than B such that its �ltration satis�es, for all
t > 0,

(13) σ{Bu : u ≤ t} ⊂ σ{Wu : u ≤ t}.
Property (13) is an immediate consequence of the Volterra representation of B (see, e.g.,

[3]). It will be exploited together with the Blumenthal's 0− 1 law, in the end of the proof of
Proposition 6.

3. Proof of Theorem 2

3.1. Upper bound for DimHLx. By a theorem in [10], for every γ ∈ (0, H), a.s.

DimHEγ = 1−H.
On the other hand, observe that for a �xed γ > 0 and x ∈ R, the level set Lx is ultimately
included in Eγ . Indeed,

Lx ∩ [|x|1/γ ,+∞) ⊂ Eγ .
We have recalled in Section 2.1 that the macroscopic Haussdor� dimension is insensitive to
the suppression of any bounded subset. As a result, a.s. for every x ∈ R,

DimHLx = DimH

(
Lx ∩ [|x|1/γ ,+∞)

)
≤ DimHEγ = 1−H.

3.2. Lower bound for DimHLx. Recall Sn from Section 2.1, and let us introduce the random
variables

(14) Zxn =
Lx (Sn)

2n(1−H)
and F xN =

N∑
n=1

Zxn.

The random variables (Zxn)n≥−1 are positive, so (F xN )N≥1 is non-decreasing. We denote by

F x∞ its limit, i.e. F x∞ =
∑∞

n=−1 Z
x
n ∈ [0,+∞].

Using (11), we have for all n ≥ 0

(15) Zxn
d
= Z2−nHx

0 .

We note that similar random variables Y x
n =

L2nx (Sn)

2n(1−H)
were introduced in [10, Section 5.3].

However, the fact that we are dealing with other space variables compared to [10] induce
several di�erences in our proofs. Although its statement is exactly the same than [10, Lemma
5], the meaning and the context of our proof are di�erent. This is why we provide all the



6 LARA DAW

details, for the convenience of the reader.
Our aim now is to link the random variable Zxn to the microscopic Hausdor� dimension. To
this end, let us introduce the random variables

(16) An := sup
0≤t≤2n

sup
0≤h≤2n−1

sup
y∈R

Ly ([t, t+ h])

h1−H(n− log2 h)H
,

where log2 stands for the binary logarithm (base 2). By (11), we have

An = sup
0≤t≤1

sup
0≤h≤1/2

sup
y∈R

Ly ([2nt, 2n(t+ h)])

(2nh)1−H(− log2 h)H
(17)

d
= sup

0≤t≤1
sup

0≤h≤1/2
sup
y∈R

Ly ([t, t+ h])

h1−H(− log2 h)H
.

First, let us prove that An is �nite almost surely. We start by making use of a result of Xiao
[14, Theorem 1.2] that describes the scaling behavior of local times of Gaussian processes with
stationary increments; in particular, this applies to the fractional Brownian motion and we
have, with probability one:

M := lim
r↓0

sup
0≤t≤1

sup
0≤h≤r

sup
y∈R

Ly ([t, t+ h])

h1−H(− log2 h)H
<∞.

By the very de�nition of a limit, we deduce the existence of a (random) real number 0 < r <
1/2 such that, almost surely,

sup
0≤t≤1

sup
0≤h≤r

sup
y∈R

Ly ([t, t+ h])

h1−H(− log2 h)H
≤ 2M.(18)

Now for r ≤ h ≤ 1/2, we have h1−H(− log2 h)H ≥ r1−H and Ly ([t, t+ h]) ≤ Ly ([0, 3/2]) for
all 0 ≤ t ≤ 1 and y ∈ R. Moreover by [15, Theorem 4.1], B has a jointly continuous local time
(t, x) 7→ Lxt on [0, 3/2]×R. Then, the (random) function x 7→ Lxt is continuous on R and has
a compact support (the occupation measure de�ned in Section 2.2 is compactly supported as
B ([0, 3/2]) is compact). Hence, sup

y∈R
Ly([0, 3/2]) is �nite and so one gets, almost surely,

sup
0≤t≤1

sup
r≤h≤1/2

sup
y∈R

Ly ([t, t+ h])

h1−H(− log2 h)H
≤ rH−1 sup

0≤t≤1
sup

r≤h≤1/2
sup
y∈R

Ly ([t, t+ h])(19)

≤rH−1 sup
y∈R

Ly([0, 3/2]) <∞.

Finally, by summing up (18) and (19), one has

P

(
sup

0≤t≤1
sup

0≤h≤1/2
sup
y∈R

Ly ([t, t+ h])

h1−H(− log2 h)H
<∞

)
= 1.

Now for K > 0 de�ne the event

ΩK :=

{
sup

0≤t≤1
sup

0≤h≤1/2
sup
y∈R

Ly ([t, t+ h])

h1−H(− log2 h)H
≤ K

}
.(20)
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Fix x ∈ R and consider the level set Lx de�ned by (2). By recalling De�nition 7, we have: if
(Ii = [si, ti])

m
i=1 ∈ In(Lx) is a cover minimizing ν̃n1−H,H(Lx) then,

ν̃n1−H,H(Lx) =

m∑
i=1

(
|ti − si|

2n

)1−H ∣∣∣∣log2
|ti − si|

2n

∣∣∣∣H .(21)

Using (17) and a scaling argument with t =
si
2n

, h =
ti − si

2n
, and y = 2−nHx, we deduce that(

|ti − si|
2n

)1−H ∣∣∣∣log2
|ti − si|

2n

∣∣∣∣H ≥ K−1 Lx(Ii)

2n(1−H)
on ΩK .

Back to (21), we have

ν̃n1−H,H(Lx) ≥ K−1
m∑
i=1

Lx(Ii)

2n(1−H)
≥ K−1 L

x(Sn)

2n(1−H)
= K−1Zxn, on ΩK ,(22)

where the last inequality holds because the local time Lx· increases only on the set Ii (whose
union covers Lx

⋂
Sn). Finally, one gets

ΩK ⊂
{
∀x ∈ R, ∀n ≥ −1 : ν̃n1−H,H(Lx) ≥ K−1Zxn

}
.

Using (22) for the �rst inclusion and Lemma 4 for the second one, we can write

ΩK ∩ {∀x ∈ R, F x∞ = +∞} ⊂{∀x ∈ R,
∑
n≥−1

ν̃n1−H,H(Lx) = +∞}(23)

⊂{∀x ∈ R, DimHLx ≥ 1−H}.
But by de�nition of ΩK we have

P(ΩK) −−−−−→
K→+∞

P

(
sup

0≤t≤1
sup

0≤h≤1/2
sup
y∈R

Ly ([t, t+ h])

h1−H(− log2 h)H
<∞

)
= 1.(24)

As a consequence, in order to conclude the proof of Theorem 2, it remains to check that
P(∀x ∈ R, F x∞ = +∞) = 1. Then, using 23, by letting K ↑ ∞ an a.s. uniform lower bound
of DimHLx is attained. The object of the next proposition is prove that F x∞ = +∞ almost
surely for all x ∈ R.

Proposition 6. We have

P(∀x ∈ R, F x∞ = +∞) = 1(25)

Note that the following stronger statement of Proposition 6 was shown in [10]: for all
x ∈ R, P(F x∞ = +∞) = 1. Our main contribution in the present note is precisely to prove the
strongest version stated in Proposition 6.

3.3. Proof of Proposition 6. For every a > 0, de�ne

Z̃an = inf
x∈[−a,a]

Zxn and F̃ a∞ =
∑
n≥1

Z̃an.(26)

Recalling (11), we get for all n ≥ 0

Z̃an = inf
x∈[−a,a]

Zxn
d
= inf

x∈[−a,a]
Z2−nHx
0 = inf

x∈[−2−nHa,2−nHa]
Zx0 = Z̃2−nHa

0 .(27)

In the three forthcoming lemmas, the following three facts are established:

(i) the existence of ε > 0 such that P(Z0
0 > 4ε) > 0 (Lemma 7),
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(ii) the existence of a > 0 such that P(Z0
0 > 4ε) ≤ 2P(Z̃a0 > 0) (Lemma 8),

(iii) that P
(
F̃ b∞ =∞

)
≥ P

(
Z̃a0 > 0

)
for all b > 0 (Lemma 9).

Combining the results obtained in (i) to (iii), we deduce that

(28) P
(
F̃ b∞ =∞

)
> 0 for all b > 0.

Set B̂u = u2HB1/u, u > 0. By the time inversion property of the fractional Brownian

motion, B̂ is a fractional Brownian motion of Hurst index H as well. We can write

Lx (Sn) =
1

2π

∫
R
dy e−iyx

∫ 2n

2n−1

dueiyu
2HB̂1/u .

As a result, we get that x 7→ Lx (Sn) is σ
{
B̂u : u ≤ 2−(n−1)

}
-measurable, implying in turn

that

(29) σ
{
Z̃bn : n ≥M

}
⊂ σ

{
B̂u : u ≤ 2−(M−1)

}
for every M ≥ 1. Consequently,{

F̃ b∞ =∞
}
∈
⋂
M≥1

σ
{
B̂u : u ≤ 2−(M−1)

}
.

Using (13), there exists a standard Brownian motion (Wu)u≥0 de�ned on the same probability
space such that

(30)
{
F̃ b∞ =∞

}
∈
⋂
M≥1

σ
{
Wu : u ≤ 2−(M−1)

}
.

By the Blumenthal's 0-1 law, the probability P
(
F̃ b∞ =∞

)
is either 0 or 1. But by (28), this

probability is strictly positive; hence we conclude that

(31) P
(
F̃ b∞ =∞

)
= 1 for all b > 0.

For every b > 0, one has

P (∀x ∈ [−b, b] : F x∞ =∞) = P
(

inf
x∈[−b,b]

F x∞ =∞
)

= P

 inf
x∈[−b,b]

∑
N≥1

ZxN =∞


≥ P

∑
N≥1

inf
x∈[−b,b]

ZxN =∞

 = P
(
F̃ b∞ =∞

)
= 1.

We �nally conclude that

P (∀x ∈ R, F x∞ =∞) = lim
b→∞

P (∀x ∈ [−b, b], F x∞ =∞) = 1,

which is the desired conclusion of Proposition 6.
To conclude, it remains to state and prove the three lemmas mentioned in points (i) to (iii).

Lemma 7. There exists ε > 0 small enough such that P(Z0
0 > 4ε) > 0.
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Proof. Using that L0

(
[
1

2
, 1]

)
=

1

2π

∫
R
dy

∫ 1

1
2

du eiyBu , we have

E
(
L0

([
1

2
, 1

]))
=

1

2π

∫ 1

1
2

u−H du

∫
R
e−

z2

2 dz =
1√
2π

∫ 1

1
2

u−H du > 0.

As a result, P
(
Z0
0 > 0

)
= P

(
L0
([

1
2 , 1
])
> 0
)
> 0, and the desired conclusion follows. �

Lemma 8. For every ε > 0 small enough, there exists a real number a > 0 such that

0 < P(Z0
0 > 4ε) ≤ 2P(Z̃a0 > 0).

Proof. Let β < 1
2

(
1
H − 1

)
, K = [−1, 1] and J = [12 , 1]. Set

c = c(ω) := sup
x∈K\{0}

∣∣L0(J)(ω)− Lx(J)(ω)
∣∣

|x|β
.

By Lemma 5, we have that P(c <∞) = 1.

Set ηε = ηε(ω) := min

{(
ε

c(ω)

)1/β

, 1

}
. As [−ηε, ηε] ⊂ [−1, 1], one has

∀|x| ≤ ηε(ω),
∣∣∣(L0

1(ω)− Lx1(ω))− (L0
1
2

(ω)− Lx1
2

(ω))
∣∣∣ ≤ ε.(32)

By triangle inequality,∣∣∣Lx1 − Lx1
2

∣∣∣ ≥ ∣∣∣L0
1 − L0

1
2

∣∣∣− ∣∣∣(L0
1 − Lx1)− (L0

1
2

− Lx1
2

)
∣∣∣ .(33)

Using (32) and (33), we have{
Z0
0 = L0

1 − L0
1
2

> 4ε
}
⊂
{
∀|x| ≤ ηε(ω), |Lx1 − Lx1

2

| ≥ 3ε
}
.(34)

But
{
∀|x| ≤ ηε(ω), |Lx1 − Lx1

2

| ≥ 3ε)
}

=

{
inf

x∈[−ηε,ηε]
|Lx1 − Lx1

2

| ≥ 3ε

}
. Recalling the de�nition

of Z̃ηε0 , we deduce that

P
(
Z̃ηε0 > 0

)
≥ P

(
Z̃ηε0 > 3ε

)
≥ P

(
Z0
0 > 4ε

)
> 0.(35)

Now for all a > 0, we have{
Z̃ηε0 > 0

}
⊂
{
Z̃a0 > 0

}
∪ {ηε ≤ a} .(36)

Since c < ∞ a.s., one has that P (c ≥M) → 0 as M → ∞. We can then choose a > 0 small
enough such that

P (ηε ≤ a) = P
(
c ≥ ε

2aβ

)
≤ 1

2
P
(
Z0
0 > 4ε

)
.(37)

Using (35), (36) and (37) we deduce that

P
(
Z0
0 > 4ε

)
≤ P

(
Z̃ηε0 > 0

)
≤ P

(
Z̃a0 > 0

)
+ P (ηε ≤ a) ≤ P

(
Z̃a0 > 0

)
+

1

2
P
(
Z0
0 > 4ε

)
.

Finally, this yields

0 < P
(
Z0
0 > 4ε

)
≤ 2P

(
Z̃a0 > 0

)
,

which is the desired conclusion. �
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Lemma 9. For any a, b > 0, we have

P
(
F̃ b∞ =∞

)
≥ P

(
Z̃a0 > 0

)
.

Proof. Fix γ > 0 and a, b > 0, consider the event Aγ,b =
{
F̃ b∞ ≤ γ

}
. By Fubini's theorem,

γ ≥ E
(
1Aγ,bF̃

b
∞

)
=
∑
n≥−1

E
(
1Aγ,bZ̃

b
n

)
=
∑
n≥−1

∫ ∞
0

P
(
Aγ,b ∩ {Z̃bn > u}

)
du.

Using P (A ∩B) ≥ (P(A)− P(Bc))+ where Bc denotes the complement of B, and recalling
(27), we deduce that

γ ≥
∑
n≥0

∫ ∞
0

(
P (Aγ,b)− P

(
Z̃bn ≤ u

))
+
du =

∑
n≥0

∫ ∞
0

(
P (Aγ,b)− P

(
Z̃2−nHb
0 ≤ u

))
+
du.

There exists M ≥ 1 such that 2−nHb ≤ a for all n ≥M . Then, for all n ≥M ,

P
(
Z̃2−nHb
0 ≤ u

)
≤ P

(
Z̃a0 ≤ u

)
and

γ ≥
∑
n≥M

∫ ∞
0

(
P (Aγ,b)− P

(
Z̃a0 ≤ u

))
+
du.

Since the summand does not depend on n and the series is bounded by γ and thus �nite, one
has necessarily ∫ ∞

0

(
P (Aγ,b)− P

(
Z̃a0 ≤ u

))
+
du = 0.

Hence, for almost every u ≥ 0 and every γ ≥ 0,

P
(
F̃ b∞ ≤ γ

)
= P (Aγ,b) ≤ P

(
Z̃a0 ≤ u

)
.(38)

We know that P(Z̃a0 ≤ u) is increasing as a function of u. Hence, (38) is actually true for every

u ≥ 0 and γ ≥ 0. Hence P
(
F̃ b∞ > n

)
≥ P

(
Z̃a0 >

1
n

)
for all n ∈ N. One conclude that

P
(
F̃ b∞ =∞

)
≥ P

(
Z̃a0 > 0

)
.

�
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