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Let B = {Bt : t ≥ 0} be a real-valued fractional Brownian motion of index H ∈ (0, 1). We prove that the macroscopic Hausdor dimension of the level sets Lx = {t ∈ R+ : Bt = x} is, with probability one, equal to 1 -H for all x ∈ R.

Introduction

Let B = {B t : t ≥ 0} be a fractional Brownian motion of index H ∈ (0, 1), that is, a centered, real-valued Gaussian process with covariance function

R(s, t) = E (B s B t ) = 1 2 |s| 2H + |t| 2H -|s -t| 2H , s, t ≥ 0. (1) 
Since E (B s -B t ) 2 = |s -t| 2H , it is an immediate consequence of the KolmogorovCentsov continuity theorem that B admits a continuous modication. Throughout this note, we will always assume that B is continuous. It is also immediate (see, e.g., [START_REF] Nourdin | Selected aspects of fractional Brownian motion[END_REF]) that B is a self-similar process of exponent H, that is, for any a > 0,

{B at : t ≥ 0} d = a H B t : t ≥ 0 ,
where X d = Y means that two processes X and Y have the same distribution. Moreover, B has stationary increments, that is, for every s ≥ 0 , {B t+s -B s :

t ≥ 0} d = {B t : t ≥ 0} .
This article is concerned with estimating the size of the level sets of B, which are dened for any x ∈ R as L x = {t ≥ 0 : B t = x} .

(
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This line of research started with the seminal work of Taylor [START_REF] Taylor | The α-dimensional measure of the graph and set of zeros of a brownian path[END_REF], who was the rst to study the Hausdor dimensions of the level sets in the case of a standard Brownian motion. His results were extended later on by Perkins [START_REF] Perkins | The exact Hausdor measure of the level sets of Brownian motion[END_REF] who showed that, with probability one, the level sets L x have a Hausdor dimension 1 2 for all x ∈ R. Hence, the local structure of the level sets in the Brownian case is well understood.

Another method to describe the geometric properties of the sample paths of a given process is in terms of its sojourn times. Here, the goal is to study the dimension of the amount of time spent by the stochastic process inside a moving boundary, that is, of the form where φ : R + → R is an appropriate function.

Strongly related to our note, we mention the recent work of Nourdin, Peccati and Seuret [START_REF] Nourdin | Sojourn time dimensions of fractional brownian motion[END_REF], in which a specic large scale dimension is computed for the sojourn times

E γ := {t ≥ 0 : |B t | ≤ t γ } , 0 < γ < H, (3) 
of the fractional Brownian motion B. Note that this choice for φ is completely natural here because, on the one hand, the fractional Brownian motion is selfsimilar (hence the choice of a power function for φ) and, on the other hand, it satises a law of iterated logarithm as t → ∞ (hence the range (0, H) for γ). Actually, [START_REF] Nourdin | Sojourn time dimensions of fractional brownian motion[END_REF] extended to the fractional Brownian motion the results given by Seuret and Yang [START_REF] Seuret | On sojourn of Brownian motion inside moving boundaries[END_REF] in the framework of the standard Brownian case.

In general, dening a notion of fractal dimension for a subset of R This is what Barlow and Taylor proposed in [START_REF] Barlow | Fractional dimension of sets in discrete spaces[END_REF][START_REF] Barlow | Dening fractal subsets of Z d[END_REF]. Their dimension, called macroscopic Hausdor dimension, has proven to be relevant in many contexts. This is the one that was used in [START_REF] Nourdin | Sojourn time dimensions of fractional brownian motion[END_REF][START_REF] Seuret | On sojourn of Brownian motion inside moving boundaries[END_REF], and also the one we will use in the present note, because it can give a good intuition about the geometry of the set into consideration, precisely whether it is scattered or not. Precise denitions will be given in Section 2.1. At this stage, we only mention that we denote this macroscopic Hausdor dimension by Dim H .

Our note can be considered as an addendum to [START_REF] Nourdin | Sojourn time dimensions of fractional brownian motion[END_REF]. Let L x be the level sets associated with a fractional Brownian motion. In [START_REF] Nourdin | Sojourn time dimensions of fractional brownian motion[END_REF], the following is shown.

Theorem 1. Fix x ∈ R. Then P(Dim H L x = 1 -H) = 1.
Our aim is to extend Theorem 1 from ∀x, P(. . .) = 1 to P(∀x : . . .) = 1. To this end, new and non-trivial arguments are required. We will prove the following.

Theorem 2.

P(∀x ∈ R : Dim H L x = 1 -H) = 1. (4) 
We note that our Theorem 2 also recovers Seuret-Yang's result [12, Theorem 2] (Brownian motion), and provides a proof that we nd more natural.

Throughout the note, every random object is dened on a common probability space (Ω, A, P), and E denotes the expectation with respect to P.

Preliminaries

This section gathers the dierent tools that will be needed in order to prove Theorem 2.

2.1. Macroscopic Hausdor Dimension. Following the notations of [START_REF] Khoshnevisan | Intermittency and multifractality: A case study via parabolic stochastic pdes[END_REF][START_REF] Khoshnevisan | On the macroscopic fractal geometry of some random sets[END_REF], we consider the intervals S -1 = [0, 1/2) and S n = [2 n-1 , 2 n ) for n ∈ N. For E ⊂ R + , we dene the set of proper covers of E restricted to S n by

I n (E) = {I i } m i=1 : I i = [x i , y i ] with x i , y i ∈ N, y i > x i , I i ⊂ S n and E ∩ S n ⊂ m i=1 I i . For any set E ⊂ R + , ρ ≥ 0 and n ≥ -1, we dene ν n ρ (E) = inf m i=1 diam(I i ) 2 n ρ : {I i } m i=1 ∈ I n (E) , (5) 
where diam([a, b]) = b -a.

The key point in the denition of ν n ρ (E) is that the sets I i are non-trivial intervals with integer boundaries; in particular, the inmum is reached.

Denition 3. Let E ⊂ R + . The macroscopic Hausdor dimension of E is dened by

Dim H E = inf    ρ > 0 : n≥-1 ν n ρ (E) < +∞    . (6) 
We observe that Dim H E always belongs to [0, 1], whatever E ⊂ R + . Indeed, consider the family

I i = [2 n-1 + i -1, 2 n-1 + i], 1 ≤ i ≤ 2 n-1 , which belongs to I n (E) and satises m i=1 diam(I i ) 2 n ρ ≤ 1 2 2 n(1-ρ) . Thus, ν n 1+ε (E) ≤ 2 -nε for all ε > 0, implying in turn that
Dim H E ≤ 1 + ε for all ε > 0. As a result, we have that Dim H E ∈ [0, 1].

In [START_REF] Dozzi | Occupation Density and Sample Path Properties[END_REF], the covers are chosen to have length larger than 1. This shows that the macroscopic

Hausdor dimension does not rely on the local structure of the underlying set.

The dimension of a set is unchanged when one removes any bounded subset, since the series in ( 6) converges if and only if its tail series converges. Consequently, the dimension of any bounded set E is zero. But the converse is not true, for example Dim H ({2 n , n ≥ 1}) = 0.

The macroscopic Hausdor dimension not only counts the number of covers of a set but also it gives an intuition about the geometry of the set. Precisely, the more the points of the set are spread-out, the larger its dimension. For instance for 0 < α < 1, dene the two sets A α and B α by for all n ≥ 1,

A α ∩ S n = 2 n-1 + k 2 n-1 2 nα : k ∈ {0, ..., 2 nα -1} ; B α ∩ S n = 2 n-1 + k 2 nα : k ∈ {0, ..., 2 nα -1} .
Even though both sets have same cardinality but Dim H A α = α whereas Dim H B α = 0.

These features make the macroscopic Hausdor dimension an interesting quantity describing the large scale geometry of a set; in particular, it appears to be well suited for the study of the level sets L x .

As we will see in our upcoming analysis, it might be sometimes wise to slightly modify the way Dim H E is dened, to get a denition that is more amenable to analysis. For this reason, let us introduce, for any E ⊂ R + , ρ > 0, ξ ≥ 0, and n ≥ -1, the quantity (7)

ν n ρ,ξ (E) = inf m i=1 diam(I i ) 2 n ρ log 2 diam(I i ) 2 n ξ : {I i } m i=1 ∈ I n (E) .
The dierence between ν n ρ (E) and ν n ρ,ξ (E) is that we introduce a logarithmic factor in the latter. This modication has actually no impact on the denition of Dim H E, as stated by the following lemma.

Lemma 4. Let

ξ ≥ 0. For every set E ⊂ R + , Dim H E = inf    ρ > 0 : n≥-1 ν n ρ,ξ (E) < +∞    . ( 8 
) LARA DAW Proof. Dene dξ = inf ρ > 0 : n≥-1 ν n,ξ ρ (E) < +∞ . For n ≥ -1, consider {I i } m i=1 ∈ I n (E). As I i ⊂ S n , one has diam(I i ) ≤ 2 n-1 , implying in turn that log 2 diam(I i ) 2 n ξ ≥ 1.
Thus, ν n ρ,ξ (E) ≥ ν n ρ (E) and then Dim H E ≤ dξ . If Dim H E = 1, the conclusion is straightforward. So, let us assume that Dim H E < 1 and let us x > 0 small enough and ρ < 1 such that ρ > Dim H E + . Since the function x → x |log 2 x| ξ is continuous on (0, 1] and tends to zero as x tends to zero, it follows that there exists c > 0 such that

|log 2 x| ξ ≤ cx -, ∀x ∈ (0, 1]
We deduce that, for all

{I i } m i=1 ∈ I n (E), m i=1 diam(I i ) 2 n ρ log 2 diam(I i ) 2 n ξ ≤ c m i=1 diam(I i ) 2 n ρ-
By taking the inmum over all {I i } m i=1 ∈ I n (E) and recalling the denitions ( 5) and ( 7 Provided it exists, the local time x → L x t of a given process (X t ) t≥0 is, for each t, the density of the occupation measure µ t (A) = λ({s ∈ [0, t] : X s ∈ A}) associated with X, where λ stands for the Lebesgue measure; otherwise stated, one has L t = dµt dλ . In what follows, we shall also freely use the notation L t ([a, b]) to indicate the quantity L t (b) -L t (a).

The case where X is Gaussian (and centered, say) has been widely studied in the literature.

For instance, we can refer to the survey by Dozzi [START_REF] Dozzi | Occupation Density and Sample Path Properties[END_REF]. One of the main striking results in the Gaussian framework is the following easy-to-check condition that ensures that (L x t ) t∈[0,T ],x∈R exists in L 2 (Ω) : ( 9)

I := [0,T ] 2 ds dt R(s, s)R(t, t) -R(s, t) 2 < +∞,
where R(s, t) = E (X s X t ); morever, in this case we have the Fourier type representation:

L x t = 1 2π R dy t 0 du e iy(Bu-x) . ( 10 
)
If X is Gaussian, selfsimilar of index H and satises [START_REF] Nourdin | Selected aspects of fractional Brownian motion[END_REF], then it is immediate from (10) that its local time at level x also have some selfsimilarity properties in time with index 1 -H, but with a dierent level as stated below. More precisely, one has, for every c > 0:

(L x ct ) t≥0,x∈R d = c 1-H (L c -H x t ) t≥0,x∈R . (11) 
When X stands for the fractional Brownian motion B of Hurst index H ∈ (0, 1), it is immediate that ( 9) and [START_REF] Perkins | The exact Hausdor measure of the level sets of Brownian motion[END_REF] are satised. But we can go further. A consequence of Berman's work [START_REF] Berman | Local nondeterminism and local times of Gaussian processes[END_REF] is that the local time associated to B is β-Hölder continuous in t for every β ≤ 1 -H and uniformly in x. 

|L x t -L y t | |x -y| β < ∞ = 1. ( 12 
)
As we will see, Lemma 5 will be one of our main key tools in order to prove Lemma 8 (which is one of the steps leading to the proof of Theorem 2).

Filtration of Fractional Brownian Motion. A last crucial property of the fractional

Brownian B that we will use in order to to prove Theorem 2, is that the natural ltration associated with B is Brownian. We mean by this that there exists a standard Brownian motion (W u ) u≥0 dened on the same probability space than B such that its ltration satises, for all t > 0, [START_REF] Taylor | The α-dimensional measure of the graph and set of zeros of a brownian path[END_REF] σ{B u : u ≤ t} ⊂ σ{W u : u ≤ t}.

Property ( 13) is an immediate consequence of the Volterra representation of B (see, e.g., [START_REF] Baudoin | Equivalence of Volterra processes[END_REF]). It will be exploited together with the Blumenthal's 0 -1 law, in the end of the proof of Proposition 6.

Proof of Theorem 2

3.1. Upper bound for Dim H L x . By a theorem in [START_REF] Nourdin | Sojourn time dimensions of fractional brownian motion[END_REF], for every γ ∈ (0, H), a.s.

Dim H E γ = 1 -H.

On the other hand, observe that for a xed γ > 0 and x ∈ R, the level set L x is ultimately included in E γ . Indeed,

L x ∩ [|x| 1/γ , +∞) ⊂ E γ .
We have recalled in Section 2.1 that the macroscopic Haussdor dimension is insensitive to the suppression of any bounded subset. As a result, a.s. for every x ∈ R, 

Dim H L x = Dim H L x ∩ [|x| 1/γ , +∞) ≤ Dim H E γ = 1 -H.
Z x n = L x (S n ) 2 n(1-H) and F x N = N n=1 Z x n .
The random variables (Z x n ) n≥-1 are positive, so (F x N ) N ≥1 is non-decreasing. We denote by [START_REF] Perkins | The exact Hausdor measure of the level sets of Brownian motion[END_REF], we have for all n ≥ 0 (15)

F x ∞ its limit, i.e. F x ∞ = ∞ n=-1 Z x n ∈ [0, +∞]. Using
Z x n d = Z 2 -nH x 0 .
We note that similar random variables Y x n = L 2 n x (S n ) 2 n(1-H) were introduced in [10, Section 5.3].

However, the fact that we are dealing with other space variables compared to [START_REF] Nourdin | Sojourn time dimensions of fractional brownian motion[END_REF] induce several dierences in our proofs. Although its statement is exactly the same than [10, Lemma 5], the meaning and the context of our proof are dierent. This is why we provide all the details, for the convenience of the reader.

Our aim now is to link the random variable Z x n to the microscopic Hausdor dimension. To this end, let us introduce the random variables (16)

A n := sup

0≤t≤2 n sup 0≤h≤2 n-1 sup y∈R L y ([t, t + h]) h 1-H (n -log 2 h) H ,
where log 2 stands for the binary logarithm (base 2). By [START_REF] Perkins | The exact Hausdor measure of the level sets of Brownian motion[END_REF], we have

A n = sup 0≤t≤1 sup 0≤h≤1/2 sup y∈R L y ([2 n t, 2 n (t + h)]) (2 n h) 1-H (-log 2 h) H (17) d = sup 0≤t≤1 sup 0≤h≤1/2 sup y∈R L y ([t, t + h]) h 1-H (-log 2 h) H .
First, let us prove that A n is nite almost surely. We start by making use of a result of Xiao [START_REF] Xiao | Hölder conditions for the local times and the Hausdor measure of the level sets of Gaussian random elds[END_REF]Theorem 1.2] that describes the scaling behavior of local times of Gaussian processes with stationary increments; in particular, this applies to the fractional Brownian motion and we have, with probability one:

M := lim r↓0 sup 0≤t≤1 sup 0≤h≤r sup y∈R L y ([t, t + h]) h 1-H (-log 2 h) H < ∞.
By the very denition of a limit, we deduce the existence of a (random) real number 0 < r < 1/2 such that, almost surely,

sup 0≤t≤1 sup 0≤h≤r sup y∈R L y ([t, t + h]) h 1-H (-log 2 h) H ≤ 2M. ( 18 
)
Now for r ≤ h ≤ 1/2, we have h 1-H (-log 2 h) H ≥ r 1-H and L y ([t, t + h]) ≤ L y ([0, 3/2]) for all 0 ≤ t ≤ 1 and y ∈ R. Moreover by [START_REF] Xiao | Local times of fractional brownian sheets[END_REF]Theorem 4 

sup y∈R L y ([t, t + h]) h 1-H (-log 2 h) H ≤ r H-1 sup 0≤t≤1 sup r≤h≤1/2 sup y∈R L y ([t, t + h]) (19) ≤r H-1 sup y∈R L y ([0, 3/2]) < ∞.
Finally, by summing up (18) and ( 19), one has

P sup 0≤t≤1 sup 0≤h≤1/2 sup y∈R L y ([t, t + h]) h 1-H (-log 2 h) H < ∞ = 1. Now for K > 0 dene the event Ω K := sup 0≤t≤1 sup 0≤h≤1/2 sup y∈R L y ([t, t + h]) h 1-H (-log 2 h) H ≤ K . (20)
Fix x ∈ R and consider the level set L x dened by [START_REF] Barlow | Dening fractal subsets of Z d[END_REF]. By recalling Denition 7, we have: if

(I i = [s i , t i ]) m i=1 ∈ I n (L x ) is a cover minimizing ν n 1-H,H (L x ) then, ν n 1-H,H (L x ) = m i=1 |t i -s i | 2 n 1-H log 2 |t i -s i | 2 n H . (21) 
Using ( 17) and a scaling argument with t = s i 2 n , h = t i -s i 2 n , and y = 2 -nH x, we deduce that

|t i -s i | 2 n 1-H log 2 |t i -s i | 2 n H ≥ K -1 L x (I i ) 2 n(1-H) on Ω K .
Back to (21), we have

ν n 1-H,H (L x ) ≥ K -1 m i=1 L x (I i ) 2 n(1-H) ≥ K -1 L x (S n ) 2 n(1-H) = K -1 Z x n , on Ω K , (22) 
where the last inequality holds because the local time L x • increases only on the set I i (whose union covers L x S n ). Finally, one gets

Ω K ⊂ ∀x ∈ R, ∀n ≥ -1 : ν n 1-H,H (L x ) ≥ K -1 Z x n .
Using (22) for the rst inclusion and Lemma 4 for the second one, we can write

Ω K ∩ {∀x ∈ R, F x ∞ = +∞} ⊂{∀x ∈ R, n≥-1 ν n 1-H,H (L x ) = +∞} (23) ⊂{∀x ∈ R, Dim H L x ≥ 1 -H}.
But by denition of Ω K we have

P(Ω K ) -----→ K→+∞ P sup 0≤t≤1 sup 0≤h≤1/2 sup y∈R L y ([t, t + h]) h 1-H (-log 2 h) H < ∞ = 1. ( 24 
)
As a consequence, in order to conclude the proof of Theorem 2, it remains to check that

P(∀x ∈ R, F x ∞ = +∞) = 1.
Then, using 23, by letting K ↑ ∞ an a.s. uniform lower bound of Dim H L x is attained. The object of the next proposition is prove that F x ∞ = +∞ almost surely for all x ∈ R. Proposition 6. We have

P(∀x ∈ R, F x ∞ = +∞) = 1 (25) 
Note that the following stronger statement of Proposition 6 was shown in [START_REF] Nourdin | Sojourn time dimensions of fractional brownian motion[END_REF]: for all

x ∈ R, P(F x ∞ = +∞) = 1. Our main contribution in the present note is precisely to prove the strongest version stated in Proposition 6.

3.3. Proof of Proposition 6. For every a > 0, dene

Z a n = inf x∈[-a,a] Z x n and F a ∞ = n≥1 Z a n . (26) 
Recalling [START_REF] Perkins | The exact Hausdor measure of the level sets of Brownian motion[END_REF], we get for all n ≥ 0

Z a n = inf x∈[-a,a] Z x n d = inf x∈[-a,a] Z 2 -nH x 0 = inf x∈[-2 -nH a,2 -nH a] Z x 0 = Z 2 -nH a 0 . (27) 
In the three forthcoming lemmas, the following three facts are established:

(i) the existence of > 0 such that P(Z 0 0 > 4 ) > 0 (Lemma 7),

LARA DAW (ii) the existence of a > 0 such that P(Z 0 0 > 4 ) ≤ 2P( Z a 0 > 0) (Lemma 8), (iii) that P F b ∞ = ∞ ≥ P Z a 0 > 0 for all b > 0 (Lemma 9).

Combining the results obtained in (i) to (iii), we deduce that (28)

P F b ∞ = ∞ > 0 for all b > 0.
Set B u = u 2H B 1/u , u > 0. By the time inversion property of the fractional Brownian motion, B is a fractional Brownian motion of Hurst index H as well. We can write

L x (S n ) = 1 2π R dy e -iyx 2 n 2 n-1 due iyu 2H B 1/u .
As a result, we get that

x → L x (S n ) is σ B u : u ≤ 2 -(n-1) -measurable, implying in turn that (29) σ Z b n : n ≥ M ⊂ σ B u : u ≤ 2 -(M -1)
for every M ≥ 1. Consequently, 1) .

F b ∞ = ∞ ∈ M ≥1 σ B u : u ≤ 2 -(M -
Using [START_REF] Taylor | The α-dimensional measure of the graph and set of zeros of a brownian path[END_REF], there exists a standard Brownian motion (W u ) u≥0 dened on the same probability space such that (30) 1) .

F b ∞ = ∞ ∈ M ≥1 σ W u : u ≤ 2 -(M -
By the Blumenthal's 0-1 law, the probability P F b ∞ = ∞ is either 0 or 1. But by (28), this probability is strictly positive; hence we conclude that (31)

P F b ∞ = ∞ = 1 for all b > 0.
For every b > 0, one has

P (∀x ∈ [-b, b] : F x ∞ = ∞) = P inf x∈[-b,b] F x ∞ = ∞ = P   inf x∈[-b,b] N ≥1 Z x N = ∞   ≥ P   N ≥1 inf x∈[-b,b] Z x N = ∞   = P F b ∞ = ∞ = 1.
We nally conclude that

P (∀x ∈ R, F x ∞ = ∞) = lim b→∞ P (∀x ∈ [-b, b], F x ∞ = ∞) = 1,
which is the desired conclusion of Proposition 6.

To conclude, it remains to state and prove the three lemmas mentioned in points (i) to (iii).

Lemma 7. There exists > 0 small enough such that P(Z 0 0 > 4 ) > 0.

Proof. Using that L 0

[ 1 2 , 1] = 1 2π R dy 1 1 2
du e iyBu , we have

E L 0 1 2 , 1 = 1 2π 1 1 2 u -H du R e -z 2 2 dz = 1 √ 2π 1 1 2
u -H du > 0.

As a result, P Z 0 0 > 0 = P L 0 1 2 , 1 > 0 > 0, and the desired conclusion follows.

Lemma 8. For every > 0 small enough, there exists a real number a > 0 such that

0 < P(Z 0 0 > 4 ) ≤ 2P( Z a 0 > 0). Proof. Let β < 1 2 1 H -1 , K = [-1, 1] and J = [ 1 2 , 1]. Set c = c(ω) := sup x∈K\{0} L 0 (J)(ω) -L x (J)(ω) |x| β .
By Lemma 5, we have that P(c < ∞) = 1.

Set η = η (ω) := min c(ω)

1/β , 1 . As [-η , η ] ⊂ [-1, 1], one has ∀|x| ≤ η (ω), (L 0 1 (ω) -L x 1 (ω)) -(L 0 1 2 (ω) -L x 1 2 (ω)) ≤ . (32) 
By triangle inequality,

L x 1 -L x 1 2 ≥ L 0 1 -L 0 1 2 -(L 0 1 -L x 1 ) -(L 0 1 2 -L x 1 2 
) .

Using ( 32) and (33), we have

Z 0 0 = L 0 1 -L 0 1 2 > 4 ⊂ ∀|x| ≤ η (ω), |L x 1 -L x 1 2 | ≥ 3 . ( 34 
) But ∀|x| ≤ η (ω), |L x 1 -L x 1 2 | ≥ 3 ) = inf x∈[-η ,η ] |L x 1 -L x 1 2
| ≥ 3 . Recalling the denition of Z η 0 , we deduce that P Z η 0 > 0 ≥ P Z η 0 > 3 ≥ P Z 0 0 > 4 > 0.

(

) 35 
Now for all a > 0, we have Z η 0 > 0 ⊂ Z a 0 > 0 ∪ {η ≤ a} . (38)

We know that P( Z a 0 ≤ u) is increasing as a function of u. Hence, (38) is actually true for every u ≥ 0 and γ ≥ 0. Hence P F b ∞ > n ≥ P Z a 0 > 1 n for all n ∈ N. One conclude that P F b ∞ = ∞ ≥ P Z a 0 > 0 .

3. 2 .

 2 Lower bound for Dim H L x . Recall S n from Section 2.1, and let us introduce the random variables[START_REF] Xiao | Hölder conditions for the local times and the Hausdor measure of the level sets of Gaussian random elds[END_REF] 

  c < ∞ a.s., one has that P (c ≥ M ) → 0 as M → ∞. We can then choose a > 0 small enough such thatP (η ≤ a) = P c ≥ 2aβ

4 ≤

 4 P Z η 0 > 0 ≤ P Z a 0 > 0 + P (η ≤ a) ≤ P Z a 0

Finally, this yields 0 < 1 E 1 A 1 ∞ 0 P 0 P 0 P 0 P

 01110000 P Z 0 0 > 4 ≤ 2P Z a 0 > 0 ,which is the desired conclusion.LARA DAW Lemma 9. For any a, b > 0, we haveP F b ∞ = ∞ ≥ P Z a 0 > 0 .Proof. Fix γ > 0 and a, b > 0, consider the eventA γ,b = F b ∞ ≤ γ . By Fubini's theorem, γ ≥ E 1 A γ,b F b ∞ = n≥-γ,b Z b n = n≥-A γ,b ∩ { Z b n > u} du. Using P (A ∩ B) ≥ (P(A) -P(B c )) + where B c denotes the complement of B, (A γ,b ) -P Z 2 -nH bThere exists M ≥ 1 such that 2 -nH b ≤ a for all n ≥ M . Then, for all n ≥ M ,P Z 2 -nH b 0 ≤ u ≤ P Z a 0 ≤ u and γ ≥ n≥M ∞ (A γ,b ) -P Z a 0 ≤ u + du.Since the summand does not depend on n and the series is bounded by γ and thus nite, one has necessarily∞ (A γ,b ) -P Z a 0 ≤ u + du = 0.Hence, for almost every u ≥ 0 and every γ ≥ 0, P F b ∞ ≤ γ = P (A γ,b ) ≤ P Z a 0 ≤ u .

  d involves taking into consideration the microscopic (i.e. local) properties of this set. However, many models in statistical physics are based on the Euclidean lattice Z d ; in this case, it may look more natural to rely on the macroscopic (i.e. global) properties of the set to dene a notion of dimension.

  5 (Spatial Hölder continuity of local time). Assume X is a fractional Brownian motion of Hurst index H ∈ (0, 1) and consider its local time (L x t ) x∈K , where K is a given compact interval in R. Then, for all β ∈ 0,1 

	2	1 H -1 and for all t ≥ 0,
	P sup	
	x,y∈K	

On their side, German and Horowitz (see

[START_REF] Geman | Occupation densities[END_REF] Theorem 26.1]

) proved that, for all xed t, the local time (L x t ) x∈R admits the Hölder regularity in space stated in the following lemma.

Lemma
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