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Abstract  

In tumors, Cancer-Associated Fibroblasts (CAFs) constitute the most prominent component of 

the tumor microenvironment (TME). CAFs are heterogeneous and composed of different 

CAF subsets exerting distinct functions in tumors. Specific CAF subpopulations actively 

influence various aspects of tumor growth, including cancer cell survival and proliferation, 

angiogenesis, extracellular matrix (ECM) remodeling, metastatic spread and chemoresistance. 

During the past decade, some CAF subsets have also been shown to modulate anti-tumor 

immune response. Indeed, they can increase the content in regulatory T lymphocytes and 

inhibit the activity of effector and cytotoxic immune cells. These functions are mainly 

controlled by their constitutive secretion of cytokines, chemokines, growth factors and ECM 

proteins, either directly in the surrounding extracellular space or through micro-vesicles. 

Some CAFs also express key regulators of immune checkpoints. The different roles played by 

CAFs, both as immunosuppressor or as physical support for tumor cell progression, set them 

as promising targets for anti-tumor therapies. In this review, we describe the main current 

knowledge on CAFs heterogeneity and immunosuppressive microenvironment, as well as 

their potential therapeutic implications.  

 

 

Keywords: cancer associated fibroblasts, CAF, immunosuppression, cancer, tumor 

microenvironment, stroma, T lymphocytes, NK, macrophages 
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1. Generalities  

It is now well-accepted that tumor progression is not strictly dependent on cancer cell genetic 

alterations or epigenetic modifications, but also controlled by components of the tumor 

microenvironment (TME). TME components are central to all stages of tumorigenesis and 

metastasis [1-4]. TME is composed of several cell types, such as fibroblasts, pericytes, 

immune and endothelial cells that are all able to interact with cancer cells in a dynamic way. 

Among cells present in the TME, cancer-associated fibroblasts (CAFs) represent one of the 

most abundant components that can contribute -at several levels- to the malignant phenotype 

[2-7]. In non-cancerous homeostatic conditions, fibroblasts are present at resident stage and 

represent an important sensor of tissue integrity. After a tissue damage signal, they 

differentiate into myofibroblasts and orchestrate tissue repair through synthesis of ECM 

components and crosstalk with immune cells [4]. Dysregulation of the physiological 

conditions during tumor development accompanied with a chronic inflammatory response 

drive fibroblast activation and their differentiation into myofibroblasts, i.e. fibroblasts with 

high constitutive expression of smooth-muscle α-actin (SMA). CAFs are described to 

significantly increase tumor development by regulating several processes, including cancer 

cell proliferation, tumor cell invasion, angiogenesis and ECM remodeling. The abundance of 

SMA+ CAFs in TME is associated with poor prognosis in multiple cancers [8-15]. Moreover, 

tumors with high stromal signatures are linked to therapy resistance and disease relapse [5, 

16-19]. In addition to their role in controlling cancer cell behavior, CAFs emerge as central 

players in shaping the TME toward an immunosuppressive and growth-promoting phenotype, 

via increased production of immunosuppressive cytokines and enhanced expression of 

immune checkpoints [20-31]. Still, multiple findings showed that CAFs are not a homogenous 

cellular population. Indeed, several CAF subpopulations have been identified and have either 

tumor-promoting [25, 27, 31-36] or tumor-suppressive effects [37, 38]. Such heterogeneity 

might result from numerous causes, including the various cellular precursors of CAFs, the 

reciprocal interactions between CAFs and cancer cells or any other TME components, in 

addition to the cytokines, chemokines and growth factors secreted into the TME. Taking 

together, all these features highlight the importance of CAFs and define them as promising 

anti-cancer therapies, as a complement to existing treatments targeting cancer cells or 

boosting the immune system. In this review, we summarize recent advanced of CAFs 

heterogeneity in different cancer subtypes with a particular emphasis on the mechanisms 

involved in their immunosuppressive capacities. We will also highlight the potential 

therapeutic strategies for targeting CAFs in the field of cancer immunotherapy. 
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2. CAF heterogeneity in TME 

CAFs are major components of stromal cells that surround cancer cells. They provide not only 

a mechanical support to cancer cells but also control their proliferation, survival, metastasis 

and resistance to therapies [3-7, 25]. Although CAF origins in tumors remain unclear and 

might be diverse, CAF heterogeneity has been unveiled in the last years thanks to intense 

researches. In that sense, CAF subsets rather represent distinct cellular states than different 

cell types. Many studies have reported different origins of CAFs including resident tissue 

fibroblasts, mesenchymal stem cells from bone marrow or adipose tissue, as well as 

endothelial cells, epithelial cells, pericytes and adipocytes undergoing trans-differentiation 

into mesenchymal cells [34, 39-52]. Fibroblast differentiation into myofibroblasts (SMA+ 

fibroblasts) is driven by different mechanisms highlighted in distinct cancer subtypes. In 

breast carcinoma, contact between cancer cells and stromal cells promotes myofibroblastic 

CAF differentiation. The release of reactive oxygen species (ROS) by cancer cells plays a key 

role in the increase in myofibroblast content through the activation of various signaling 

pathways, including CXCL12/CXCR4, TGFβ and NOTCH signaling [2, 8, 52-54]. In mouse 

model of squamous cell carcinoma, the transition from normal fibroblasts to CAFs is 

mediated by two events, the suppression of p53 activity and down-modulation of the Notch 

effector Csl/Rbpj [55]. Interestingly, the induction of a pro-inflammatory gene signature in 

normal fibroblasts at early stage of squamous carcinogenesis promoted CAFs generation. 

Indeed, normal dermal fibroblasts can be educated by carcinoma cells to express pro-

inflammatory genes, thereby promoting myofibroblastic differentiation [8, 56]. In addition, 

epigenetic modifications also contribute to fibroblasts reprogramming toward a pro-invasive 

phenotype, thereby promoting ECM remodeling and invasion of cancer cells [57-61]. Physical 

changes in ECM, including rigidity of collagen fibers and modulation of elasticity, govern 

fibroblast phenotypic modifications [62, 63 Arwert, 2020 #195, 64]. Mechanical stretching of 

normal fibroblasts in in vitro studies induces phenotypic changes similar to those of CAFs, 

increase their contractility and remodel TME to facilitate tumor invasion [65]. Furthermore, 

stretched fibroblasts produce ECM with a more organized and linearly aligned structure, with 

increased ability for redirecting co-cultured cancer cell migration [54, 65-75]. Tumor-stroma 

mechanics and ECM stiffening also coordinate non-essential amino-acid availability to 

sustain tumor malignancy [76]. In addition to the role of tumor cells in generating CAFs, 

signals from other cell types within the TME can also promote fibroblastic invasive functions. 

For instance, granulin-secretion by tumor-associated macrophages activated hepatic stellate 
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cells, driven their differentiation into myofibroblasts that secreted periostin, resulting in a 

fibrotic microenvironment. Disruption of macrophages recruitment, or genetic depletion of 

granulin reduced CAFs activation and prevented liver metastasis [77, 78]. Furthermore, recent 

data show a reciprocal crosstalk between regulatory T lymphocytes and CAF subsets in breast 

cancers [25, 31].  

CAFs can be distinguished within the tumor by their morphological features and the 

lack of expression for epithelial, endothelial and immune cell markers. However, this is not 

sufficient to exclude other mesenchymal lineages, such as pericytes or adipocytes [4]. For 

these reasons, different markers, which are not or lowly expressed in normal fibroblasts 

compared to CAFs, were identified to better characterize activated CAFs, such as SMA, 

fibroblast activated protein (FAP), fibroblast specific protein-1 (FSP1, also known as 

S100A4), Integrin β1 (CD29), platelet derived growth factor  receptor  α or β (PDGFRα / β)  

or podoplanin (PDPN) [79-84]. Still, these markers are not all regulated similarly or 

simultaneously in CAFs, thereby highlighting a strong degree of heterogeneity of these cells 

in TME. By combining the analysis of six CAF markers, four different CAF subpopulations 

(referred to as CAF-S1 to CAF-S4) were recently discovered in breast and ovarian cancers 

(Figure 1) [25, 27]. Both CAF-S1 (FAPHigh CD29Med SMAMed-High FSP1Med PDGFRβMed-High 

CAV1Low) and CAF-S4 (FAPNeg-Low CD29High SMAHigh FSP1Low-Med PDGFRβLow-Med 

CAV1Low) subsets are detected at high level in aggressive breast cancer subtypes (HER2 and 

TN) and in metastatic lymph nodes, confirming that stromal myofibroblasts are associated 

with poor prognosis [25, 54]. Both CAF-S1 and CAF-S4 promote metastases through 

complementary mechanisms [54]. Moreover, accumulation of FAPhigh CAF-S1 subset in early 

luminal breast cancers is associated with distant relapse [85].  In contrast, the CAF-S2 subset 

(CD29Low FAPNeg FSP1Neg-Low α-SMANeg PDGFRβNeg CAV1Neg) is enriched in luminal breast 

cancer subtype and CAF-S3 fibroblasts (CD29Med FAPNeg FSP1Med-high α-SMANeg  

PDGFRβMed CAV1Low) accumulate in healthy tissues [25, 54, 85]. In all tumors and invaded 

lymph nodes, FAPhigh CAF-S1 fibroblasts are defined by ECM, adhesion and wound-healing 

signatures, and FAPNeg CD29High CAF-S4 are characterized by a perivascular contractile 

signature[25, 27, 54, 85]. Several recent studies from bulk or single cell data on CAF from 

human cancers and mouse models confirmed the existence of ECM-rich (CAF-S1) and 

contractile (CAF-S4) sub-populations [36, 86-90]. By applying specific CAF-S1 and CAF-S4 

molecular signatures on publicly available single cell data from lung cancer [91] and head and 

neck cancer [92], the existence of these two major CAF-S1/CAF-S4 myofibroblastic 
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subpopulations was validated in different cancer types [31]. Thus, these data indicate that both 

CAF-S1 (ECM/adhesion/wound) and CAF-S4 (perivascular/contractile) myofibroblastic cells 

can be detected in distinct cancer types and across species. 

Among the FAPHigh CAF (CAF-S1) subpopulation, two distinct subsets were recently 

identified in pancreatic adenocarcinoma, exhibiting either a matrix-producing myofibroblastic 

phenotype termed myCAF or an immunomodulatory secretome, inflammatory CAFs named 

iCAF [33]. More precisely, CAFs most proximal to the cancer cells exhibit a myofibroblastic 

myCAF phenotype with high expression of SMA. More distal CAFs express high levels of 

IL-6 and are defined as iCAFs [33, 87]. Furthermore, two FAP+ mesenchymal subsets were 

also identified on the basis of PDPN expression [26]. Although both subsets express ECM 

molecules, FAP+ PDPN+ fibroblasts exhibit higher expression of genes associated with TGFβ 

signaling and fibrosis than FAP+ PDPN- cells. These observations demonstrated that the 

FAPHigh CAF-S1 subpopulation could be -by itself- heterogenous. Several laboratories have 

addressed this question by performing single cell analysis from FAPHigh CAF cells [31, 87-

90]. All these studies demonstrated the existence of the iCAF/myCAF subpopulations in the 

different cancer types analyzed. Interestingly, the large number of FAPHigh CAF (CAF-S1) 

fibroblasts recently sequenced at single cell levels in [31] reached -to our knowledge- an 

unprecedented resolution of this subpopulation. This study identified 8 different FAPHigh CAF 

clusters with 3 clusters belonging to the iCAF subgroup and 5 clusters to the myCAF 

subgroup (Figure 1). By dissecting the most prominent pathways and gene signature specific 

of each cluster, these 8 clusters can be characterized as followed: ECM proteins (ecm-

myCAF), detoxification pathway (detox-iCAF), interleukin-signaling (IL-iCAF), TGFβ-

dependent pathway (TGFβ-myCAF), wound-healing signaling (wound-myCAF), IFNγ- and 

IFNαβ-related pathway (IFNγ-iCAF, IFNαβ-myCAF) and acto-myosin-signaling (acto-

myCAF) [31]. Interestingly, the ecm-myCAF specific signature contains the LRRC15 gene 

that has been recently identified in pancreatic cancer [90]. Moreover, the IFNγ-iCAF cluster 

express high levels of CD74, encoding Major Histocompatibility Class (MHC) II invariant 

chain, which characterizes the antigen-presenting CAF (“apCAF”) recently identified in 

pancreatic cancer [89]. Finally, the existence of the most abundant FAPHigh CAF clusters has 

been validated in head and neck squamous cell carcinoma and in non-small cell lung cancer 

[31].  

In conclusion, these recent data demonstrate that CAF heterogeneity in cancer has 

been until now largely under-estimated. Still, a common spectrum of CAF subpopulations is 
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emerging, with both CAF-S1 (FAPHigh CD29Med SMAMed-High; ECM/adhesion/wound 

signatures) and CAF-S4 (FAPNeg-Low CD29High SMAHigh; perivascular/contractile signatures) 

myofibroblastic CAF detected in distinct cancer types and across species. Moreover, among 

FAPHigh CAF-S1 subpopulation, the iCAF/myCAF subsets are validated in all cancers 

analyzed until now. Finally, these iCAF and myCAF subsets can be -by themselves- 

subdivided into different clusters identified as detox-iCAF, IL-iCAF, IFNγ-iCAF and ecm-

myCAF, TGFβ-myCAF, wound-myCAF and IFNαβ-myCAF, respectively. These FAPHigh 

CAF clusters have been detected in various cancer types, thereby demonstrating their validity 

and their potential important roles in tumors.  

 

3. Role of CAFs in anti-tumor immune response 

As discussed above, it is now well established that CAFs exhibit a phenotypic diversity and 

functional heterogeneity that define their role within the tumor [7, 8, 20, 25, 26, 31, 37, 38, 

54, 87, 90, 93-95]. The pro-tumorigenic functions of CAFs could be attributed either to their 

ability to produce pro-survival factors, which directly and positively impact tumor 

progression by enhancing cancer cell proliferation, survival and metastasis, or to their role in 

regulating antitumor immune response by inducing an immunosuppressive microenvironment 

[8, 21-25, 27, 31, 87, 96-102]. The immunomodulatory functions of these stromal cells can 

affect both innate and adaptive antitumor immune response (Figure 2). This can be either 

direct via the secretion of cytokines and chemokines such as IL-6, CXCL1, CXCL12, CCL2, 

which can retain suppressive immune subsets and counteract effector functions of activated 

immune cells, or indirect via the remodeling of the ECM protein network, forming a physical 

barrier for immune cell entry [29, 30, 62, 65, 70, 103-108].  

 

3.1. CAF-dependent regulation of the adaptive anti-tumor immune response 

3.1a- Role of CAF subsets in adaptive anti-tumor response 

The pleiotropic immunomodulatory functions of CAFs can interfere with the adaptive anti-

tumor immune responses at different stages of cancer progression (Figure 2). In this context, 

multiple studies have confirmed the presence of functionally heterogeneous CAFs 

subpopulations within the same tumors. For example, in breast cancer, among FAPHigh CAF, 

it was shown that PDPN+ fibroblasts suppress T cell proliferation in a nitric-oxide-dependent 

manner, whereas PDPN- cells are unable to do so [26]. Importantly, a multistep mechanism 

unraveling FAPHigh CAF-mediated immunosuppressive activity has been recently highlighted 

in breast and ovarian cancer [25, 27]. By secreting CXCL12 -through regulation by mir-200 
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family members in ovarian cancer [27]-, FAPHigh CAF attract CD4+ CD25+ T lymphocytes 

and retain them at their surface by high expression of OX40L/TNFSF4, PD-L2/PDCD1LG2 

and JAM2 in several cancer types[25, 27]. Moreover, FAPHigh CAF increase CD4+ T cell 

survival and their differentiation into CD25High FOXP3High functional Tregs through 

B7H3/CD276, CD73/NT5E, and DPP4 [25, 27]. As detailed above, among FAPHigh CAF, 

recent single cell analyses reveal the heterogeneity within this population [31, 33, 87-90]. On 

line with the identification of different clusters among FAPHigh CAF, recent data demonstrated 

that only specific clusters, in particular those characterized by ECM accumulation, wound-

healing signature and TGFβ-signaling, are associated with an immunosuppressive 

environment [31, 89, 90]. Consistent with this correlation between the abundance of FAPHigh 

ecm-myCAF and TGFβ-myCAF cellular clusters with the content in FOXP3+ T lymphocytes 

in breast cancer, in vitro functional assays showed that ecm-myCAF are able to recruit 

FOXP3high Tregs and to increase PD-1 and CTLA-4 protein levels at their surface [31]. 

Interestingly, accumulation of ecm-myCAF, wound-myCAF and TGFβ-myCAF is correlated 

with resistance to immunotherapy in melanoma and non-small cell lung cancer patients [31].  

 

3.1b- Role of CAF subsets on immune checkpoint expression 

Regulating immune checkpoint expression emerged as an important process by which 

CAFs directly modulate T cell function. An interesting point was recently raised showing that 

CAFs from breast, ovarian, lung, pancreas and colon cancer express programmed death 

ligand-1/2 PD-L1 and/or PD-L2 [25, 27, 109-112], in particular in the FAPHigh CAF subset 

[25, 27]. These ligands bind to PD-1 receptor expressed by T cells and inhibit T cell activity 

[25, 110-112]. PD-L1 and PD-L2 ligands can be upregulated by IFN-γ highly secreted by 

activated T cells, thereby impairing their function [109]. Moreover, fibroblasts isolated from 

melanoma patients’ biopsies secrete IL-1α/β that could directly suppress CD8+ T cell 

proliferation and function via upregulation of PD-L1 expression at their surface [113], 

suggesting that IL-1α/β clinical blockade might synergize with immunotherapeutic 

interventions and benefit melanoma patients. Similarly, CAFs isolated from pancreatic cancer 

also promote expression of immune checkpoint inhibitors TIM-3, PD-1, CTLA-4 and LAG-3 

at the surface of proliferating T cells, via the activity of CAF-derived PGE2 [112]. Finally, α-

SMA+ CAF are positively correlated with PD-L1 expression by tumor cells in melanoma and 

colorectal carcinoma [114]. Mechanistically, CXCL5 secreted by CAFs promotes PD-L1 
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expression at the surface of tumor cells which in turn abolished T cell anti-tumor immune 

response [114]. 

 

3.1c- Role of metabolism in CAF-mediated immunosuppressive action 

Another suggested mechanism by which CAFs impair T cell proliferation and function is 

depending on the production of metabolic reprogramming factors [115-120]. First, in contrast 

to normal fibroblasts, CAFs can use aerobic glycolysis as a source of energy, thus producing 

high levels of pyruvate and lactate that modify T cell polarization, reducing the percentage of 

antitumoral helper T cell (TH1) subset and increasing Treg proliferation and function [119-

123]. Another example of immunosuppressive metabolites secreted by CAFs is mediated by 

the immunomodulatory indoleamine 2,3-dioxygenase (IDO) enzyme that acts as a T-cell 

inhibitory effector [124, 125]. Indeed, IDO facilitates the conversion of tryptophan to 

kynurenine and production of downstream metabolites that inhibit T-cell proliferation and 

function [124, 125]. Similarly, CAF-dependent expression of Arginase 2, which hydrolyzes 

arginine to ornithine and urea, reduces Arginine content in TME, which is indispensable for T 

cell functions [126, 127]. Consistent with this key function, the abundance of Arginase 2-

expressing stromal cells is associated with poor clinical outcome in pancreatic cancer [126, 

127]. Furthermore, CAFs are a major source of PGE2, which plays an important role in 

promoting tumor growth, angiogenesis and resistance to established cancer therapies [128-

133]. In addition, it was shown that PGE2 drives immunosuppression by multiple 

mechanisms, either by shifting the balance from anti-tumor TH1 immune response toward 

immunosuppressive TH2 response, or by suppressing T cell cytotoxic activity and promoting 

Treg function [134-139]. Moreover, COX2, which catalyzes PGE2 production, is highly 

expressed in CAF and results in an exacerbated Treg recruitment in tumors [139-142]. CAFs 

also produce galectins, known as S-type lectins, carbohydrate-binding proteins that mediate 

cell-cell or cell-ECM communications [143, 144]. Galectin-1 induces T cell apoptosis by 

binding on CD7 and CD45 on T cell surface. In addition, galectin-1 is overrepresented in 

Tregs and contributes to their immunosuppressive activity [145-147]. Furthermore, 

mesenchymal stromal cells isolated from cervical tumors showed elevated expression levels 

of CD39 and CD73 as compared to normal fibroblasts [148]. This expression reduces T cell 

activity and proliferation, through the generation of a large amount of adenosine, a well-

known immunosuppressive molecule produced by the hydrolysis of ATP, ADP and AMP 

[148]. On line with this observation, FAPHigh CAF express high levels of CD73, which 

promotes immunosuppression by increasing Tregs in breast and ovarian cancer [25, 27]. 
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3.1d- TGFβ-dependent signaling pathway in CAF-mediated immunosuppression 

One cellular cluster recently identified among FAPHigh CAF by single cell analysis in breast 

cancer is characterized by TGFβ signaling and is directly involved in immunosuppression and 

resistance to immunotherapies [31]. Indeed, some CAFs, in particular some FAPHigh CAFs, 

secrete high levels of TGFβ ligands that act on both CD8+ and CD4+ T cells [25, 31, 149-

156]. TGFβ was shown to promote cell death of effector CD8+ T lymphocytes by inhibiting 

the expression of the pro-survival protein BCL2 [111]. It attenuates the acquisition of effector 

function by memory CD8+ T cells, preventing their access to cancer cells and providing a 

barrier for the therapeutic cancer vaccines [104, 157]. TGFβ also alters CD8+ T cell function 

by inhibiting the expression of key genes involved in their cytotoxic activity (perforin, 

granzymes A and B, FAS ligand and IFNγ). For instance, repression of granzyme B and IFNγ 

transcription is mediated by the binding of TGFβ-activated SMAD and ATF1 transcription 

factors on their promoters. Neutralization of systemic TGFβ in mice enables tumor clearance 

with restoration of cytotoxic gene expression in activated CD8+ T cells [158]. In head and 

neck cancer, α-SMA+ FAP+ CAFs inhibit the proliferation of CD8+ T cells and promote the 

recruitment of CD4+ CD25+ T cells by secreting TGFβ and IL6 [22]. TGFβ stimulates also 

class switch recombination, converting IgM expressing-B cells to IgA expressing-cells which 

present regulatory activity. In hepatocellular carcinoma, these IgA+ cells interfere with 

activation of cytotoxic CD8+ T lymphocytes inhibiting thus, tumor-directed immune response 

[159, 160]. In addition to TGFβ, it was shown in a mouse model of colon cancer that CAFs 

release high levels of IL6 which in turn, decrease CD8+ T cells infiltration within the tumor 

and increased Foxp3+ Treg activation, effect attenuated by treatment with IL6 blocking 

antibodies [161]. 

Consistent with their immunosuppressive functions, TGFβ signature in CAFs is 

associated with poor response to immunotherapies in metastatic urothelial and colon cancer 

[28, 162], as well as in non-small cell lung cancer and in melanoma patients [31]. This can 

occur particularly in patients with tumors presenting an exclusion of CD8+ T cells from the 

tumor [28, 162] and an accumulation in the collagen-rich peritumoral stroma, in line with 

ECM-enriched FAPHigh CAFs [31]. Interestingly, co-administration of TGFβ and anti-PD-L1 

blocking antibodies reduces TGFβ signaling in stromal cells, facilitates T cell penetration, 

reduces tumor progression and improves patient prognosis [28, 163-166]. 
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In addition to CD8+ T cell and Tregs, CAFs have the potential ability to influence 

CD4+ helper T cell phenotype, switching them from anti-tumoral to pro-tumoral cells. Indeed, 

CD4+ T cells can be classified into multiple sub-lineages, based on their functions and the 

profile of cytokine production. In general, TH2-mediated immunity is considered tumor 

promoting, as it activates M2-like macrophages function and inhibits cell-mediated tumor 

killing. Many findings emerged from murine models of cancer, showed that targeting of 

specific signaling molecules in CAFs resulted in reduction of tumor growth, accompanied by 

a shift in the T cell response[20, 167-174].For example, in a mouse model of breast cancer, 

elimination of FAP+ CAFs by a DNA vaccine targeting FAP results in a shift of the immune 

population from a TH2 to a TH1 phenotype [167]. This shift was associated with an increased 

expression of IL-2, an increase of CD8+ T cell population and a diminished recruitment of 

tumor-associated macrophages (TAM) and Tregs. Furthermore, targeting of CAF-derived 

Chitinase-3-like 1 (Chi3L1) has a similar effect in another transplantable model of breast 

cancer [175]. Indeed, it was demonstrated that Chi3L1 is highly upregulated in CAFs from 

mammary tumors and pulmonary metastases of transgenic mice. Genetic ablation of Chi3L1 

in fibroblasts attenuated tumor growth, macrophage recruitment and reprogramming to an M2 

phenotype and enhanced CD8+ and CD4+ T cells accumulation within the tumor [175]. 

Consistent with these findings, CHI3L1 has been shown to promote tumor progression 

through TGFβ pathway and pro-inflammatory signals and to be associated with poor 

prognosis in many cancers [176-182]. 

 In conclusion, through distinct molecular mechanisms, CAFs modulate T cell-

dependent antitumor immune response at multiple levels, i.e. by recruiting CD4+ CD25+ 

Tregs, by switching a TH1 to a TH2 phenotype, and by inhibiting CD8+ cytotoxic activity.  

 

3.2. CAF regulation of the innate anti-tumor immune response 

Besides the adaptive immunomodulatory functions, myofibroblastic CAFs also interfere with 

the innate immune response at different levels (Figure 2). First, it has been shown that CAFs 

affect the differentiation of tumor associated macrophages (TAMs) [183-185]. TAMs derive 

from infiltrating monocytes or resident macrophages and represent a major component within 

tumors. They are involved in various tumor-promoting tasks including pro-inflammatory 

signaling, enhancement of angiogenesis, metastasis and therapy resistance. CAFs actively 

polarize resident macrophages toward a pro-tumoral phenotype via the secretion of IL-6 and 

granulocyte-macrophage colony stimulating factor (GM-CSF) [186-188]. In addition, the 

glycoprotein CHI3L1, highly expressed by CAFs, enhances TAM recruitment and their 
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differentiation into pro-tumoral M2 [175]. CAFs also increase the recruitment of monocyte in 

tumors through CXCL12 delivery and promote their differentiation toward the M2 phenotype 

[185, 186, 189-194]. This interaction between CAFs and M2 enhances tumor progression and 

metastasis formation. CAFs abundancy is correlated with a higher number of TAMs in human 

breast cancer, correlation associated with a high Ki-67 proliferation index and a high tumor 

volume [193].  

Similarly as the phenotypic macrophages (M1/M2), the concept of immune cell 

polarization has also been extended to neutrophils, named Tumors-associated neutrophils 

(TANs). N1 neutrophils show an anti-tumor phenotype with their capability of efficiently 

killing microorganisms and tumor cells, while N2 neutrophils exhibit a pro-tumor phenotype 

[195, 196]. CAF-mediated TGFβ signaling redirects TAN differentiation toward the N2 pro-

tumorigenic phenotype. Conversely, TGFβ blockade attenuates tumor growth via TAN 

polarization to an anti-tumor N1 phenotype, thereby providing additive strategies for cancer 

therapies [197]. Moreover, CAF-derived IL6 increases survival, proliferation and activation of 

TAN in a STAT3-dependent manner and induces PD-L1 expression in TAN [198], indicating 

that IL6-STAT3-PD-L1 signaling cascade by CAF could provide novel targets for therapies 

[198-204]. 

Another mechanism by which CAFs trigger anti-tumor immune responses is by 

affecting the function of dendritic cells (DC), the most important population of antigen 

presenting cells, needed to activate T lymphocytes. As a major source of TGFβ, CAF mediate 

downregulation of MHC class II molecules and of CD40, CD80 and CD86 co-stimulatory 

molecules at the surface of DC, thus inhibiting their antigen presenting function and their 

ability to activate cytotoxic T cell responses [205]. Moreover, CAF-produced IDO facilitates 

the generation of regulatory DCs, characterized by low expression of costimulatory 

molecules, high levels of suppressive cytokines, impaired T-cell proliferation and enhanced 

Treg expansion [206-208]. Furthermore, proinflammatory cytokines (such as TNFα and IL-

1β) released by pancreatic tumor cells activate CAFs and facilitate secretion of thymic 

stromal lymphopoietin (TSLP) by CAFs [209]. TSLP induces activation/maturation of tumor-

resident DCs, that migrate to the draining LNs where they activate CD4+ TH2 cells and exert 

tumor-promoting functions [209]. 

Another immune cell population affected by CAFs immunosurveillance is mast cells. 

It is a heterogeneous population of immune cells, widely distributed throughout all tissues. 

Upon activation, mast cells release a large spectrum of cytokines and inflammatory molecules 
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that modulate tumor initiation and progression. Interestingly, in pancreatic tumors, stellate 

cells (known as precursors of CAFs) activate mast cells and facilitate their degranulation and 

cytokine release. As a result, activated mast cells secrete IL-13 and tryptase, in the tumor 

microenvironment, leading to stromal cell proliferation, and favoring tumor growth [210]. Of 

note, activated mast cells not only increase tumor progression but also alter anti-tumor 

immune response. Indeed, mast cells mobilize myeloid-derived stem cells (MDSCs) 

infiltration into tumors and induce production of IL-17 by MDSCs; MDSCs-derived IL-17 

indirectly attract Tregs and enhance their suppressive function [211]. MDSCs are a group of 

heterogeneous cells that are derived from bone marrow and have a remarkable ability to 

suppress immune cell responses. Multiple studies have shown a direct interaction between 

CAFs and MDSCs. Indeed, CAFs, isolated from hepatocellular carcinoma attract monocytes 

through the CXCL12/CXCR4 pathway and induce their differentiation into MDSCs through 

IL-6 mediated STAT3 activation [198, 212]. This interaction subsequently impairs T cell 

proliferation and alters their cytotoxic function. Moreover, FAP+ CAF, as a major source of 

CCL2, promote tumor growth via the recruitment of MDSCs in a mouse model of hepatic 

cancer and in lung squamous cell carcinoma [24, 213]. 

Finally, CAFs can also affect the activity of major innate effector cells, Natural Killer 

(NK) cells, which orchestrate early immune response through their cytotoxic activity [214]. 

CAF-produced TGFβ ligands are important regulators of NK immune function. Indeed, TGFβ 

is well known to downregulate the expression of NKp30 and NKG2D activating receptors, 

thereby decreasing NK cell cytotoxic activity. In addition, TGFβ induces the expression of the 

miR-183, which bind and repress DNAX activating protein 12 (DAP12), a signal adaptor for 

lytic function in NK cells [215-217]. TGFβ also inhibits CD16-mediated IFN-γ production 

and antibody-dependent cellular cytotoxicity, an effect that reduces TH1 immune cell 

differentiation [218, 219]. Moreover, melanoma and colorectal carcinoma-derived CAFs 

sharply interfere with NK cell functions including cytotoxicity and cytokine production by 

repressing the expression of several NK activating receptors including NKp44, NKp30 and 

DNAx accessory molecule 1 (DNAM-1), as well as the production of cytolytic granules 

containing perforin and Granzyme B [220, 221]. This modulation is mediated by the secretion 

of prostaglandin E2 (PGE2), leading to an attenuated cytotoxic activity of NK cells [220, 

221]. In addition, elevated secretion of matrix metalloproteinases (MMPs) by CAFs in 

melanoma reduces the expression of MHC class I chain-related protein A and B (MICA/B) at 

the surface of tumor cells and consequently decrease NKG2D-dependent cytotoxic activity of 
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NK cells [222]. CAFs also secrete adenosine that restricts NK cell function and immune 

protection against tumor development [223]. Finally, studies using endometrial cancer cells 

showed that CAF promoted NK dysfunction through contact dependent mechanisms 

involving downregulation, at the surface of CAFs, of poliovirus receptor (PVR/CD155), an 

important NK cell ligand [224]. Better understanding of the mechanisms through which CAFs 

manipulate NK cell activation will be needed as NK cells are attractive targets for novel 

adoptive cell immunotherapy [223, 225-227].  

In conclusion, due to their ability to secrete immunomodulatory cytokines, 

chemokines or soluble factors, CAFs favor the recruitment of innate immune cells, such as 

monocytes or neutrophils and their acquisition of anti-inflammatory phenotypes like M2 

macrophages or N2 neutrophils, but can also affect the cytotoxic activity of NK cells 

 

3.3. Indirect effect of CAFs on anti-tumor immune response 

One of the hallmarks of CAFs is the excessive production of extracellular matrix components, 

which results in a remodeling of the ECM, and affects tumor cell behavior [68, 228]. 

Increased ECM rigidity resulting from thickening of collagen fibers provides cues favoring 

migration, attachment, survival and proliferation of cancer cells [229]. It also restricts the 

access of immune cells to cancer cells, serving as a physical barrier [230]. Multiple findings 

have shown that CAF-mediated ECM remodeling and fibrosis contributed to the formation of 

an immunosuppressed microenvironment by multiple mechanisms [230]. 

In this regard, in pancreatic adenocarcinoma, dense collagen networks represented a physical 

barrier, inhibiting the migration of activated T cells, which can alter the development of T-

cell-based immunotherapies [231-233]. Similar results were observed in human lung tumors, 

showing that the presence of dense matrix fibers surrounding the tumor islets prevents T cell 

infiltration [103]. 

In addition, ECM remodeling, mediated by CAFs acts directly on tumor-specific CD8+ T cells 

and F4/80 macrophages, either by reducing the number of CD8+ T cells within the tumor or 

by functionally reprogramming F4/80 macrophages differentiation toward M2 anti-

inflammatory phenotype [234-238]. Thus, CAF-mediated ECM remodeling and fibrosis 

contribute to the formation of an immunosuppressed microenvironment that promotes tumor 

growth and metastasis formation. 

 

4. CAFs: a promising target for cancer therapy 
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In situation in which the tumor stroma promotes cancer progression and induces resistance to 

anticancer therapies, the development of new therapies targeting the stroma could have 

curative outcomes. In addition, the recent characterization of CAFs, including identification 

of new CAFs subsets and their functional diversities, brings CAF-targeting therapies as 

promising tools for cancer treatment (Figure 3) [95, 106, 239].  

 

4.1. CAF depletion via cell surface markers 

As discussed above, FAP and SMA represent two cell surface markers for activated 

myofibroblasts. Based on this, targeting immunosuppressive CAFs using these markers was 

largely investigated in pre-clinical studies. Thus, targeting FAP by both genetic deletion or 

pharmacological inhibition inhibit tumor growth in two different mouse model of lung and 

colon cancer [240]. Similarly, conditional depletion of FAP+ stromal cells in a mouse model 

of pancreatic cancer re-sensitizes cancer cells to anti-PD-1 and anti-CTLA-4 

immunotherapies [241]. Multiple other approaches were developed to target FAP+ CAFs, 

including an oral DNA vaccine targeting FAP [242], or an administration of a novel anti-FAP 

monoclonal antibody (FAP5-DM1) [243] that bound shared epitopes of mouse, human and 

monkey FAP and showed an excellent efficacy with a complete tumor regression without 

significant toxicity. In another metastatic breast cancer model, depletion of FAP+ stromal cells 

by FAP-targeting immunotoxin αFAP-PE38 alters the secretion of various growth factors, 

cytokines and matrix metalloproteinases by myofibroblasts and suppresses tumor growth 

[244]. Interestingly, genetic depletion of FAP+ CAFs is associated with increased CD8+ T 

cells infiltration in Lewis lung carcinoma and pancreatic cancer models [168, 173]. Similarly, 

administration of an oral mouse DNA vaccine targeting FAP increases CD8+ T cell 

infiltration and improves the intra-tumoral uptake of chemotherapeutic drugs in a model of 

colon cancer [242].  

Based on these promising preclinical data, a phase I trial was started with a 

monoclonal antibody recognizing FAP (F19) in patients with colorectal cancer and small cell 

lung cancer [245, 246]. The results showed that this antibody was administrated safety to 

patients even after repeated infusions and was associated with tumor regression. However, it 

failed in patients with metastatic colorectal cancer [247]. Interestingly, CAR therapy was also 

used to target FAP+ CAFs in the tumor stroma. For this purpose, T cells are modified to 

express a FAP-specific chimeric antigen receptor and transferred to an established A549 lung 

cancer model. These CAR T cells promote a specific immune attack against FAP+ stromal 

cells inducing a significant decrease in tumor growth [169]. Similarly, adoptive transfer of 
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FAP-CAR T cells also decreases tumor vascular density and restraines growth of 

desmoplastic human lung cancer xenografts and syngeneic murine pancreatic cancers [248]. 

However, it is important to note that an opposite result came from another study and showed 

that depletion of FAP+ stromal cells led to loss of muscle mass and anemia confirming that 

using FAP as a universal target antigen to deplete stromal cells should still be investigated 

[249]. A recent study investigated the use of a bispecific antibody (RO6874281) consisting of 

an interleukin 2 variant domain that binds to IL-2 receptor and stimulates a local immune 

response by activating cytotoxic NK cells and lymphocytes T, associated to a FAP-specific 

domain targeting CAFs. This component showed an acceptable safety profile and displayed 

monotherapy activity in different tumors [250] . These promising results drive the 

development of multiple clinical trials consisting to combine RO6874281 together with 

immunotherapies [251-254]. Moreover, a second bispecific protein was developed in order to 

target simultaneously the T cell costimulatory receptor 4-1BB and FAP+ stromal cells (FAP-

4-1BB). Interestingly, treatment with this compound in a colorectal cancer-bearing rhesus 

monkey, decreased tumor growth and enhanced accumulation and activation of intratumoral 

CD8+ T cells [255, 256] 

SMA was also used to target myofibroblastic CAFs. In a mouse model of breast 

cancer, docetaxel conjugate nanoparticules that target SMA+ stromal cells suppress metastasis 

formation [257]. In parallel, in a mouse model of pancreatic cancer crossed with SMA 

thymidine kinase transgenic mice, depletion of SMA+ myofibroblasts results unexpectedly in 

more invasive tumors with enhanced hypoxia, EMT induction and diminished animal survival 

[37]. Moreover, suppressed immune surveillance with increased CD4+ Foxp3+ Tregs was 

observed in myofibroblast-depleted mice accompanied with a resistance to anti-CTLA-4 

immunotherapy [38]. These results suggested that targeting CAFs using surface markers 

requires careful consideration and might be more challenging than initially thought. 

More recently, two cell-surface molecules, CD10 and GPR77, were defined as new 

markers for a CAFs subset correlated with chemoresistance and poor survival in multiple 

cohorts of breast and lung cancer patients. Mechanistically, CD10+GPR77+ CAFs promote 

tumor formation and chemoresistance by providing a survival niche for cancer stem cells. 

Moreover, targeting these CAFs with a neutralizing anti-GPR77 antibody abolishes tumor 

formation and restored tumor chemosensitivity [35]. 

 

4.2. Restoration of quiescent fibroblasts phenotype 



 17 

As mentioned above, CAFs can result from activation of resident fibroblasts. Thus, it was 

considered to revert CAF activated state to a quiescent state in order to reduce tumor growth. 

In pancreatic tissue, resident fibroblasts store retinol that is lost upon activation. Restoring 

retinol level in CAFs in a mouse model of pancreatic adenocarcinoma resets fibroblasts to an 

inactive state and results in enhanced tumor necrosis, increased vascularity and diminished 

hypoxia with a reduction in tumor size [258]. In a parallel study, treatment of pancreatic 

stromal cells with Vitamin D markedly reduces markers of inflammation and fibrosis [259]. 

Interestingly, Vitamin D-treated fibroblasts get back to quiescent cell features, resulting in 

stromal remodeling that facilitates the delivery of chemotherapeutic agents within tumors 

[260]. Interestingly, a phase II clinical trial of concomitant treatment with PD-1 inhibitor and 

Vitamin D analog is now underway [261] 

 

4.3. Targeting downstream effectors and activation signaling of CAFs 

Because depletion of CAFs or reversing their activated phenotype remains challenging, other 

therapeutic options have been proposed, such as targeting CAF downstream effectors. As 

described above, the IL6/JAK/STAT3 signaling pathway increases proliferation, survival and 

metastasis of tumor cells, accompanied with a strong suppression of anti-tumor immune 

response [262]. IL6 also induces production of pro-inflammatory and pro-angiogenic factors, 

including IL-1β, IL8 and multiple chemokines that act on both immune and non-immune 

cells. Moreover, IL6 activates the JAK/STAT3 pathway, which negatively regulates the 

cytotoxic activity of NK and T cells. Agents targeting this pathway already received FDA 

approval for the treatment of inflammatory pathologies and myeloproliferative neoplasms, 

and their efficacy was also approved in patients with hematopoietic malignancies and solid 

tumors, as they reduce tumor growth and increase sensitivity to chemotherapies [263, 264]. 

The mTOR/4E-BP1 regulatory pathway is up-regulated in primary cultures of SMA+ CAFs 

isolated from human PDAC [265] . These cells abundantly expressed the somatostatin 

receptor 1, which is known to mediate inactivation of mTOR/4E-BP1 pathway. Thus, 

treatment with the somatostatin analog SOM230 in a murine xenograft model of pancreatic 

cancer down-regulates CAF-secreted molecules, including IL6, and abrogates CAF-mediated 

tumor growth [265, 266]. Importantly, combination of SOM230 with gemcitabine, the 

standard chemotherapy for pancreatic cancer, reduces tumor growth and facilitates the 

delivery of chemotherapeutic agents within the tumor. These results highlight a novel 

promising anti-tumor therapy indirectly targeting pancreatic cancer cell invasion through 

pharmacological inhibition of stromal cells [265, 266]. Additionally, PDGF signaling has a 
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key role in the recruitment and phenotypic changes of fibroblasts upon activation [25, 27, 52, 

87, 267]. Interestingly, inhibition of stromal PDGF receptors in a mouse model of human 

cervical cancer reduces proliferation and angiogenesis, through a mechanism involving the 

suppression of expression of the angiogenic factor fibroblast growth factor FGF-2 and 

epithelial cell growth factor FGF-7 [267, 268].  

FAP+ CAF are a major source of CXCL12 secretion, which has a crucial role in 

immunosuppression and in resistance to anti-PD-1 and anti-CTLA-4 immunotherapies in 

pancreas, breast and ovarian cancer [20, 25, 27]. Moreover, administration of AMD3100, an 

inhibitor of CXCR4, the receptor of CXCL12, provides therapeutic interest in HER2 breast 

cancer patients [269]. Moreover, AMD3100 enhances T cell accumulation and acts 

synergistically with anti-PD-L1 antibody to diminish cancer progression in a pancreatic 

cancer mouse model [20]. Similarly, other proteins secreted by CAFs were also targeted in 

order to restrain their immunosuppressive capacities, such as TGFβ. In many preclinical 

studies, TGFβ-targeting agents have shown potent anti-tumor effects. For example, disruption 

of TGFβ signaling using the TGFβ receptor kinase inhibitor (LY2157299) or a TGFβ 

neutralizing antibody (1D11) reduces the formation of bone metastasis from breast tumors 

[270, 271]. In addition, trihydroxyphenolic compounds were identified as potent blockers of 

TGF-β1 in in vivo models of pulmonary fibrosis and lung cancer metastasis. Remarkably, 

trihydroxyphenolics functional effects require the presence of active lysyl oxidase-like 2 

(LOXL2), only produced by fibroblasts and cancer cells. Administration of these compounds 

resulted in potent blockade of pathological collagen accumulation in vivo without toxicity 

[272]. In addition, the use of Tranilast (a known suppressor of fibroblast proliferation and 

TGFβ secretion) in mice bearing E.G7 lymphoma, LLC1 Lewis lung cancer, or B16F1 

melanoma decreases infiltration of immune suppressor cells, such as Tregs and MDSC, and 

activates CD8+ T lymphocytes [170]. Similarly, Artemisinin, identified as an inhibitor of 

TGFβ signaling that reverts CAFs from an activated to an inactivated state, suppresses CAFs-

induced breast cancer growth and metastasis by blocking the interaction between tumor cells 

and their microenvironment [273]. In addition, TGFβ inhibitor is able to synergize with the 

anti-OX40 antibody to elicit a potent anti-tumor effect, associated with an overall 

accumulation of CD4+ and CD8+ effector T lymphocytes [274]. Beside the highly positive 

data observed in animal models, clinical trials with some agents targeting TGFβ have been 

recently initiated [275-277], although TGFβ can act as a tumor suppressor at early tumor 

stages and TGFβ inhibitors are not cytotoxic [274].  
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4.4. Targeting CAF-derived ECM proteins 

As mentioned earlier, fibroblasts activation results in ECM remodeling through production of 

several components, including collagen fibers and ECM-degrading proteases, such as MMPs. 

This remodeling increases tissue stiffness and matrix rigidity and serves as a physical barrier 

that inhibits the access of anti-tumor immune cells and impedes the delivery of therapeutic 

drugs [29, 30, 65, 70, 103, 104]  . Thus, targeting the ECM proteins or degrading ECM could 

be a new therapeutic option. Hyaluronan, produced by CAFs, is considered as the primary 

matrix molecule responsible for vessel compression, in a collagen-dependent manner [278, 

279] . In this sense, the angiotensin inhibitor losartan, reduces stromal collagen and 

hyaluronan production and decreases the expression of profibrotic signals (TGFβ1, CCN2) 

[280]. Consequently, losartan increases vascular perfusion and improves drug and oxygen 

delivery to tumors, thereby potentiating chemotherapy in breast and pancreatic cancer models. 

Similarly, an enzymatic depletion of hyaluronic acid using a clinically recombinant PH20 

hyaluronidase (PEGPH20) facilitates the intra-tumoral penetration of standard 

chemotherapeutic agents [281, 282]. This component, in combination with gemcitabine shows 

therapeutic benefit in patients with advanced pancreatic cancer [283]. In addition, as 

pancreatic adenocarcinoma is poorly vascularized, the administration of IPI-926, a specific 

inhibitor of Hedgehog signaling pathway, reduces tumor-associated stromal tissue, enhances 

intra-tumor vascular density and increases concentration of gemcitabine [284-286]. 

Furthermore, CAF-mediated ECM remodeling cannot be achieved without the production of 

MMPs that influence ECM degradation and facilitate cell migration. Despite promising 

preclinical data supporting the blockage of MMPs as a treatment for cancer, phase III clinical 

trials failed [287-290]. This was due principally to inadequate clinical trial design and poor 

knowledge of the complexity of the MMPs. Still, better and more specific inhibitors have 

been developed but are not yet ready for clinical use [291, 292]. 

Collectively, drugs that target stromal CAFs have emerged as an important option to improve 

anti-cancer therapies and drug resistance. However, the functional complexity and 

heterogeneity of CAF sub-populations within the same tumor might be taken into 

consideration to avoid off-target side effects.  

 

5- Conclusion 

It is nowadays commonly accepted that CAF are one of the major components of tumors that 

mainly support different steps of cancer progression. However, the precise definition of CAF 
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heterogeneity and CAF subpopulations, with the complex identification of specific markers 

and specific CAF subpopulation functions, remain the most challenging aspects in the study 

of CAFs. Recently, rapid advances have been made in the molecular characterization of 

CAFs. This provides a better understanding on the mechanisms underlying CAF subsets-

mediated tumor promotion and immunosuppression. Subsequently, these recent knowledges 

have facilitated the development of novel therapeutic strategies for cancer treatment. On the 

whole, the aforementioned anti-CAF therapies are designed to target immunosuppressive 

CAFs functions, which promote cancer development. Nevertheless, other CAFs subtypes have 

also been recently identified, which display tumor-suppressive capacities and can hold 

therapeutic potential.  
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Legends of figures 

 

Figure 1: Schematic representation of CAF heterogeneity 

CAFs represent a heterogeneous cellular population within the tumor microenvironment. By 

combining the analysis of six CAF markers, four different CAFs populations (referred as 

CAF-S1 to CAF-S4) were discovered recently in breast and ovarian cancers. While CAF-S1 

present an immunosuppressive function, CAF-S4 promote metastasis formation. Later on, 

single cell analysis allows the identification of 8 different clusters within the CAF-S1 subset 

with 3 clusters belonging to the iCAF subgroup and 5 clusters to the myCAF subgroup. Both 

ecm-myCAF and TGFß-myCAF exhibit an immunosuppressive function and are associated 

with resistance to immunotherapy. 

 

 

Figure 2: CAFs-mediated immunosuppression  

Due to their secretion of cytokines, chemokines, or other soluble factors, CAFs shape the 

immune response within the tumors toward a pro-tumorigenic microenvironment, by affecting 

both innate and adaptive immune cells 

 

 

Figure 3: Principal strategies for CAF-directed anticancer therapy:  

Multiple approaches have been developed to target CAFs for cancer treatment. CAFs can be 

directly depleted by targeting CAFs surface markers (FAP, GPR77). This depletion is 

mediated by either transgenic technologies or CAR-T cell therapies. Moreover, blocking 

secreted cytokines and specific effectors of CAFs (IL-6, TGF-b, CXCL12) or other growth 

factor pathways (PDGFR, mTOR) can be also used to inhibit the activation and function of 

CAFs.  
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