Combining EGFR and MET Inhibition With Crizotinib in EGFR-mutated Lung Adenocarcinoma Harboring MET Amplification: A Brief Report
Marjorie Aubanel, Aurélie Swalduz, Virginie Avrillon, Louis Doublet, Bénédicte Mastroianni, Eve-Marie Neidhardt-Bérard, Maurice Pérol

➢ To cite this version:

HAL Id: hal-03493633
https://hal.science/hal-03493633
Submitted on 7 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Combining *EGFR* and *MET* inhibition with crizotinib in *EGFR*-mutated lung adenocarcinoma harboring *MET* amplification: a brief report

AUTHORS

Marjorie Aubanela, Aurélie Swalduza, Virginie Avrillonb, Louis Doubletc, Bénédicte Mastroiannia, Eve-Marie Neidhardt-Bérarda, Maurice Pérola

a Department of medical oncology, Centre Léon Bérard 28 rue Laënnec 69008, Lyon, France

marjorie.aubanel@chu-lyon.fr
aurelie.swalduz@lyon.unicancer.fr
virginie.avrillon@lyon.unicancer.fr
l.doublet@ramsaygds.fr
benedicte.mastroianni@lyon.unicancer.fr
evemarie.neidhardt@lyon.unicancer.fr
maurice.perol@lyon.unicancer.fr (corresponding author)

Keywords: Lung cancer, Combination targeted therapies, crizotinib, EGFR TKI, Resistance
INTRODUCTION

Epidermal growth factor receptor (EGFR) activating mutations are found in 10 to 15% of advanced non-squamous non-small cell lung carcinoma (NSCLC) for Caucasian patients and are associated with dramatic response to EGFR tyrosine kinase inhibitors (EGFR TKIs). All patients treated with 1st or 2nd generation EGFR TKIs experience disease progression due to secondary mutations (T790M mutation in exon 20 that confers sensitivity to third-generation EGFR TKI), phenotypic changes and activation of bypass signaling pathways. MET amplification is one of the bypass signaling pathways that promotes resistance to first-, second- and third-generation EGFR TKI, in approximately 5-20% of acquired resistances. Preclinical data suggest that inhibition of both EGFR and MET is required to obtain tumor regression. Crizotinib is a potent MET inhibitor showing activity in NSCLC with MET amplification or MET exon 14 skipping mutations. Responses to dual MET and EGFR inhibition with a combination of crizotinib and EGFR TKI have been occasionally reported in patients with EGFR activating mutations and MET amplification.

Herein, we report 5 patients’ cases presenting with advanced lung adenocarcinoma harboring both EGFR mutation and de novo or acquired MET amplification treated in our institution with combination of a first- or third- generation EGFR TKI and crizotinib.

RESULTS

We report five cases of EGFR-mutated patients harboring MET-amplification which was defined as a MET copy number gain (CNG) ≥ 6 with MET/cenromere ratio (MET/CEP7) ≥2 and was detected by immunohistochemistry (IHC) or Next-Generation Sequencing (NGS) and was confirmed by Fluorescent In Situ Hybridization in all patients. PD-L1 expression was assessed with Ventana SP263 antibody before initiation of combination TKIs.

Median age at the time of diagnosis was 51 years (range 36-66). All patients except one (#5) who was a former light smoker with 2.5 packs-year smoking history were non-smokers. All patients had stage IV adenocarcinoma, two depending on a L858R mutation in exon 21 and three on an exon 19 deletion. Clinical and biological characteristics are reported in Table A. Crizotinib was administrated at the dose of 250 mg twice daily, osimertinib was administrated at the dose of 80 mg once daily and erlotinib at the doses of 75, 100 or 150 mg once daily, based on the previous erlotinib dosage and according to the T790M status.

Abbreviations: CEP7= centromeric portion of chromosome 7 ; CN = copie number ; CNS = central nervous system ; CNG = copie number gain ; IHC = immunohistochemistry; MET = Mesenchymal-Epithelial Transition factor ; NGS = next-generation sequencing ; RNAseq = RNA sequencing ; TKI = tyrosine kinase inhibitor ; ORR = objective response rate
Patient #1 presented with metastatic (lung, mediastinal lymph nodes, pleural effusion without brain metastasis) lung adenocarcinoma with a MET-amplification associated to EGFR mutation L858R in exon 21 on lymph node core-needle biopsy at diagnosis (MET copy number (CN): 10.4; MET/centromere ratio: 2.1) and was treated with erlotinib. Restaging CT after 1 month demonstrated thoracic and mediastinal progressive disease (PD). No T790M was detected on ctDNA and lung biopsy. After 9 months of chemotherapy, erlotinib 150 mg once daily and crizotinib were initiated with response in some lung metastases but emergence of new pulmonary lesions. After disease progression under two subsequent lines of chemotherapy and nivolumab, patient #1 was rechallenged with erlotinib 100 mg once daily and crizotinib with partial response. After 5 months of treatment, the systematic brain MRI revealed 3 asymptomatic infracentimetric lesions without evidence of extra cerebral relapse. Brain metastases were treated with stereotactic radiotherapy and combination therapy is ongoing (Figure A).

Patient #2 was diagnosed with a metastatic (brain and lung) lung adenocarcinoma harboring an EGFR L858R mutation and was treated with erlotinib 150 mg once daily for 4 months. Lung rebiopsy at disease progression (lung, mediastinal lymph nodes and new bone lesions with stable brain metastases) did not detect T790M mutation but MET-amplification (CN: 12.6; MET/centromere ratio: 5.6). She then received a second-line chemotherapy with carboplatin and pemetrexed with thoracic and brain disease progression after 2 cycles of pemetrexed maintenance. She was treated with brain stereotactic radiotherapy for the two brain metastases and erlotinib 75 mg once daily and crizotinib were subsequently initiated with a dissociated response consisting in an improvement of carcinomatous lymphangitis and irradiated brain metastases but appearance of new lung nodules. ctDNA revealed T790M mutation and erlotinib was then replaced by osimertinib whereas crizotinib was continued. First disease evaluation at 3 months of treatment revealed partial response but the patient experienced rapid subsequent cerebral disease progression and died one month later.

Patient #3: lung adenocarcinoma was revealed by a single brain metastasis treated with stereotactic radiotherapy. An EGFR exon 19 deletion was found on the primary lung tumor biopsy. She experienced PD (supra-clavicular, jugular-carotid node) without detection of T790M mutation neither on supra-clavicular rebiopsy, nor on ctDNA after 6 months of gefitinib treatment. MET-amplification (CN: 6.4; MET/centromere ratio: 2.3) was detected after failure of a second line chemotherapy (carboplatin-paclitaxel-bevacizumab, maintenance with pemetrexed, then docetaxel 4 cycles) on a retrospective analysis of the previous supra-clavicular biopsy. Combination of erlotinib 75mg once daily and crizotinib was initiated leading to an almost complete response (Figure B.1). After almost one year of combination treatment, PET-scanner showed evidence of oligo-progression on the primary tumor without recurrence of the disease on other sites (bone metastases, mediastinal and supra-clavicular nodes) leading to propose local stereotactic radiotherapy with continuation of combination therapy. Five months later, she experienced progression disease with brain and liver metastases.
ctDNA revealed T790M mutation and erlotinib was replaced by osimertinib with continuation of crizotinib. PET-scanner and brain MRI performed 1 month later showed complete response. Treatment is ongoing.

Patient #4 was diagnosed with stage IVa lung adenocarcinoma depending on EGFR exon 19 deletion and was treated by gefitinib 250 mg once daily. After 17 months of treatment, she experienced cerebral and lung disease progression leading to give chemotherapy with cisplatin-pemetrexed-bevacizumab followed with pemetrexed-bevacizumab as maintenance treatment. An almost complete response was observed on brain metastases. After 18 months, she experienced a subsequent thoracic disease progression leading to gefitinib reintroduction then replaced by osimertinib based on ctDNA revealing a T790M mutation. Lung and mediastinal PD without brain disease progression occurred after 21 months of osimertinib with evidence of MET-amplification (CN: 12; ratio MET/centromere: 4.1) on lung rebiopsy. After failure of subsequent chemotherapy and immunotherapy with nivolumab, she received a combination of crizotinib and osimertinib leading to almost complete response after 1 month. After 7 months of treatment, disease progression (new brain metastases, lung carcinomatous lymphangitis and meningitis) was observed and patient died one month later.

Patient #5 was treated with gefitinib for a lung adenocarcinoma revealed by a single bone metastasis, with evidence of EGFR exon 19 deletion. She experienced bone and lung disease progression after 30 months of treatment with detection of a T790M mutation on bone biopsy. As osimertinib was not available yet, she received cisplatin-pemetrexed-bevacizumab and continuation chemotherapy with pemetrexed during 3 years. After rechallenge with gefitinib for a lung and mediastinal lymph nodes symptomatic progression, the patient subsequently received osimertinib with disease stabilization as best response and mediastinal lymph node progression at 4 months. Mediastinal lymph node cytology revealed exon 19 deletion, disappearance of T790M mutation but MET-amplification (CN: 8.1; MET/centromere ratio: 2.1) leading to addition of crizotinib to osimertinib with almost complete response lasting one year (Figure B.2). Systematic brain MRI then revealed two asymptomatic brain metastases without systemic disease progression. She was treated with stereotactic brain radiotherapy and combination therapy is ongoing.

Tolerance of the addition of crizotinib to EGFR TKI was quite good, without emergence of unexpected toxicities. No significant prolongation of QTc was observed on systematic ECG. Adverse events observed were rash, transaminase elevation, nausea, edema, visual disorders and diarrhea. Most of them were grade 1 or 2 and crizotinib dose was only reduced to 200 mg twice daily for patient #4 due to nausea.

DISCUSSION

In vitro, MET amplification results in the activation of PI3K/AKT downstream pathway through EGFR-independent phosphorylation of ERBB3, occurring also in the presence of EGFR-TKI,
reinforcing the rational for a concomitant inhibition in the EGFR mutation landscape. Its occurrence varies from 3% at diagnosis to at least 15 to 20% at progression under osimertinib first-line, probably underestimated due to evaluation of resistance mechanisms based on circulating tumor DNA in FLAURA and AURA3 trials.

Identification of biomarkers remains the cornerstone to predict the efficacy of targeted therapies; however the definition of MET amplification is heterogeneous across the different studies. In some trials, MET-amplification is defined only as MET copy number gain (CNG), evaluating the copy number of gene per nucleus and potentially identifying polysomy. Others take into consideration the ratio of MET gene to centromeric portion of chromosome 7 (CEP7), which detect “true amplification” but the cut-off used for this ratio is not standardized. The interpretation is all the more difficult as polysomy and amplification can coexist on the same tumor. MET-amplification is probably more a subclonal event, and a special attention is required with next-generation sequencing results, which reflects circulating tumor DNA as a part of a tumor at a non-cellular level, which makes interpretation difficult.

In our cohort, MET-amplification was defined by MET CNG ≥ 6 and ratio MET/CEP7 ≥ 2, as often defined in previous studies as high-level of MET-amplification. We only associated crizotinib with EGFR TKIs as it is the only routinely available MET-inhibitor in France. Herein, combining crizotinib with first- or third-generation EGFR TKI, according to T790M status, demonstrated encouraging results with three almost complete responses, one objective complete response and importantly durable responses. Interestingly, two patients were rechallenged with osimertinib + crizotinib directly after failure under combination of 1st generation EGFR-TKI and crizotinib due to emergence of T790M resistance mutation, producing a new objective response suggesting that tumor was still depending on this oncogenic pathway. However, central nervous system (CNS) was a frequent site of relapse under combination therapy probably due to the lower intracranial penetration of crizotinib; association of EGFR TKIs with selective MET-inhibitors with high CNS activity should be promising.

Studies evaluating the association of EGFR and different MET-inhibitors in treatment-naïve patients or in the context of resistance are ongoing, showing promising results. A phase Ib/II study evaluated gefitinib associated with capmatinib in EGFR-mutated patients with acquired resistance to EGFR-TKI and MET-dysregulation defined as MET amplification (ratio≥2 and/or GCN≥5) and/or MET overexpression (IHC 2+ or 3+). Objective response rate (ORR) in the overall population was 27%. Responses better correlated with GNC (ORR of 32% for IHC 3+ and 47% in patients with GCN≥6)20. Tepotinib, a potent selective MET-TKI demonstrated significant median progression free survival (PFS) and overall survival (OS) improvement (16.6 vs 4.2 months and 37.3 vs 13.1 months respectively) compared with chemotherapy in MET amplified (ratio≥2 GCN≥5) EGFR-mutated patients at acquired resistance to gefitinib. Three patients with MET amplification are still receiving
treatment with tepotinib for more than 27 months. Savolitinib, another highly potent and selective MET-inhibitor, was also assessed in association with osimertinib in the TATTON Phase Ib study in patients with evidence of acquired resistance to EGFR TKI and MET-alteration defined as following: IHC 3+ on ≥50% of cells or FISH+ (ratio ≥2 GCN ≥5) or NGS (≥20% tumor cells, ≥200x sequencing depth of coverage and ≥5 copies over tumor ploidy). Patients enrolled in cohort B received osimertinib 80 mg and savolitinib 600 mg daily and were divided in 3 groups: patients previously treated with third generation TKI (B1); not previously treated with third generation TKI and T790M negative (B2) or T790M positive (B3). Patients in cohort D had the same characteristics than in cohort B2 but received savolitinib 300 mg daily. Median PFS were 7.6 and 9.1 months with ORR of 48 and 64% in cohorts B and D, respectively. In these studies, the combination of a MET-inhibitor and an EGFR TKI was well tolerated with a low rate of additional toxicities. SAVANNAH (NCT03778229), a single arm phase II study of osimertinib combined with savolitinib for patients who experienced progression after prior osimertinib is ongoing.

Associating MET-inhibitors to the standard EGFR-inhibition in patients progressing with a MET-amplification seems to be a valid therapeutic option based on a strong preclinical rationale, showing minimal and acceptable overlapping toxicity and leading to deep and prolonged responses. Low CNS crizotinib penetration is a clear limitation and new potent MET-inhibitors with better CNS penetration are needed. This underscores the need for rebiopsy even after acquired resistance to osimertinib, notably when given in frontline, as MET inhibition in addition to EGFR inhibition can achieve durable disease control.

DISCLOSURE

The authors Aubanel M., Doublet L., Neidhardt EM., declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors Swalduz A., Perol M., Avrillon V., Mastroianni B., declare the following financial interests/personal relationships which may be considered as potential competing interests:

- Swalduz A.: advisory boards for Roche, Bristol-Myers Squibb, Takeda, Lilly, Pfizer and lectures for Roche, AstraZeneca, Boehringer-Ingelheim, Bristol-Myers Squibb, Pfizer, Takeda
- Perol M.: advisory boards for Roche, Genentech, Eli Lilly, Pfizer, Boehringer-Ingelheim, Clovis Oncology, MSD, Bristol-Myers Squibb, Novartis, Pierre Fabre, AstraZeneca, Takeda. Institutional grants for Roche, AstraZeneca, Chugai, Takeda and lectures for Eli Lilly, Roche, AstraZeneca, Pfizer, Amgen, Boehringer-Ingelheim, Bristol-Myers Squibb, Takeda, Chugai
• Avrillon V.: congress and boards financing MSD, Bristol-Myers Squibb, Roche, AstraZeneca
• Mastroianni B.: Roche, AstraZeneca

FUNDINGS

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
REFERENCES

doi:10.1200/JCO.2015.63.5888

doi:10.1200/JCO.2010.34.1313
Figure A: Treatment sequence and patient’s outcomes

Arrows indicate patients who had an ongoing response at the time of the last evaluation. The symbol † indicates that patient is dead. The symbol ▲ indicates PR, * indicates brain PD and brain radiotherapy and ** thoracic PD and thoracic radiotherapy.
Figure B: Ct-scan response 4 months after crizotinib + erlotinib initiation in patient #3 (1) and #5 (2)
Table A: Patient characteristics and outcomes under combination therapy

M: Male; F: Female; ADC: adenocarcinoma; DR: dissociated response; PR: partial response; PD: progression disease; CR: complete response; RT: radiotherapy; Best CNS response (-): no brain mets; (+): ongoing treatment

<table>
<thead>
<tr>
<th>ID</th>
<th>Sex</th>
<th>Smoking status</th>
<th>Histology EGFR mutation</th>
<th>MET amplification (copy / ratio)</th>
<th>T790M mutation</th>
<th>PD-L1 status</th>
<th>Crizotinib associated-TKI</th>
<th>Line of treatment</th>
<th>Best response</th>
<th>Best CNS response</th>
<th>CNS progression</th>
<th>Duration of response</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>-</td>
<td>ADC L858R</td>
<td>10.4/2.1</td>
<td>No</td>
<td>No</td>
<td>Erlotinib 150 mg</td>
<td>3rd 7th</td>
<td>DR</td>
<td>PR</td>
<td>No</td>
<td>Yes</td>
<td>1.5 months 3 months (+)</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>-</td>
<td>ADC L858R</td>
<td>12.6/5.6</td>
<td>No</td>
<td>Yes</td>
<td>Erlotinib 75mg Osimertinib 80mg</td>
<td>3rd 4th</td>
<td>DR</td>
<td>DR (RT)</td>
<td>No</td>
<td>Yes</td>
<td>2 months 4 months (death)</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>-</td>
<td>ADC Del19</td>
<td>6.4/2.3</td>
<td>No</td>
<td>Yes</td>
<td>Erlotinib 75mg</td>
<td>4th</td>
<td>PR</td>
<td>CR</td>
<td>No</td>
<td>17 months (+)</td>
<td>Diarrhoea grade 1 Paronychia grade 1 Rash grade 2 Visual disturbance grade 1 Diarrhoea grade 2 Oedema grade 1</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>-</td>
<td>ADC Del19</td>
<td>12/4.1</td>
<td>Yes</td>
<td>Yes</td>
<td>Osimertinib 80mg</td>
<td>5th</td>
<td>CR</td>
<td>CR</td>
<td>No</td>
<td>1 months (+)</td>
<td>Diarrhoea grade 1 Nausea grade 2 Vomiting grade 1</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>+</td>
<td>ADC Del19</td>
<td>8.1/2.1</td>
<td>Yes</td>
<td>5%</td>
<td>Osimertinib 80mg</td>
<td>5th</td>
<td>PR</td>
<td>No</td>
<td>12 months (+)</td>
<td>Diarrhoea grade 2 Nausea grade 1 Oedema grade 1 Visual disturbance grade 1</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE A

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Time (months)

Chemotherapy or Immunotherapy
1st generation EGFR-TKI
1st generation EGFR-TKI + crizotinib
Osimertinib
Osimertinib + crizotinib
FIGURE B

1

2