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_____________________________________________________________________________ 

Abstract 

The effective piezoelectric properties of heterogeneous materials are evaluated in the context of 
periodic homogenization, whereby a variational formulation is developed, articulated with the 
extended Hill macrohomogeneity condition. The entire set of homogenized piezoelectric moduli 
is obtained as the volumetric averages of the microscopic properties of the individual constituents 
weighted by the displacement and polarization localization operators. This framework is extended 
in a second part of the paper to the computation of the flexoelectric effective properties, thereby 
accounting for higher gradient effects that may be induced by a strong contrast of properties of 
the composite constituents. The effective properties of inclusion-based composites are evaluated 
numerically as an illustration of the general homogenization theory and the respective effect of 
the volume fraction and relative tensile modulus of the reinforcement is assessed numerically.  

Keywords: piezoelectricity; flexoelectricity; homogenization; variational principles; effective 
properties; composite materials  
____________________________________________________________________________________ 

1. Introduction 
Among various electromechanical phenomena the piezoelectricity discovered by Jacques and 
Pierre Curie is mostly known as it found various applications in engineering, see, e.g., Maugin 
(1988); Eringen and Maugin (1990); Yang (2006). Nowadays there exists various natural and 
artificial piezoelectric materials, such as quartz, zirconate titanate (PZT), barium titanate and 
many others. However, piezoelectricity possesses some limitations driving the search for richer 
electromechanical coupling effects. Recent works from the literature are devoted to 
flexoelectricity, discovered relatively recently, in the 60ies, see Kogan (1964); Meyer (1969). 
Flexoelectricity represents the linear response of electrical polarization to the mechanical strain 
gradient, unlike  
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piezoelectricity, which describes a linear coupling between the electrical polarization and 
mechanical strain, see Yudin and Tagantsev (2013); Zubko et al. (2013); Nguyen et al. (2013); 
Wang et al. (2019). This higher-order electromechanical phenomenon overcomes the drawbacks 
of piezoelectricity. To explain it further, while piezoelectricity gives a constant electric field, 
flexoelectricity leads to an electric field, which is a function of position. Flexoelectricity may 
exist in centrosymmetric materials, for example, in isotropic ones, whereas piezoelectricity 
requires non-centrosymmetric materials (Zubko et al., 2013; Le Quang and He, 2011). In addition 

to that, flexoelectricity is of high importance at nanoscales where the strain gradients increase in 
magnitude, while piezoelectricity vanishes (Hong, 2018). So, at small scales the flexoelectric 
response could be significant and even dominant. As a result, flexoelectric materials can be 
applied as working elements of MEMS and NEMS, such as energy harvesters, sensors, actuators, 
etc., see, e.g., Majdoub et al. (2008); Nguyen et al. (2013); Deng et al. (2014); Zhang et al. 
(2015); Liu et al. (2016); Wang et al. (2019); Ghayesh and Farajpour (2019). 
 Flexoelectricity must be incorporated within the framework of second gradient mechanics 
and accounts for a polarization gradient as done in Mindlin (1968). In such a medium, the 
gradient of deformation (a third order tensor) is taken into consideration in addition to the 
classical deformation tensor. To the contrary, the Cauchy medium considers only the first 

displacement gradient (Hooke’s law in which the displacement is the only degree of freedom). 
Homogenization methods towards generalized media considering either additional degrees of 
freedom, like the Cosserat medium (Cosserat and Cosserat, 1896, 1909; Eringen, 1999) or 
additional higher order gradients like the second-order gradient continuum developed by Toupin 
(1962); Mindlin’s (1964) contribution aim to remedy the limitations of the classical 
homogenization methods. The classical homogenization techniques encounter limitations when 
the wavelength of the loading or deformation field becomes comparable with the typical 
microstructure size; it is a well-established fact in the literature (Park and Lakes, 1986; Buechner 
and Lakes, 2003) that the classical Cauchy theory does not allow the correct prediction of the 
mechanical response at sufficiently small scale levels. This requires the improvement of these 
theories by incorporating additional intrinsic parameters and internal length scales to correlate the 
microstructure with the macrostructure. 

As flexoelectric response is more pronounced at small scales, flexoelectricity was taken into 
account for modification of theories for nanometer-sized beams and plates, see, e.g., Yue et al. 
(2016); Barati (2017); Qi et al. (2018); Malikan and Eremeyev (2020) and references therein. In 
order to improve the piezoelectric response in the literature, various flexoelectric composite 
materials have been proposed, see also Liang et al. (2017); Shingare and Kundalwal (2019). 
Nowadays it is already established that considering composites made of flexoelectric materials 
the optimized microstructure can play a crucial role for a better performance. In particular, the 
effective piezoelectric response could be achieved for proper microstructure, as shown by Sharma 
et al. (2007) and Eremeyev et al. (2020). In order to improve the performance of composites 

homogenization techniques can be applied. The availability of effective properties and their 
dependence on microstructure enables to optimize the microstructure to increase the required 
response as in Casalotti et al. (2020). Topology optimization of flexoelectric structures was 
discussed in Nanthakumar et al. (2017). As flexoelectric materials can be considered as a 
particular class of strain gradient materials the homogenization schemes proposed for such 
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material could be also useful, as in Rahali et al. (2017); Abdoul-Anziz and Seppecher (2018). 
Unlike piezoelectric composites, see, e.g., Grekov et al. (1987); Sevostianov et al. (2001); 
Chambion et al. (2011); Reda et al. (2020), up to our knowledge there exist only up to now few 
works on the homogenization of flexoelectric composites, see Guinovart-Sanjuán et al. (2019) for 
the one-dimensional case. So developing a general approach for the determination of effective 
properties of flexoelectric composites is of great interest. 

Works devoted to the computation of the effective response of piezoelectric composites rely 

on multiscale methods as in Grekov et al. (1987), which constitute a powerful tool for the 
analysis of their macroscopic behavior. Such methods can handle multifield phenomena like 
coupled electromechanical phenomena, providing a quantitative understanding of the impact of 
microscale parameters on the overall multiphysical composite response.  The computation of the 
homogenized response of stratified piezoelectric material based on the method of oscillating 
functions is used by Reda et al. (2020). This method allows obtaining a homogenized response of 
the stratified piezoelectric structure in the form of parametric, closed form expressions that 
depend on the material attributes of the layers building up the repetitive unit cell. This method 
was inspired by the homogenization method done by Tartar (1990) and has been further extended 
by Cioranescu and Donato (1999). It relies on the convergence of the product of two weakly 

converging sequences in which a div-curl lemma was introduced for passing to this limit. The 
closed-form nature of the relation between the macro and micro-scales attributes can be used as a 
basis for tuning the macroscopic behavior by optimizing the underlying geometry and materials 
properties of the constituents within an identified unit cell.  

The main objective of the present study is to set up a homogenization method of 
heterogeneous piezoelectric materials towards flexoelectric effective media, which is able to 
deliver the entire set of piezoelectric, and flexoelectric effective properties. The proposed method 
relies on the variational principle (weak formulation) articulated with Hill lemma (Hill, 1967) 
extended to flexoelectricity. To the knowledge of the authors, this is the first time such a general 
homogenization framework is proposed.  

In the context of periodic homogenization, the microstructure is identified within an 
irreducible representative unit cell, which by periodic translation generates the entire composite 
domain. In the context of composite materials Fig.1, the reinforcement has higher properties in 
comparison to its surrounding matrix. A state of perfect adherence at the interface between both 
constituents is assumed in the present work, so that both the displacement and traction are 
continuous across the interface between reinforcement and matrix. 

 

 Fig.1: Two elastic materials with rigidity and piezoelectric coefficients ai, bi (the index i 
stands for the constituent within the unit cell) 
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The equilibrium of the macro-homogenized flexoelectric medium can be described by the two 

following partial differential equations: 
 

2 2

0, 0
ii j i jk i j

j j k i i j

Σ S RD

x x x x x x

∂ ∂ ∂∂− = − =
∂ ∂ ∂ ∂ ∂ ∂

 

 

wherein , , andii j i jk i jΣ S D R   are respectively the stress, hyperstress, the electric displacement and 

the higher gradient electric displacement. Here and in the sequel, we distinguish the microscopic 

scale (at the scale of individual phases) within the unit cell denoted by the spatial position y  from 

the macroscopic scale of the homogenized continuum (thus replacing the initially heterogeneous 
composite by a homogeneous substitution media with effective piezoelectric or flexoelectric 
properties), for which we employ the spatial position vector x . 

A few words regarding the employed notations are in order. Vectors and tensors are denoted 

by boldface symbols. The second and fourth order identity tensors are respectively denoted 
2Ι and 

4I .The gradient of a scalar field or vector with respect to the spatial position is denoted with the 

nabla operator and the position as a subscript. For example, x∇ E(x)
 
represents the gradient of the 

tensor field ( )E x  w.r.to the macroscopic position, vector x . The transpose of a tensor is written 

with a superscript notation, for instance TB . The gradient of a tensor field A(y) is denoted 

y⊗ ∇A(y)  (with ⊗ the tensor product) and its divergence is obtained as the trace of the gradient,

y∇A(y). . The symmetrized dyadic product is denoted s⊗ . The dot product therein represents the 

inner product in the space of Cartesian tensors. The simple, double and triple contractions of 

tensors are written ., :, ∴respectively, so that it holds k k ij ij ijk ijk. A B ,  : =C D ,  =U V= ∴A B C D U V , 

with ( , ),  ( , ),  ( , )A B C D U V pairs of first order, second order and third order tensors respectively.  

 

Table 1. Nomenclature of the principal notations and symbols 

D electric displacement � total displacement field 

0∈
 

permittivity of vacuum ∈  medium permittivity  

elec
E  electric field  

P   polarization vector  

u  displacement vector  

φ  electric scalar potential  
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2,I I  second order identity tensor  

 

f
qρ   density of free mobile charges  

Ω  volume  

σ   total stress tensor t prescribed surface traction  

f   body force   

 

 

2. First gradient piezoelectric homogenization 

In order to set the stage, we recall the strong form of the governing equations at the microlevel of 
the composite constituents (Moreno-Navarro et al., 2018) with a few subsequent simplifications 
since we primarily aim to focus on the effects of electric fields – discarding magnetic phenomena 
in this contribution.  

The primal variables are the displacement and polarization vectors ( , t),  ( , t)u x P x , which enter 

as arguments of the electromechanical energy density. Note that polarization or electric 

displacement ( , t)D x  can alternatively be chosen as DOF’s (short cut for degrees of freedom) 

since they are linearly related, viz. it holds the relation  
 

elec
0=∈ +D E P          (1) 

 

with 0∈ the permittivity of vacuum, and in which the electric field elec
E can be expressed via the 

electric scalar potential φ  as follows 

 

 
elec = −φ⊗∇E          (2) 

 
The last relation automatically guarantees the satisfaction of Maxwell equation 
 

 elecx∇ =E 0           (3) 
 
The electric displacement in non-deformed media relates to the electric field and polarization as 
  

( )elec elec elec
0 0 e .=∈ + ≡∈ + =∈D E P I χ E E       (4) 

with 0∈  the permittivity of vacuum, ∈the medium permittivity, eχ  is the electric susceptibility  

and I the second order identity tensor.  
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 Since we will focus on statics in the present paper, rate derivatives can be neglected, which 
entails a decoupling of the electromagnetic problem into pure electrical and pure magnetic 
problems: 

 

elec

f
q

f
q

div

div 0

= −φ ⊗ ∇

= ρ

+ ρ =

E

D

J &

          (5) 

 
We consider in this paper only the coupling between electric fields with mechanics and 

ignore magnetic fields; in this case, the local set of piezoelectric balance equations resumes to 
  

 

( )T

d
t

f
q

elec

d
D

div

1
:

2

.   on S

div

. D   on S

div 0

+ =

= ⊗ ∇ + ⊗ ∇

=

= ρ

= −φ ⊗ ∇
=
=

σ f 0

ε u u

σ n t

D

E

D n

J

        (6) 

  
Note that by virtue of the mechanical-electric analogy, the electric scalar potential is the analog  

of the displacement in mechanics, vector u  in Eq.(6)2, ensuring satisfaction of kinematic 

compatibility condition. The force like variables ( ),σ D  satisfy natural boundary conditions 

written there above, with n  the unit exterior normal to the domain, and ( )d d, Dt  are input data on 

the parts t DS ,S  of the domain boundary respectively. The flux like variables ( ),φu satisfy natural 

essential boundary conditions with prescribed values on the complementary part of the domain 
boundary; these values are selected to be nil here and in the sequel, since they do not contribute to 
the effective piezoelectric moduli that will be computed.  

Multiplication of the mechanical and electric balance laws, equations (6)1 and (6)4 respectively 
by suitable test functions, integration over the domain, integration by part with proper account of 
the natural boundary conditions leads to the piezoelectric strain energy density at the micro-level 

written in terms of the strain tensor ε and electric field  elec
E defining the microscopic degrees of 

freedom (DOF in short): 

( ) ( )elec elec elec elec elec
ij ij k k kl k l ijkl ij kl ijk ij k ijk jk i

1 1
w ( , ) σ ε +D E = a E E +C ε ε +d ε E +d ε E

2 2
µ =elec
ε E                        (7) 

wherein σ  is the Cauchy stress, D  the electric displacement, a is the tensor of 
dielectric(permittivity) coefficients, C the tensor of rigidity coefficients, and d the tensor of 
piezoelectric coefficients at the microscopic level. We have considered as a matter of 
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simplification nil values of the traction and electric displacement in the natural boundary 
conditions written in Eq. (6). 

 The constitutive law for piezoelectric materials has the form: 

elec
ij ijkl kl ijk k

elec
i ij j ijk jk

σ =C ε +d E

D =a E +d ε

                                                       (8) 

Hill macro-homogeneity condition for piezoelectric media states that the volumetric average of 
the microscopic strain energy is equal to the macroscopic strain energy: 
 

( ) ( )MY

1
w ( , ) W

2
µ = = +elec elec elec

M Mε E E,E Σ : E E .D                                                (9) 

wherein Σ , E , elec

ME , and D  are the stress, strain,  electric field, and electric displacement at the 

mesoscopic scale respectively. The microscopic variables, namely the displacement and electric 
potential, are decomposed additively into a homogeneous part and a periodic fluctuating part: 

 
( )
( )φ φ φ

hom

hom

u(y) = u y;x + u(y)

(y) = y;x + (y)

%

%
 

wherein the vectors ( )hom ;u y x , ( )hom ;φ y x are the homogeneous parts of the microscopic 

displacement and electric potential, respectively, corresponding to a heterogeneous medium that 

would behave exactly as a homogeneous medium. The fluctuations (y)u% , and φ(y)%  in previous 

decompositions account for the deviation of the postulated effective homogeneous medium from 
the initially heterogeneous medium. Note that these fields depend on the microscopic position and 
on the macroscopic position appearing as a parameter (it is indicated with a semicolon in previous 
expressions), as their subsequent expressions will reveal.   

The vectors (y)u% , and φ(y)% 1
perH (Y)∈  (the Sobolev space of Y-periodic functions) are the 

fluctuations that correct for the deviation of the microscopic displacement and electric potential 
from the displacement resulting from the homogenous strain E(x) and electric potential resulting 

from homogeneous electric field elec

ME  (x), respectively. Homogenization makes an upscaling of 

governing equations from the microscale to the macroscale, so that the resulting homogenized 
boundary value problem only involves macroscopic variables depending on the sole macroscopic 
position x .   

An extended minimization principle of the mesoscopic energy over all periodic fluctuations 

holds in the absence of body forces (the subscript in ( )MW , elec

ME E  means macroscopic), 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1

per

y y y y

M y
, H (Y)

Y y y y y

( ) : : ( ) . .1
W , Min dV

2 ( ) . . . . ( )φ∈

 + ⊗∇ + ⊗∇ + − φ⊗∇ − φ⊗∇ =  
+ + ⊗∇ − φ⊗∇ + − φ ⊗∇ + ⊗∇  

∫
elec elec

M M
elec

M
elec elecu
M M

E u y C y E u y E a(y) E
E E

E u y d(y) E E d(y) E u y
%%

% %% %

% %% %

  

(10) 

The stationarity condition of the previous function of the fluctuations (y)u%  and (y)φ%  delivers, as 

a necessary condition, the following boundary value problem (BVP in short) satisfied by the 
optimal fluctuation associated to the real displacement field (in the absence of body forces, 
internal force for mechanical and free charges for electrical field); it describes the self-
equilibrium of the unit cell: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }

y y y y

y

y y

y y y y

C : . . .
div

. .

div . . .

( ),  Y-periodic

 + ⊗∇ + − φ ⊗∇ + − φ ⊗∇ + − φ ⊗∇ − = 
+ + ⊗∇ + + ⊗∇  

− φ ⊗∇ + + ⊗∇ + + ⊗∇ =

φ

elec elec elec

M M M

elec

M

y E u d y E E d y a y E
0

E u d y d y E u

a y E E u d y d y E u 0

u y

% % %%

% %

% % %

%%

 (11) 

Since the previous BVP is linear in the loading ( ), elec

ME E at the macroscale, the fluctuations can be 

written as: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

: .

: .

= +

φ +

uE uP elec

M

PE PP elec

M

u y M y E x M y E x

y = M y E x M y E x

%

%
                       (12) 

wherein tensors ( )uEM y , ( )PEM y are the displacement localizators, and ( )PuM y  and ( )PPM y the 

electric potential localizators. The localization tensors relate the microscopic DOF’s to their 
mesoscopic counterpart. They are dependent on the microscopic position variable within the unit 
cell Y and are Y-periodic. Inserting these expressions into the previous BVP leads to the unit cell 
BVP for the first gradient piezoelectric homogenization. The previous mesoscopic energy is a 
function of the fluctuations, written in compact form as a Lagrangian functional of the 
displacement and electric potential fluctuations: 

( ){ }

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

y

Y

y y y y

y

Y y y y y

1
L , : : C : . . . . dV

2

( ) : C : ( ) . .1
dV

2 ( ) . . . . ( )

 φ = + + + 

 + ⊗ ∇ + ⊗ ∇ + − φ ⊗∇ − φ ⊗ ∇ =  
+ + ⊗ ∇ − φ ⊗∇ + − φ ⊗ ∇ + ⊗ ∇  

∫

∫

elec elec elec elec

elec elec

M M

elec elec

M M

u ε y ε E .a.E εd E E d ε

E u y y E u y E a E

E u y d E E d E u y

%%

% %% %

% %% %

              

(13) 

Introducing the fluctuations as a function of the localizators Eq. (12) into Eq. (13) leads to: 
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( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

uE uP
y y

uE uP
y y

PE PP PE PP

uE uP PE PP
y y

: . :C

: : .

1
L , : : . . . : .

2
: . . . : .

+ ⊗∇ + ⊗∇

+ ⊗∇ + ⊗∇

 φ = + + + + + 

+ + ⊗∇ + ⊗∇ + +

+ +

elec

M

elec

M

elec elec elec elec

M M M M

elec elec elec

M M M

elec

M

E M y E x M y E x y

E M y E x M y E x

u E M y E x M y E x a E M y E x M y E x

E M y E x M y E x d E M y E x M y E x

E M

%%

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

y

Y

PE PP uE uP
y y

dV

: . . . : .

 
 
 
 
 
 
 
 
 

+ + ⊗∇ + ⊗∇  

∫

elec elec

M My E x M y E x d E M y E x M y E x

    (14) 

The effective piezoelectric constitutive law is then obtained by applying partial derivatives with 

respect to E and elec

ME , of the mesoscopic energy, which is minimized. Since the unit cell is 

bounded, partial derivative and integration can be switched, thus it holds using Hill extended 
macro-homogeneity condition the following relations: 

( )

( )
1 1
per per

1 1
per per

M

, H (Y) , H (Y)

M

elec
, H (Y) , H (Y)

M

L ,W ,
Min L , Min ,

E

L ,W ,
Min L , Min

E

φ∈ φ∈

φ∈ φ∈

 ∂ φ∂  ∂   = ≡ φ ≡  ∂ ∂ ∂ 

 ∂ φ∂  ∂   = ≡ φ ≡  ∂ ∂ ∂ 

elec

M

u u

elec

M

elec elec
u u

M M

uE E
Σ u

E E

uE E
D u

E E

% %% %

% %% %

%%
%%

%%
%%

              (15) 

Inserting the fluctuations as a function of the localizators Eq. (12) leads to the expressions of the 
effective driving forces for the piezoelectric effect: 

( ) ( )
( ) ( )

( )( ) ( )
( ) ( ) ( )

uE uP uE
y y 4 y

uE uE uP
4 y y y

PE PP PE PE PE PP

uE PE PP uE uP
4 y y y

: . : :

: : : .

1
: . . . . . : .

2
. . : . : . .

+ ⊗∇ + ⊗∇ + ⊗∇

+ + ⊗∇ + ⊗∇ + ⊗∇

= + + + + + +

+ + ⊗∇ + + + + ⊗∇ + ⊗∇

elec

M

elec

M

elec elec elec elec

M M M M

elec elec elec

M M M

E M E M E C I M

I M C E M E M E

Σ E M y E M E aM M a E M E M E

I M d E M E M E E M E M E

( ) ( ) ( )

y

Y
PE

PE uE uP PE PP uE
y y 4 y

dV

.

. . : . : . . .

 
 
 
 
 
 
 
 
 
+ + ⊗∇ + ⊗∇ + + + + ⊗∇  

∫

elec elec elec

M M M

dM

M d E M E M E E M E M E d I M

 (16) 

( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( )

uP uE uP
y y y

uE uP uP PP PE PP
y y y 2

PE PP PP
2

uP PE PP
y

uE uP
y y

: : : .

: . : : ( ) . . : .

: . . .1

2 . . : .

: . . .

⊗∇ + ⊗∇ + ⊗∇

+ + ⊗∇ + ⊗∇ ⊗∇ + + + +

+ + + +
=

+ ⊗∇ + +

+ + ⊗∇ + ⊗∇

elec

M

elec elec elec

M M M

elec elec

M M

elec elec

M M

elec

M

M C E M E M E

E M E M E C M I M a E M E M E

E M E M E a I M
D

M d E M E M E

E M E M E d ( )
( ) ( ) ( ) ( )

y

Y

PP
2

PP uE uP PE PP uP
2 y y y

dV

. . : . : . . .

 
 
 
 
 
 
 
 
 

+ 
 
+ + + ⊗∇ + ⊗∇ + + + ⊗∇  

∫

elec elec elec

M M M

I M

I M d E M E M E E M E M E d M

(17) 

In the above equations Eqs. (16) and (17), the factorization of the mesoscopic degrees of freedom 

(E, elec

ME ) leads to the expressions (A.1)- (A.2) written in Appendix A. 
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Previous expressions highlight the tensors of effective piezoelectric properties given by: 

hom

hom.+

hom elec

M

hom elec

M

Σ = C : E + d .E

D = d : E a E
                                                                                                                                    (18) 

wherein hom
C , hom

d , and hom
a are the effective rigidity, piezoelectric and permittivity matrices for 

the homogenized medium.  

An alternative more compact form of the effective piezoelectric constitutive law can be 

formulated based on the strain localizators ( uEZ , PEZ ) and electric field localizators ( uPZ , PPZ ), 
elaborated in Appendix A in Eq.(A.4). 

These expressions lead to the functional to be minimized, having the form of the following 
Lagrangian function: 

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

uE uP

y

Y

: C : : .

. . . .1
L , : dV

2 . . .

. . .

 +
 
 +  → φ =    + 
 

+  

∫

uE uP elec elec

M M

PE PP elec PE PP elec

M M

uE uP elec PE PP elec

M M

PE PP elec uE uP elec

M M

Z : E + Z .E y Z E Z E

Z : E + Z E a Z : E + Z E
u

Z : E + Z .E d Z : E + Z E

Z : E + Z E d Z : E + Z .E

%%    (19) 

By comparing Eqs. (A.5) in Appendix A and Eq.(18), the homogenized tensors hom
C , hom

d , and 
homa express as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

T

hom
y

Y

1
dV

2

  
  =   
  +  

∫

T
uE uE uE uE PE PE PE PE

T T
uE PE uE PE PE uE PE uE

Z : C : Z + Z : C : Z + Z .a.Z + Z .a.Z
C

Z .d.Z + Z .d.Z + Z .d.Z + Z .d.Z

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

hom
:1

2

T T

yT T

Y

dV

  + + +  =   
  + + + +  

∫
uE uP uP uE PE PP PP PE

uE PP uP PE PE uP PP uE

Z : C : Z Z : C Z Z .a. Z Z .a. Z
d

Z .d. Z Z .d. Z Z .d. Z Z .d. Z

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

hom
: : : : . . . .1

2 . . . . . . . .

T T
uP uP

yT T
Y

C C
dV

  + + +  =   
  + + + +  

∫
uP uP PP PP PP PP

uP PP uP PP PP uP PP uP

Z y Z Z y Z Z a Z Z a Z
a

Z d Z Z d Z Z d Z Z d Z

       (20) 

In the sequel, we extend the homogenization method to the consideration of higher order effects, 
and compute the effective flexoelectric properties. 

 

3. Homogenization towards flexoelectric substitution media 

Hill extended macro-homogeneity states that the volumetric average microscopic strain energy 
density is equal to the mesoscopic strain energy density: 
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( ) ( )M pY

1
w ( , ) W : . :

2
µ = = + + ∴ +elec elec elec

M p Mε E E,E ,K,G Σ E E D S K R G          (21) 

wherein S is the third-order hyperstress referring to higher gradient effects, and second-order 
tensor R is related to the higher gradient electric displacement (the second gradient electric 

displacement), third-order tensor K is the strain gradient tensor and the second-order tensor pG is  

the electric field gradient tensor given in Eq.(22)4. In view of the derivation of the effective 
flexoelectric properties of composites, we express the homogenous part of the microscopic 
displacement and electric potential as follows: 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

hom

x

p

p x

1
. :  

2

:

1
.

2

:

= + ⊗

= ⊗ ∇

φ = + ⊗

= ⊗ ∇

hom elec

M

elec

M

u E x y K x y y

K x E x

E x .y G x y y

G x E x

              (22) 

The form of the displacement vector in Eq. (22)1 leads to the expression of the homogeneous part 
of the microscopic strain as follows: 

( ) ( ) ( )hom .= +ε u E x K x y          (23) 

An extended minimization principle of the mesoscopic strain energy over all periodic fluctuations 
holds: 

( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1
per

y y

p y p y

M y
, H (Y)

Y y p y

p y y

: ( ) : : : ( )

. . . .1
W , Min dV

2 : ( ) . . .

. . . : ( )

φ∈

 + + ⊗ ∇ + + ⊗ ∇
 
 + + − φ ⊗ ∇ + − φ ⊗ ∇ =  

+ + + ⊗ ∇ + − φ ⊗∇ 
 

+ + − φ ⊗ ∇ + + ⊗∇  

∫
elec elec

M M
elec

M elecu
M

elec

M

E K y u y C E K y u y

E G y a E G y
E E

E K y u y d E G y

E G y d E K y u y

%%

% %

% %

%%

% % %

         (24) 

The stationarity condition of the previous functional delivers, as a necessary condition, the second 
order BVP to be satisfied by the optimal fluctuations associated to the real displacement field (in 
the absence of body forces): 

( ) ( ) ( ) ( )( ){ }
( ) ( )( ) ( ){ }

T

y y p y p y

T

y p y y y

div : . ( ) . . . . ,

div . . . ( ) . . . ( ) ,

( ),   Y-periodic

− + + ⊗∇ + + − φ⊗∇ + + − φ⊗∇ =

+ − φ⊗∇ + + + ⊗∇ + + + ⊗∇ =

φ

elec elec

M M

elec

M

C y E K y u y d E G y d E G y 0

a E G y E K y u y d d E k y u y 0

u y

% %%

% % %

%%

(25) 
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The fluctuations ( )u y% and ( )φ y% are expressed linearly versus the effective strain and electric field 

tensors and their gradients ( ) ( ) ( ) ( )elec

M pE x ,E x ,K x ,G x  which constitute the loading in the BVP 

Eq.(25): 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

uE uP uK uGp
p

PE PP PK PGp
p

PP PE PK PGp
2 p

PP PE PK PGp
p

PK

: .  :

. . :

. . :

. . : ,

= + + ∴ +

φ = + + ∴ +

= + = + + + ∴ +

⇒ = + + ∴ +

=

elec

M

elec

M

elec elec elec elec

M M

elec elec

M

u y M y E x M y E x M y K x M y G x

y M y E x M y E x M y K x M y G x

E y E E I M y E x M y E x M y K x M y G x

E y Z y E x Z y E x Z y K x Z y G x

Z y M

%

%

%

( )
( ) ( )

PK

PGp PGp

,

=

y

Z y M y

     (26) 

wherein tensors ( )uKM y and ( )PKM y  are the localizators for the strain gradient loading, 

respectively fourth- and third-order tensors. The fourth-order tensors ( ) ( ),uK PK
M y M y

respectively relate the fluctuating displacement to the strain gradient and the fluctuating electric 

potential to the strain gradient. The third-order tensors ( )uGpM y and ( )PGpM y  are the 

localizators for electric field gradient loading, with ( )uGpM y  relating the fluctuating 

displacement to the electric field gradient. Tensor ( )PGp
M y  relates the fluctuating electric 

potential to the electric field gradient. Introducing the microscopic strain and electric field in 
terms of the strain and electric field gradients (K, pG ) gives the following expressions in terms of 

the macroscopic degrees of freedom: 
 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

p

hom
y y

uE uK uP
y y y

uGp
y p

uGuE uk uP
p

PE PK
y y

PP PGp
p

PE

:

: .  .

:

: . : ,

: :

. :

:

⊗∇ = + ⊗∇ =

+ ⊗∇ + + ⊗∇ ∴ + ⊗∇

+ ⊗∇

≡ + ∴ + +

−φ ⊗∇ = − φ φ ⊗∇ = + ∴

+ + +

≡ +

elec

M

elec

M

hom

elec elec

M M

u y u y u y

E x M y E x K x y M y K x M y E x

M y G x

Z y E x Z y K x Z y E x Z y G x

(y) y + (y) Μ y E x M y K x

E M y E x M y G x

Z y E x Z

%

%

( ) ( ) ( ) ( )PPGPk , ,
p. :∴ + +PP elec

My K x Z E (x) Z y G x

 (27) 

Using Eq. (27), the mesoscopic energy in Eq. (24) is then written in terms of the localizators as 
the following Lagrangian, a functional of the displacement and polarization fluctuations (see 
Appendix A, Eq. (A.6)). 
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The flexoelectric constitutive law is then obtained by taking the partial derivatives of the 

minimum mesoscopic energy with respect to E and elec

ME , K, and pG  to determine the stress, 

electric displacement, hyperstress, and higher gradient electric displacement respectively. Since 
the unit cell is bounded, the partial derivative and integration can be switched (see Appendix A 
(A.7)-(A.11)). 

Expressions (A.8)-(A.9)-(A.10)-(A.11) highlight the tensors of effective flexoelectric properties 
involved in the following homogenized constitutive law: 

hom ∴

∴

∴

∴

hom elec hom hom

M P

hom hom elec hom hom

M D P

hom hom elec hom hom

M P

hom hom elec hom hom

D M P

Σ = C : E + d .E + B K + e : G

D = d : E + a .E + F K + e : G

S = B : E + F .E + A K + H : G

R = e : E + e .E + H K + N : G

                                                         (28) 

All parameters in Eq. (28) are defined for the homogenized medium at the macroscale. In details, 
homB is the fifth-order coupling tensor between first gradient stress and strain gradient, hom

e  the 
fourth-order coupling tensor between first gradient stress and second gradient electrical field. 

homF the fourth-order coupling tensor between first gradient electrical displacement and second 

gradient strain. hom

De is the third-order coupling tensor between the first gradient electrical 

displacement and the second gradient electrical field. homA is the sixth-order second gradient 

tensor. homH is the fifth-order coupling tensor between hyperstress and the second gradient 

electrical field, and homN is the fourth-order coupling tensor between second the gradient electrical 
displacement and the second gradient electrical field. 
 As done in Section 2, a comparison between Eqs. (A.8), (A.9), (A.10), and (A.11) allows the 

determination of the tensors of homogenized properties homC , homd , homB , home , homa , homF , hom

De  ,
homA , homH , hom

N as corresponding integrals of microscopic quantities over the unit cell; these 
tensors receive however complicated expressions that will not be explicitly written.  
 

4. Algorithm for the evaluation of the homogenized piezoelectric and flexoelectric moduli 

Starting from the theoretical framework mentioned in the previous section, we propose a 
numerical algorithm to determine the effective tensors of the homogenized constitutive law for 

the second gradient flexoelectric medium. The microscopic stress σ  and electric displacement D 
are given by the following constitutive relations: 

elec

elec

σ(y) = C(y) :ε(y) +d(y).E (y)

D(y) = d(y) :ε(y) +a(y).E (y)
                                                                                                (29)       

where C(y) is the (microscopic) rigidity matrix, d(y) the (microscopic) coupling matrix between 
the elastic and electric fields, a(y) the (microscopic) permittivity matrix, ε( )y and elecE  (y) are 
the (microscopic) deformation and electric fields respectively. 
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 The microscopic deformation and electric field tensors can be decomposed into their 
homogeneous and fluctuating parts by introducing the macroscopic deformation, the gradient of 
deformation, the macroscopic electric field, and the gradient of electric field, tensors

elec

M P
E, K, E ,G , respectively, as follows: 

hom

hom hom S
y

( ) ( ) ( ),

( ) : ( ) .

= +
= ⊗ ∇ = +

ε y ε x ε y

ε x u y E K y

%

 (30) 

P

( ) (x) ( ),

(x) :

= −φ⊗∇ = +

= +

hom

hom

elec

elec elec
M

elec

elec
M M

E y E E y

E E G .y

%

 (31) 

wherein ( )ε y% represents the fluctuating part of the microscopic strain, namely the symmetrical 

part of the microscopic gradient of the (microscopic) fluctuation ( )u y%  and φ  is the (scalar) 

electric potential. 

 At the micro-scale, the materials are considered as linear elastic and isotropic (knowing that 
they should be transversely isotropic but since the direction of transverse isotropy is orthogonal 
to our plane of study, we have isotropy within the 2D section considered in this example). In this 
context, the elastic stress at a point is related to the deformation at the same point by the two 

Lame coefficients ( , )λ η , with
(1 )(1 2 )

Eνλ
ν ν

=
+ −

the first Lame’s first parameter and 
2(1 )

Eη
ν

=
+

the second Lame parameter, expressed versus Young’s modulus E and Poisson’s ratio ν . Taking 
into consideration Eqs. (29), (30), (31), the microscopic stress and electrical displacement can be 
written in matrix format as: 



11 11 111 1 112 2
11 11 21

22 22 221 1 222 2
22 12 22

12 12 121 1 122 2
12 13 23

111 12 13 11 1 11 11

21 22 23 222

. .2 0
. .2 0
. .0 0 2

0 .

0

elec
elec

M P

E K y K yd d

E K y K yd d

E K y K yd d

d d d a E E G yD

d d d aD

σ λ η λ
σ λ λ η
σ η

+ + ++   
    + + ++   

+ + +   =
    + +   

  
  

ε

ε

ε

%

%

%



12 2

2 2 12 1 22 2

.

. .

P

elec
elec

M P P

G y

E E G y G y

 
 
 
 
 
 +
 
 + + +                                     

(32) 

where 1 2( , )y y is the microscopic position vector in 2D situations to which we restrict the analysis 

here and in the sequel. The macroscopic deformation E , the macroscopic gradient of 

deformation K , the macroscopic electric field elec

M
E , and the macroscopic gradient of electric 

field PG are considered as kinematic controls applied to the unit cell Y.  

The objective is to find the total displacement u of the unit cell BVP such that the microscopic 

displacement u and the microscopic electric field elec

M
E satisfy the following set of governing 

equations: 
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y

y

T

S
y

div ( ) in Y

div 0

( ) (y) : ( ) ( ). ( ) in Y

( ). ( ) (y) : ( )

( y) . ( )

( ) : ( )

=

=

= +
= +

= + +
= ⊗ ∇

= +

elec

elec

elec elec elec

M P

σ y 0

D(y)

σ y C ε y d y E y

D(y) a y E y ε d y

ε E K y ε y

ε y u y

E E + G .y E

%

% %

%

        (33) 

A weak formulation of Eq. (33) is introduced to get the following formal homogenized problem, 
considering the decomposition of the total microscopic deformation and electrical fields, 

.= + +ε E K y ε% , = +elec elec elec

M P
E E + G .y E% : 

( ) ( ) ( )T
1 a y a y

Y Y

H Y ,  C( ) : ( ) ( ). ( ) : ( )dV ( ). ( ) (y) : ( ) . ( )dV 0∀ ∈ + − φ + ψ =∫ ∫
elec elec elecv y ε u d y E y ε v a y E ε d y E

(34) 
       

( )
( )( )

( )( )

1

T
a y

Y

a y

Y

H Y ,  

C( ) : ( ) ( ). : ( )dV

( ). ( ) : ( ) . ( )dV 0

∀ ∈

+ + + +

− + + + + ψ =

∫

∫

elec elec

M P

elec elec elec

M P

v

y ε E K.y d y E +G .y E ε v

a y E +G .y E ε E K.y d y E

% %

%%

       (35) 

 

where v and ψ  are the test functions. By solving this variational formulation, the periodic 

fluctuating displacement u%  and fluctuating electric potential φ%  satisfying Eq. (34) are obtained. 

This problem is solved using FreeFem++ open source finite element software as well as for the 
subsequent determination of the first gradient, second gradient, and the piezoelectric and 
flexoelectric moduli in Eq. (28). 

4.1 Determination of the homogenized first and second gradient moduli 

The goal in this section is to determine the first gradient modulus homC (rigidity matrix), second 

gradient modulus homA  and the coupling tensor hom
B between first and second gradient terms. The 

coupling matrix between the electrical displacement and second gradient strain homF  will also be 
determined. Applying the mesoscopic deformation E as the sole kinematic boundary condition 

over the unit cell leads to the first effective rigidity matrix hom
C , while applying the gradient of 

deformation K alone as a kinematic boundary condition over the unit cell entails the evaluation of 
hom

B (the coupling matrix between the first gradient stress and second gradient strain) and homF . 
Using the expression of the hyperstress, determined by applying tensor K only, we finally obtain 

the second gradient rigidity matrix homA . This procedure is condensed in algorithmic format in 
Fig.2. 
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Fig.2: Schematic diagram for the computation of the effective moduli Chom, Bhom, Fhom, Ahom 

The first gradient homogenization tensor 
hom

C , coupling moduli hom
B , and homF are written in the 

form: 

hom
y

1
: ( ) : ( )dV

Y
= ∫C E C y ε u          (36) 

hom
y

1
( ) : ( )dV

Y
∴ = ∫B K C y ε u

 

        (37) 

hom
y

1
dV

Y
∴ = ∫F K D

 

        (38) 

where Y is the volume (the area in 2D) of the unit cell.  

The average macroscopic hyperstress is written according to the Hill Lemma, as follows: 

( ) ( ) ( ) ijM

Y Y
ijk ij ijkY Y

w wW
w

K K

∂µ µ
µ ∂

∂ε∂ ∂∂ ∂= = = = =
∂ ∂ ∂ ∂ε ∂

ij

ijk

ε

ijk ij K

ijk ijk

ε ε
S ε σ

K K
      (39) 

in which the bracket denotes the volume integration over the unit cell, normalized by the unit cell 
volume. The microscopic deformation field evaluated from the perturbation displacement (using 
the boundary value problem in Eq. (35)) and used in Eq. (39) is: 
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( )

( )

( ) ( ) ( ) ( )

1 21
11 11 11 111 1 112 2

1

1 22
22 22 22 221 1 222 2

2

1 2 1 21 2
12 12 21 121 211 1 122 212 2

2 1

u y , y
E K y K y ,

y

u y , y
E K y K y ,

y

u y , y u y , y1 1 1
E K K y K K y

2 2 2 y y

 ∂
ε = + + + ≡

∂
 ∂ε = + + + ≡ ∂
 ∂ ∂ 
ε = + + + + + ≡ + 
 ∂ ∂ 

ε

ε

ε

%

%

%

        (40) 

The tensor homA is equal to the hyperstress in this case: 

hom
y

1
( )dV

Y

∂
∂∴ = ∫

ij

ijk

ε

ij K
A K σ                                                                                                 

(41) 

4.2. Determination of the homogenized piezoelectric and flexoelectric moduli 

In this section, the tensors of effective moduli related to piezoelectricity homd , homa , and 

flexoelectricity homH , hom

De  home , and homN are determined. By selecting the mesoscopic 

deformation =E 1  and applying only vector P as a kinematic boundary condition over the RVE, 

the piezoelectric matrix hom
d and permittivity matrix hom

a are obtained, while, by selecting =K 1

and applying, only, PG  as a kinematic boundary condition over the RVE, the matrices 

hom hom hom, ,
D

e e H  and hom
N are determined. This procedure is written in algorithmic format in 

Fig.3.  
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Fig.3: Schematic diagram for computing the effective dhom, ahom, ehom, eDhom, Hhom, Nhom matrices 

 

The tensors hom
d , hom

a , hom
e and hom

D
e  are  obtained from the relations: 

hom hom
y

1
. ( ) : (u)dV :

| Y |
= −∫

elec

Md E C y ε C E  (42) 

hom hom
y

1
. dV :

Y
= −∫

elec

Ma E D d E  (43) 

hom hom1
: ( ) : ( )d :

| |
= −∫Pe G C y ε y B KyV

Y
 

(44) 

hom hom
y

1
: dV

Y
= − ∴∫D Pe G D F K

 

(45) 

The macroscopic second gradient electric displacement R is written  according to Hill 
Lemma as follows: 

elec
i

ij

E

ij i G
Y

R D
∂
∂=                 (46) 
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wherein the microscopic electric field is determined from the perturbation electric potential 
(determined from solving the B.V.P Eq. (35)), and can be written according to Eq. (33)7 as: 

elec elec elec
1 1 M1 P11 1 P12 2

elec elec elec
2 2 M2 P12 1 P22 2

E E E G y G y

E E E G y G y

 = + + +


= + + +

%

%
              (47) 

The tensors homH and
homN  are determined from the relations: 

y

1
: ( )dV

Y

∂
∂= − ∴∫

ij

ijk

εhom hom

P ij K
H G σ A K                                                                               

(48)  

elec
i

ij

E

i yG

1
: (D )dV

Y

∂
∂= − ∴∫

hom hom

PN G H K                                                                            (49) 

 

5. Response of 2D flexoelectric composite materials in a reduced 1D space 

In the current section, we analyze the effect of the choice of constitutive modeling on the static 
and piezoelectric properties of materials in a reduced 1D space. To that scope, we consider a 
straight beam of length L (L=1m) incorporating a 2D reinforced composite material as a unit 
cell, as illustrated in Fig.1. The beam is held fixed at its left end and loaded with a constant stress 

0Σ =100MP at its right end (Fig. 4). The materials considered for the two-unit cell constituents 

are Lithium Niobate LiNbO3 for the inclusion, and Polyvinylidene Fluoride PVDF for the matrix 
as in Chambion et al. (2011). The properties of these piezoelectric materials are listed in Table 1. 
(Considering the isotropic plane as the plane of our study in 2D knowing that, in 3D, the 
materials are considered transversely isotropic).   

 
 LiNbO3 inclusion PVDF matrix 

Elastic modulus (MPa) 170000 2450 

Poisson’s ratio 0.25 0.34 

d11 (pC/N) 20 0 

d12 (pC/N) 20 0 

d13 (pC/N) 0 0 

d21 (pC/N) -0.9 20 

d22 (pC/N) -0.9 3 

d23 (pC/N) 6 -46 

a11 (pF/m) 384.975 79.65 

a22 (pF/m) 265.5 79.65 

Table 1: Mechanical and electrical properties of the two piezoelectric materials within the unit 
cell of the composite material 
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 Fig.4: 1D flexoelectric beam incorporating many repetitive unit cells along its length 

 

We aim to replace the initial heterogeneous, micro-structured beam with a homogeneous beam 
with effective flexoelectric properties. In order to study the behavior of the flexoelectric (solving 
for the deformation and electric fields) effective beam we write the homogenized constitutive law 
in the present 1D context as follows: 

hom hom hom hom
11 11 11 11 1 11 111 11 11

hom hom hom hom
11 11 11 11 1 11 111 11 11

hom hom hom hom
111 11 11 11 1 11 111 11 11

hom hom hom hom
11 11 11 11 1 11 111 11 11

elec

M P

elec

M D P

elec

M P

elec

D M P

C E d E B K e G

D d E a E F K e G

S B E F E A K H G

R e E e E H K N G

Σ = + + +

= + + +

= + + +

= + + +

                                                                         

(50)                 

The specific cases of rigid conductors and pure strain gradient mechanics are next considered 
with a special emphasis. 

5.1 Case of rigid conductors  

The strain energy for a rigid body is identified to the volumetric average of the microscopic strain 
energy density and is written as a bilinear form of the electrical measures. 

( ) ( )

( ) ( ) ( ) ( )

hom hom hom hom,T
M D D

elec elec elec

Y
Y

1 1
W , .a . : N : . e e :

2 2

1
w .a .

2
µ

= + + +

= =

elec elec elec elec

M P M M P P M PE G E E G G E G

E E y y E y

   (51) 

Neglecting mechanical deformations leads to the following 1D constitutive law higher gradient 
formulation (a specific case of previous constitutive law, Eq. (50)): 

hom hom
11 11 1 11 11

hom hom
11 11 1 11 11

hom hom
11 11 1 11 11

hom hom
111 11 1 11 11

elec

M P

elec

M D P

elec

D M P

elec

M P

d E e G

D a E e G

R e E N G

S F E H G

Σ = +

= +

= +

= +

        (52)  

Considering a piezoelectric medium without higher gradient parameters, the consititive law is 

written in terms of the piezoelectric matrix which contains only hom
11d  Eq. (53) (in the case of 
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rigid conductor the deformtion is nul).  The electric field shows a constant value for all positions 
(Fig.3).  

hom 0
11 0 11 1 1 hom

11

elec elec

M M
d E E

d

ΣΣ = Σ = → =
                                                                                           

(53) 

In contrast to this, when the higher gradient term hom
11e  is considered, an exponential decrease 

of the electric field with position is observed, as described in Eq. (54), with the effective electric 
field plotted versus spatial position along the beam in Fig. 5. The spatial distribution of the 
electric field highlights a boundary layer closed to the left edge of the beam for an adopted left 
edge boundary condition of nil polarization incompatible with the first gradient solution: 

hom
11

hom
11

hom hom 0
11 0 11 1 11 11 1 hom

11

1 exp
d

xelec elec
eM Md E e G E

d

−Σ  Σ = Σ = + → = − 
                                               

(54) 

 

Fig.5: Electric field with and without flexoelectric term under a constant applied stress 0Σ . 

The flexoelectric effect is clearly apparent in Fig. 4, which shows a boundary layer close to the 
left side of the macro beam.  
 

5.2 Specific case of strain gradient mechanics 

The strain energy of the effective strain gradient continuum is written as the bilinear form of the 
kinematic measures and is further identified to the volumetric average of the microscopic strain 
energy density 

 

( ) ( )

( ) ( ) ( ) ( )

hom hom hom hom,T
M

Y
Y

1 1
W , : C : A : : B B :

2 2

1
w : C :

2
µ

= + ∴ + +

= = ε ε

E K E E K K E K

ε y y y

        (55) 
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Neglecting the electrical field, and referring to Eq. (50) leads to the following 1D constitutive law 
in a higher gradient formulation: 

hom hom
11 11 11 11 111

hom hom
11 11 11 11 111

hom hom
111 11 11 11 111

hom hom
11 11 11 11 111

C E B K

D d E F K

S B E A K

R e E H K

Σ = +

= +

= +

= +

                                                                                                     

(56)  

Considering the case of the first gradient medium, the constitutive law is written in terms of the 
first gradient rigidity matrix (here composed of hom

11C only), Eq. (57), i.e. without taking into 
account the term related to the second gradient, hom

11B  .The resulting macroscopic deformation is 
equal to a constant and it is moreover independent of the position (Fig.6):  

hom 0
11 0 11 11 11 hom

11

C E E
C

ΣΣ = Σ = → =
                                                                                                     

(57) 

 To the contrary, if we take into consideration the second gradient parameter, the macroscopic 
deformation is no more constant and it depends on the position from the fixed left end of the 
beam. In this case, the deformation increases exponentially from the selected nil strain boundary 
condition at the fixed support (incompatible with the Cauchy-type, pure first gradient solution), as 
shown in Fig. 5, revealing a boundary layer in the vicinity of the left edge of the beam: 

hom
11

hom
11

hom hom 011
11 0 11 11 11 11 hom

11

1 exp
C

x
B

dE
C E B E

dx C

−Σ  Σ = Σ = + → = − 
 

                                             (58) 

 

Fig.6: Deformation with and without second gradient terms. 

 

6. Effective flexoelectric properties of inclusion based piezoelectric planar composites 
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We subsequently employ the methodology elaborated in Section 2 and 3 and the algorithm 
described in Section 4 to compute the effective homogenized properties of a piezoelectric 
composite consisting of two piezoelectric materials, namely LiNbO3 employed for the inclusion 
(a fiber) and Polyfluorure of Vinylidene (PVDF in short) used as the matrix phase. The meshed 
geometrical domain is shown in Fig.7 and the properties of both constituents are listed in Table 1. 

The volumetric percentage of LiNbO3 within the unit cell is characterized by the parameter fν
(here fν =0.3). 

 

 Fig.7: Meshed composite microstructure with circular inclusion and square matrix. The 
unit cell has a linear unit length. The volume fraction of inclusion is 0.3 

 
 

The first parameter of interest, influencing the homogenized properties, is the volume fraction of 
inclusion which is studied by changing the inclusion diameter D (the fiber domain is the circle, 
the matrix domain is the square in Fig .7 and L is the unit cell linear length). The second 
parameter is the ratio of fiber to matrix tensile moduli, Ef/Em. Figures 8 through 11 show the 
variation of the homogenized moduli with the fiber diameter. 
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Fig.8: Homogenized a) First gradient rigidity coefficients, b) Second gradient rigidity 
coefficients, c) Second gradient coupling terms. 

 

Fig.9: Homogenized d) piezoelectric coefficients dhom, e) coupling coefficients ehom, f) coupling 
terms Hhom. 

 

Fig.10: Homogenized g) coupling term eDhom and h) coupling term Nhom. 

 

Fig.11: Homogenized i) permittivity coefficients ahom, j) coupling coefficients Fhom 
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The homogenized coefficients of the first gradient rigidity matrix (Chom

11, Chom
12), the second 

gradient rigidity matrix (Ahom
11, Ahom

31), and the coupling matrix (Bhom
11, Bhom

21) shown in Figure 
6, increase with the fiber diameter; the increase is due to the corresponding increase in the relative 
amount of the more rigid phase (fiber).  

In the graphs of Fig.9, the coefficients dhom
11, ehom

11, and Hhom
11 decrease slightly with the 

fiber’s diameter, while dhom
21, ehom

12, and Hhom
12 increase slightly. The coefficients eDhom

11, 
eDhom

23, Nhom
11, and Nhom

33 in Fig.10 are increasing as a function of the ratio D/L. The permittivity 
coefficients ahom

11, ahom
22 in Figure (11i) are also increasing with the diameter of the fiber, due to 

the increasing percentage of the fiber phase (LiNbo3) having the higher values of permittivity 
(a11, a22). Also, in figure (11j), the coefficients Fhom

22, and Fhom
23 increase slightly as diameter of 

the fiber increases.  
A comparison with the results obtained in Sevostianov et al. (2007) shows a good agreement 

for the piezoelectric and dielectric coefficients with maximum relative error for the piezoelectric 
coefficient 3% and for the dielectric coefficient (permittivity) around 1% (see Appendix B). 

 
Fig.12 shows the variation of some homogenized coefficients as a function of the ratio of fiber to 
matrix Young moduli.  

 

Fig.12: Variation of the first gradient rigidity coefficients (a), and second gradient rigidity 
coefficients (b) versus the ratio of fiber to matrix Young moduli Ef/Em. 

 

Fig.13: Variation of the permittivity coefficients (a), and coefficients of Nhom matrix (b) versus 
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the ratio of fiber to matrix Young moduli Ef/Em. 

Figure 12 shows that the first gradient and second gradient rigidity coefficients Chom
11, Chom

12, and 
Ahom

11, Ahom
12 respectively increase rapidly up to a ratio close to 10, beyond which they remain 

constant. In Figure 13, the permittivity coefficient ahom
22, and the coefficient Nhom

22 decrease 
rapidly for a ratio of moduli close to 10. Conversely, ahom

11 and Nhom
11 remain constant for all 

moduli ratios.  
The internal lengths are defined in full generality as the ratio between second gradient to first 
gradient coefficients for the different deformation modes; they quantify the strengths of strain 
gradient phenomena relative to first gradient ones. For mechanics, the internal lengths express in 
terms of the rigidity coefficients as (the superscript s refers to the static case) 
 

hom
11
hom

11

s

xx

A
l

C
=  , 

hom
12
hom
12

s

xy

A
l

C
=          (59) 

 
These lengths in extension and shear remain nearly constant over the considered range of 

moduli ratio, with a value about one-half that of the unit cell size. This indicates that the first and 
second gradient effects equally contribute to the internal length in terms of their sensitivity to the 
mechanical properties of the individual composite constituents. 

The internal lengths for electrical phenomena (described by superscript E) express as the ratio 
of flexoelectric and permittivity coefficients as  

 
hom
11
hom
11

E

xx

N
l

a
= , 

hom
22
hom
22

E

yy

N
l

a
=         (60) 

 
E

xx
l  and E

yy
l  are found to be constant with a value around one-half. This shows that the internal 

lengths associated to electrical phenomena are approximately the same as those of mechanical 

phenomena quantified by the internal lengths s

xxl , s

xyl .  

The distribution of the fluctuating displacement and electric fields along a vertical line 
passing through the fibers is represented for one and four unit cells when applying E and K as 
kinematic loads over the unit cell. Fig.14 shows 4-unit cells in which a vertical line passes 
through the center of the fibers. The fluctuating vertical displacement u

y
% is plotted along the 

vertical line with the microscopic position y varying from 0 to 1. 
 

 

Fig.14: four unit cells with a vertical line passing through the center of fibers. 
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Fig.15 shows the variation of the vertical component u
y

%  along the vertical line for 1 and 4 

unit cells when applying the strain and strain gradient components E11=1, and K111=1 respectively 
for the flexoelectric medium. 

 

Fig. 15: Distribution of the fluctuating displacement u
y

% (in mm) on the vertical axis, due to the 

macroscopic strain a) 11E 1= , and b) K111 =1 along a vertical line through the centers of the 

inclusions 

Fig.15 shows that for four unit cells, the fluctuating displacement u
y

% is repeating the pattern 

obtained for a single unit cell. The displacement u
y

%  appears to be nearly constant far away from 

the interface (in the fiber). Strong displacement variations are indicators of the existence of the 
interface between fiber and matrix. 
 

 

Fig.16: Distribution of the fluctuating displacement u
y

% (in mm), due to the macroscopic strain 

component 11E 1= , and b) strain gradient component K111 =1 along a vertical line through the 

centers of the inclusions for the pure elastic medium with no electric effects. 

  

In Fig.16, the fluctuating displacement yu%  for four unit cells, is repeating the pattern of a 

a) 
b) 
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single unit cell, but with a lower amplitude. The values of yu%  obtained (in case of four unit cells) 

are of negative sign but they are plotted using their absolute value. 
The values of yu% for a single unit cell determined when applying the strain component E11 are 

approximately twice the values of yu%  for four unit cells (number of vertical cells as shown in 

Fig.14); they will become identical when a normalization by the number of unit cells is applied. 
Meanwhile, the values of yu% for a single unit cell, determined when applying the strain gradient 

component K111, are approximately four times the values of yu%  for four unit cells. It is observed 

that the spatial distribution of the microscopic fluctuation under the applied macroscopic 

deformation 11E 1=  remains the same in each case, repeating the pattern obtained for a single 

unit (the factor 2 corresponding to the number of unit cells) cell over the neighboring (internal) 
unit cells. Consequently, the Cauchy homogenized elastic coefficients remain unchanged for 
computations done with one or a multiple number of periods, since the spatial distribution of the 
fluctuating displacement does not depend on the unit cell.  

The constant values of yu% in Fig.16 are related to the position of the fiber; one can thus 

predict the diameter of the fiber from the figures where there is a constant line (for example, 
from Fig.16, for 1-unit cell: the diameter value is 0.8-0.2=0.6). The effective piezoelectric and 
flexoelectric coefficients remain constant – thus independent of unit cell size - when normalized 
by the square of the number of unit cells.  

 
 
7. Conclusion 

The effective linear piezoelectric properties of heterogeneous materials have been evaluated in 
full generality in the context of periodic homogenization, employing a variational formulation in 
combination with the extended Hill macro-homogeneity condition. The microscopic variables – 

the displacement and polarization vectors – have been expressed as the sum of a homogeneous 
part and a fluctuation obeying a minimum principle. The entire set of homogenized moduli has 
been obtained, expressing as volumetric averages of the microscopic properties of the individual 
constituents weighted by the displacement and polarization localization operators.  

This framework has been extended in a second part of the paper to the computation of the 
effective flexoelectric properties, thereby accounting for higher gradient effects that may be 
induced by a strong contrast of properties of the composite constituents. The effective properties 
of inclusion-based composites have been evaluated numerically as an application of the proposed 
general homogenization framework, and the effect of the volume fraction and relative tensile 
modulus of the reinforcement versus the one of the matrix phase has been assessed. Computations 
show especially that the internal lengths associated to electrical phenomena are higher than the 
internal lengths of mechanical phenomena.  

The proposed homogenization method has given rise to a finite element implementation for 
the efficient computation of the effective flexoelectric properties of composites in a broad sense. 
This numerical platform is convenient to investigate in future contributions the flexoelectric 
properties of architectured materials or diverse classes of composite materials.   
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Appendix A 

 

The factorization of Eq. (16) leads to the following expression of the macroscopic stress: 
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(A.1) 

Similarly, by factorizing Eq. (17), the electric displacement holds the following constitutive 
relation: 
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Comparing Eq.(18) with Eqs.(A.1) and (A.2), the expressions of hom
C  , hom

d , and hom
a  are 

obtained as follows: 
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On the other hand these homogenized tensors can be written in terms of more compact 

localizators (the strain localizators ( uEZ , PEZ ) and polarization localizators ( uPZ , PPZ ) )where : 
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Eq. (18) leads to the constitutive law, in terms of the strain and polarization localizators, as 
follows: 
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When extending toward a flexoelectric media, the Lagrangian functional of the displacement and 

electric potential fluctuations after substituting the compact localizators in the equation of energy 
Eq. (24) is as follows: 
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The flexoelectric constitutive law is obtained by taking the partial derivatives of the minimum 

mesoscopic energy in Eq. (24) with respect to E and elec

ME , K, and pG  to determine the stress, 
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electric displacement, hyperstress, and higher gradient electric displacement respectively as 
follows: 
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  (A.7) 

By the factorization of Eq. (A.7), the stress tensor expresses versus the kinematic variables as: 
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Similarly, the electric displacement is written as follows:  
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As to higher gradient effects, the hyperstress is derived as follows: 
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Also, the higher gradient electric displacement second order tensor can be obtained as follows:  
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Appendix B 

A comparison between the results obtained in our variational approach and the analytical model 
in  
(Sevostianov, I et al. 2007) was made. The materials used were BaTiO3 for the fiber and PZT-5H 
for the matrix with their properties presented in Table 2. 
 
 C11(GPa) C33(GPa) C12(GPa) C13(GPa) d31(C/m2) d33(C/m2) a11(nF/m) a33(nF/M) 
BaTiO3 166 162 77 78 -4.4 18.6 11.2 12.6 
PZT-5H 126 117 55 53 -6.5 23.3 15.1 13 

Table 2: Mechanical and electrical properties of the two piezoelectric materials within the unit 
cell of the composite material 

 
Fig. B: Variation of the 1) dielectric coefficient, 2) and 3) piezoelectric coefficients as a function 

of the volume fraction. Red corresponds to the results in (Sevostianov, I et al. 2007), blue 
corresponds to the results using the variational approach. 
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Figs. (B.1)-(B.2)-(B.3) show a good agreement between the results obtained using the variational 
approach and the results in (Sevostianov, I et al. 2007) for the dielectric and piezoelectric 
coefficients with a maximum relative error for the piezoelectric coefficients (d31 and d33) 3%, and 
for the dielectric coefficient (permittivity) around 1%. 
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