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Abstract

A multiphysics asynchronous electric machine model based on the angular approach is developed in this paper

by adding the interaction between the Unbalanced Magnetic Pull and the rotor center radial displacements

to reinforce the electro-magneto-mechanic fields couplings. The novelty of the proposed model lies also in

calculating the instantaneous angular speed of the shaft and therefore tackling problems in non-stationary

operating conditions. This radial force is generated from the magnetic field distortion mainly due to the rotor

eccentricity. The shifted rotor geometric center coordinates are introduced to calculate the effective air gap

length in the case with eccentricity. The Permeance Network Method is adopted to describe the magnetic field

distribution and the electromagnetic force are achieved by applying the virtual work method. This multiphysics

model is validated in the quasi-static regime by comparing with the reference data from the traditional numerical

model in the case with and without input eccentricity. The physical characteristics about Unbalanced Magnetic

Pull and its frequency components are investigated in angular domain to interpret the transfer path from

different angularly-periodic variation fields in the induction machine. The impact of the rotor eccentricity

amplitude variation on the dynamic behavior of the electric machine are analyzed at different operating points.

Keywords: Unbalanced Magnetic Pull, Induction motors, Eccentric rotor, Multiphysics model, Angular

approach, Electro-magneto-mechanic interaction

1. Introduction

Unbalanced Magnetic Pull (UMP) is a phenomenon which often appears in electrical rotating machinery.

In the general case, most of electromagnetic energy is converted into mechanical work from the air-gap between

the stator and the rotor in the form of the electromagnetic torque and meanwhile the magnetic field also

produces some force components along the periphery of this area. With the uniform air-gap, these forces

offset each other. However in reality, air-gap is hardly uniform due to either mechanical problems like air-gap

eccentricity or unevenness of the electromagnetic field [1]. The latter part is usually caused by some defects in

the electromagnetic field which are possible to be detected and avoided but the former term is difficult to avoid

for the high precision requirements during the manufacturing and installation processes. In this case, those

magnetic force components reveal as a resultant radial force in the motor which is also called as UMP. Once it

is produced, this kind of radial force will pull the rotor roughly in the direction of the minimum air-gap and

cause some significant effects to the structure like vibration and mechanical wear.

The most difficult part about calculating the UMP is to describe the distorted magnetic field along the
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periphery of the air-gap with rotor eccentricity. There are generally two kinds of traditional methods often

adopted in the literature. One is the numerical method also known as finite element method (FEM) which is

used widely for its excellent adaptability in all machine types and the high precision of its simulation results.

Arkkio et al. [2] used the Time-stepping finite-element analysis to solve the magnetic field when the rotor is in

whirling motion and this model is adopted by Holopainen et al. [3–5] to combine with a simple mechanical model

in order to study the influence of UMP on the rotor vibration behavior. The same method is also reproduced

in Ansys by Donat et al. [6, 7] to realize its application in a commercial software. Meanwhile the analytical

method also attracts some attention from the researchers for its small calculating efforts and the simple way to

analyze the variation of the global value. Different models are established in the frame of analytical method.

One popular of them is the air-gap permeance approach. It is firstly proposed by Belmans et al. [8]. They

expressed the air-gap magnetic flux density distribution as the product of the magneto-motive force (MMF)

and the air-gap permeance. In order to simplify the calculation, air-gap permeance is expanded as Fourier series

by conserving only the first-harmonic component. This method is adopted by Smith et al. [9], Guo et al. [10]

and Gerlando et al. [11] to calculate the UMP generated by a relatively small eccentricity with the assumption

of the spatial linearity of the air gap flux density distribution. The traditional numerical method consumes

too much time during the dynamic simulation and the classic analytical method lacks the close bond with the

local geometry of the electrical machine. Therefore in this paper, in order to simulate the extreme case with a

relatively large eccentricity, Permeance Network Method (PNM) belonging to one of the magnetic equivalent

circuit (MEC) model is adopted to describe the whole magnetic field. It is essentially a numerical method but

it can be regarded as a compromise between the electrical lumped-parameter models and the finite element

analysis. PNM is firstly introduced in the book of Ostovic [12] systematically and adopted by Mahyob et al.

[13] for the diagnosis of stator faults in the electrical machines and developed by Han et al. [14] to study the

unstable forces due to the induction motor eccentricity.

The UMP analysis realized in some literatures can’t be considered as a complete analysis because of their

weak coupling with the mechanical part. Some of them like Arkkio et al. [2], Smith et al. [9], Kelk et al.

[15] and Gerlando et al. [11], just calculate the UMP with a set-up rotor eccentricity and study its influence

on the rotor dynamic behavior but there is no reaction from the mechanical part to the electromagnetic field.

Some others introduced the mechanical part by a simple mechanical rotational motion equation as [16] without

the consideration about the radial movement. Afterwards people begin to realize the importance of the strong

coupling with the mechanic field for analyzing the dynamic behavior of the motor hence some more accurate

models to describe the mechanical part appeared. One of the most popular is “Jeffcott-Laval rotor model”. By

combining the traditional rotor dynamic theory, many motor shaft stability analysis are realized in different

kinds of electric machines. Among them, UMP is either treated as an external force generated from the magnetic

field to be exerted on the rotor-bearing system [10] or represented by an equivalent negative stiffness in the

dynamic differential equation [8, 14]. However since only two degrees of freedom (DOF) are considered in these

models, their rotor dynamic simulations have to be performed under the unbalance excitation with a constant

rotation speed. And the influence of the radial eccentricity to the rotational movement can’t be analyzed even if

the distorted magnetic field may also change the generated instant electromagnetic torque value and produce the

rotational vibration. As mentioned before most models are established based on the assumption of a constant

rotation speed but in reality it can never be reached even in the steady state and on the other hand from

the fluctuation of the rotation speed, the variation of the generated electromagnetic forces can be detected.
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Therefore in this paper the motor shaft is described with several beam elements based on Timoshenko beam

theory and the electromagnetic forces (UMP and electromagnetic torque) are calculated and analyzed in the

frame of the angular approach in order to take the real fluctuation of the rotation speed into account (more

details are given in Section 2.1). This implies a strong coupling between the electro-magneto-mechanic fields

and interprets the transfer path from different angularly-periodic variation field in an induction machine.

Fourati et al. [17] have presented a simple asynchronous electrical machine model to describe this multi-

physics interaction. Unfortunately, in this previous work the strong coupling with the mechanical part is only

realized on the rotational movement to identify the bearing defects represented by the angularly varying resis-

tant torque in the model. In order to reinforce this strong coupling and create a more robust model, the relation

between the UMP and the rotor radial displacements is set up in the ancient model and several modifications

are applied. The whole system is reorganized in Section 2. The distortion of the magnetic field in the air gap

is described by the local air gap permeance values associated with the effective air-gap length due to rotor

eccentricities. Therefore in Section 3, the effective air-gap length around the circumstance of the air gap is

expressed as the function of the rotor geometric center coordinates and the value of electromagnetic forces are

deduced by the principle of virtual work method. From Section 4, this proposed model is firstly validated in

the quasi-static regime by comparing with the reference data from the numerical model in the case with and

without eccentricity. And then the physical and frequency characteristics about UMP are investigated from the

simulation with the input eccentricity about 10% of the average air-gap length (its value is available from Table

D.2 in Appendix D ). The rotor eccentricity impacts at different operating points are analyzed by realizing

simulations in non-stationary operating conditions. The influence of the eccentricity amplitude variations are

studied by comparing their results from the simulations with three different input eccentricity values at the

rated state. Finally all the rotor eccentricity effects on the dynamic behavior of the motor system are concluded

in Section 5.

2. Model formulation and preliminaries

In order to prepare for inserting the new coupling of UMP in this multiphysics model, a brief introduction

about the angular approach and the general presentation of three fields modelings and their combinations are

provided in this section.

2.1. Angular approach

Angular approach is a modeling method often used in the rotating machine [18]. The DOF of the rotation

angle θ which can be achieved directly from the state vector of the model is chosen as a reference variable

to provide the relation between resonant phenomena and cyclic excitations. With the angular approach, the

relation between the rotation angle and the time described by the Instantaneous Angular Speed (IAS) function is

not imposed but generated by the behavior of the rotating shaft in the modeling. Since the value of the rotation

speed is the derivative of the rotation angle, its real variation like the fluctuation due to the cyclic phenomena

can be detected from the simulation. In order to maintain the bijective relation between the rotation angle and

the time, the rotation speed only needs to be always positive and in the same direction of the electromagnetic

torque during the simulation of the motor operation mode. Since the assumption of the constant rotation

speed is unnecessary in angular approach, simulations in non-stationary operating conditions can be performed

directly without any further assumptions.
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2.2. Mechanical modeling

The mechanical part is consisted of the shaft and the support shown in Fig. 1. The rotating shaft is divided

into five nodes based on the classical Timoshenko model while the quasi-2D induction motor model is situated

on the middle node. The shaft is supported by two bearings which are simplified as two orthogonal springs

along x and y directions with two identical stiffness values for each in the present simulation. Their values are

available from Table D.2 in Appendix D. The vibration differential equation is applied to interpret the dynamic

motion of the system as described in Eq. (1).

M ⋅ Ẍ +C ⋅ Ẋ +K ⋅X = Fext(t) +Fmag(X, I) (1)

where M, C and K are the matrices of mass, damping and stiffness respectively. Fext(t) is the vector of the

global external forces exerted on the mechanical structure and variated as a function of the time like the load

torque Tr shown in Fig. 1, while Fmag(X, I) are the general magnetic forces generated inside of the motor as

the function of the rotor center displacement X and the electrical currents I. The model in [17] includes only

the interaction between the electromagnetic torque Tem and the shaft rotation angle θ but in the present model

the relation between the electromagnetic radial forces Femr which are also known as UMP and the rotor center

radial displacements xr and yr will be added to predict the behavior with the rotor eccentricity. The mass and

the stiffness matrices M, K are associated with each structural element of the shaft and the support part by

employing their characteristic parameters from Table D.2. Since the stator part of the motor is fixed to the

base, only the rotor is taken into account in the modeling with its mass and moment of inertia listed also in

Table D.2. Therefore the stator part is considered to be rigid and not to vibrate in this work. As it is mentioned

in [17], the structural damping is calculated by adopting the modal damping approach while the damping of

the rotational rigid mode is added as a damping elementary matrix. According to this differential equation, the

lowest natural frequency of the mechanical part is calculated as 292 Hz. Each node has 6 DOFs to illustrate

their displacements in all directions of the space. For example about the kth node in the shaft, their 6 DOFs

are shown as Xk = {x, y, z, θx, θy, θz}tk. From Fig. 1, it can be seen that the displacements of rotor center θ and

xr, yr are represented by the DOFs of the middle node in the shaft. By transforming it into a state-space form

in Eq. (2), one obtains
dQM

dt
= AM ⋅QM +BM ⋅U(QM) (2)

with the state vector QM = {X, Ẋ}t to display the displacements and velocities of each node about all 6 DOFs

at every iteration step. The force term U(QM) is composed of the external applied forces Fext(t) and the

inside generated motor forces Fmag(X, I).
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𝑭𝒆𝒎𝒙
𝑻𝒆𝒎

𝑻𝒓

𝑭𝒆𝒎𝒓

𝑻𝒆𝒎

𝑻𝒓

Bearing 2Bearing 1

Shaft

Fig. 1. Mechanical modeling (Bearing stiffness only presented in one direction)
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2.3. Magnetic modeling

In order to create a more detailed analytic model, the PNM [12] is adopted to describe the magnetic field

in this paper. The motor section (the left schema in Fig. 2 ) is discretized by a network with various per-

meance elements (Psy,Pst,Psl,Pag,Prl,Prt,Pry) in each branch with the subscripts indicating the respective

belonging areas which are shown in different colors in the right schema of Fig. 2. The corresponding mag-

netic flux (φsy,φst,φsl,φag,φrl,φrt,φry) can only pass through the decided path in a defined direction. The

induced MMF sources (Fst and Frt) are set up on the stator and the rotor tooth area respectively. Since

the saturation of the magnetic circuit is neglected in this work, the permeance values in the stator and rotor

part (Psy,Pst,Psl,Prl,Prt,Pry) are considered to be constant and are decided by the dimensions of each basic

branch element. However the air-gap permeances (Pag) vary as a function of the shaft rotation angle θ and they

are also related to the displacements of the rotor center (xr, yr) due to the rotor eccentricity in the proposed

model. Since the skew of the rotor bars and the steel lamination stack length are considered in calculating the

permeance values, this magnetic model is considered as 2.5D in this paper. By applying Kirchhoff’s current

law and Ampere’s law, it’s easy to deduce the relation between the magnetic flux φ and the electrical current

I which indicates the coupling of the magneto-electric fields. That leads to Eq. (3).

φ = Gg ⋅XX(X) ⋅Fmd = Gg ⋅XX(X) ⋅ZZ ⋅ I (3)

where φ is the magnetic flux of each phase, I is the electrical phase currents, Gg is a constant matrix that

transform the magnetic flux from each branch of the permeance network to those of each phase, XX(X) is a

permeance matrix in function of the rotor center displacements X (precisely referred to θ, xr, yr) which implies

the coupling between the mechanical field and the magnetic field, Fmd is a vector of MMF and ZZ is a winding

matrix defined by different kinds of windings. The details about the construction of each matrix can be found

in [17]. Parameters in the electromagnetic part are calculated automatically according to the motor’s geometric

dimensions in order to obtain a more closer bond between the motor’s behavior and its design.
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±
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Y
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Fig. 2. Magnetic modeling

2.4. Electrical modeling

The electrical model consists of two parts as shown in Fig. 3. One is the three phase windings in the stator

and another is the Nr short circuits formed by the squirrel cage in the rotor. The stator windings in Fig. 3a is
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powered by three phase star connection voltages (V12, V23, V31) which can be replaced by the delta connection

in future works. Each phase circuit is simplified by a phase resistance Rsp and an electromotive force (EMF)

F esp. Since the stator windings adopted in this model are the distributed windings connected in series, Rsp is

the sum of the coil resistance Rs from each stator slot in the same phase. The short circuits in the rotor squirrel

cage from Fig. 3b are each composed of two ring segments and two adjacent rotor bars. Similar as the stator

part, each branch is represented by a resistance Rb or Rr and an EMF F er except for the ring part of the rotor

cage because this part isn’t involved in producing the EMFs. Different from [17], the rotor bar currents ib are

chosen to be the state vectors instead of the rotor ring currents ir for the surveillance of the rotor bar fault.

Their dynamic behavior is described in Eq. (4).

R ⋅ I + dφ

dt
= V(t) (4)

where R is a matrix of resistance, I is the state vector containing 3 stator phase currents isp and Nr rotor bar

currents ib, φ is a vector of phase magnetic flux and V(t) is the supply voltage of three phases which variates

as a time function. The Faraday law is applied to realize the connection between the magnetic field and the

electric field: E = △F e = −dφ
dt

. Like [14], the leakage inductance is ignored since it is small compared to the

mutual inductance.
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Fig. 3. Electrical modeling

2.5. Multiphysics couplings

The multiphysics couplings are realized by solving the global differential equations with a set of global

state vectors including mechanical parts (displacements X and velocities Ẋ of all 6 DOFs for each node) and

electrical parts (3 stator phase currents and Nr rotor bar currents I). Different from other multiphysics models,

this one is considered as a strong coupling which means there is a mutual influence between each of the two

fields. Magnetic field and Electrical circuit form the Induction Machine model while the mechanical model is
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represented by Shaft and Support. Inside of the Induction Machine model, as defined in Eq. (3) and Eq. (4),

the stator and rotor phase currents I are used to calculate the magnetic flux φ and meanwhile combined with

the supply voltage V(t) and the instantaneous rotor center velocity (θ̇ and (ẋr, ẏr)), the Faraday law is applied

to calculate the electrical phase currents at each moment.

Beside of normal inputs and outputs for each subsystem, one of the outputs from the electromagnetic part

“Magnetic forces” (Tem and Femx, Femy) are exerted on the mechanical part to change its dynamic behavior and

at the same time these mechanical state values (θ and (xr, yr) ) variations will react on the electromagnetic

part to alter the magnetic field distribution so as to influence their output values like currents and magnetic

forces. Thanks to the global state vector, this mutual influence energy conversion happens simultaneously

and automatically in this model which is able to describe the real dynamic behavior of electrical machines.

This multiphysics model considering about the rotor eccentricities is illustrated in Fig. 4. Those input rotor

eccentricity parameters ((xs, ys), δ0 and γ) are explained later in Section 3.

Magnetic 
field {𝜙}

Induction Machine

Fr ; Tr : External forces

{𝑉 𝑡 }: Power Supply

{𝑋}: Displacement vector 

ሶ{𝑋}: Velocity vector

{𝐼}: Stator and rotor  
currents vector

Shaft + Support

Electric 
circuit

(𝑥𝑠, 𝑦𝑠); 𝛿0; 𝛾: 
« Input » rotor eccentrcity

Tem

Femx 

Femy

(𝑥𝑟 , 𝑦𝑟)𝜃

Magnetic forces

ሶ𝜃 ( ሶ𝑥𝑟 , ሶ𝑦𝑟)

Fig. 4. Multiphysics couplings

3. Unbalanced Magnetic Pull on an eccentric rotor

When talking about the eccentricity in electrical machines, three types of rotor eccentricities are usually

defined and studied respectively: static eccentricity [16], dynamic eccentricity [19, 20] and the mix of the two

[9, 10, 21]. Those three eccentricity types tend to coexist in reality, especially in our multiphysics model. Since

the mechanical coupling is taken into account, all of three types of air-gap eccentricities mentioned before are

reduced to mixed one. Owing to our multiphysics model, the rotor geometric center isn’t fixed but varies

with every shaft revolution. Thus even if a defined static eccentricity is imported into the system, a dynamic

movement of the rotor center position will be generated in the model during the simulation. Therefore it’s

necessary to calculate the UMP with a general formulation based on the actual position of the rotor geometric
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center which can be used to introduce every kinds of input eccentricities automatically. More details are available

in Appendix A.

3.1. Calculation of the effective air-gap length

According to the permeance network in Fig. 2, the air-gap permeances are described as the sum of the

permeances between each pair of stator (i) and rotor (j) tooth at each moment where i and j are the integers

referred to i ⊆ [1,Ns] and j ⊆ [1,Nr] with Ns,Nr denote to the stator and rotor teeth number respectively. As

mentioned previously in the Magnetic modeling (Section 2.3), their values are considered to be parametrically

nonlinear and are described as a formula in the function of the rotor geometric center coordinate and the shaft

rotation angle:

Pij(xG, yG, θij) =
Pmaxc

ei(xG, yG) ⋅ fp(θij) (5)

where xG, yG are the coordinates of rotor geometric center, θij is the relative angle between arbitrary stator

tooth i and rotor tooth j which is described in Eq. (6) .

θij = θrt,j + θ − θst,i (6)

where θrt,j is the angular position of rotor tooth j, θst,i is the angular position of stator tooth i and θ is the

shaft rotation angle at each moment.

Eq. (5) defines the air-gap permeances between each pair of stator and rotor tooth in the case of rotor

eccentricity and its three components are explained in the following part.

1. Pmaxc describes the maximum permeance value between one pair of rotor and stator teeth taking the rotor

bars skewing angle into account as shown in Eq. (B.1) from Appendix B.

2. fp(θij) represents the air-gap permeance scale factor variation between one pair of stator and rotor teeth

as shown in Fig. 5. It is defined in Eq. (C.1) from Appendix C based on the Ostovic model [12]. And

then it is developed to the adjacent pair of teeth around the periphery of the air-gap as shown in Fig. 6

where θ̃ij is the abscissa to describe the relative angular position between two pairs of stator and rotor

teeth. It can be seen that in the case with eccentricity, the family of the permeances according to ith

stator tooth have the same amplitude like max(Pi,j) = max(Pi,j−1) but the amplitudes of the permeances

according to another stator tooth will vary as max(Pi,j) ≠ max(Pi+1,j) due to the variation of the effective

air-gap length. Here, we assumed that only the amplitude will change when we move to the next stator

tooth but there is no change on the variation form of fp(θij).

3. ei(xG, yG) is the effective air-gap length according to each stator tooth position in consideration of the

rotor eccentricity.

The former two terms can be considered as two constant parts because they are decided once the geometry of

the reference machine is defined. Consequently the description of the effective air-gap length in the function of

the rotor geometric center coordinates is very important to calculate the air-gap permeances.
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Fig. 7. Calculation of the instantaneous air-gap length ei associated with the stator tooth i

Fig. 7 shows the distribution of the effective air-gap length around the periphery of the stator inner ring

(blue circle) and the rotor outer ring (red circle) with respect to each stator tooth position (blue nodes evenly

distributed on the blue circle) at a certain moment. OG is the rotor geometric center whose position is defined as

the function of the rotor center displacements (xr, yr) (more details are available in Appendix A) and OS is the
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stator center which is introduced to describe the input static eccentricity generated by the parallel misalignment

of the rotor and stator center axis due to the installation deviation. Two different radius Rr and Rs are denoted

to the rotor outer ring and the stator inner ring respectively. Ei is the interaction point of the line OGSi and

the rotor outer ring. Every stator tooth position θst,i from Eq. (6) is expressed in Fig. 7 by its angular position

αi around the stator inner ring which is defined as:

αi =
2π

Ns
∗ (i − 1) (7)

where i is the integer belonged to [1,Ns].
The effective air-gap length ei is defined as the minimum distance between this stator tooth and the rotor

outer ring. According to each stator tooth position point Si, the instantaneous effective air-gap length is deduced

as

ei =∥ EiSi ∥=∥ OGSi ∥ −Rr (8)

Two sets of coordinate systems are defined in Fig. 7, one is the xs − ys with the origin of the stator center OS

and another is the reference coordinate xOy that is established by taking the initial position of the rotor center

as the origin point O. They are parallel to each other. In the coordinate xsOSys, the vector OSSi is defined as

(Rscosαi, Rssinαi). In the fundamental orthogonal coordinate system xOy, the coordinates of OG and OS are

identified as (xG, yG) and (xs, ys) separately. So the vector OGSi appears as:

OGSi = OGOS +OSSi = (xs −xG, ys −yG)+(Rscosαi,Rssinαi) = (Rscosαi −(xG −xs),Rssinαi −(yG −ys)) (9)

Substituting Eq. (9) into Eq. (8), the instantaneous effective air-gap length can be finally expressed as:

ei(xG, yG) =
√
R2
s − 2Rs ⋅ [cosαi ⋅ (xG − xs) + sinαi ⋅ (yG − ys)] + (xG − xs)2 + (yG − ys)2 −Rr (10)

3.2. Calculation of electromagnetic force

There are principally two methods to calculate the electromagnetic force including the electromagnetic

torque and UMP due to the air-gap eccentricity. One is obtained by the principle of virtual work or also known

as the derivative of the magnetic co-energy method [2, 16, 22]. Another is solved by Maxwell stress tensor

method [9, 11]. The latter is often adopted by the researchers who apply the air-gap permeance approach to

obtain firstly the radial and tangential flux densities in order to calculate the stress tensor component in normal

and tangential direction [10, 21, 23]. The tangential component is often omitted to simplify the calculation

according to the assumption that the permeability of the stator and rotor iron is infinite and the motor has

smooth poles [21]. In this case, some properties of the UMP cannot be revealed in the simulation results (more

details are available in Section 4.2.1). In order to achieve a more realistic UMP values, the magnetic co-energy

method is adopted in this article.

The principle of the co-energy approach is to apply the partial differentiation with respect to the relative

displacement in order to achieve the force function. For example, the electromagnetic torque Tem is calculated

by Eq. (11).

Tem = ∂W
′

m

∂θ
(11)

The co-energy W
′

m in the electromagnetic system is often defined by Eq. (12).

W
′

m = ∫
ε

0
φ ⋅ dε (12)
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where φ is the linkage magnetic flux and ε is the corresponding MMF drop. In the permeance network described

in Section 2.3), the co-energy can be deduced as the sum of co-energies from three parts: the stator and rotor

iron part (ir); the leakage part (l) and the air-gap part (a) as described in Eq. (13).

W
′

m = ∑
iron
∫

εir

0
φir ⋅ dεir + ∑

leakage
∫

εl

0
φl ⋅ dεl + ∑

air−gap
∫

εa

0
φa ⋅ dεa (13)

Every linkage magnetic flux passed through each branch are represented by the product of the permeance and

MMF drop of each branch in the permeance network. It is calculated in Eq. (14).

φk = εk ⋅ Pk (14)

where φk is the linkage flux through kth branch in the defined permeance network, εk is the corresponding

MMF drop and Pk is the permeance value of the kth branch. k is all integer from 1 to N denoted to the branch

number of each part. Then Eq. (13) is transformed into Eq. (15):

W
′

m = ∑
iron
∫

εir

0
εir ⋅ Pir ⋅ dεir + ∑

leakage
∫

εl

0
εl ⋅ Pl ⋅ dεl + ∑

air−gap
∫

εa

0
εa ⋅ Pa ⋅ dεa (15)

Substitution Eq. (15) into Eq. (11), since the MMF drop εk of each branch is constant at every simulation

step, the derivative of Eq. (15) are treated as the derivative of the permeance value of each part. Considering

that the permeances of the stator and rotor iron part Pir don’t depend on the variation of the rotor relative

displacements directly and the permeances of the leakage part Pl are constant values so that the derivatives

of the first two terms in Eq. (15) equal to zero. It implies the fact that the energy conversion between the

electromagnetic part and the mechanical part only happens in the air-gap area [12]. Therefore Eq. (11) is

developed into Eq. (16) :

Tem = ∑
air−gap

∫
εa

0

∂Pa
∂θ

⋅ εa ⋅ dεa = ∑
air−gap

ε2a
2
⋅ ∂Pa
∂θ

(16)

As introduced in the former sections the branches in the air-gap are related to each stator tooth i and rotor

tooth j. In this way the air-gap permeances and corresponding MMF drops are defined as Pa = Pij and εa = εij .
Since the relative rotation angle between each stator and rotor teeth is represented by θij , the expression of Eq.

(16) in the whole air-gap area becomes:

Tem = 1

2

ns

∑
i

nr

∑
j

∂Pij

∂θij
ε2ij (17)

The partial derivation of the Eq. (5) about the relative rotation angle θij appears as:

∂Pij(xG, yG, θij)
∂θij

= Pmaxc

ei(xG, yG) ⋅
dfp(θij)

dθij
(18)

The second term
dfp(θij)

dθij
is deduced in Eq. (C.4) from Appendix C. In the same way, magnetic radial forces

(UMP) due to the eccentricity are achieved by taking the derivative of the magnetic co-energy about their

relative displacement along the x and y directions:

Femx =
1

2

ns

∑
i

nr

∑
j

∂Pij

∂x̃
ε2ij

Femy =
1

2

ns

∑
i

nr

∑
j

∂Pij

∂ỹ
ε2ij

(19)

From Fig. 7, it can be seen that the effective air-gap length actually depends on the variation of the relative

displacements between the stator center OS and rotor geometric center OG. In order to obtain their variation,
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Eq. (10) needs to be transformed into the coordinate of xsosys in Fig. 7 with the relative displacements along

two directions x̃ and ỹ defined as:

x̃ = xG − xs

ỹ = yG − ys
(20)

Therefore the partial differentiation of Eq. (5) about the relative displacement x̃ is deduced as:

∂Pij(x̃, ỹ, θij)
∂x̃

=
∂( 1

ei(x̃,ỹ))
∂x̃

⋅ Pmaxc ⋅ fp(θij)

= − 1

ei(x̃, ỹ)
⋅ ∂ei(x̃, ỹ)

∂x̃
⋅ Pij(x̃, ỹ, θij)

(21)

Substitution from Eq. (10) in the coordinate of xsOsys, the second term on the right side of Eq. (21) is

developed as:
∂ei(x̃, ỹ)

∂x̃
= 1

2
⋅ −2Rscosαi + 2x̃√

R2
s − 2Rs(cosαi ⋅ x̃ + sinαi ⋅ ỹ) + x̃2 + ỹ2

(22)

The partial differentiation of Eq. (5) about ỹ can be deduced in the same way.

3.3. Calculation about the derivative of the magnetic flux

By substituting Eq. (3) into Eq. (4), the global differential equation about the coupling of electro-magnetic

model becomes:

R ⋅ I(t) + d(Gg ⋅XX(X) ⋅ZZ ⋅ I(t))
dt

= V(t) (23)

The second term about the derivative of the magnetic flux in Eq. (23) is developed as:

d(Gg ⋅XX(X) ⋅ZZ ⋅ I(t))
dt

=Gg ⋅ dXX(X)
dt

⋅ZZ ⋅ I(t) +Gg ⋅XX(X) ⋅ZZ ⋅ dI(t)
dt

(24)

In Eq. (24), I(t) is the state vector so the derivative of this term is used for solving the differential equation.

As mentioned in Section 2.3, the first term XX(X) is a matrix of permeance deduced as the function of the

shaft rotation angle θ and the rotor center displacements xr, yr so that XX(X) is simplified as XX(θ, xr, yr).
Thanks to the angular approach, its derivative about the time is deduced in Eq. (25):

dXX(θ, xr, yr)
dt

= dXX(θ, xr, yr)
dθ

⋅ dθ

dt

= (∂XX

∂θ
+ ∂XX

∂xr
⋅ dxr

dθ
+ ∂XX

∂yr
⋅ dyr

dθ
) ⋅ θ̇(t)

(25)

Since the rotor center displacements and their corresponding instantaneous translation speeds are available from

the state vectors, their derivative about the rotation angle are calculated in Eq. (26) by applying again the

chain rule :
dxr(t)

dθ
= dxr(t)

dt
⋅ dt

dθ
dyr(t)

dθ
= dyr(t)

dt
⋅ dt

dθ

(26)

Substitution Eq. (26) into Eq. (25), the derivative of the permeance matrix XX about the time is achieved in

Eq. (27).
dXX(θ, xr, yr)

dt
= ∂XX

∂θ
⋅ θ̇(t) + ∂XX

∂xr
⋅ ẋr(t) +

∂XX

∂yr
⋅ ẏr(t) (27)

where θ̇(t), ẋr(t) and ẏr(t) are respectively the instantaneous angular and translation speeds of the rotor center.
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4. Simulation results and discussion

4.1. Model verification in the quasi-static regime

This model is firstly verified by comparing its simulation results in the case without input eccentricity with

the reference machine data provided by our industrial partner Nidec-Leroy Somer. Those reference data are

calculated at each operating point from a company internal software based on MEC while the simulation results

of our model are achieved from the steady state to realize the verification in the quasi-static regime. Therefore

two motor characteristic curves about the relation of the Torque-Speed and the Current-Speed are plotted

separately in Fig. 8a and Fig. 8b. The reference machine is a three phases, double squirrel cage induction

motor. All the machine parameters are available in Table D.1 and its mechanical characteristics are listed in

Table D.2 from Appendix D.
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Fig. 8. Induction motor characteristic curve

By applying a load torque in the mechanical subsystem, this model simulates the corresponding operating

point which produces the same value of the electromagnetic torque to balance the system. Each simulation

starts with all the state vectors assumed to be zero. It should be noted that with this coupled model, only the

working points with small slips from the motor characteristic curves can be simulated for the reason that they

belong to the stable operation range of the motor’s operation mode. In the induction motor, the motor slip (s)

is the difference between the shaft rotation speed (ωr) and the synchronous speed of the power supply (ωs) as

defined in Eq. (28).

s = ωs − ωr
ωs

(28)

That’s why in Fig. 8, only the half curve is plotted from the simulation data in each subfigure.

Since there are no input eccentricities, the simulation results of UMP two components (Femx and Femy)

both converge to 0. There is a good agreement between two curves in the common part. Every point from

the blue curve in Fig. 8a is obtained from the average value of the generated electromagnetic torque during

the steady state of each simulation as shown in Fig. 9a while each current value from Fig. 8b is the effective

value calculated from the amplitude value illustrated in Fig. 9b. The simulation results plotted in Fig. 9

are simulated at the rated operation state. The fluctuation of the instantaneous electromagnetic torque value

illustrated in Fig. 9a is introduced by the slot effects on the dynamic behavior. Focusing on the operation

range of the electrical machine, some differences begin to appear between the two curves with the increase of

the motor slip defined in Eq. (28). This is due to the simplification of the rotor cage geometry where the double
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cage rotor structure in the real machine is reduced to the single cage rotor by reserving the same slot surface.

The skin effect of the rotor current is also neglected so the difference becomes bigger with the increase of the

motor slip. Considering that the vibration analysis need to be effectuated during the motor’s operation mode,

these comparison results are able to validate this multiphysics model in the case without input eccentricity in

the quasi-static regime.
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Fig. 9. Simulation results computed without input eccentricity as a function of the shaft position

The second verification in the quasi-static regime is effectuated in the case with the input static eccentricity

of different values set up along the x-axis at the rated operating point. It is realized by comparing the simulation

results of UMP along the direction of the input eccentricity in the steady state with those calculated from an

open source software Finite Element Method Magnetics (FEMM) [24]. To simplify the analysis, the input

eccentricity value is defined as the percentage of the air-gap average length Ee. As it is illustrated in Fig. 10,

those two simulation results about Femx are well consistent and the maximum error between the two is around

3.8%. It demonstrates that this multiphysics model is also validated in the case with the eccentricity in the

quasi-static regime.
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4.2. Study of the case with 10%Ee input static eccentricity

The machine mentioned in Section 4.1 is adopted to study the influence of the rotor eccentricity on the

dynamic behavior of the electrical machine. At this first step, 10%Ee static eccentricity is set up along the

horizontal axis (x-axis) by modifying the coordinate of the stator center OS into:

xs = −10%Ee

ys = 0
(29)

Two operating conditions are investigated in this section. The first is at the rated rotation speed 309.26 rad ⋅s−1

and the second is chosen to be next to the operating point of the maximum torque from Fig. 8a with the

rotation speed equaled to 289.20 rad ⋅ s−1. All the simulations are performed for firstly 50 revolutions to attain

the steady state and then the results of the next 1000 revolutions are analyzed to avoid the transient state

influence.

The simulation results of UMP in the steady state with 10%Ee input eccentricity for the two operating points

are shown separately in Fig. 11. It can be seen from both two graphs that with an input static eccentricity, two

components of UMP are converged to different constant values respectively and fluctuate around them with

similar amplitudes. These results conform to the first conclusion in [10]. Their amplitudes are increased with the

increase of the motor slip. Since Femx is the main UMP component force generated from the input eccentricity,

its average value in this direction is also increased. This is due to that as the motor slip increases, the induced

current in the magnetic field becomes bigger as well as the magnetic flux through the air gap, resulting in an

increase in the generated electromagnetic forces according to Section 3.2. Some other phenomena about UMP

can be investigated and are going to be discussed hereafter in two parts: physical characteristics and frequency

analysis.
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Fig. 11. Variation of UMP with 10%Ee eccentricity in the last two revolutions

4.2.1. Physical characteristics

From Fig. 11, the average value of Femx is larger than that of Femy because the input eccentricity is placed

on x-axis. However it is also found that the steady component of UMP projected to the vertical direction Femy
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isn’t zero. This means the UMP resultant force doesn’t act along the direction of the initial smallest air-gap

as we usually considered but it rotates slightly from the narrowest air-gap position with a certain offset angle.

This angle can be identified more clearly in the polar diagram of UMP shown in Fig. 12a by plotting the

variation of Femy as a function of Femx in a polar coordinate. Since the UMP variation has some oscillation

components, the arrow in Fig. 12a is plotted by the average value of UMP to show its average magnitude and

the small orbit at the top of the arrow illustrates the arrow’s end trajectory during one shaft revolution in

order to display the variation of the UMP magnitude and offset angle in the xoy section. This phenomenon is

generated by the effects of equalizing currents induced in the rotor cage due to the eccentricity. As explained

in [25] based on a FEM model, these currents reduce the amplitude of the force and change the direction of the

force from the direction of the minimum air gap. Thus, our multiphysics model can be confirmed by displaying

this phenomenon in the simulation results of UMP.
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Fig. 12. Polar diagram of UMP with 10%Ee eccentricity in the last shaft revolution

Comparing the polar diagrams of UMP at different operating points in Fig. 12b, it is shown that the UMP

resultant force magnitude increases and the orbit becomes bigger in two directions simultaneously with the

increase of the motor slip but meanwhile its average offset angle decreases. It demonstrates that the variation

range of the UMP magnitude and its offset angle is increased at the same time and it indicates that the UMP

generated in the case with a bigger motor slip tends to fluctuate around the position of the set-up eccentricity

with larger oscillations.

Due to the UMP fluctuations in its magnitude and direction, the generated radial displacements of the rotor

geometric center can be described as an orbit. Fig. 13 gives an overview of the relative positions about this

rotor center orbit (in red), the stator center OS and the rotor center initial position O. Since OG (the red point

in the left schema) is not fixed at its initial position O (the black point), it finally rotates around the area close

to the black point. It is more clearly if the center zone in the dotted rectangle is zoomed in the right schema of

Fig. 13. As defined in Eq. (29), the distance between OS and O represents the input 10%Ee static eccentricity

along x-axis while the small red orbit close to O shows the real motion of OG due to the generated UMP.
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Fig. 14. Rotor center orbit in xoy section with 10%Ee eccentricity

The simulation result about this rotor center orbit at the rated operation state during the last shaft revolution

is plotted in Fig. 14a. It is shown that the rotor center rotates in two slightly circumferential shifted orbits that

are plotted in two different colors. There are about 15 ripple waveforms as displayed in the zoom part of Fig.

14a around each orbit and they are almost evenly distributed around the entire circumference which means that

during the last shaft revolution there are totally 30 ripple waveforms corresponding to the number of the rotor

bars. It reflects how slot effects act on the dynamic behavior of the induction machine. Start and end points of

this last revolution don’t coincide. Their distance and the shift between the two orbits are introduced by the

motor slip. The comparison of two orbits simulated at two operating points is illustrated in Fig. 14b. Thanks to

the strong coupling in this multiphysics model, the nonlinear variation of the rotor center radial displacements

under the UMP generated from the cases with the same input eccentricity but at different operating points are

achieved naturally from the simulation results.
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4.2.2. Frequency analysis

Frequency responses presented in this paper are obtained by applying the Fast Fourier Transform analysis

on the results over 1000 revolutions in order to achieve precision of the frequency value. The UMP along x

direction is chosen to perform the frequency analysis since Femx is the main UMP component force. In order

to provide order analysis, the traditional frequency spectral analysis is also realized in the angular domain with

the unit defined as “event per shaft revolution (ev ⋅ rev−1)”. The transform relationship between the angular

frequency fθ and the traditional frequency f is defined in Eq. (30).

fθ(ev ⋅ rev−1) = 2 ∗ π ∗ f(Hz)
ωr(rad ⋅ s−1) (30)

Therefore the power supply frequency 50 Hz is shown as 1.016 ev ⋅ rev−1 and 1.0863 ev ⋅ rev−1 respectively in the

angular spectrum for the two operating points.

Their frequency spectrum in the angular and time domain at two rotation speeds are illustrated separately in

Fig. 15 and Fig. 16. Four characteristic frequencies could be evidently recognized from all of the four spectrum.

Taken the rated state in Fig. 15 as an example, they are: the double supply frequency 2fs = 2.032 ev ⋅rev−1; slot

harmonic equals to the rotor teeth number fsh = 30 ev ⋅ rev−1 and the other two sideband frequencies on either

side of the slot harmonic fsh±2fs. According to the conclusion stated in [26], a homo-polar flux due to the rotor

static eccentricity is generated in the two pole squirrel cage induction machine and this homo-polar component

will cause a vibration component of UMP with double supply frequency 2fs. Therefore, the existence of this

characteristic frequency due to the input static eccentricity allows us to further validate our model.

Comparing the two angular spectrum at different rotation speeds (Fig. 15a and Fig. 16a), the frequency peak

corresponded to fsh appear at the same place 30 ev ⋅ rev−1 however the others associated with 2fs displaced

with the variation of the rotation speed. In contrary, the frequency peak referred to 2fs are identified at

the same position 100 Hz in the two traditional spectrum from Fig. 15b and Fig. 16b while the others

change their values with the augmentation of the rotation speed. It implies that the slot harmonic fsh is an

angular cyclic phenomenon while the double supply frequency 2fs is a temporal cyclic phenomenon and the

frequency combinations between the two fsh ± 2fs are assumed to be the modulation between the angular and

temporal phenomenon. Since the rotor eccentricity is the disturbance in the electrical machine, this similar

signal modulation demonstrates that UMP produced by the input static eccentricity is generally acted as a

steady pull to the whole system. The second harmonic of the double supply frequency and its modulation with

the slot harmonic arise in Fig. 16 with the increase of the motor slip and this is explained in Section 4.2.3.

Similarly these characteristic frequencies can also be detected in the corresponding electromagnetic torque

by comparing its angular spectrum simulated in the case with and without eccentricity shown in Fig. 17. Double

supply frequency 2.032 ev ⋅ rev−1 and its modulation with the slot harmonic 27.97 ev ⋅ rev−1 are only identified

in the case with 10%Ee eccentricity. It reflects that the rotor radial displacements also influence its rotational

movement.
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Fig. 15. Frequency spectrum of UMP along x direction with 10%Ee eccentricity at ωr = 309.26 rad ⋅ s−1.
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Fig. 16. Frequency spectrum of UMP along x direction with 10%Ee eccentricity at ωr = 289.20 rad ⋅ s−1.
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Fig. 17. Angular spectrum of electromagnetic torque at the rated operation state
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4.2.3. Simulation in non-stationary operating conditions

As mentioned in Section 4.1, a constant load torque is applied to simulate a given operating point from the

motor characteristic curve in Fig. 8a in steady state. In this section, a load torque that increases linearly with

the shaft revolution as shown in Fig. 18a is set up in this multiphysics model to perform the simulation with

10%Ee input eccentricity in non-stationary operating conditions. The simulation results about the variation

of the instantaneous angular speed and the electromagnetic torque are illustrated separately in Fig. 18b and

Fig. 18c as the function of the shaft position. The average value of the electromagnetic torque always equals to

the applied load torque but meanwhile its fluctuation amplitude is increased gradually with the augmentation

of the load torque due to the increase of the motor slip as explained in the beginning of Section 4.2. The

increased fluctuation amplitude appears more evident in the variation of the UMP along x direction displayed

in Fig. 19. By applying a short-angle Fourier transform, its angular spectrogram is shown in Fig. 20. The four

characteristic frequencies discussed in Section 4.2.2 are revealed clearly in the spectrogram of Femx. With the

increase of the motor slip, the amplitudes of each frequency components increased and some more harmonics

about the 2fs and their modulations with fsh appear for large motor slip (see arrows pointing parts in Fig. 20)

corresponding to the phenomenon presented in Fig. 16. It clearly indicates that the same input eccentricity

value will have more evident impact on the mechanical system with the increase of the motor slip. With the

increase of the load torque, the UMP not only increases its magnitude but also induces more harmonics in the

whole structure which potentially increases the risk of the resonance.
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Fig. 18. Simulation results variation in non-stationary operating conditions
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Fig. 19. Variation of UMP along x direction
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Fig. 20. Short angle spectrum of UMP along x direction
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4.3. Influence of the input eccentricity amplitude variation

The polar diagrams of UMP with 3 different input static eccentricities at the rated operating point are plotted

in Fig. 21. As introduced in Section 4.2.1, the arrows represent the average value of each UMP magnitude

while the orbits at the end of each arrow illustrate the variation of the UMP and its offset angle during one

shaft revolution. It is shown that at the rated operating point (ωr = 309.26 rad ⋅ s−1 ), the UMP magnitude and

the fluctuation range of UMP and its offset angle increase proportionally with the augmentation of the input

static eccentricity values while their average offset angles remain the same.

The variation of the instantaneous rotation speeds simulated with those three eccentricity values are illus-

trated in Fig. 22. Although the rotation speeds all converge to the same constant value, it can be seen clearly

that their variations with the shaft rotation angle become more fluctuated. In order to identify this fluctuation

component, their angular spectrum are compared in Fig. 23. As discussed in Section 4.2.2, the four characteris-

tic frequencies identified in UMP spectrum are also recognized in all of three rotation speed spectrum but beside

of the slot harmonic fsh associated with the motor’s geometry, the amplitudes of other frequency components

increase evidently with the augmentation of the input eccentricity value. It signifies that the radial eccentricity

do have the influence on the rotation speed variation and this impact becomes more evident with the increase

of the eccentricity value. Relatively, the amplitude increase of the double supply frequency and of the sideband

frequencies in the rotation speed spectrum reflects the increase of the eccentricity amplitudes.
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Fig. 21. Polar diagram of UMP with different eccentricities at the rated operating point
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(b) With 30%Ee eccentricity
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(c) With 50%Ee eccentricity

Fig. 22. Variation of instantaneous rotation speed at the rated operation state
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Fig. 23. Angular spectrum of instantaneous rotation speed at the rated operation state

5. Conclusions

An angular based model for calculating UMP in a 3-phase squirrel cage induction machine is developed

in this paper by defining the effective air-gap length as a function of the rotor geometric center coordinates.

This model is inserted into a multiphysics electric machine model to reinforce the electro-magneto-mechanic

interaction in order to study the influence of the rotor eccentricity on the dynamic behavior of an induction

machine. This multiphysics model allows us to perform a longtime simulation even in non-stationary operating

conditions with less calculating efforts when comparing with the traditional numerical model. The model is

validated in the quasi-static regime by comparing its simulation results with the reference data calculated by

the traditional numerical model in the case with and without the eccentricity.

Several interesting phenomena about UMP are identified from the analysis of its simulation results with

10%Ee input static eccentricity. Some of them have been confirmed in the previous literatures to allow us

validate the reliability of this multiphysics model. The rotor eccentricity impacts at different operating points

and the influence of its amplitude variation are discussed separately by analyzing other simulation results apart

from the UMP. Actually every simulation results associated with three fields in this multiphysics model are

available to predict the dynamic behaviors of the whole system. For example, the stator phase current could

be used to understand the presence of the eccentricity using Motor Current Signal Analysis. For the sake of

clarity, only the mechanical variables have been analyzed in this paper and the following results can be drawn:

● The UMP generated by the input static eccentricity is acted as a steady pull to the rotor therefore

two characteristic frequencies and their combinations are identified from the spectrum of UMP and also

from the spectrum of the electromagnetic torque which indicates the connection between the rotor radial

movement and its rotational movement. However this steady pull doesn’t point to the narrowest air-gap

direction but rotates from this direction with an offset angle. All these phenomena are also revealed from

the simulated rotor center orbits.

● Based on the analysis at different operating points, it implies that with the increase of the motor slip,

the same input eccentricity value will have more evident impact on the mechanical system: the generated

UMP not only increases its magnitude but also induces more harmonics in the whole structure which

potentially increases the risk of resonance.
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● Based on the evaluation about the influence of eccentricity amplitude variations at the rated operating

point, it can be seen that the radial eccentricity impact is also revealed in the rotation speed variation

and this impact becomes more evident with the increase of the eccentricity value. This provides a theory

evidence for comparing the eccentricity amplitude from the spectrum analysis of the rotation speed.

Since the saturation effect is not considered in the present model, the simulated UMP values could be

overestimated. In order to study its influence, the magnetic saturation effect will be added to this model in

future works. Overall this multiphysics model with strong electro-magneto-mechanical coupling is of great

importance to study the influence of the rotor eccentricity on the entire dynamic behaviors of the electrical

motor and it can help us to get a better understanding about the electro-magneto-mechanic interaction inside

electrical machines.
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Appendix A. Setting up different types of input eccentricities

𝑥

𝑂𝑅
𝑂𝑠

𝑂𝐺

𝑦

𝑜

𝜃

𝛾

𝛿0

𝑥𝜃0

𝑦𝜃0

Fig. A.1. Cross-sectional view of an eccentric rotor

Since the mechanical modeling is based on the rotor part as mentioned in Section 2.2, the reference coordinate

system xOy in Fig. A.1. is established by taking the initial position of the rotor center as the origin point

O. This initial position is defined before the start of the electrical machine’s operation. At this moment, the

coordinate of the stator center OS(xs, ys) is used to present its position and the value of the initial input static

eccentricity. Once the motor begins to operate, due to the strong coupling with the mechanical part, the rotor

geometric center isn’t fixed at its initial point O but moves to another position which is assumed to be the

point OR. Its coordinate (xr, yr) in the reference coordinate system is considered as one of the state variables

23



in this multiphysics model so that it is updated at every rotor rotation angle θ under the influence of the UMP

generated inside of the electrical machine or the effect of the radial external force on the structure.

If the rotor isn’t perfectly cylindrical along its axis due to some manufacturing faults or the rotor does

a dynamic whirling motion inside of the stator, then its geometric center OG of the middle section doesn’t

coincide with its rotation center OR but rotates around it in a similar crankshaft movement with the radius δ0

and a constant phase shift angle γ. The rotational coordinate xθORyθ in Fig. A.1 rotates around the rotation

center OR from the initial position presented by the coordinate xθ0ORyθ0 which is translated parallel to the

reference coordinate xOy. This synchronism whirling movement of OG is described by the vector OROG =
(δ0 ∗ cos(θ + γ), δ0 ∗ sin(θ + γ)) in the coordinate system xθ0ORyθ0 . Considering the vector OOR = (xr, yr), the

position of OG is calculated in the form of OGO as Eq. (A.1) .

OOG = OOR +OROG = (δ0 ∗ cos(θ + γ) + xr, δ0 ∗ sin(θ + γ) + yr) (A.1)

Then the coordinate of the rotor geometric center position OG(xG, yG) in the reference coordinate system is

deduced from Eq. (A.2):

xG = xr + δ0 ∗ cos(θ + γ)

yG = yr + δ0 ∗ sin(θ + γ)
(A.2)

This coordinate is adopted to calculate the instantaneous effective air-gap length in the Section 3.1. It can be

seen clearly that by modifying the position of the point OS and OG in Fig. A.1, different kinds of eccentricities

can be set up in this multiphysics model as described in the following:

● Case 1: If OS doesn’t coincide with O and OG coincides with OR, it represents the pure input static

eccentricity.

● Case 2: If OS coincides with O and OG doesn’t coincide with OR, it represents the pure input “dynamic”

eccentricity.

● Case 3: If OS doesn’t coincide with O and OG doesn’t coincide with OR, it represents the input “mix”

eccentricity.

Appendix B. Calculation of the maximum permeance coefficient Pmaxc

Pmaxc =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ0 ⋅Lm ⋅Ltr if 0 ≤ tan(β) ≤ ∣Lts −Ltr∣
Lm

µ0 ⋅ (
Lm ⋅ (Lts +Ltr)

2
− L

2
mtan(β)

4
− (Lts −Ltr)2

4tan(β) ) if
∣Lts −Ltr∣

Lm
≤ tan(β) ≤ Lts +Ltr

Lm
µ0 ⋅Lm ⋅Ltr

tan(β) if
Lts +Ltr

Lm
≤ tan(β)

(B.1)

where µ0 is the air permeability, Lm is the core length, Lts and Ltr are the effective stator and rotor tooth

width respectively and β is the skewed angle of the rotor bar.
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Appendix C. Calculation of air-gap permeance variation function fp(θij) and its derivative about

the angle
dfp(θij)

dθij

fp(θij) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if − θij0 ≤ θij ≤ θ1 − θij0 and 2π − θ1 − θij0 ≤ θij ≤ 2π − θij0
1 + cos(π θij−θ1

θ2−θ1 )
2

if θ1 − θij0 ≤ θij ≤ θ2 − θij0

1 + cos(π θij−2π+θ1
θ2−θ1 )

2
if 2π − θ2 − θij0 ≤ θij ≤ 2π − θ1 − θij0

0 if θ2 − θij0 ≤ θij ≤ 2π − θ2 − θij0

(C.1)

where θij0 is the initial angular displacement between the defined pair of stator and rotor teeth. Two angle

position limits (θ1, θ2) are defined in Eq. (C.2) and Eq. (C.3) according to the skewed rotor bars:

θ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lts −Ltr −Lmtan(β)
Dag

if 0 ≤ tan(β) ≤ ∣Lts −Ltr∣
Lm

0 if
∣Lts −Ltr∣

Lm
≤ tan(β) ≤ Lts +Ltr

Lm
Lmtan(β) −Lts −Ltr

Dag
if
Lts +Ltr

Lm
≤ tan(β)

(C.2)

where Dag is the average diameter of stator inner ring and rotor outer ring.

θ2 =
Lts +Ltr +Oss +Osr +Lmtan(β)

Dag
(C.3)

with Oss and Osr are respectively the stator and rotor slot open length.

dfp(θij)
dθij

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if − θij0 ≤ θij ≤ θ1 − θij0 and 2π − θ1 − θij0 ≤ θij ≤ 2π − θij0

− 1

2
⋅ sin(π θij − θ1

θ2 − θ1
) ⋅ π

θ2 − θ1
if θ1 − θij0 ≤ θij ≤ θ2 − θij0

− 1

2
⋅ sin(π θij − 2π + θ1

θ2 − θ1
) ⋅ π

θ2 − θ1
if 2π − θ2 − θij0 ≤ θij ≤ 2π − θ1 − θij0

0 if θ2 − θij0 ≤ θij ≤ 2π − θ2 − θij0
(C.4)

It is shown in Fig. C.1.

𝑑𝑓𝑝(𝜃𝑖𝑗)

𝑑𝜃𝑖𝑗

2π0
−𝜃2 − 𝜃𝑖𝑗0

−𝜃1 − 𝜃𝑖𝑗0 𝜃1 − 𝜃𝑖𝑗0

𝜃2 − 𝜃𝑖𝑗0

2𝜋 − 𝜃2 − 𝜃𝑖𝑗0

2𝜋 + 𝜃1 − 𝜃𝑖𝑗0

2𝜋 + 𝜃2 − 𝜃𝑖𝑗0

2𝜋 − 𝜃1 − 𝜃𝑖𝑗0

1 2

3

4 5
𝜃𝑖𝑗

Fig. C.1. Derivative of air-gap permeance between any two teeth versus shaft rotation
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Appendix D. Motor parameters and Mechanical model characteristics

Parameter Value

Number of poles 2

Number of phases 3

Number of parallel paths 1

Outer diameter of the stator core [m] 0.2

Inner diameter of the stator core [m] 0.12

Air-gap average length [m] 0.96e-3

Core length [m] 0.165

Number of stator slots 36

Number of rotor slots 30

Effective stator tooth width [m] 0.0075

Effective rotor tooth width [m] 0.0124

Skew of rotor slots [○] 1.34

Connection Y

Rated voltage [V] 400

Rated frequency [Hz] 50

Rated current [A] 13.5

Rated power [kW] 7.5

Table D.1: Motor parameters

Parameter Value

Mass of the rotor [kg] 17.05

Moment of inertia [kg⋅m2] 0.01102

Steel Young’s modulus [Gpa] 210

Steel density [kg⋅m−3] 7800

Steel poisson’s ratio 0.3

Shaft length [m] 0.325

Shaft diameter [m] 0.043

Modal damping ratio 0.07

Equivalent bearing stiffness [N⋅m−1] 5e7

Table D.2: Mechanical model characteristics
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