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Abstract 12 

We investigated clustering techniques on time series of daily electric load profiles of fourteen 13 

higher education buildings on the same campus. A k-means algorithm is implemented, and 14 

three different methods are compared: time-series features extraction with Manhattan distance 15 

and raw time series with Euclidian distance and Dynamic Time Warping. The impact of data 16 

characteristics with data collection time-steps and timeframes is studied using a database of 17 

more than 6,500 daily electric load profiles. We show that Euclidian distance applied to 18 

electric demand time series with three-month timeframes and ten-minute time-step provides 19 

the most consistent clustering results. In addition, useful insights are highlighted for non-20 

residential buildings electric demand modeling and forecasting. Two groups of buildings can 21 

be distinguished regarding electric load profile patterns. On one hand, teaching, research, 22 

libraries, and gymnasium buildings show similar patterns distributed in two clusters 23 

corresponding to business days and closing days load profiles. On the other hand, campus 24 

office buildings present a larger number of clusters inconsistent with day-type dependent load 25 

profiles. A seasonal effect is also observed using six-month and one-year timeframes. Finally, 26 

a two-cluster distribution is obtained when aggregating all buildings load profiles.  27 

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0378778820334563
Manuscript_a13e3d6ccc6810182afffed78f56c11a

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0378778820334563
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0378778820334563


Keywords 28 

Clustering; daily load profiles; electric demand; non-residential buildings 29 

Abbreviation 30 

CVI Cluster Validation Index GF Ground Floor 

DLP Daily Load Profile TS-EUCL Time series clustering with 

Euclidian distance 

DTW Dynamic Time Warping TS-DTW Time series clustering with 

Dynamic Time Warping 

FB-MAN Feature-based clustering with 

Manhattan distance 

  

1 Introduction 31 

Reducing buildings energy consumption and related greenhouse gas emissions is one of the 32 

major challenges for research on the built environment. Indeed, buildings account for 29% of 33 

worldwide final energy consumption and 49% of the total electricity consumption [1], and 34 

this share is continuously increasing [2]. To tackle these issues, recent opportunities have 35 

risen in the development of smart infrastructures [3] and the significant role of smart meters 36 

deployment plans in the United States [4,5], in China [6] or in Europe [7], for instance. The 37 

growing availability of data collected from advanced metering infrastructure is therefore a 38 

strong asset for research and development towards a better and realistic understanding and 39 

modeling of buildings energy consumption.  40 

To take the full benefit of the amount of collected data, the current trend in building energy 41 

modelling is shifting from traditional physics-based modelling [8] to data-driven methods [9]. 42 

To quantify the diversity of behaviors to be captured by such models, which may be translated 43 

into different sub-models, one can sort available datasets in different sub-sets exhibiting 44 



similar characteristics. For this purpose, data clustering is widely used. Clustering methods 45 

have been implemented for a variety of purposes related to building energy consumption such 46 

as patterns recognition [10,11], abnormal energy behaviors identification [12], general 47 

building energy demand characterization [13,14], demand side management for industrial [15] 48 

and residential [16,17] sectors, building energy consumption [18] and peak demand [19] 49 

forecasting. These techniques are also used for various applications including the 50 

identification of priority targets for energy efficiency programs [20], the optimization of 51 

equipment sizing, energy storage, electric networks operation, renewables integration [21,22] 52 

and commercial offers [23,24]. Studies have mainly covered residential households and then 53 

mixed industrial and commercial buildings as highlighted in [19]. Other non-residential 54 

buildings such as education, research or office buildings have more seldomly been considered 55 

[11,25].  56 

Hence, clustering applications for building electric demand analyses have been increasingly 57 

addressed. Nevertheless, a majority of studies use very large databases comprising electricity 58 

demand data of several hundred [12,16] or even thousands of buildings. They often refer to 59 

public database with the PecanStreet Database [26] using around 600 buildings [27] and the 60 

Irish Commission of Energy Regulation [28] with about 4,000 buildings [13,17,29]. Indeed, 61 

as the amount of available data is constantly increasing, it provides interesting insights for 62 

large-scale electricity demand analysis and related applications, and enables the 63 

implementation of robust algorithms [23]. However, such studies focus more on the 64 

performance of clustering methods and the extraction of large-scale trends. The amount of 65 

processed data prevents more detailed analyses at building- or district-scale to provide a 66 

deeper physical understanding of buildings electric demand behaviors. Also, data collection 67 

timeframes are often limited to short periods of time with a year of data [12,14] or less 68 

[13,27], and then divided in few-month-long sub-datasets. Although they might lead to 69 



accurate classifications, short data collection timeframes mask relevant information regarding 70 

building electricity demand such as seasonal effects. Finally, the comparison of clustering 71 

methods has been extensively studied. For instance, performances of k-means and 72 

hierarchical clustering algorithms have been investigated by Quintana et al. [12], Satre-Meloy 73 

et al. [19], Chicco et al. [23] who also compared with fuzzy k-means and “follow the leader” 74 

algorithms and Xu et al. [27] who tested adaptive k-means and symbolic aggregate 75 

approximation (SAX) methods as well. However, the impact of collected data properties on the 76 

clustering methods performance and clustering results, apart from feature engineering (i.e. 77 

data time-step and timeframe collection), has been less considered. 78 

Therefore, we address these challenges by proposing a study of daily load profile (DLP) 79 

classification for electric demand pattern identification for fourteen higher education 80 

buildings located on the same campus, in Paris eastern suburb. Considered methods are tested 81 

with time series of buildings electric demand collected between December 2014 and April 82 

2019 using advanced metering tools [30] and resulting in a database of more than 6,500 daily 83 

electric load profiles. A k-means algorithm is used with three different approaches. Two types 84 

of inputs are investigated. Feature-based clustering is performed using Manhattan distance 85 

metric (FB-MAN). Raw time series clustering is computed comparing two distance metrics 86 

with Euclidian distance (TS-EUCL) and Dynamic Time Warping (TS-DTW). A comparative 87 

analysis is first performed on two buildings considered in previous studies [31,32] using the 88 

three clustering methods with different input data properties (observation time-steps and 89 

timeframes). It highlights the respective accuracy of the algorithms depending on input data 90 

characteristics. It also provides physical understanding regarding the buildings electric 91 

demand with a two to three-cluster day-type-based classification pattern and an occupancy-92 

related seasonal effect. Clustering tests are then generalized to the whole building stock, 93 

leading to identify two distinctive building electric demand classification patterns with 94 



campus office buildings in one group and teaching/research buildings, libraries, and 95 

gymnasium in another group. Finally, the general day-type-based classification is confirmed 96 

when considering aggregated DLP of all buildings which exhibit two-cluster distribution 97 

separating business days from university closing days. The paper is organized as follows: in 98 

Section 2 the different buildings considered in this case study are presented. Section 3 99 

introduces the methods for data collection, pre-processing, and clustering. Obtained results 100 

are reported and discussed in Section 4. 101 

2 Case study 102 

In the present work, fourteen non-residential buildings and groups of buildings are considered 103 

and further referred to as B1–B12. All buildings are individual units except for three teaching 104 

and research buildings grouped together (B6), and for which load data are collected from one 105 

single electricity meter. Two of the buildings (B11 and B12) were already investigated in 106 

detail in previous studies [31,32]. Buildings are located on a same university campus in Paris 107 

eastern suburb, France. The fourteen buildings cover different common activities of an 108 

academic campus including administrative offices, classrooms, amphitheaters, research, but 109 

also a library, a gymnasium and rooms for student organizations. General features of the 110 

buildings are presented in Table 1. 111 

Building 

number 

Building 

type 

Specific 

activity 

Net 

floor 

area 

(m²) 

Floor

s 

Annual 

electric 

energy 

consumption 

– calendar 

year 2019 

(kWh) 

Annual 

surface 

electric 

energy 

consumption 

density 

(kWh/m²) 

Contracted 

power (kW) 

Surface 

contract

ed 

power 

density 

(W/m²) 

B1 Office 
building 

Examination 
center 

1,233 GF+6 94,989 77.0 60 48.7 

B2 Library / 8,799 GF+2 463,969 52.7 430 48.9 
B3 Teaching 

and 
Research 

Economics, 
humanities 
and social 
sciences 

11,443 GF+2 389,069 34.0 138 12.1 

B4 Office 
building 

Business 
incubator 

/ GF+1 173,276 / 136 / 

B5 Teaching Science and 25,100 GF+3 2,139,075 85.2 1420 56.6 



and 
Research 

Technology 

B6 Teaching 
and 
Research 

Science and 
Technology 

16,800 GF+3 680,316 40.5 260 15.5 

B7 Gymnasi
um 

/ 2,002 GF 42,085 21.0 36-42 17.9-21.0 

B8 Teaching 
and 
Research 

Science and 
Technology 

10,428 GF+2 274,533 26.3 120 11.5 

B9 Office 
building 

Hosting 
students’ 
activities 

1,945 GF+1 66,445 34.2 120 61.7 

B10 Library / 6,360 GF+3 851,432 133.9 160-230 25.2-36.2  
B11 Teaching 

and 
Research 

Art and 
Humanities 

10,343 
 

GF+5 645,129 62.4 250 24.2 

B12 Teaching 
and 
Research 

Science and 
Technology 

30,580 GF+4 4,622,912 151.2 950 31.1 

Table 1 – General features of the fourteen building case studies 112 

3 Methods 113 

3.1 Data Collection and pre-processing 114 

3.1.1 Data collection  115 

Available data are electric load time series data collected with meters and provided by a 116 

distribution system operator. It includes the instantaneous apparent power, active power, 117 

reactive power and voltage monitored with a ten-minute time-step. In the present work, only 118 

the active power is considered. The collection timeframe varies from a building to another. 119 

Electricity demand collection started on 12/07/2014 at the earliest, for B12, and at the latest 120 

on 05/01/2018 for B1, B2, B3, B4, B7, B8, B9 and B10. Details on the data collection 121 

timeframes are given in Table 2.  122 

3.1.2 Software 123 

Data are formatted and cleaned using Python 3.7.3 [33]. Data features are extracted using 124 

Numpy 1.16.4 package [34]. Clustering is performed using R 3.6.1 software [35] and NbClust 125 

3.0 package [36]. The NbClust package uses the calculation of 30 cluster validation indices 126 



(CVI) to determine the optimal number of clusters and distribution of data for a given dataset. 127 

TS-DTW clustering is also performed using Nbclust along with TSClust 1.2.4 package [37], a 128 

package for dissimilarity measurement between time series to perform time series clustering. 129 

3.1.3 Data pre-processing 130 

Raw power demand data are provided on a single column format with each line corresponding 131 

to one timestamp for the selected timeframe. Data formatting is performed by extracting daily 132 

load profiles (DLP). DLPs are then the input dataset for clustering algorithms, with the 133 

number of lines corresponding to the number of days in the selected timeframe and the 134 

number of columns corresponding to the number of data points in each day. Raw data are 135 

downloaded at ten-minute, thirty-minute and hourly time-step. Thirty-minute and hourly data 136 

are the average of the previous three and six ten-minute data points, respectively. 137 

Data cleaning is performed to identify low-quality data including missing data and data 138 

collection failures. The latter can include outliers such as negative or overly-high power 139 

demand as well as error messages. Single values are considered overly-high when they exceed 140 

ten times the average daily power demand – they usually result from power failures leading to 141 

false meter readings. Outliers are treated using mean substitution method [38]: they are 142 

removed and replaced by the average of the nearby data points if they do not exceed an hour 143 

of data. Otherwise the corresponding day is not used for classification. Missing data are also 144 

processed depending on the number of missing data points. When the gap exceeds a day of 145 

data, it is related to electric interventions in the buildings, for instance for construction work. 146 

Then the corresponding timeframe is not used for classification. Otherwise, few-hour-long 147 

missing periods are due to temporary power failures. They are not removed nor corrected. 148 

They are the representation of real unexpected events happening in the studied buildings. 149 

Hence, it is relevant to keep these profiles to test clustering algorithms for anomalous days 150 



detection. Missing data points are replaced with zero values for the algorithm to account for 151 

these data (otherwise these specific DLPs would not be considered by the algorithm). 152 

Building 

number 

Beginning 

date of data 

collection 

End date of 

data collection 

for the present 

study 

Amount of 

available data (at 

10-minute time-

step) 

Amount of 

low-quality 

data 

Number of 

available DLP 

after data 

cleaning 

B1 
05/01/2018 
00:00 

04/30/2019 
23:50 

52,560 data points 
0 data points – 
0% 

365 DLP 

B2 
05/01/2018 
00:00 

52,538 data points 22 data points 
– 0.04% 

365 DLP 

B3 
05/01/2018 
00:00 

52,544 data points 16 data points 
– 0.03% 

365 DLP 

B4 
05/01/2018 
00:00 

52,560 data points 0 data points – 
0% 

365 DLP 

B5 
06/01/2017 
00:00 

100,646 data points 
– 699 days 

10 data points 
– 0.01% 

699 DLP 

B6 
06/01/2017 
00:00 

96,147 data points – 
699 days 

4,509 data 
points – 4.48% 

668 DLP 

B7 
05/01/2018 
00:00 

52,560 data points 0 data points – 
0% 

365 DLP 

B8 
05/01/2018 
00:00 

52,516 data points 44 data points 
– 0.08% 

365 DLP 

B9 
05/01/2018 
00:00 

52,560 data points 0 data points – 
0% 

365 DLP 

B10 
05/01/2018 
00:00 

52,547 data points 13 data points 
– 0.02% 

365 DLP 

B11 
01/01/2017 
00:00 

122,358 data points 
42 data points 
– 0.03% 

850 DLP 

B12 
12/07/2014 
00:00 

207,421 data points 
23,843 data 
points – 10.3% 

1,440 DLP  

Total / / 946,957 data points 
28,499 data 
points – 3.00% 

6,577 DLP 

Table 2 – Details of the collected data 153 

3.2 Clustering methods 154 

3.2.1 General process 155 

The first step of the clustering process includes cleaning of raw time series and preparing 156 

datasets with specific timeframes and time-steps. Selected features are also extracted. Then 157 

clustering is performed with NbClust  package [36]. This package computes thirty CVIs that 158 

are cluster evaluation metrics. Each index is computed to assess the optimal number of 159 



clusters and the corresponding optimal data distribution for each cluster. A majority rule, 160 

implemented in NbClust algorithm, selects the results: the final data distribution and optimal 161 

number of clusters are designated by the highest number of CVI indicating the same results. 162 

K-means algorithm [39] is used for clustering, and results are computed using three methods. 163 

The first method is based on five features as input data extracted from raw time series and 164 

using the Manhattan distance metric (FB-MAN). It is compared with two other approaches 165 

using time series as input data and with different time-steps: ten minutes, thirty minutes and 166 

hourly. The second method is based on Euclidean distance metric (TS-EUCL) while the third 167 

method is based on DTW (TS-DTW). 168 

The tested number of clusters is bound between two and six to restrict the computational time 169 

and to avoid the distinction between similar DLPs exhibiting very small differences. Based on 170 

prior studies on similar buildings [31,32] testing up to a six-cluster distribution can be 171 

considered reasonable to synthetize the main significant DLPs of the different buildings and 172 

eventually to identify unusual electric demand patterns. Also, because of the random 173 

initialization of k-means in NbClust and to ensure the validity of clustering results, a loop is 174 

implemented to run the algorithm one hundred times with random initialization. The selected 175 

results, i.e. the optimal number of cluster and DLP distribution, are those provided by the 176 

largest number of runs and at least by 80% of the total number of runs. 177 

Also, the NbClust process is modified to add a complementary step after the calculations of 178 

CVIs. This step checks for results designating two different optimal number of clusters or 179 

when a difference of one CVI is given between the optimal number of clusters and the second 180 

ranking solution. Indeed, both cases could present relevant data distributions that would 181 

require further investigation before a final selection. Moreover, after the choice of the optimal 182 

number of clusters, distributions provided by different CVIs are compared to ensure they are 183 

identical. Afterwards, the building activity schedule based on worked days, weekends and 184 



vacations (when the information is available) is provided along with the DLP distribution. 185 

DLPs are plotted for each different cluster. DLPs in each cluster are displayed in grey and the 186 

average DLP profile of each cluster is added with a bold black curve to highlight the main 187 

shape of DLPs grouped together. The average profile is obtained by averaging the power 188 

demand of all DLPs for each time-step. The cluster distribution is also mapped on a calendar 189 

for large timeframes over six months to improve the readability of the DLP classification. 190 

 

Figure 1 – General clustering process 191 

3.2.2 Clustering algorithm 192 

Clustering can be performed with various methods. Three of the most used classification 193 

algorithms for building energy consumption applications [39] are self-organizing maps 194 

(SOM) [18], hierarchical clustering [19] and k-means [15,16]. For the latter, several modified 195 

algorithms are found, such as adaptive k-means [27], fuzzy k-means [23] and k-means++ [11] 196 

as well as reminiscent techniques including k-medoids [13,40] and k-shape [12,25]. Finally, 197 



other methods are considered as well including symbolic aggregate approximation (SAX) 198 

[17,27], finite mixture models (FMM) [29] and “Follow the leader” clustering algorithm 199 

[10,23]. 200 

In the present study, a k-means algorithm is used. K-means is a simple but efficient and 201 

versatile clustering technique [16] that is the most used algorithm for performance analysis of 202 

non-residential buildings [41]. It is an iterative unsupervised non-hierarchical classification 203 

method which divides a set of data into k different clusters, with k being user-defined. To 204 

create the clusters, k initial data points are first randomly selected as centroids that is the 205 

center of a cluster. Then the similarity between each new data points and centroids is assessed 206 

and data points are assigned to the cluster whose centroid is the nearest. The notion of 207 

similarity is assessed using a distance calculation. In the present case, three distances are 208 

used. Feature-based clustering is computed with Manhattan distance. Raw electric power 209 

time-series clustering is performed with Euclidian distance and Dynamic Time Warping 210 

method. Then, after each iteration clusters centers are recalculated considering the added data 211 

points and the distance between each data points and the newly calculated centroids is 212 

assessed again. The clustering process is iterated until no data points are reassigned to new 213 

clusters. Hence, k-means algorithm is selected among other algorithms particularly as it is 214 

particularly adapted to the present case study. Indeed, the goal is to group DLPs around a 215 

typical mean DLP and then identify the prominent DLP shapes for a given building (i.e. what 216 

is presented in DLP distribution graphs), which is exactly what is provided by k-means. 217 

3.2.3 Feature-based clustering 218 

Features extraction is a characterization of raw time-series data which aims to reduce the size 219 

of datasets while capturing key features of each time-series. If appropriately engineered, 220 

extracted features enable computational time decrease, and eventually provide a physical 221 



meaning to identified clusters. The main drawback of features extraction is the loss of 222 

relevant information with the reduction of datasets size. These features depend on the 223 

considered end applications that require data classification [42]. For feature-based clustering 224 

of power demand time-series, both physical and statistical features have been reported [43]. In 225 

the present study, both types of features are used. The following physics-based features are 226 

considered: maximum and minimum daily power demand, daily magnitude (the difference 227 

between the two latter features) (Eq.( 1 )) and daily electric energy consumption (Eq. ( 2 )). 228 

Statistical features include standard deviation (Eq. ( 3 )). Hence, five features are extracted for 229 

each load curve.  230 

��������	 =  �����, … , ����� − �����, … , �����  ( 1 ) 

��	��� =  � ��
�

��� /�/24� 
( 2 ) 

�	�� �	������� =  �|�� − �!|�
��� /� 

( 3 ) 

where �� the value of the time-series at time t, and N the number of data points in a day 231 

(N=24, 48 or 144 with hourly, thirty-minute and ten-minute time-steps respectively). 232 

Because the five selected features present different magnitudes, a normalization procedure is 233 

used prior to clustering. It rescales all the features and prevents the k-means algorithm from 234 

being driven by the variable showing the highest values (here the daily electric energy 235 

consumption). For this purpose using min-max normalization (Eq. ( 4 )). 236 

��" = �� − min ���max��� − min ��� ( 4 ) 

where �� is the value of the time-series at time t and ��" the normalized value of �� using min-237 

max normalization. 238 



As the different features have different physical meanings, feature-based clustering is 239 

computed using Manhattan distance metric (FB-MAN).  240 

�(� =  �|�� − ��|�
���  

( 5 ) 

3.2.4 Raw time series clustering 241 

Unlike FB-MAN, raw time series clustering directly relies on pre-processed electric load 242 

time-series data [42] without prior extraction of features, that is without any loss of 243 

information with respect to pre-processed data. These methods compare daily load curve 244 

shapes using distance calculations. Various distances have been reported in the literature such 245 

as Euclidean [16,19], Manhattan [44], Chebyshev [19] or DTW [40]. In the present paper, two 246 

different distance metrics are used. The first is the Euclidean distance (TS-EUCL), a classical 247 

distance calculation to measure the similarity between two vectors or sets of data [42]. 248 

Considering two time series �� and ��, the Euclidean distance can be calculated as follows: 249 

�)*+ =  ,��� − ���-�
���  

( 6 ) 

The second method used is Dynamic Time Warping (TS-DTW) [45]. While Euclidean 250 

distance linearly matches the data of the two compared times series for every data point at the 251 

same time-step (Figure 2a), DTW rather stretches and compresses the time axis to align the 252 

time series so that an optimal alignment is found and the distance measure is minimized 253 

(Figure 2b). In the present case, with a fine time-step inducing a high variability of DLPs, 254 

DTW can be very useful to capture DLPs with similar shapes but exhibiting small phase shifts 255 

due to non-synchronized and shifting electric energy consuming events. The detailed theory 256 

of DTW computation falls out of the scope of the present study, but interested readers can 257 

refer to [45].  258 



  
(a) (b) 

 

Figure 2 – Representation of Euclidian (a) and Dynamic Time Warping (b) matching 259 

3.2.5 Clustering validity indices 260 

Clustering validity indices (CVIs) are used to determine the optimal number of clusters and 261 

clusters assignment in a classification problem. In the initial clustering process in NbClust 262 

calculates thirty different CVIs to assess the optimal number of cluster and data partition. 263 

However, several rounds of tests show that for small timeframes of one month, calculations of 264 

several indices do not converge. Consequently, in the present study, we considered only 265 

seventeen indices which systematically converge for any type of input data: Krzanowski- Lai 266 

index (kl), Calinski-Harabaszch index (ch), Hartigan index, C-Index (cindex), Davies-Bouldin 267 

index (db), Silhouette index, Ratkowsky-Lance index (ratkowsky), Ball-Hall index (ball), 268 

Point-biserial index (ptbiserial), gap statistic index (gap), McClain-Rao index (mcclain), 269 

Gamma index, Gplus index, Tau index, Dunn index, SD index and SDbw index. Among 270 

these, Calinski-Harabaszch [25], Silhouette [16,25], Davies-Bouldin [17,25], gap statistic [46] 271 

and Dunn [25] indices are commonly used CVIs, either alone or compared with each other to 272 

evaluate clusters. 273 

4 Results and discussions 274 

Two key information are retrieved with buildings DLP classification: the number of clusters 275 

and, since we consider physical data, the physical explanation of the DLPs distribution over 276 



the different clusters. The number of clusters provides the number of typical building electric 277 

demand patterns. Therefore, it indicates the number of sub-models that should be developed 278 

to enhance modelling accuracy and to capture the diversity of electricity demand profiles. The 279 

DLP distributions over the different clusters provide insights on the physical explanatory 280 

variables of the different electricity demand patterns that can be used in predictive models.  281 

In the present study, a large amount of data is available at different time-steps. Timeframes 282 

and time-steps are two key data characteristics expected to have an impact on clustering 283 

results, both for the number of clusters and the DLP distributions. A comparison is then 284 

performed between different combinations of timeframes and time-steps with the three 285 

proposed approaches, FB-MAN, TS-EUCL and TS-DTW using data from B12. Indeed, from 286 

previous studies [31,32], more meta-data are available for this building compared to other 287 

case studies, with respect to occupancy, activity schedules, equipment, operation and other 288 

characteristics. They are used to analyze and compare cluster distribution results. Similar tests 289 

are conducted on B11 as well to validate the obtained results. For the sake of clarity, the 290 

following subsections present the clustering results for B12 only.  291 

4.1 First insights from a sample building  292 

The comparison is performed between ten-minute, thirty-minute, and hourly time-steps for 293 

timeframes of one month, three months, six months and one year of data between 05/01/2018 294 

and 04/30/2019. Timeframes contain school vacation days (for students only, in that case 295 

building are open with partial staff occupancy), weekends, national holidays, annual closing 296 

days and normal business days. Comparative results are summarized in Table 3 and are 297 

described in detail with the type of days in each cluster in Table 7 in Appendix 1. 298 

Timeframe Time-step 
B12 

FB-MAN TS-EUCL TS-DTW 



1 month 
01/01/2018 to 

01/31/2018 

10-minute 3 3 
4 

3 

30-minute 3 3 2 

Hourly 3 3 2 

3 months 
01/01/2018 to 

03/31/2018 

10-minute 3 3 2* 

30-minute 2* 3 2* 

Hourly 2** 3 2** 

6 months 
01/01/2018 to 

06/30/2018 

10-minute 3 2 2** 

30-minute 2* 2 2* 

Hourly 2** 2 2* 

1 year 
01/01/2018 to 

12/31/2018 

10-minute 3 2* 2* 

30-minute 2* 3 2** 

Hourly 2** 2** 3 

Table 3 – Comparative clustering results for B12 – Number of clusters marked with stars in 299 

superscript differentiate the results with different DLP distributions for a same number of 300 

clusters: one star highlights a given DLP distribution and two stars highlight a different DLP 301 

distribution 302 

4.1.1 Timeframes, day-type-based classification and seasonal effect 303 

A main data characteristic is the timeframe, i.e. the duration of observation of electric load, 304 

used for clustering which can range, in this case, from one day to several years. With the 305 

amount of available data for the present study, a large diversity of DLPs can be expected. This 306 

diversity may lead to different building electric demand signatures due to various building use 307 

scenarios with respect to planning, occupancy or weather conditions. The number of clusters 308 

strongly depends on this diversity, hence on the timeframe size. 309 

The effect of the timeframe can be clearly observed in Table 3. Indeed, the shorter the 310 

timeframe, the higher the number of clusters and the more detailed the results. With a one-311 

month timeframe, TS-EUCL and FB-MAN both highlight three-cluster distributions: cluster 1 312 

groups business days, cluster 2 groups closing days (weekends and Christmas vacations) and 313 

cluster 3 highlights an outlying profile. The same distribution is also found with TS-EUCL 314 

and three-month timeframe (Figure 3a), and with FB-MAN using a ten-minute time-step with 315 



one-month timeframe. In addition to the above-mentioned general trend, some exceptions 316 

should be noted depending on the method. TS-DTW does not provide the same classification 317 

than the other two methods for one-month timeframe. It identifies the outlier only in the four-318 

cluster distribution and separates Christmas vacations in two clusters for a ten- minute time-319 

step due to small variations in the DLP shapes, or it groups Christmas vacations with 320 

weekends for larger time-steps. Also, TS-DTW and FB-MAN (except with ten-minute 321 

timeframe) do not highlight the outlying profile for three-month timeframe. 322 

   
(a) 

  
(b) 

Figure 3 – Comparison of clustering results for B12 using TS-EUCL with 10-minute time-323 

step data: three clusters (cluster 1: business days, cluster 2: closing days and cluster 3: an 324 

outlier) with a three-month timeframe (a) and two clusters (cluster 1: business days and 325 

cluster 2: mixed business and closing days) with a six-month timeframe (b) – the bold black 326 

curve highlights the average DLP for each cluster  327 



Larger timeframes of six-month and one-year lead to a two-cluster or three-cluster DLP 328 

distribution. For the former, the first cluster groups business days. The second cluster groups 329 

weekends and other closing days such as Christmas vacations, national holidays, students 330 

vacation as well as the whole period from April to September, the beginning of the new 331 

academic year (or to the end of June for six-month timeframes) (Figure 3b). FB-MAN 332 

clustering exhibits slightly different results, with a three-cluster distribution for ten-minute 333 

time-step and two-cluster distribution for thirty-minute and hourly time-steps. The latter two 334 

time-steps show a similar DLP distribution to TS-EUCL and TS-DTW. However, ten-minute 335 

time-step yields different clustering results with three clusters obtained (Figure 6). The first 336 

cluster groups business days from January to the first two weeks of April and from September 337 

to December. The second cluster, as for TS-EUCL and TS-DTW groups weekends, Christmas 338 

vacations, some closing days (vacations and national holidays) and the whole summer period 339 

from the middle of April to the end of August. Then, the third cluster groups winter vacations 340 

in February and a few closing days when the activity and electric power demand are lower but 341 

not as high as in cluster two. Nevertheless, the seasonal effect is still observed as the 342 

difference between business days and closing days between April and September (Figure 4) is 343 

not highlighted in the clustering results. 344 

With six-month and one-year timeframes, the day-type-based classification becomes less 345 

obvious. Indeed, for all clustering approaches, the two types of days are merged in the second 346 

cluster. From mid-July to the beginning of the new academic year, the buildings are closed for 347 

the university summer break, and from April to mid-July buildings are opened with lower 348 

activity due to the limited number of students and staffs. There is then a difference between 349 

business days and closing days (Figure 4). Nevertheless, both types of days are grouped with 350 

winter closing days – during which HVAC auxiliary systems are constantly activated to 351 

maintain the temperature of the buildings, causing a higher electricity demand than for 352 



summer weekends. A seasonal effect is observed and can be explained by the lower number 353 

of occupants in the buildings before the summer closing days and because building occupancy 354 

is the main electricity demand driver [32]. This seasonal effect is of peculiar importance since 355 

it has a significant impact on daily electric demand with a lower electricity demand in 356 

summer compared to winter business days. It then results in a cluster of summer business 357 

days together with autumn and winter weekends. Therefore, it should be taken into account 358 

for modeling and forecasting applications. 359 

(a) (b) 
Figure 4 – DLPs from B12 for business days (a) and closing days (b) from 06/11/2018 to 360 

06/24/2018 361 

4.1.2 Time-steps 362 

Data acquisition time-step is a key parameter for electric power demand data. Different time-363 

steps offer different types of information on buildings electricity demand, relevant for 364 

different purposes. A fine sub-hourly temporal granularity can be used to detail the different 365 

electric energy uses and spot specific electricity demand patterns, while it also induces more 366 

data to store and process. A larger time-step, hourly or above, loosens constraints regarding 367 

data storage processing and provides aggregated electricity consumption information. 368 

However, it induces a significant information loss regarding fine demand features useful for 369 



applications which strongly depend on power demand dynamics and such as renewable 370 

energy self-consumption or demand-response.  371 

Overall, the different clustering tests show that the time-step affects the clustering results 372 

differently with respect to the clustering method. For TS-DTW, the impact of the time-step is 373 

significant. A sub-hourly time-step results in more detailed DLP classifications (Table 7). 374 

More specifically, with a one-month timeframe, TS-DTW is detecting small variations in the 375 

DLP of Christmas vacations and it separates the profiles in different clusters. Also, with a ten-376 

minute time-step for larger timeframes, clustering results are the same as with other methods. 377 

However, the main issue with TS-DTW is the inconsistence of the results: a change of time-378 

step induces at least one difference in data distributions or in the number of clusters for each 379 

timeframe.  380 

FB-MAN clustering is also affected by a change of time-step. Indeed, it leads to a change 381 

regarding the number of clusters and DLP distributions for timeframes larger than a month. 382 

Thirty-minute and hourly time-steps systematically lead to two clusters but with different 383 

DLP distributions (c.f. Table A.1). However, ten-minute time-step shows a three-cluster 384 

classification. For one-month and three-month timeframes, it successfully isolates the 385 

outlying profile. For larger timeframes, FB-MAN is affected by the seasonal effect previously 386 

described as it gathers business days from April the end of August together with weekends of 387 

the whole year and other closing days. Nevertheless, it also displays in the third cluster some 388 

specific days with lower activity and electric power demand profiles such as winter vacation 389 

days in February. 390 

Then, TS-EUCL shows no or very little differences in the clustering results, neither in the 391 

number of clusters or the distributions. For one-month and three-month timeframes, the 392 

classification is the same for all three time-steps with respect to the types of days (Figure 5). 393 

For six-month and one-year timeframes, results are similar as well with the same seasonal 394 



effect. This confirms that the daily electric energy consumption of business days from this 395 

time of the year is similar to the daily electricity consumption of winter closing days. One 396 

exception must be noted for one-year timeframe with thirty-minute data: instead of a two-397 

cluster distribution, a three-cluster distribution is proposed.  398 

   
(a) 

  
(b) 

  
(c) 

Figure 5 – Comparison of  DLP distributions in three clusters (cluster 1: business days, cluster 399 

2: closing day and cluster 3: an outlier) for B12 using TS-EUCL with three-month timeframe 400 

and 10-minute time-step (a), 30-minute time-step (b) and hourly time-step (c) 401 



4.1.3 Performance comparison of the three methods 402 

As highlighted in the previous subsections, the different clustering methods respond 403 

differently to a change of time-step or timeframe. Twelve different input data configurations 404 

are tested for each clustering methods by varying the timeframes and the time-steps. FB-405 

MAN is quite sensitive to a change of time-step (Table 3). Specifically, ten-minute time-step 406 

provides additional information in the classifications. These are based on the types of days 407 

(business days or closing days) and the outlying profile (presented in cluster 3 of Figure 3a) is 408 

highlighted with a one-month for all three time-steps and three-month timeframes only with 409 

ten-minute time-step. The seasonal effect is present in large timeframes as for raw time series 410 

clustering. However, again with ten-minute time-steps, FB-MAN highlights an intermediate 411 

cluster grouping a few vacation days in the winter season, whose electric power demand is 412 

lower than usual business days but higher than closing days. Nevertheless, the sensitivity of 413 

FB-MAN clustering method to the time-step of input data may question the reliability of the 414 

results. 415 

TS-DTW also provides DLP distributions with respect to the building activity overall. TS-416 

DTW even shows more accurate clustering results for one-year timeframe than TS-EUCL and 417 

equivalent to FB-MAN (Figure 6). However, it is also very sensitive to the time-step. With 418 

different time-steps, results give different number of clusters but also different distributions 419 

for a same number of clusters. Hence, it is difficult to assess the optimal input data 420 

configuration and to rely on TS-DTW. 421 

Then for TS-EUCL, one-year timeframe results are inconsistent. Using sub-hourly time-steps 422 

with one-year timeframe unexpectedly adds the whole period from September to the middle 423 

of November to the cluster with the seasonal effect previously described. As it is the 424 

beginning of the new academic year, this period has the highest occupancy. Hence, the DLP 425 

classification should cluster business day load profiles with other business days of the year, 426 



which is not the case with these tests. However, TS-EUCL is the only method that highlights 427 

the outlying profile using a three-month timeframe and all three time-steps. Furthermore, 428 

unlike FB-MAN, using raw time series for clustering does not result in a loss of information 429 

on the building electricity demand. In terms of modelling and forecasting applications, this is 430 

a significant asset to consider large-enough observation periods of the building electricity 431 

demand. For this reason, TS-EUCL is the method selected for the generalization to the whole 432 

building stock. 433 

 

Figure 6 – Comparison of cluster distributions over one-year timeframes for B12 with FB-434 

MAN, TS-EUCL and TS-DTW using a 10-minute time-step – Each cell corresponds to one 435 

day and each line represents one week – Cluster 1 is figured in light brown, cluster 2 is 436 

showed in light blue and cluster 3 is displayed in light green 437 



4.2 Generalization to the whole building stock 438 

4.2.1 Clustering on individual buildings: specificities of office buildings 439 

After first trials with B12 data and discussion of obtained results, TS-EUCL is applied on all 440 

building to investigate the main electricity demand patterns that can be extracted from DLP 441 

classifications. At this step, datasets of each building are considered separately. A three-442 

month timeframe is used for all buildings with a data sample from 02/01/2019 to 04/31/2019. 443 

Indeed, an observation period of three months provides a reasonable amount of data with 444 

diverse building usages. Also, a ten-minute time-step is used as it does not aggregate 445 

information regarding the building electricity demand. On the other hand, after first trials on 446 

B12, TS-EUCL has proven to be the only method to provide a consistent day-type-based DLP 447 

classification with this timeframe and it was not affected by a change of time-step. Clustering 448 

results for all buildings are presented in Table 6. We show in column 2 all DLPs for the 449 

considered timeframe for each building and in the following columns the DLPs distributions 450 

are given along with the number of business days and closing days for each cluster. 451 

Two groups of buildings emerge from the clustering tests. For nine buildings out of fourteen – 452 

B2, B3, B5, B6, B7, B8, B10, B11 and B12 – DLP distributions are well-defined and trivially 453 

separate business days from closing days. These buildings comprise teaching and research 454 

units, two libraries and one gymnasium. DLPs are sorted into two clusters for five buildings 455 

and three clusters for the other three buildings. For two-cluster distributions, the first cluster 456 

groups most business days while the second cluster groups most closing days. A few 457 

exceptions can be noticed for these buildings with some business days in the second cluster 458 

and vice versa. These are related to specificities of building activities such as students’ 459 

vacations when only part of the staff is present in the buildings and which results in a much 460 

lower electricity demand. Cases with a three-cluster distribution are more specific. The third 461 

cluster can highlight outlying DLP with higher power demand for B3 and missing data for 462 



B12. B2 shows a slightly different behavior as it separates Saturdays (in cluster 2) and 463 

Sundays (in cluster 3). Then for B5 the overall day-type-based DLP classification is respected 464 

but the five highest DLP in terms of electric energy demand are separated from other business 465 

days and grouped in the first cluster.  466 

The second group of building includes B1, B4 and B9 for which the analysis of clustering 467 

results with respect to the types of days fails to explain DLP distributions. Cluster 1 for B9 468 

and cluster 2 for B1 and B4 mainly contains business days but with some closing days. 469 

Cluster 2 for B9 and cluster 3 for B1 and B4 contains significant amounts of both types of 470 

days. Then the third cluster is either grouping the highest DLPs or specific ones with a 471 

decreasing electric load demand over the day. This classification can be related to the office 472 

building type with very different activities (Table 1). Activity schedules may not be as well 473 

defined as for the first group of buildings: there are business days with low activity and power 474 

demand or, on the opposite, closing days with higher activity and then business-day-like 475 

DLPs. Therefore, it results in DLP classifications that are not only day-type-based and would 476 

require other explanatory variables to be explained. 477 

Hence, the comparison of clustering results obtained for the fourteen buildings shows that 478 

there is a significant difference between building electricity demand depending on the 479 

building main activity. A clear trend can be identified for teaching buildings, libraries, and 480 

gym with a two or three-cluster DLP distribution: a first cluster for working days, a second 481 

one for closing days and a third cluster for outliers, although B2 separates two types of 482 

closing days. This is due to a very regular buildings operation according to the same schedule 483 

all year round with interruptions during vacation, national holidays and weekends, the overall 484 

load demand behavior. On the opposite, for office buildings, B1, B4 and B9, day-type is not a 485 

sufficient explanatory variable for electric load profiles which is probably due to a larger 486 

diversity in scheduled activities, hence in buildings occupancy. 487 



Building All DLP Cluster 1 Cluster 2 Cluster 3 

B1 

 
   

7 business days 
24 business days 
5 closing days 

31 business days 
22 closing days 

B2 

 
   

62 business days 12 closing days  15 closing days 

B3 

 
   

61 business days 
1 closing day 

26 closing days 1 business day 

B4 

B6

 

   

12 business days 
42 business days 
6 closing days 

14 business days 
21 closing days 

B5 

 
   

5 business days 
51 business days 
2 closing days 

25 business days 
6 closing days 



B6 

 
  

/ 

55 business days 
7 business days 
27 closing days 

/ 

B7 

 
  

/ 

46 business days 
16 business days 
27 closing days 

/ 

B8 

 
  

/ 

56 business days 
1 closing days 

6 business days 
26 closing days 

/ 

B9 

 
   

39 business days 
1 closing days 

23 business days 
23 closing days 

3 closing days 

B10 

 
  

/ 

62 business days 27 closing days / 



B11 

 
  

/ 

55 business days 
1 closing days 

7 business days 
26 closing days 

/ 

B12 

 
   

49 business days 
13 business days 
26 closing days 

1 closing day 

Table 4 – Clustering results for the whole building stock using a three-month timeframe and 488 

10-minute time-step 489 

4.2.2 Building stock aggregated load profiles 490 

Following the tests on all individual buildings, clustering is performed on the aggregated 491 

profiles of the building stock. A single dataset is used that considers the sum of the power 492 

demand of all the buildings for each time-step within a given timeframe.  493 

From the previous subsection, two main groups of buildings are highlighted with respect to 494 

their main activity and their overall electricity demand pattern. However, even within a group 495 

of similar buildings there is a significant diversity of DLPs, both in terms of electricity 496 

demand characteristics (Table 5) and regarding the shapes of the profiles (Table 6). It results 497 

in a complex modelling problem when considering the buildings individually. As all fourteen 498 

buildings are located nearby each other on the same campus, an opportunity lies in 499 

considering all buildings together with their corresponding aggregated electricity demand. 500 

Thus, DLPs of the fourteen different case studies are aggregated and TS-EUCL is performed 501 

on four three-month timeframes between 05/01/2018 and 04/30/2019, with ten-minute time-502 



step. Results are presented in Table 6. In the second column are all aggregated DLPs for the 503 

considered timeframe, and in the following columns the DLPs distributions are given along 504 

with the number of business days and closing days for each cluster. 505 

Building 
number 

Daily mean 
electric power 
demand (kW) 

Daily maximum 
electric power 
demand (kW) 

Daily minimum 
electric power 
demand (kW) 

Daily electric 
energy 

consumption 
(kWh) 

B1 11.1 ±20.2 17.9 ±28.8 5.7 ±13.6 267 ±483 
B2 52.7 ±17.3 74.2 ±36.7 35.1 ±9.9 1,265 ±417 
B3 44.6 ±35.0 74.1 ±74.2 24.7 ±13.7 1,071 ±840 
B4 23.2 ±31.3 41.0 ±53.9 13.8 ±20.0 556 ±750 
B5 252.2 ±151.6 341.0 ±258.5 198.0 ±112.2 6,051 ±3639 
B6 76.9 ±40.0 108.3 ±74.1 55.1 ±21.6 1,845 ±962 
B7 5.3 ±5.0 9.7 ±11.0 2.3 ±1.1 128 ±120 
B8 34.8 ±25.8 55.7 ±46.2 22.3 ±18.4 834 ±621 
B9 8.2 ±4.3 13.7 ±9.4 5.2 ±2.2 197 ±102 
B10 94.8 ±23.3 128.8 ±39.9 72.1 ±19.8 2,275 ±560 
B11 75.1 ±47.9 105.8 ±77.1 47.4 ±20.0 1,801 ±1149 
B12 532.5 ±197.2 717.4 ±360.6 376.1 ±124.1 12,779 ±4733 

Table 5 – Mean, maximum, minimum electric power demand and daily electric energy 506 

consumption for buildings B1 to B12 between 05/01/2018 and 04/30/2019 507 

For all four timeframes, results provide a two-cluster distribution. The first cluster gathers all 508 

business days including periods of students’ vacations as for most buildings the activity is 509 

reduced but they are not closing days. The second cluster gathers weekends, the summer 510 

closing period and Christmas break when the university is closed. Only two days are found 511 

out of their expected cluster: a business day with low electricity demand in cluster 2 for the 512 

first timeframe and a closing day with high electricity demand found in cluster 1 for the fourth 513 

timeframe. These might be related to specific events happening on the campus. Nevertheless, 514 

aside from these two exceptions, DLP classifications can be easily explained using day-type 515 

as an explanatory variable. 516 

Thus, aggregated DLP clustering results show that the overall campus exhibits two main DLP 517 

classifications depending on the type of day and the main activity on the campus. The 518 



aggregation of occupants’ behavior, appliances and activity schedules results in individual 519 

buildings’ specificities that are merged in the larger load profiles. Aggregated profiles are 520 

then less impacted by building-scale events that may result in anomalous building DLPs. 521 

Furthermore, the day-type-based DLP distribution is the same as the classification observed in 522 

the previous subsection for teaching and research buildings, libraries and the gymnasium (B2, 523 

B3, B5, B6, B7, B8, B10, B11, B12). Since this group of buildings accounts for 96% for the 524 

overall mean electric power demand and daily electric energy consumption, their overall 525 

electric demand pattern is expected to be found as well in aggregated DLPs at campus-scale. 526 

Therefore, a reduction of diversity in electricity demand may be seen as an opportunity. 527 

Indeed, because of the diversity of buildings and their respective electric demand drivers, 528 

electric demand analysis and modeling is not always a straightforward task. This is 529 

particularly the case when meta-data are difficult to collect or not available as for most 530 

building in the present study. Campus-scale electric demand aggregation simplifies modeling 531 

and forecasting since it results in the emerging main day-type-based electric demand patterns 532 

for the present case study. 533 

Observation 
period 

All DLPs Cluster 1 Cluster 2 

2018/05/01 
to 
2018/07/31 

 
  

45 business days 
1 business day 
45 closing days 



2018/08/01 
to 
2018/10/31 

 
  

43 business days 48 closing days 

2018/11/01 
to 
2019/01/31 

 
  

54 business days 38 closing days 

2019/02/01 
to 
2019/04/30 

 
  

62 business days 
1 closing day 

26 closing days 

Table 6 – Clustering results for the aggregated DLP of the fourteen building case studies using TS-534 

EUCL on three-month timeframes with ten-minute time-step between 05/01/2018 and 04/30/2019 535 

5 Conclusions 536 

The present work reports on non-residential buildings daily electric load profile classification. 537 

Fourteen buildings located on the same campus are considered. Time series of electric 538 

demand with a ten-minute time-step are used as input data. A k-means algorithm is 539 

implemented with three methods: clustering with feature extraction and Euclidian distance, 540 

clustering of electric demand time series using Euclidian distance and Dynamic Time 541 



Warping. The three methods are tested with different configurations of input data 542 

characteristics by varying the timeframes and time-steps and compared. We show that feature 543 

engineering-based clustering surprisingly provides very consistent results with a ten-minute 544 

time-step in spite of information loss in input data. However, it is particularly sensitive to the 545 

time-step parameter. Dynamic Time Warping is particularly sensitive to the time-step as well 546 

and provides the most accurate results with one-year timeframes. Finally, Euclidian distance 547 

clustering using electric DLP time series with three-month timeframes and ten-minute time-548 

step outperforms all other combinations.   549 

Conducted tests also lead to several insights related to academic building electric demand 550 

behavior. All methods are greatly affected by a seasonal effect in datasets with timeframes 551 

larger than three months which reduces classification accuracy. This seasonal effect results in 552 

the significant difference between summer business days and winter business days, as the 553 

former exhibit a much lower daily electric demand than the latter. For this reason, a particular 554 

attention should be paid to the forecasting horizon when simulating the electric demand of 555 

such buildings, for a horizon larger than three months with the present case studies. These 556 

initial results would be worth exploring in further details with clustering applications on the 557 

results of the present study to discriminate and investigate different categories of business 558 

days and closing days for different buildings. 559 

Nevertheless, considering the whole building stock with time-series and Euclidian distance, 560 

two groups of buildings are identified. First, teaching, research, library and gymnasium 561 

buildings, which exhibit two well-defined day-type-based clusters for business days and 562 

closing days. Secondly, office buildings, which do not exhibit day-type consistent clusters. 563 

The second group of buildings shows that day-type-based trivial classification is not 564 

systematically verified. Therefore, daily load profiles classification using only electric 565 

demand data is limited and additional meta-data would be required for explanatory variables 566 



investigation. Finally, aggregated load profiles clustering at the campus level provides two 567 

well-defined clusters distinguishing business days and closing days. Obtained results provide 568 

useful insights opportunities for non-residential buildings electric demand analysis, modeling 569 

and forecasting at different timeframes, time-steps and spatial scales. 570 
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Appendix A 

Timeframe Time-step 

B12 

FB-MAN TS-EUCL TS-DTW 

C1 C2 C3 C1 C2 C3 C1 C2 C3 C4 

1 month 
from 

01/01/2018 

to 

31/01/2018 

10-minute 18 business days 12 closing days 1 outlier 18 business days 12 closing days 1 outlier 
18 business days 8 closing days 4 closing days / 

18 business days 9 closing days 3 closing days 1 outlier 

30-minute 18 business days 12 closing days 1 outlier 18 business days 12 closing days 1 outlier 18 business days 13 closing days / / 

Hourly 18 business days 12 closing days 1 outlier 18 business days 12 closing days 1 outlier 18 business days 13 closing days / / 

3 months 
from 

01/01/2018 

to 

31/03/2018 

10-minute 60 business days 29 closing days 1 outlier 
60 business days 
3 closing days 

26 closing days 1 outlier 
60 business days 
3 closing days 

27 closing days / / 

30-minute 
14 business days 
11 closing days 

46 business days 
19 closing days 

/ 
60 business days 
3 closing days 

26 closing days 1 outlier 
60 business days 
3 closing days 

27 closing days / / 

Hourly 
60 business days 
1 closing day 

29 closing days / 
60 business days 
3 closing days 

26 closing days 1 outlier 
60 business days 
15 closing days 

15 closing days / / 

6 months 
from 

01/01/2018 

to 

30/06/2018 

10-minute 50 business days 
51 business days 
51 closing days 

22 business days 
7 closing days 

69 business days 
3 closing days 

51 business days 
58 closing days 

/ 
69 business days 
3 closing days 

51 business days 
58 closing days 

/ / 

30-minute 
72 business days 
17 closing days 

51 business days 
41 closing days 

/ 
69 business days 
3 closing days 

51 business days 
58 closing days 

/ 62 business days 
3 closing days 

58 business days 
58 closing days 

/ / 

Hourly 72 business days 
51 business days 
58 closing days 

/ 
69 business days 
3 closing days 

51 business days 
58 closing days 

/ 62 business days 
3 closing days 

58 business days 
58 closing days 

/ / 

1 year 
from 

01/01/2018 

to 

31/12/2018 

10-minute 134 business days 
75 business days 
137 closing days 

15 business days 
4 closing days 

82 business days 
3 closing days 

122 business days 
158 closing days 

/ 
147 business days 
6 closing days 

57 business days 
155 closing days 

/ / 

30-minute 
163 business days 
6 closing days 

61 business days 
135 closing days 

/ 
82 business days 
3 closing days  

114 business days 
14 closing days 

8 business days 
144 closing days 

160 business days 
16 closing days 

44 business days 
145 closing days 

/ / 

Hourly 148 business days 
76 business days 
141 closing days 

/ 
82 business days 
3 closing days 

122 business days 
158 closing days 

/ 
50 business days 
2 closing days 

147 business days 
25 closing days 

7 working days 
134 closing days 

/ 

Table A.1 – Detailed results of the comparative analysis performed on B12
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