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Allowing for the seniority of claims and of risk exposure in the prediction of frequency risks necessitates dynamic random effects in Poisson mixtures. Non-life insurance data show evidence of long memory in stationary random effects. This paper proves that the ARFIMA(0, d, 0) mixtures of Poisson distributions ensure nonnegative credibilities per period in the affine prediction of frequency risks. This is true regardless of the risk exposure. This property is maintained if the random effect is the product of a time-invariant component (which provides the highest level of memory in the data) and of a component that follows an ARFIMA(0, d, 0) specification. The proof uses approximations of the ARFIMA(0, d, 0) time series by AR(p) time series, which result from truncations of the filtering equations that define the former ones. Every given ARFIMA(0, d, 0) specification inherits the positivity properties of the truncations because the supremum of the spectral densities of these truncations is integrable on the frequency domain. These semiparametric specifications are easily estimated from longitudinal count data, with the generalized method of moments.

Introduction

Allowing for the seniority of claims and of risk exposure in the prediction of frequency risks necessitates dynamic random effects in Poisson mixtures. Stationary random effects with a short memory are used in this setting by [START_REF] Pinquet | Allowance for the age of claims in bonus-malus systems[END_REF], [START_REF] Bolancé | Time-varying credibility for frequency risk models: estimation and tests for autoregressive specifications on the random effects[END_REF], [START_REF] Brouhns | Bonus-malus scales in segmented tariffs with stochastic migration between segments[END_REF] and [START_REF] Lu | Dynamic frailty count process in insurance: a unified framework for estimation, pricing, and forecasting[END_REF]. However, these specifications do not provide a good fit to non-life insurance data in the framework of the generalized method of moments. An example is detailed in Section 2.3 (see Table 1). The unconstrained estimation of the autocovariances of random effects is not well fitted to a vanishing function with an exponential decay. The ARFIMA(0, d, 0) specifications [START_REF] Granger | An introduction to long-memory time series models and fractional differencing[END_REF]) have a power-law decay and a long memory (see Equation ( 11)). They provide a better fit to the data investigated in Section 2.3.

A major issue in the credibility analysis of frequency risks is the nonnegativity of the credibilities per period, a condition which must be fulfilled regardless of the risk exposure in order to avoid negative predictors. A sufficient condition for nonnegative credibilities per period is given by [START_REF] Pinquet | Poisson models with dynamic random effects and nonnegative credibilities per period[END_REF]. Consider the inverse variance-covariance matrices of the random effects, which are also referred to as precision matrices: the sufficient condition is the nonpositivity of their off-diagonal entries. A statistical interpretation is that the generalized partial autocorrelation coefficients of the random effects are nonnegative. This sufficient condition is specified for AR(p) time series in [START_REF] Pinquet | Poisson models with dynamic random effects and nonnegative credibilities per period[END_REF], and is verified numerically -but not proven -for the ARFIMA(0, d, 0) specifications. The verifications use the hereditarity of the sufficient condition for nonnegative credibilities. Hereditarity here means that if the condition is fulfilled for a given length of the history, then it also holds for shorter lengths.

This paper proves that the ARFIMA(0, d, 0) mixtures of Poisson distributions ensure nonnegative credibilities regardless of the risk exposure. The proof uses approximations of the ARFIMA(0, d, 0) time series by AR(p) time series, which result from truncations of the filtering equations that define the former ones. Every given ARFIMA(0, d, 0) specification inherits the positivity properties of the truncations because the supremum of the spectral densities of these truncations is integrable on the frequency domain.

Section 2 presents Poisson mixtures with a second-order stationary specification for the random effects. The specifications encompass the three levels of memory in the mixing distribution and they ensure nonnegative credibilities regardless of the risk exposure. A case study addresses the goodness of fit between the unconstrained estimations of the autocovariances of random effects reported by [START_REF] Pinquet | Allowance for the age of claims in bonus-malus systems[END_REF] and the values related to the semiparametric models. The results motivate the choice of a specification with a long memory for the random effects. The proof of the aforementioned positivity property for the ARFIMA(0, d, 0) specifications is provided in Section 3. Concluding remarks are given in Section 4, whereas technicalities are relegated to an appendix.

2 Poisson mixtures that encompass the three levels for the length of memory in the random effects and that ensure nonnegative credibilities per period 2.1 A sufficient condition for nonnegative credibilities

We consider a longitudinal dataset. The number of events per year (e.g., claims of a given type) is the dependent variable and we write

N i,t ∼ P (λ i,t u i,t ) ; i = 1, . . . , m; t = 1, . . . , T i . (1) 
Equation ( 1) specifies a Poisson distribution on the count variable, which is observed on an unbalanced panel dataset. The frequency risk based on the observable information is denoted by λ and can be estimated ad libitum from the regression components (e.g., log-linear specification for the expectation, index model, neural network, regression tree, or random forest). These regression components cannot include the individual history in a mixture model in order to restrict experience rating to the second component of the expectation. The Poisson distributions in (1) are conditional on U i,t = u i,t , where U i,t is a positive random effect. A second-order stationary framework is retained for the random effects. The use of stationary random effects in Poisson mixtures is linked with a plausible invariance assumption: the predictive ability of events on frequency risk depends on their seniority but not on calendar time. The autocovariance function of U is denoted by γ U .

The expectation of the random effects is set equal to one. This is assumed without loss of generality because the intercept is a regression component. The individual index i is removed in the prediction. Linear credibility is related to an affine probabilistic regression of U T +1 with respect to N 1 , . . . , N T in the model with random effects [START_REF] Bühlmann | Experience rating and credibility[END_REF]).

The predictor is

L (U T +1 | N 1 , . . . , N T ) = 1 - T h=1 α T,h + T h=1 α T,h N T +1-h λ T +1-h , (2) 
where the index h refers to the lag between the forecast period and the risk exposure period. The credibility for period T + 1 -h is denoted by α T,h . The experience rated frequency premium for period T + 1 is the product of this predictor and λ T +1 , with estimated parameters. Linear credibility predictors are also obtained from INAR models (Al-Osh and Alzaid (1987), [START_REF] Bermúdez | Allowing for time and cross dependence assumptions between claim counts in ratemaking models[END_REF]). The credibility weights are the probability masses of the Bernoulli distributions used in the INAR specifications. These credibility weights do not depend on the risk exposure, as is the case for Poisson mixtures.

The variance-covariance matrix of the random effects U 1 , . . . , U T is denoted by V T U and is assumed to be positive definite, regardless of the length T of the history. The vector of stacked credibilities per period is

v T α def = vec 1≤ h ≤T (α T,h ) = Λ -1 T + V T U -1 v T γ U , with: Λ T = diag 1≤ h ≤T (λ T +1-h ) ; v T γ U = vec 1≤ h ≤T (γ U (h)) .
A sufficient condition for nonnegative credibilities regardless of the risk exposure (i.e., [START_REF] Pinquet | Poisson models with dynamic random effects and nonnegative credibilities per period[END_REF]). The proof uses results referring to nonnegative matrices (i.e., the class of M -matrices and the Perron-Frobenius theorem-see [START_REF] Berman | Nonnegative Matrices in the Mathematical Sciences[END_REF]). The proof also uses the vocabulary of affine and projective geometry.

v T α ∈ (R + ) T ∀T ∈ N * , ∀λ 1 , . . . , ∀λ T > 0) is that the off-diagonal entries of V T U -1 are nonpositive ∀T ∈ N * (
The inverse of a variance-covariance matrix is termed a precision matrix. In this paper, autocovariance functions for which the off-diagonal entries of the precision matrices are nonpositive are said to reach the positivity level S. Poisson mixtures derived from autocovariance functions that reach level S ensure nonnegative credibilities per period regardless of the risk exposure. Autocovariance functions that reach level S are nonnegative entrywise, and entail nonnegative filtering coefficients in the affine probabilistic regression of the random effects with respect to past consecutive values.

The total credibility (i.e., T h=1 α T,h in Equation ( 2)) is always less than one if the random effects reach level S (Pinquet ( 2020)). Therefore, the intercept of the affine predictor is positive, and nonnegative credibilities per period entail positive predictors of frequency risks.

Autocovariance functions that reach level S

The autocovariance functions given in this section are sorted by increasing length of memory. Autoregressive specifications have a short memory. Those that reach level S are characterized by Proposition 1.

Proposition 1 An AR(p) specification (p ∈ N * ) on the random effect U defined by

U c t = p h=1 ϕ h U c t-h + I U t , ∀t ∈ Z ,
(where U c = U -1 is a centered sequence and where I U is a white noise process, termed the innovation of U ), reaches level S if and only if

ϕ h ≥ 0, ∀h = 1, . . . , p; p h=1 ϕ h < 1; ϕ h ≥ 1≤τ ≤p-h ϕ τ ϕ τ +h , ∀h = 1, . . . , p -1. (3)
The last condition is obviously fulfilled if ϕ is decreasing.

The proof is obtained from the derivation of the precision matrices of the random effects (see [START_REF] Pinquet | Poisson models with dynamic random effects and nonnegative credibilities per period[END_REF]). These autoregressive specifications are applied to positive random effects in a credibility analysis of frequency risks. The compatibility between the autocovariance functions and positive random effects is not an issue for practitioners using a second-order semiparametric approach. The estimation by the generalized method of moments and the derivation of positive linear credibility predictors do not need a solution to this compatibility issue. However this problem is of interest from a mathematical point of view. The compatibility between exponentials of Gaussian sequences and AR(p) specifications that follow the conditions of Proposition 1 is verified numerically for p = 1, 2, 3 by [START_REF] Pinquet | Poisson models with dynamic random effects and nonnegative credibilities per period[END_REF]. The verification strategy uses the Levinson-Durbin recursion. This verification is performed on large grids in the parameter space, at the horizon of a century. The compatibility between log-Gaussian sequences and these AR(p) specifications was never falsified in the verifications, and likewise for the ARFIMA(0, d, 0) autocovariance functions.

The ARFIMA(0, d, 0) specifications are defined by the equation (I -L) d U c = I U . The lag operator is denoted by L and the fractional differencing parameter d belongs to the interval 0, 1 2 . The filtering equation is

U c t = +∞ h=1 ϕ h U c t-h + I U t , ∀t ∈ Z, (4) 
with

ϕ 1 = d; ϕ h+1 ϕ h = h -d h + 1 , ∀h ∈ N * .
The filtering coefficients are positive and decreasing. The equality +∞ h=1 ϕ h = 1 reflects the long memory of the ARFIMA(0, d, 0) specifications (see Equation ( 11) and Appendix A.1). Due to this equality, U c can be replaced by U in Equation (4).

Let U tr(p) be the AR(p) sequence defined by a p-truncation of Equation ( 4):

U tr(p) t def = h=p h=1 ϕ h U tr(p) t-h + I U t , ∀t ∈ Z. (5) 
The AR(p) sequence U tr(p) is an approximation of U c , with truncated filtering coefficients and with the same innovation. From Proposition 1, the time series U tr(p) p∈N * reach level S if U is of type ARFIMA(0, d, 0). Section 3 provides a proof that this positivity property extends from the sequence U tr (p) p∈N * to U in the ARFIMA(0, d, 0) case. The previously specified autocovariance functions vanish at infinity. However, this weak ergodicity property is not a desirable assumption (see Table 1,Section 2.3). The highest level of memory in the mixing distribution is reached if we place side by side a time-invariant random effect and an ergodic random effect. The dynamic random effects (U t ) t∈N * applied to Poisson distributions in the credibility analysis are decomposed multiplicatively:

U t def = P Q t , ∀t ∈ N * . ( 6 
)
The variables P and (Q t ) t∈N * are assumed to be positive and uncorrelated, with

E(P ) = E(Q t ) = 1 ∀t ∈ N * .
The dynamic random effect Q is also assumed to follow either an AR(p) specification that reaches level S, or an ARFIMA(0, d, 0) specification. If

σ 2 P is the variance of P, then γ U (h) = σ 2 P + (1 + σ 2 P ) γ Q (h) , ∀h ∈ Z (7) if P 2 and Q t Q t+h are assumed to be uncorrelated ∀t, h. Indeed, E(U t U t+h ) = E(P 2 ) E(Q t Q t+h ) = (1+σ 2 P ) (1+γ Q (h))
, which leads to Equation ( 7). Then, lim

h→+∞ γ Q (h) = 0 ⇒ lim h→+∞ γ U (h) = σ 2 P .
Therefore, the non-ergodic specifications correspond to σ 2 P > 0. If U has a short memory (i.e., if γ U is summable), then the function

s U (θ) = h∈Z e -iθh γ U (h)
is nonnegative. This function is defined on the frequency domain R/2πZ (identified with [-π, π[). The function s U is the density of a spectral measure S U with respect to the Lebesgue measure restricted to [-π, π[. The autocovariance function is obtained from the spectral measure by

γ U (h) = 1 2π π -π e ihθ dS U (θ), ∀h ∈ Z. (8) 
Equation ( 8) is also valid for the two higher levels of memory in the random effects. The spectral measure of U is still absolutely continuous with respect to Lebesgue if U follows an ARFIMA(0, d, 0) specification, but the spectral density tends to infinity at 0. If σ 2 P > 0 (see ( 7)), then the memory in the mixing distribution reaches the highest level, and the spectral measure S U has a Dirac mass located at 0.

In Equation ( 6), the random effect U reaches level S if Q reaches level S and if

V T Q -1 1 T ∈ R + T , ∀ T ∈ N * . ( 9 
)
The intercept is denoted by 1 T in (9). This condition is fulfilled if Q follows an AR(p) specification that reaches level S (Pinquet (2020)). In Section 3, it is shown that (9) also holds for the ARFIMA(0, d, 0) specifications.

A case study

In this case study, the ARFIMA(0, d, 0) specifications on the random effects provide a better fit to the data than those of type AR(1). We use the estimated autocovariances of random effects reported by [START_REF] Pinquet | Allowance for the age of claims in bonus-malus systems[END_REF]. To avoid selection bias, the working sample is an unbalanced panel dataset. The lengths of the histories range between one and seven years. The unconstrained estimators are derived with a method of moments in a Poisson mixture model with regression components. The estimated autocovariances are given in Table 1. The semiparametric specifications of the random effects are estimated by a generalized method of moments -GMM - [START_REF] Hansen | Large sample properties of generalized method of moments estimators[END_REF]). A rough estimation strategy is used, which avoids derivations at the individual level. The estimated parameters minimize the sum of squared adjustment errors (denoted by SSE) between the unconstrained estimations of Table 1 and the fitted values.

The autocovariance functions of type ARFIMA(0, d, 0) are generated from the recursive formula

γ(h + 1) = h + d h + 1 -d γ(h), ∀h ∈ N. ( 10 
)
This formula entails the following equivalence in the neighborhood of infinity

γ(h) ∼ γ(0) A(d) h 2d-1 , with: A(d) > 0 ∀d ∈]0, 1/2[. (11) 
Hence, the ARFIMA(0, d, 0) specifications are weakly ergodic, they have a power-law decay and they also have a long memory (i.e., h=+∞ h=0 γ(h) = +∞).

Ergodic specifications are estimated first (i.e., σ 2 P = 0, U = Q in ( 6)). Then

If Q is AR(1) : γ Q (0) = 1.12; ϕ 1 = 0.82; SSE = 0.0700;

If Q is ARFIMA(0, d, 0) : γ Q (0) = 1.28; d = 0.37; SSE = 0.0067.

The autocovariance specification with a long memory strongly outperforms its counterpart with a short memory. An autocovariance function with an exponential decay can provide a good fit to the estimations of Table 1 if it does not vanish at infinity. In what follows, a time-invariant component P is included in the random effect. If Q is of type AR(1), then we obtain σ 2 P = 0.47; γ Q (0) = 0.54; ϕ 1 = 0.45; SSE = 0.0073.

The fitted specification reaches the highest level of memory.

The estimation is unchanged if Q is of type ARFIMA(0, d, 0) (hence, σ 2 P = 0). This result confirms that this specification of the ergodic component provides a good fit to the data. The adjustment errors related to the three estimations are displayed in Figure 1. The results of this case study motivate the choice of ARFIMA(0, d, 0) mixtures of Poisson distributions in the credibility analysis of frequency risks. The efficiency ranking of the three specifications is not modified if the rough GMM estimation used in this section is replaced by a GMM procedure that takes into account the full information.

The following section provides a proof that the ARFIMA(0, d, 0) specifications reach level S. Therefore, the credibilities per period derived from the related Poisson mixtures are nonnegative regardless of the risk exposure.

3 The ARFIMA(0, d, 0) specifications reach level S

The AR(p) sequences that reach level S have been characterized in Section 2.2. If a random effect U follows an ARFIMA(0, d, 0) specification, the autoregressive processes U tr (p) p∈N * defined in (5) reach level S. Proposition 2 gives a condition that extends the property of reaching level S from the sequence U tr (p) p∈N * to U .

Proposition 2 Let U be a stationary random effect, defined by the filtering equation

U c t = h∈N * ϕ h U c t-h + I U t , ∀t ∈ Z.
The variance of the innovation I U is assumed to be positive. It is also assumed that

ϕ h ≥ 0, ∀h ∈ N * ; p h=1 ϕ h < 1, ∀p ∈ N * ; ϕ h ≥ τ ∈N * ϕ τ ϕ τ +h , ∀h ∈ N * (12)
(the last condition is fulfilled if ϕ is decreasing). Suppose that the spectral densities of the processes U tr(p) p∈N * are dominated on the frequency domain [-π, π[ by an integrable function. Then U reaches level S. This positivity property is maintained if a time-invariant random effect is placed side by side with U.

Sketch of the proof: The conditions ( 12) are the extension of conditions (3) to all p ∈ N * . Therefore, the autoregressive processes U 

γ U tr(p) = γ U entrywise on Z. Therefore, lim p→+∞ V T U tr(p) = V T U , ∀T ∈ N * .
The same result holds for the inverses of these matrices, and U reaches level S. The last result of Proposition 2 is obtained from ( 9), with U tr (p) p∈N * and U in place of Q. A detailed proof is given in Appendix A.1. The domination condition holds if and only if the supremum of the spectral densities of the truncations is integrable on the frequency domain.

An integrable function that dominates the spectral densities of the truncations is easily obtained if +∞ h=1 ϕ h < 1, in which case U has a short memory (see Appendix A.2). If +∞ h=1 ϕ h = 1, obtaining such a function is not obvious in the neighborhood of 0. Proposition 3 provides a condition on the filtering coefficients that implies the existence of an integrable and dominating function.

Proposition 3 Let U be a stationary sequence that fulfills the conditions given in ( 12), together with: +∞ h=1 ϕ h = 1. The spectral densities of the time series U tr (p) p∈N * are dominated by an integrable function if the following conditions are fulfilled.

ϕ h ≥ c h -α , ∀h ∈ N * ; c > 0 ; 1 < α < 3/2. ( 13 
)
The proof is given in Appendix A.2. The main result now follows because the conditions given in ( 13) are fulfilled by the ARFIMA(0, d, 0) specifications.

Proposition 4

The ARFIMA(0, d, 0) specifications fulfil the conditions given in (13), with

α = 1 + d, 0 < d < 1/2; c = d h∈N * 1 - d h 1 + 1 h d , 0 < c < d.
Therefore, the ARFIMA(0, d, 0) mixtures of Poisson distributions ensure nonnegative credibilities regardless of the risk exposure.

The filtering coefficients of an ARFIMA(0, d, 0) specification are defined by

ϕ 1 = d; ϕ h+1 ϕ h = h -d h + 1 = 1 - 1 + d h + 1 ∀h ∈ N * .
The proof uses the auxiliary sequence

ψ h = d × h -(1+d) (h ∈ N * ). Then, ψ 1 = ϕ 1 and log(ϕ h+1 ) -log(ϕ h ) -(log(ψ h+1 ) -log(ψ h )) = log(h -d) -log(h + 1) + (1 + d) × log 1 + 1 h = log 1 - d h + d log 1 + 1 h def = e h .
We have that e h < 0 ∀h ∈ N * from the strict concavity of the logarithm, and e h ∼ -d+d 2 2h 2 in the neighborhood of infinity. Hence, the sequence e is negative entrywise and absolutely summable. Proposition 4 results from ϕ h+1 = ψ h+1 exp

τ =h τ =1 e τ ∀h ∈ N * , with c = d × exp
h∈N * e h . The power-law property of the ARFIMA(0,d,0) specifications (see ( 11)) is derived from the recursive generation of the autocovariance functions (see ( 10)), using a proof similar to the one given in Proposition 4 for the filtering coefficients. Appendix A.3 links the spectral densities of the ARFIMA(0, d, 0) specifications and the dominating functions obtained in Appendix A.2 for the spectral densities of the truncations.

Concluding remarks

The ARFIMA(0, d, 0) mixtures of Poisson distributions ensure nonnegative credibilities regardless of the risk exposure: this result is verified numerically in [START_REF] Pinquet | Poisson models with dynamic random effects and nonnegative credibilities per period[END_REF], and has been proven in the present paper. The other positivity issue is the compatibility of the ARFIMA(0, d, 0) specifications with positive random effects. The results provided by the author remain at the level of numerical verifications.

The innovation I U is white noise, which implies the last equality of (15). From ( 12), the sequence (Φ p ) p∈N * converges uniformly on the closed unit disk of C to a limit Φ. The spectral density of U is obtained from

1 -Φ(e -iθ ) 2 s U (θ) = γ I U (0), ∀θ ∈ [-π, π[-{0}. (16) 
Hence: lim

p→+∞ s U tr(p) (θ) = s U (θ), ∀θ ∈ [-π, π[-{0}.
If h∈N * ϕ h < 1, the spectral density of U is defined at θ = 0, and

1 -Φ(e -iθ ) ≥ 1 -Φ(e -iθ ) ≥ 1 -Φ(1) = 1 - h∈N * ϕ h , ∀θ ∈ [-π, π[.
The second inequality results from the nonnegativity of the filtering coefficients. Then the spectral density s U is bounded above by the constant

γ I U (0)
(1-h∈N * ϕ h) 2 . This upper bound also holds for the spectral densities (s U tr(p) ) p∈N * .

As s U (0) = h∈Z γ U (h), the condition h∈N * ϕ h < 1 implies a short memory for U . The ARFIMA(0, d, 0) specifications have a long memory, hence h∈N * ϕ h = 1 in (4).

Suppose that the spectral densities (s U tr(p) ) p∈N * are dominated by an integrable function f , i.e. -1 = V T U -1 . Indeed, the map V -→ V -1 is continuous on the set of positive definite matrices with any given order, and the matrices V T U are assumed to be positive definite ∀T ∈ N * . Level S is related to the set of positive definite matrices with nonpositive off-diagonal entries. Matrices with nonpositive off-diagonal entries are a closed set, and the positivity level S is reached by U .

s U tr(p) (θ) ≤ f (θ), ∀p ∈ N * , ∀θ ∈ [-π, π[-{0}, with
The sequence U tr(p) is an AR(p) process that reaches level S. It can be multiplied by a time-invariant random effect without loss of the positivity properties, because

V T U tr(p) -1 1 T ∈ (R + ) T , ∀p, T ∈ N * (see Pinquet (2020)). As lim p→+∞ V T U tr(p) -1 = V T U -1
, the same property holds for U .

A.2 Proof of Proposition 3

From (15), the spectral densities of the truncations are dominated by an integrable function if

1 -Φ p (e -iθ ) ≥ D(θ), ∀p ∈ N * , ∀θ ∈ [-π, π[, with +π -π dθ D 2 (θ) < +∞.
The function θ -→ D(θ) is a pointwise lower bound for the distance between 1 and the set {Φ p (e -iθ )} p∈N * .

A pointwise lower bound on the frequency domain is obtained from

1 -Φ p (e -iθ ) = 1 -ϕ 1 e -iθ - h=p h=2 ϕ h e -ihθ ≥ 1 -ϕ 1 e -iθ - h=p h=2 ϕ h ⇒ 1 -Φ p (e -iθ ) ≥ 1 -ϕ 1 e -iθ -(1 -ϕ 1 ) = D 1 (θ), ∀p ∈ N * , ∀θ ∈ [-π, π[. We have that D 1 (0) = 0; D 1 (θ) > 0, ∀θ ∈ [-π, π[-{0}; D 1 is continuous on [-π, π[.
Therefore, the function 1/D 2 1 is integrable on [-π, π[ outside any neighborhood of 0. The following derivations provide a solution in a neighborhood of 0.

From 1 -Φ p (e -iθ ) = [1 -p h=1 ϕ h cos(h θ)] + i p h=1 ϕ h sin(h θ), we obtain 1 -Φ p (e -iθ ) ≥ 1 - p h=1 ϕ h cos(h θ) = 1 - p h=1 ϕ h cos(h θ).
The last equality results from ϕ h ≥ 0, ∀h ∈ N * ;

p h=1 ϕ h < 1, ∀p ∈ N * . Then +∞ h=1 ϕ h = 1 ⇒ 1 - p h=1 ϕ h cos(h θ) = p h=1 ϕ h (1 -cos(h θ)) + h>p ϕ h ⇒ 1 - p h=1 ϕ h cos(h θ) ≥ +∞ h=1 ϕ h min(1, 1 -cos(h θ)), ∀p ∈ N * .
The latter function is even, and we restrict to θ > 0. Then

+∞ h=1 ϕ h min(1, 1 -cos(h θ)) ≥ h=[ 3π 2θ ] h=[ π 2θ ]+1 ϕ h . The conditions ϕ h ≥ c h -α (c > 0, 1 < α < 3/2) imply h=[ 3π 2θ ] h=[ π 2θ ]+1 ϕ h ≥ c h=[ 3π 2θ ] h=[ π 2θ ]+1 h -α ≥ c [ 3π 2θ ]+1 [ π 2θ ]+1 x -α dx. Then, c [ 3π 2θ ]+1 [ π 2θ ]+1 x -α dx = c α -1 × π 2θ + 1 1-α - 3π 2θ + 1 1-α = c α -1 × π 2θ + 1 1-α ×   1 - 3π 2θ + 1 π 2θ + 1 1-α   ⇒ c [ 3π 2θ ]+1 [ π 2θ ]+1 x -α dx ≥ c α -1 × π 2θ + 1 1-α ×   1 - 3π 2θ + 1 π 2θ + 1 1-α   .
From the inequalities 

3π 2θ + 1 π 2θ + 1 > 3π 2θ π 2θ + 1 = 3π π + 2θ ≥ 2 if θ ∈ 0, π 4 ; π 2θ + 1 1-α ≥ 3π 4θ 1-α if θ ∈ 0, π 4 
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 1 Figure 1: Adjustment errors (unconstrained -fitted autocovariances of random effects).

e

  ihθ s U tr(p) (θ) dθ = lim p→+∞ γ U tr(p) (h), ∀h ∈ Z.The third equality results from the dominated convergence theorem ase ihθ s U tr(p) (θ) ≤ f (θ), ∀θ ∈ [-π, π[-{0} , ∀p ∈ N * . Therefore, lim p→+∞ V T U tr(p) = V TU holds for every length T. This limit also holds for the precision matrices, i.e. lim p→+∞ V T Utr(p) 

,×
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Figure 2 :

 2 Figure 2: Plots of s U , f = 1.31 × s U (the dominating function), s U tr(1) and s U tr(2) (denoted by s1 and s2 in the figure) if U is of the ARFIMA(0, d, 0) type, with d = 1/3 and γ I U (0) = 1.

Table 1

 1 Estimated autocovariances of the multiplicative random effect U.

	h (lag)	0	1	2	3	4	5	6
	γ U (h) 1.269 0.802 0.615 0.586 0.553 0.457 0.442

  tr(p) p∈N * reach level S. Let us denote the spectral densities of U and of U tr(p) p∈N * by s U and by (s U tr(p) ) p∈N * , respectively. It is easily seen that lim p→+∞ s U tr(p) = s U pointwise on [-π, π[-{0}. From the dominated convergence theorem, the assumption on the dominating function made in Proposition 2 implies that lim

	p→+∞

A Appendix

A.1 Proof of Proposition 2

From Proposition 1, the conditions given in (12) imply that U tr(p) reaches level S for all p ∈ N * . Equation ( 5) is reformulated as

The lag operator is denoted by L, and Φ p is a polynomial function defined on Banach algebras, the elements of which are either operators such as L or complex numbers. From the conditions given in (12), the roots of Φ p lie outside the unit disk if the polynomial is applied to C. Equation ( 14) implies 1 -Φ p (e -iθ ) 2 s U tr(p) (θ) = s I U (θ) = γ I U (0), ∀θ ∈ [-π, π[. (15)