Abdoul-Djawadou Salaou
email: adsalaou@unistra.fr

Daniela Damian
email: daniela.damian@uvic.ca

Casper Lassenius
email: casper.lassenius@aalto.fi

Dragos Voda
email: dragos.voda@aalto.fi

Pierre Gançarski
email: gancarski@unistra.fr

Archetypes of Delay: An Analysis of Online Developer Conversations on Delayed Work Items in IBM Jazz

Keywords: Text analysis, Software engineering, Agile development, Categorical time series, Clustering, Thematic analysis, Task completion, Iteration completion, Repository mining, Jazz repository

Context. A widely adopted methodology, agile software development provides enhanced flexibility to actively adjust a project scope. In agile teams, particularly in distributed environment, developers interact, manage requirements knowledge, and coordinate primarily in online collaboration tools. Developer conversations become invaluable sources to track and understand developers' interactions around implementation of requirements, as well as the progress of implementation relative to the project scope and the planned iterations in agile projects. Although extensive research around iteration planning exists, there is a lack of research that leverages developer conversation data to understand delays in implementing planned requirements in agile projects.

Objective. By using developer conversations in a large agile project at IBM, this work aims to analyze conversation in work items (WIs) that are delayed and derive patterns that suggest reasons for delay in the project.

Method. We conducted a case study of the IBM Jazz project, and used thematic analysis to code the developer conversations as time-series, and cluster analysis to identify patterns that differentiated the evolution of discussions in WIs that were late vs. not late in the project.

Results. We identified six main patterns of WI delay. Through semantic analysis of developer conversations within particular clusters we were able to explain the reasons for delays in each pattern. In comparison to non-late WIs, we find that the major reason for delay is a lack of frequent communication associated with a poor project management of WIs. Similarly, non-late tasks more often

Introduction

Contemporary software development is increasingly conducted by distributed teams using agile software development methods. These methods rely on a core set of principles and values, most importantly the capability to efficiently react to change [START_REF] Beck | The agile manifesto[END_REF]. This capability is often implemented through the use of short development iterations and a strictly prioritized list of requirements, which in turn are broken down into work items small enough to be implemented in a single iteration [START_REF] Schwaber | The scrum guide -the definitive guide to scrum: The rules of the game[END_REF]. Agile methods have been shown to provide benefits both for small and large projects with respect, e.g., to on-time delivery and customer satisfaction .

Despite their success, it is not uncommon for work planned for an iteration to be deferred to later ones. Indeed it is often even recommended to plan for more work than can be done in order to avoid downtime within agile teams. The soundness of this approach has been debated, but regardless, empirical evidence points to the fact that decisions with respect to delaying work to later iterations are routinely made even in agile software development [START_REF] Heikkilä | A mapping study on requirements engineering in agile software development[END_REF].

In addition to the question of whether or not to plan for more work than realistically can be accomplished in an iteration, another important question emerges: Are there archetypal situations regarding work items that can predict or explain the need for delaying them to later iterations?

In this paper, we present results from an empirical analysis of work items that were delayed, i.e., not delivered in the iteration they initially were planned for. Our research was guided by the research questions: RQ 1 Can developer discussion threads on late work items be used to understand the reasons for delay?

RQ 2 What can we learn from comparing the discussions as well as other properties of the late and non-late work items?

While previous studies have leveraged various work item meta-data to predict a work item implementation timeline (e.g. [START_REF] Dehghan | Predicting likelihood of requirement implementation within the planned iteration: an empirical study at ibm[END_REF]), in this paper we focus on the developers' conversations to understand why work items get delayed in software projects and miss their planned iterations. Research already demonstrated that developers communication is useful in identifying patterns that might indicate problematic requirements [START_REF] Knauss | Patterns of continuous requirements clarification[END_REF]. We use thematic analysis on developer conversation data in combination with time-series and cluster analysis to identify discussion topics in developer conversations and subsequently reasons for delays in work item implementation. As an analysis method, time series analysis provides a unique opportunity to study the temporal evolution of discussions related to a work item in our data set. By coding the sequence of comments in developers conversations into time series, we studied the temporal distance and the order of these comments in an effort to characterize the discussions associated with late work items. Time series analysis has been recognized as providing a global view of the data by highlighting the temporal relationship between data points, and thus helping identify cyclic patterns, overall trends, turning points and outliers [START_REF] Paparrizos | k-shape: Efficient and accurate clustering of time series[END_REF][START_REF] Esling | Time-series data mining[END_REF].

Our findings show that late work-item tasks exhibit different patterns of delay. We identified six patterns with a consistent semantic meaning. For example, we find that communication and management problems are the common reason for delays in work-items implementation. The paper is structured in the following way: next, we introduce related work, followed by our research methodology. Then we present our results, focusing in the identified thematic clusters. Finally, we discuss the implications and limitations of the study.

Related work

Most research that has studied delayed work in software engineering has been done in the area of release and iteration planning. From a Release Planning perspective, Zowghi et al. [START_REF] Sm Didar | Comparative analysis of predictive techniques for release readiness classification[END_REF] compared several prediction techniques for classifying the readiness of an ongoing release, while Deghan et al. [START_REF] Dehghan | Predicting likelihood of requirement implementation within the planned iteration: an empirical study at ibm[END_REF] employed a process of feature engineering and machine learning to predict the likelihood of feature implementation within a planned iteration. In the same vein of research around delivery capabilities and with the goal of assisting project managers, Choetkiertikul et al. leverage historical data for creating a predictive model that can forecast the amount of work delivered compared to the initial commitment [START_REF] Choetkiertikul | Predicting delivery capability in iterative software development[END_REF]. In a different study, the same research group present a model that predicts both the degree of delay and the likelihood of the delay occurrence, for a software project issue against its due date [START_REF] Choetkiertikul | Predicting the delay of issues with due dates in software projects[END_REF].

While, to our knowledge, no other studies investigated developer communication to understand and explain delayed work items, communication threads by developers have been previously studied. For instance, Knauss and colleagues [START_REF] Knauss | Patterns of continuous requirements clarification[END_REF] propose a method that analyzes requirements communication data in order to timely detect and raise awareness of requirement related risks during implementation. Licorish and MacDonell [START_REF] Sherlock | Exploring the links between software development task type, team attitudes and task completion performance: Insights from the jazz repository[END_REF] studied the attitudes of teams members extracted from discussion threads, and how they relate to task performance, while Kavaler et al. [START_REF] Kavaler | Perceived language complexity in github issue discussions and their effect on issue resolution[END_REF] looked at language complexity levels and how they affect issue resolution time. Yilmaz [START_REF] Yilmaz | An examination of personality traits and how they impact on software development teams[END_REF] tries to capture the software teams personality traits impact on software development by conducting context-specific survey.

In addition to the above, there are several studies that have used Social Network Analysis to study developer communication, e.g., [START_REF] Wolf | Predicting build failures using social network analysis on developer communication[END_REF], [START_REF] Biçer | Defect prediction using social network analysis on issue repositories[END_REF], [START_REF] Meneely | Predicting failures with developer networks and social network analysis[END_REF], [START_REF] Datta | Talk versus work: characteristics of developer collaboration on the jazz platform[END_REF]. However, such analyses ignores the actual message content and dynamics. In this study we used time series and clustering methods to model and group work item discussions that present certain similarities that might indicate reasons for delay in their implementation. In software engineering research, time series analysis modeling has been used in approaches to study software reliability [START_REF] Amin | An approach to software reliability prediction based on time series modeling[END_REF][START_REF] Amasaki | A new challenge for applying time series metrics data to software quality estimation[END_REF] and to identify temporal patterns of software evolution defects [START_REF] Raja | Temporal patterns of software evolution defects: A comparative analysis of open source and closed source projects[END_REF]; while clustering techniques proven useful in analyzing similarities in software measurement data to distinguish between fault and non-fault prone software modules [START_REF] Zhong | Analyzing software measurement data with clustering techniques[END_REF] or to identify outliers in such data [START_REF] Yoon | An approach to outlier detection of software measurement data using the k-means clustering method[END_REF].

Research Setting and Methodology

We conducted a case study of developer online conversations during the planning and implementation of Jazz software components modules using the Jazz collaboration platform of IBM 1 . As a product, Jazz has been operational since 2006 and functions as the base platform for many of IBM's services such as Rational Team Concert or Rational Quality Manager. It aims to improve software practices, collaborative work and management processes by creating a scalable platform which can coordinate tasks and provide improved visibility throughout the software development life cycle [START_REF] Rich | Ibm's jazz integration architecture: building a tools integration architecture and community inspired by the web[END_REF].

Because Jazz is an integrated development environment, it includes supporting tools for planning, software builds, code analysis, version control as well as online communication, allowing developers to use the same tools for development and coordination. This approach grants access to a wealth of rich data concerning software development characteristics as well as communication and collaboration data, gathered in a timely and non-invasive manner, as compared to conducting surveys or interviews.

The teams developing Jazz use the Eclipse way methodology [START_REF] Frost | Jazz and the eclipse way of collaboration[END_REF], similar to the Open Unified Process and partly conforming to agile principles, that defines iteration cycles between two to six weeks consisting of three stages, namely planning, development and stabilization. Longer iterations, varying in length from one month to a year, exist as release iterations and contain multiple, shorter, milestone iterations that each end with a new milestone build. The goals and features for each release are defined by project management prior to the start of the iteration and captured in work items as task descriptions. Development is conducted through these work items and are assigned to a release or a milestone iteration but can be postponed in case of delays. This monitoring of the real work environment aims to capture all the critical information and discussion generated by the developers and offer an overview of the project and its evolution, with an ability to go back and analyze certain events if needed.

Work Items and Developer Discussions

In our data set, a work item (WI) describes a unit of work representing a singular assignable task [START_REF] Dehghan | Predicting likelihood of requirement implementation within the planned iteration: an empirical study at ibm[END_REF]. Table 1 display the major attributes describing a work item. There are different kinds of work items, and they form a hierarchy (see Table 2); from Plan Item (top level) to Task (low level) such that a type can have a sub-type as children [START_REF] Dehghan | Predicting likelihood of requirement implementation within the planned iteration: an empirical study at ibm[END_REF]. However, in practice, it is possible that this recommended order is disregarded with children sharing the same type as their parent or Tasks connected directly to a Plan Item. A Defect can be a child of any other type. Each WI contains information related to its parent, children, priority, deadline, conversation history, and the person responsible for it. During a development phase, a WI cannot be marked as completed until all its children tasks are completed. We consider a late WI to be any WI that is still under development past its currently assigned iteration end date. If a WI is still under development while its assigned iteration ends, but is postponed, either before or after the deadline to a future iteration, it is not considered late. An example of possible WI evolution can be seen in Figure 1.

Iterations

Dataset Description

Our research dataset included work items and their conversations between 2011 and 2016, over a total of 612 iterations. We analyzed the discussions for all completed work items of all types 2 that had at least fifteen comments in their discussion threads. We chose fifteen comments as it is a reasonable number to obtain insights on the progression of work on the work items. Since we are focusing mainly on comments data, discussion with very few comments are not significant to highlight all the development stages (elicitation, implementation, clarification,..) in a work item's lifecycle. We also ruled out WIs with a particular statusinvalid, abandoned, suspended -that indicated the work item did not follow the normal development process. This filtering resulted in a total of 125 late work items and a total of 2655 associated comments. To analyze the differences and similarities between late and non-late work items we also analyzed the discussions associated with the same number (125) of randomly selected non-late WIs, a total of 4068 comments. For each of these WIs, we extracted all associated comments in its related conversation, preserving their order, to create what we refer to as "WI discussion". Table 3 provides an example of a work item discussion.

Dataset Overview

The Estimate attribute (Table 1) gives the estimated duration required for WI implementation. This information is not frequently provided in our dataset. Only 26% (32) of non-late and 16% [START_REF] Faloutsos | Fast subsequence matching in time-series databases[END_REF] of late WIs have this information. Severity describes the importance of a WI and Priority its implementation emergency level. Depending on these attributes values, a sensitive WI is likely to get more attention and resource for its implementation speedup. However, in our dataset, 2 With the exception of Tasks, which did not contain any implementation comments a comparison of these attributes distributions between late and non-late WIs (Tables 4 and5) highlights no significant differences, i.e. both sets have more or less the same distributions. Therefore, they can be discarded as the attributes that discriminate late WIs from non-late ones.

Work Items Management

The Created By attribute (Table 1) identifies the user who created the WI and provides information related to its goals, while the Owned By identifies the user who is going to drive or coordinate the WI implementation to resolution. The Resolved By identified the user who closed WI as resolved. This attribute has always the same value as the owner in our dataset, for instance the owner closes the WI when it is implemented. The Subscribed By attribute holds a list of collaborating users to implement WI requirements.

Plan Items do not have a creator. They only have owners. Because a plan item is a high level description of a feature, its implementation involves the collaboration of teams working on dependent work items such as Stories, Enhancements, Defects or Tasks. A development "team leader" coordinates work of a team of developers to deliver its assigned requirements. Further, there are Project Leaders who lead the work at each geographical location.

With respect to the workflow around a WI implementation, typically a WI is delegated to the appropriate developers, i.e., the creator of WI is different from the owner (@UserX != @UserY). For example when a @UserX spots a defect and creates a WI to report it and assigns it to @UserY (more capable to handle the WI); or when a Plan Item is decomposed into stories and assigned to the appropriate developers/team. Some WIs in our dataset indicate selfmanagement, i.e. the owner of the WI is also the creator (@UserX = @UserY), and it is typical of WIs of the type Enhancements. In our dataset 36% of non-late and 27% of late WIs are in this situation (Table 6).

Methodological Steps

To characterize the WI discussions, we sought to analyze clusters of WIs for which the associated discussions showed similarities in how they evolved over time (section 3.2.4). To this end, we used cluster analysis techniques [START_REF] Paparrizos | k-shape: Efficient and accurate clustering of time series[END_REF][START_REF] Pereira Rodrigues | Hierarchical clustering of time-series data streams[END_REF][START_REF] Halkidi | On clustering validation techniques[END_REF] on WI discussions (section 3.2.3) that were analyzed and processed in a way to allow for such type of analysis.

To develop the elements in our cluster analysis (i.e. clusters of WI discussions and their items) we analyzed and processed the WI discussions as time series of comments that captured the temporal evolution of the discussions (section 3.2.2). The time series were developed by coding the WI discussions and assigning codes to groups of comments in the discussion; a code represents a label indicating the topic that best characterized the respective group of comments (section 3.2.1). This analysis was conducted on both the late and non-late WIs. Throughout this analysis we interacted closely with an IBM development team leader involved in the Jazz project during the iterations in our dataset to validate our understanding of the WIs, their context of implementation and details of the WI discussions.

To answer RQ1, we first analyzed the late WIs clusters and searched for patterns that might explain reasons for delays in the WI implementation. For RQ2, we then contrasted the properties of the late WI with that of the non-late WI clusters to further our understanding of reasons for delay in WI implementation.

We illustrate this staged analysis process in Fig. 2 and explain it in detail in the following subsections.

Thematic Analysis of Work Item Discussions

To characterize the WI discussion threads in a way that allowed for time series and cluster analysis, we used thematic analysis and developed codes that represented the main discussion topics of the discussion threads. Thematic analysis is commonly used in qualitative research. It is a systematic coding and categorization approach used for exploring textual data to identify themes, analyze them, and provide an explanation of the underlying patterns [START_REF] Braun | Using thematic analysis in psychology[END_REF][START_REF] Vaismoradi | Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study[END_REF]. While thematic analysis are widely used in social science [START_REF] Smith | Qualitative psychology: A practical guide to research methods[END_REF] and health [START_REF] Desantis | The concept of theme as used in qualitative nursing research[END_REF][START_REF] Fereday | Demonstrating rigor using thematic analysis: A hybrid approach of inductive and deductive coding and theme development[END_REF], the software engineering literature contains only few uses of this method to analyze and characterize the software development process [START_REF] Cruzes | Recommended steps for thematic synthesis in software engineering[END_REF].

In thematic analysis, the most sensitive stage is the coding of the content under analysis, during which the data is categorized, manually or automatically, to facilitate analysis [START_REF] Saldaña | The coding manual for qualitative researchers[END_REF][START_REF] Braun | Using thematic analysis in psychology[END_REF]. Hay [START_REF] Hay | Qualitative research methods in human geography[END_REF], recommends a two-step process beginning with basic coding in order to distinguish overall topics, followed by a more in depth, interpretive code in which more specific trends and patterns can be interpreted. While qualitative coding often is done manually by the researchers, contemporary natural language processing tools such as Weka [START_REF] Hall | The weka data mining software: an update[END_REF] can be used to automatically categorize pieces of text into predefined categories. Such tools can help speed up coding processes that use a single pieces of text as an objects for topic identification [START_REF] Liu | Adversarial multi-task learning for text classification[END_REF][START_REF] Pranckevičius | Comparison of naive bayes, random forest, decision tree, support vector machines, and logistic regression classifiers for text reviews classification[END_REF]. This is the case for a priori -based coding where categories are available or can be easily deducted, as can be the case for, e.g., survey or interview transcript data [START_REF] Karvonen | Systematic literature review on the impacts of agile release engineering practices[END_REF].

In our analysis, we applied a conventional content analysis technique [START_REF] Hsieh | Three approaches to qualitative content analysis[END_REF] to examine, review the conversations, and identify the main discussion topics as codes. A code in our approach was associated to a group of consecutive comments that were semantically related. Our approach was to shift the focus of analysis from the individual phrases and words in comments to the semantics, understood as core messages within groups of comments in the discussion. For example, we used the code AD (Administrative Discussion) to categorize sets of consecutive comments around planning of work and status updates regarding implementation, testing or delivery. Similarly, discussions related to needed functionality or its purpose within the project were given the code FD (Functionality or purpose discussion).

Two of the authors iteratively conducted the content analysis to increase the confidence in the identified codes. We achieved an inter-rater agreement of 83% using Cohen's kappa [START_REF] Helena | Kappa coefficient[END_REF]. We validated our codes and their mapping to WI discussion comments groups in a series of meetings with a development team leader from IBM. We include the codes and their description in Table 7.

Time Series Analysis of Work Item Discussions

Once discussion codes were identified, we treated each WI discussion as a time series of the codes appearing in it, for an example see Figure 3. A time series represents a sequence of values obtained from sequential measurements over time. For instance, in our analysis WI 129055 is a sequence of four codes (AD → FD → AD → FD) where comments one to six (c1-c6) are identified as an AD code (Administrative Discussion).

WI 129055: A AD(c1-c6) B FD(c9-c14) C AD(c15-c17) D FD(c18-c21) E WI 320596: A AD(c1-c9) B BI(c10-c11) C WI 373048: A AD(c1-c2) B NM(c3) C TD(c4) D AD(c5) E WI 59698: A TD(c1-c5) B FD(c6-c10) C OP(c11) D WI 176734: A AD(c1-c4) B FD(c5-c8) C TD(c12-c14) D BI(c18) E AD(c19-c21) F RD(c22-c23) G

Time series analysis comprises methods for analyzing time series data in

RD:

Requests near deadline

One or more comments that prompt extra work near the WI deadline.

-RRC will need to both migrate an existing project operation to a team operation. We also want to add new team operations to the default role.

-Could you pls provide the proper steps to do that and how to validate the result so we can include this in our internal testing?

NM: Needs modification

Single or multiple comments signaling required modifications before the implementation can be accepted.

- -The open migration issues need to take priority over this. While this is a a bvt_blocker its not a critical path and the BVT team has worked around this.

-Right now, this work item is number 6 down the priority list.

order to extract meaningful statistics and other characteristics of the data [START_REF] Tak Chung Fu | A review on time series data mining[END_REF].

Major time series related tasks include pattern recognition [START_REF] Huang | Pattern recognition in time series database: A case study on financial database[END_REF], clustering [START_REF] Pereira Rodrigues | Hierarchical clustering of time-series data streams[END_REF], classification [START_REF] Li | Detection, classification, and tracking of targets[END_REF], segmentation [START_REF] Keogh | Segmenting time series: A survey and novel approach[END_REF], query by content [START_REF] Faloutsos | Fast subsequence matching in time-series databases[END_REF], anomaly detection [START_REF] Gary | Mining with rarity: a unifying framework[END_REF], and prediction [START_REF] Weigend | Time series prediction: forecasting the future and understanding the past[END_REF]. Categorical time series is a time series with nominal values. They have received increasing interest during the last years, and are used to mine qualitative sequential data in diverse fields of practice such as speech recognition [START_REF] Muda | Voice recognition algorithms using mel frequency cepstral coefficient (mfcc) and dynamic time warping (dtw) techniques[END_REF], part-of-speech tagging [START_REF] Wang | Word recognition from continuous articulatory movement time-series data using symbolic representations[END_REF][START_REF] Kim | Mining causal topics in text data: Iterative topic modeling with time series feedback[END_REF], biological sequence analysis [START_REF] Bar-Joseph | Analyzing time series gene expression data[END_REF][START_REF] Ernst | Clustering short time series gene expression data[END_REF][START_REF] Richter | Sequencing of categorical time series[END_REF], network monitoring [START_REF] Christian | Continuously monitoring categorical processes[END_REF] for intrusion detection [START_REF] Ye | Multivariate statistical analysis of audit trails for host-based intrusion detection[END_REF], and many more.

In this paper, we consider a WI conversation thread as a categorical time series with respect to the topics that appear along the thread. We provide all time series that we identified on a GitHub3 repository and discuss their grouping in clusters in the following subsections. We remark that in our analysis these are categorical time series. Unlike typical time series where the codes are numerical [START_REF] Esling | Time-series data mining[END_REF], the categorical time series represent a sequence of categories related temporally to one another [START_REF] Mcgee | Coping with nonstationarity in categorical time series[END_REF][START_REF] Richter | Sequencing of categorical time series[END_REF].

Time Series Clustering

To identify work items that had similar discussions, we used cluster analysis to group the work item time series. Clustering is the task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups [START_REF] Romesburg | Cluster analysis for researchers[END_REF][START_REF] Likas | The global k-means clustering algorithm[END_REF]. The groups are called clusters and are formed by all time series that have structural similarity. The object at the center of cluster, the centroid, minimizes the sum of squared Euclidean distances between itself and each object in the cluster. The centroid can be thought of as the average or the representative object of the cluster [START_REF] Likas | The global k-means clustering algorithm[END_REF]. With clustering, we can identify and summarize interesting patterns and correlations in the underlying data [START_REF] Halkidi | On clustering validation techniques[END_REF].

Our approach was to analyze the clusters of late work items and the codes within their associated time series. Our expectation was that within clusters of similar evolving work item discussions, certain conversation structures could be identified and abstracted as the defining property of the cluster. This property could then be later analyzed and associated with the cause of the delay in the work item.

For the process of clustering the WI time series, we used the k-means algorithm [START_REF] Arora | Analysis of k-means and k-medoids algorithm for big data[END_REF] which requires a metric to asses the similarity of two time series. To this end, we used Dynamic Time Warping (DTW) [START_REF] Petitjean | A global averaging method for dynamic time warping, with applications to clustering[END_REF], which measures the similarity between two time series even if they do not have the same time span, meaning the time series do not have the same length [START_REF] Donald | Using dynamic time warping to find patterns in time series[END_REF]. Furthermore, because we are working with categorical data, a similarity matrix expressing the degree to which time series component items are similar or dissimilar to each other was needed to properly carry out the comparison. However, when combined with k-means clustering, DTW presents a unique challenge due to the averaging used in the calculation of cluster centers [START_REF] Hesam Izakian | Fuzzy clustering of time series data using dynamic time warping distance[END_REF][START_REF] Niennattrakul | On clustering multimedia time series data using k-means and dynamic time warping[END_REF]. To prevent the issue, we used the averaging method developed by [START_REF] Petitjean | A global averaging method for dynamic time warping, with applications to clustering[END_REF] that resolves the time series averaging problem [START_REF] Petitjean | A global averaging method for dynamic time warping, with applications to clustering[END_REF].

Semantic Analysis of Work Item Clusters

The clustering approach provided a grouping of the WI discussions based on structural characteristics of the derived time series. To characterize the meaning of WI discussions within each cluster, we conducted a semantic analysis of comments within each time series. We sought to identify patterns in how the discussion progressed across the WIs in a particular cluster; our purpose was to check if members of a cluster share the same properties, and infer reasons for which WI implementation was delayed or not.

Two of the co-authors read all WI discussions in our data set and considered, for each WI, the following: 1) creation and resolution dates, 2) number and timestamp of comments in the discussion, 3) number of children WIs created during the discussion and which would indicate that implementation work started as the result of discussions, and 4) progression of codes in the WI time series. The codes, indicative of topics of discussion, and their sequence was particularly important for this analysis. The order of codes as well as the temporal distance between them gave an indication of how the topics evolved in the WI discussion. For example, a pattern of comments about planning the WI implementation (coded AD) that dominate the entire discussion until the very last comments that might be coded as TD (technical solution discussion) and no children WI are created, indicate a problematic WI that likely resulted in delay of its implementation due to lack of implementation activity early enough in the iteration. Table 8 outlines the clusters we identified and which we will discuss in section 4.1. These semantics and patterns we validated with the IBM development team leader over four one-hour long meetings during which we ensured that our understanding of the meaning in the WI discussions was correct and consistent with the development context in this IBM project.

Results

This section reports the semantic analysis of clusters as well as a comparative view of late and non-late WI.

Analysis of late work items

The codes we identified in our content analysis of WI discussions, together with their definitions and examples are listed in Table 7.

These codes allowed us to treat each WI discussion as a time series, and Figure 3 shows examples of such time series. The clusters we identified as groupings of similar time series are shown in Table 8, which also lists example WIs within their respective cluster. The first item shown in each cluster is the cluster centroid. The WIs were chosen so as to show that certain sequences although apparently different, fall under the same pattern according to our analysis.

Table 9 outlines the six clusters we identified and the patterns inside each one; these patterns represent unique characteristics of groupings of WI discussions inside the cluster. Note that clusters can have more than one semantic pattern (e.g. Clusters 4 and 6). We describe each pattern and the reasons for delay of the WI implementation in the following subsections. Often a single person keeps the team up to date: I've finished an implementation and sent off a patch zip to others for independent testing.

The comments do not indicate discussion around the actual WI implementation and the majority of WIs in this cluster have no associated child WIs, that might have otherwise indicated that work is being delivered in relation to these WIs.

Examining the timestamps of the comments, it appears that comments indicating any agreement on the WI are made only towards the end of the iteration and not sufficient time remains to finalize the WI implementation. Table 10 shows a typical discussion of this type.

Cluster 2:

Ongoing planning and re-scoping of customer requested functionality Main Pattern: AD → FD Reason for delay: Prolonged discussion until an agreement on how to proceed is reached leading to the implementation process passing the planned iteration.

Most of the work items in this cluster are related to customer feature requests for software customization. An example discussion for a WI in this cluster is shown in full in Table 11.

For these WIs, the planning is, for the most part, about assigning an iteration in which the solution needs to be delivered in order to meet the customer expectations. The first few comments are typically setting a deadline (iteration or due date) for the feature implementation, as the following three examples illustrate:

Please also how much time you will need for each segment? I am looking to host this enablement the third week in June please be on the look out for the dates. [...] @userX, maybe you could comment on whether or not this can be done for iFix.1. Thanks! @userX can we do it for 3.0.0.1.

The discussion for planning usually takes less than five comments to come to an agreement which is then followed by a discussion on feature characteristics.

Functionality discussion occupy most of the WI discussion in this cluster and it is mainly about scrutinizing the demand of the customer in the context of the development environment by evaluating the solution in terms of implementation speed and efficient integration, without any breaks and retro-compatibility issues: Comments indicating an agreement on how to proceed are often among the last and towards the end of the current iteration, and any agreed implementation is often carried out outside the current iteration (Table 11). Another distinguishing property of this pattern is that there are no children tasks created to parallelize and speedup the WI implementation. AD user2 268 @user3: is there any idea yet of when this may be implemented? user3 0 Probably in the June 2014 release. user3 0 FYI to @pwvogel @user4 and @jpwhit that we are getting more inquiries as to when we make this shift. We should look at a exploration in 4.0.6 and look to make the switch in the June 2014 release.

At that time we will be looking to bundle WAS Liberty and later versions of IES on the client and server. user4 1 Agreed. That's what I've been telling folks (I get inquiries too) -June 2014 user1 13 @user3 @user4 The System Requirements link https://jazz.net/SystemRequirements says WAS 8.5.5 will be supported as of 4.0.5 which runs on Java 7 , is this information correct? FD Table 11 -Continued from previous page user5 13 "@user4 and @duongn, For RTC Install, we would like to start packaging the Java 7 JDK with the RTC Eclipse 4.2.x client. The main reason for doing this is to unblock the creation of a Mac-based IM install for the RTC client (there is no Java 6 IBM JDK for Mac, but there is a Java 7 for Mac). More details are in these items:

-Provide IM based Mac support for RTC client (250364) -see also item 232063, comment 13. This will not affect the server or other clients (like the Eclipse 3.6 client). It also means that RTC would be shipping both Java 6 and Java 7 and the RTC client license would need to reflect that. We would target the same Java 7 build that RAD and RSA 9.x are currently using." user1 1 @user5 in comment 6 it reads like this is with respect to packaging for 4.0.5. Is that true? It is a late for adding such a change I would think. user5 0 "@jdgraham, I don't think we have any commitments to add Mac support for IM in 4.0.5, but we do have interest in it. I'm mainly trying to make forward progress on this so that if we miss 4.0.5, we will be in position to finish it in 4.0.6.

From chatting with @duongn yesterday, he indicated the changes to the RTC legal text could probably be ready for 4.0.5 RC1 (but not for 4.0.5 Sprint 2). However there could be other aspects of this (like Java cert?) that can't be contained to 4.0.5 at this point." user4 1 @jdgraham this is NOT for CLM 4.0.5 Note Planned for above (backlog) It would be way too late for 4.0.5 at this point (agreed). I believe the current plan is for Q2 2014. @sandyg -in Clearinghouse it indicates that WAS 8.5.5 supports Java 6 and above. Does NOT require Java 7. user6 0 @user4 , thanks for clearing that up.... appreciate it.

Cluster 3: Crisis management due to poor understanding of requirements

Main pattern: AD → TD Reason for delay: Inadequately elicited requirements. Work items in this cluster are characterized by discussions that indicate mitigation strategies to avoid implementation delays, followed by hasty implementation. The work items are of high priority and need to be addressed in order to unblock a dependent WI or to meet a release candidate. For example, in WI 182270 : @userX Based on feedback from the JAF PMC, this item will take precedence for us in M6, pushing incomplete arch debt work out to M7. This is a very high priority item on the JAF 2012 plan and it is now ready for adoption by the components, so we need to take care of it as soon as possible[...].

Consequently, a lot of children tasks are created to speed up the implementation of the features.

However, due to poor understanding of the requested functionality, the team is left with little choice and realizes the scope of work is too broad and the development of the specifications takes too much time:

@userX -the work on this one is actually in-progress and hopefully will be delivered soon (see the linked child story). We don't really have a choice here since the IBM JRE team is no longer accepting dependencies on Java 6 due to it being EOL by Oracle. I've updated this plan item to indicate the dev commitment level. This is going over the estimate because the migration piece is more complicated than I was hoping it would be.

The result is providing the minimum necessary implementation to pass the release and push the remaining work into a newly created WI, for a future iteration. The pattern also indicates that there is poor elicitation for these WI in terms of the required features and its importance within the planned release. An example discussion for a WI in this cluster is shown in Table 12. 0 Also, the @deprecated tag should include information on how to move off of the methods, so our clients can adopt easily. user2 3 In addition to these comments, I discovered a more major problem with my changes. I did not update the remove method to account for the new context type and the fact that a group might contain the same item twice with different context types. I will deliver this for M8 if I can implement it tonight. user2 0 Actually we do not support the addition of a process area to the same access group twice, which should be fine going forward, so I don't need to worry about the remove case. But I still needed to update the remove method to account for the new context type. And I discovered a junit gap, which I filled in. In the process I saw that we needed to be passing another service (the item service) into ProcessAreaContextUpdater when we instantiate it in Access-GroupService#getContextMembersToAdd. Table 13 shows an example discussion of this pattern. WI discussions presenting this pattern are representative of solution proposals, clarifications and considerations of tradeoffs in possible design solutions. They usually exhibit some uncertainty regarding the general direction of the work items and corresponding work; the discussions are not about the technical issues, but clarifications on the desired functionality. Agreements on necessary work are reflected in assignments to new children WI and not discussed in these work items. We can ship process authoring with some predefined process descriptions (exported from RMC) and import these predefined process descriptions to create samples. user2 0 deploy a process description to deploy preload process description? but I don't think we can do that for this release. user5 30 If someone already started working on any topic, please comment in this work item so we will not step on each other. user4 0 @user5 @user2 @user3 I created a wiki page https://jazz.net/*/ProcessAuthoringUserGuide. I think we can use this wiki page to write the user guides for how to use process authoring in CLM 2011. I have already taken over permission part, viewlet part and started working on these two parts. user2 3 I created a wiki page for RMC integration user1 5 @user5 Phong, assigning to you to track this. Currently, we have three articles that are written or in progress (the three child tasks of this story). Other ideas for us to consider are blog posting(s), sample process descriptions for customers to import, and maybe a video introduction. user5 0 We can make the Eclipse Way process description available for customers to import.

Pattern 2: Feature rescoping (NM → FD) Reason for delay: Major modification requirement. Table 14 shows a typical discussion of this pattern. When this pattern occurs, it represents a required modification to the base functionality of item, not just a technical issue: This could be due to a miss understanding of specifications, either by the developer or reviewer: Work-items in this pattern are typically high level descriptions of functionality, i.e. plan items or stories: @userX,@UserY, @userZ, the issue of whether or not we want to do a bulk role editor came up [...] I think that there are some limitations to doing a bulk editor in an iframe that may make us want to reconsider our solution. Implementing a bulk editor natively in LPA might be a better option. What are your thoughts? .

Table 15 illustrates a typical WI in this pattern. Discussion starts on possible ways to implement the feature in terms of feasibility and time constraints. The creation and planning of children tasks is discussed to tackle the agreed part of the feature.

There is however a long gap between this planning discussion and follow up discussions (during this time children WIs are being completed). Yet the planning of the next steps indicates that work will go beyond the current iteration.

Gap

Comment Theme user1 0 "@user2 Is it safe to assume that hasLocalRepository implies local friends storage ?In other words: Applications that are built on the JAF SDK and run in delegated authentication mode must store friend relationships in their local repository" FD user2 0 There was a recent email thread on that topic, and I don't think that it was definitely agreed that fronting app friend storage should be local. It pretty much has to be in 4.0, since lots of JAF services expect to fetch friends from the local repository, and there's no time to change that now. So I think the answer should be yes (at least for 4.0). But I'd like to check that @user3 and @user5 agree. user3 0 @user2 sorry, the mail thread got buried. Reviewing it now in the context of prepping for DM migration call. user3 0 @user6 I agree with comment 2, esp. the at least for 4.0 part, and migration of existing apps that currently have a private JTS. I'm not yet convinced it's what we would want in the future or for new build apps. I doubt we could avoid it for a 4.0-based new build app though without a lot of new API. user2 2

In the last DM migration meeting (on 2/1), there seemed to be no objections to the strategy of storing fronting app friends in the fronting app's own repository, so @user1 I believe we can say the answer to your question in comment 1 is yes . user4 0 "@user1 -is this task anything more than modifying DelegatedAu-thProvider to provide an access to the local friends list, and fixing the jtsConsumer references? I'm noticing the 2w estimate. I'd like to do at least part of this so that I can continue with OAuth 4.1.6. Cluster 6: Technical clarification and coordination leaving no time for finishing the work item Pattern 1: TD → AD Reason for delay: Additional planning and coordination required beyond the current iteration. An example discussion is available in Table 16.

Discussions following this pattern show a technical clarification step, followed by coordination between team members for implementation. In some cases, the solution is decided upon or even done but cooperation is required to decide the following steps, like integration or testing.

We talked about how to do this today, do you want to push this bug down to repo, or should I open our own to implement it? Had a conversation with @UserX, he will get back to us on this after testing in his dev environment. Pattern 2: Implementation hesitation(TD) Reason for delay: Extended technical clarifications. An example discussion for this pattern is shown in Table 17. Items falling under this pattern show a lack of confidence in how to approach the implementation of the solution. Usually the discussions are centered around different proposals towards the same goal, weighing the implications of each, or speculation regarding the ambiguous requirement or specification.

The one question I have is whether we want to include the new zOS steps there. I am thinking something in between Option 3 or 4 could be envisaged. If so, then Option 4 could consist in [...]. This might however not perform well. Option 3 is more work in [...], but we should explore that path. Conversations following these two patterns are relatively similar in that they require work just before the assigned deadline. The solution itself is implemented, on time, but it either needs to be approved through a code review or it requires modifications following a code review for the delivery to take place:

Could you review the changes I made for [...] ? @User, for the text of the link to configure for time periods, we decided to go with the general:

[Item1], [Item2].
Table 18 shows a typical discussion of this pattern.

Comparative Analysis of Late and Non-late Work Items

Table 19 outlines the results of the cluster analysis of the time-series of the non-late work items. We conducted a similar analysis of the 1) semantics in the WI discussions within each cluster to discover patterns across the respective WI time series, 2) time stamps of comments and 3) number of child tasks created during the WI iteration as we did for the late work items.

Across all non-late WI we identified one predominant pattern in the evolution of their discussion over time, and one that is much different than those in the late WIs. We describe the pattern below, though there are certain interesting differences between the late and non-late WI discussions along the other two dimensions that merit highlighting first:

1. The non-late WIs have many more comments and much higher frequency of communication. The 125 non-late WI have a total of 4068 comments vs 2655 in the late WIs. Figure 4 and Figure 5 show the WI distribution based on the average number of days between their comments, and number of comments respectively for these 125 late and 125 non-late work items sets. The average number of days between comments, for a WI, is obtained by dividing the number of elapsed days from the first to last comment by the number of comments. The histogram indicates that the late WIs discussions are more spread in time whereas the non-late WIs discussions are more dense in shorter intervals.

2. Discussions on non-late work items result in much more work delegated to children tasks for implementation. The 125 late WIs have associated with them a total of 253 child tasks, whereas the non-late ones have a total of 437. A paired-samples t-test of significance in the number of children for late WIs (M = 2.02; SD = 3.68) vs. non-late WIs (M = 3.50; S = 3.94) yields a significant difference at p = 0.005, suggesting that the number of children does have an effect on WI timely completion.

Finally, our analysis of the sequence of codes and the semantics of the WI discussions in these clusters yielded a single predominant pattern across clus-ters, one that was much different than those in the late WIs. Across all these non-late WIs there is a cyclical sequence of codes aligned with agile development and indicating alternating discussion topics of feature clarification, feature design, technical discussions and clarifications and so on.

The characteristics of these discussions include: 1. A request is typically answered quickly, with several comments in the span of a few hours indicating an active conversation followed by an implementation period with reduced comment activity.

2. Misunderstandings, ambiguous requirements or development inactivity are typically resolved by the intervention of a senior developer or manager, offering the needed guidance. This intervention does not necessarily provide a clear solution, but is often a guided discussion towards a resolution or a consultation with individuals outside of the platform, e.g.: 3. The implementation scope is assessed early and narrowed down if necessary, as it can be seen by the multiple occurrence of TDs (Technical discussion) and FDs (Functionality discussion) sequence of codes in table [START_REF] Esling | Time-series data mining[END_REF].

4. Reports of decisions made external to the communication platform are included to avoid delays in the WI implementation, e.g.:

Talked to @User in person, so removing his approval (approved verbally).

Results

Our analysis of online developer discussions and clusters of similar WI discussions revealed six patterns of WI delay. The must surprising finding was the strong consistency between the structural (WI time series representation) and the semantic (WI discussion content) patterns in the late WI clusters. WI discussions with high structural similarity (WI in the same cluster) shared the same reason for delay. Although having an homogeneity in a cluster is the goal of clustering, high semantic consistency within WI clusters was unexpected. This behavior suggest consistent interaction dynamics among the developers. The major contrasting points in our analysis between the late and non-late work items are the communication and the tasks dispatch management.

Communication is Key!

Communication in a project is important and even more when a group has to evolve towards a common objective. Our analysis reveals that the coordination and planning around WI that are late take too long to result in agreement. Discussions are slower and the responses to requests are not handled fast enough, leading to finishing the implementation beyond the planned iteration. Another communication issue noticed is the endless planning and rescoping discussions around the late WIs. Cluster1 in the late WIs is a typical example. Some patterns in these late WI discussions indicate that they appear to suffer from decision paralysis. Often stakeholders continue to clarify the requirement because it is ambiguous, incomplete, or has frequent changes. As a result, its implementation can be delayed or sometimes never get started. Bikeshedding, also known as the Parkinson's law of triviality [START_REF] Northcote | Parkinson's Law or the Pursuit of Progress[END_REF][START_REF] Mcfedries | Agile words [technically speaking[END_REF] is another common situation in which developers give disproportionate weight and time to solving trivial issues and delay development.

In contrast, our analysis of comment time-stamps shows that the non-late WI are characterized by communication that is quite frequent and with requests being processed quickly and effectively. This suggests that the fast responses and feedback present in conversations are a possible reason for the timely resolution of these WI. Discussions are fluid and requests are addressed promptly to avoid blocking the progression of the WI implementation. As a result, developers and team leads are able to adjust the WI scope, and easily divide the task to the children without coordination overhead. This result suggests that the design of future collaboration tools can include digital nudges to help developers become aware when to increase the frequency of communication about particular WIs and therefore possibly reducing the delay of feedback in the project. Digital nudging describes "the use of user-interface design elements to guide people's behavior in digital choice environments" [START_REF] Weinmann | Digital nudging[END_REF]. As such, we believe, labeling/nudging (automatically or manually) messages about the severity (blocker or not) and the priority (emergency or not) of WIs will increase the possibility of handling blocking WIs and thus reducing the overall delay of the project.

Task Management Matters!

Our analysis suggests that the way and frequency with which WI tasks were managed was different in the late vs. not late WIs. In non-late WIs the elicitation of requirements appears to have been more thorough, resulting in an easier process of dividing tasks to children. Moreover, given the frequency of responses in the WI discussions, actively rescoping the functionality and eventually delegating some to the children tasks in order to meet the objectives was possible. In contrast, the discussions in the late WIs suggest the intention to fulfill all the requirements at once in the implementation of one single WI without much delegation to children tasks. This behavior is likely the result of too much time spent in clarifying and eliciting further information on the WI, without much time left for its implementation review or modifications.

What About Technical Debt?

Introduced by Cunningham [START_REF] Cunningham | The wycash portfolio management system[END_REF], technical debt explains the need for refactoring, and the impact of design choices on a software product. Research on technical debt has since explored and studied the metaphor to explain [START_REF] Sterling | Chapter 2: Technical debt. Managing Software Debt: Building for Inevitable Change[END_REF], assess [START_REF] Gat | Technical debt assessment: A case of simultaneous improvement at three levels[END_REF] , manage [START_REF] Mcconnell | Managing technical debt[END_REF], or understand the impact [START_REF] Power | Understanding the impact of technical debt on the capacity and velocity of teams and organizations: Viewing team and organization capacity as a portfolio of real options[END_REF] of technical debt on the organization productivity. Technical debt relates to the additional cost and rework over the software life cycle when a short-term, easy solution is chosen instead of a better solution. As such, it conceptualizes the trade off between the short-term benefit of rapid delivery and long-term value. Understanding and managing technical debt is an important goal for many organizations. Not all debt is bad, and if incurring some technical debt helps your company achieve a big goal, then it could be worth the "interest payment" of a more difficult task of future software updates or adding new features. But problems do arise, and what may seem like minor annoyances now often become major issues if left alone for too long.

In the IBM project we studied, we notably identified two kinds of technical debt:

• Planned technical debt, when the team is challenged by the iteration deadline and forced to choose to implement high priority features and to push the remaining features into the next iterations by creating new work items to track the debt. For instance, Cluster 3 for Crisis management is a perfect illustration. This kind of technical debt, despite the additional work carried over to the upcoming iterations, has the advantage of not being "forgotten" to be paid, i.e., the features are saved for future implementation.

• Unplanned technical debt, when a workaround (quick and easy solution) is provided in order to deliver a blocking or high priority feature. Unlike the previous one, this kind of debt is not easy to track, as there is no creation of WI to "remember" the debt and the team moves quickly/forward to the implementation of new features. The major consequence is that the debt is forgotten and grows up to becoming a liability for the system maintainability and scalability.

Our analysis shows that both of these two types of debt are found in both late and non-late WIs, even though they are more recurrent in late ones. A worthwhile future research direction is to investigate whether late WIs are in fact consequences-of/related-to techical debt in non-late WIs (i.e. the cause of/correlated to), and whether they would be planned or unplanned technical debt.

Implications

For Research

To the best of our knowledge, our work is one of the first to use timeseries and clustering techniques on results of thematic analysis on developer conversations. We believe there are a number of new areas worthy of further exploration, guided by questions that include:

• Is it possible and how to automatically segment conversation threads with respect of the theme discussed? Themes identification in thematic analysis is very time consuming. Currently it needs to be carried out manually since it can cover multiple comments and there is more than one theme in one conversation.

• Could sentiment analysis technique be employed to enhance the analysis outcomes?

• What features could complement text data to not only characterize the development but also predict the impact on the iteration and its deadline?

All those questions highlight natural language processing and machine learning challenges for design and evaluation of automated means to identify the patterns.

For Practitioners

Our work has implications for tools that automatically support iteration planning and monitor development progress for project managers. Such tools can actively analyze the conversations developers carry on particular WIs and provide profiles of WIs and their progress. The profile can suggest whether the WI implementation process has issues through the identification of codes (AD, FD,) and their sequences, and recommend the potential impact on meeting the planned implementation deadline. It will help managers to be proactive by quickly reacting on blocking items and constantly tracking the milestones and adjusting accordingly to the deadline. Since the automated analysis involves textual data, the more data is formatted (e.g. tags, sentences without slang) the better the automation process can be set up.

Threats to validity

Misuse of tracking platform

One controversial point of using repository data is the extent to which the platform is correctly used or, misused. It is easy to imagine submitting statistics or tracking information in such a way as to artificially improve certain performance indicators or obscure latent problems. This type of practice represents a difficult to overcome hurdle as we have no other way of analyzing a past situation but through data that is, potentially, misrepresenting the actual reality of the situation and its context.

Communication outside the platform

As the tracking platform is only one of the tools used for communication within the project team, some information is impossible to capture. Teams share information in an informal, face-to-face manner or by means of calls or emails that are not present in our data-set. We have encountered comments such as 'After the discussion with [...]' clearly indicating that decisions were outside of the platform. Even though the result is sometimes communicated and logged, we cannot ensure how many other undisclosed conversations have an impact on the project, an impact that is hard to track and analyze.

Too high abstraction level

The first step in our process consisted of labeling each comment in WI discussions with a theme best describing its content. When a comment was related to more than one theme, we assigned it, for the sake of consistency in our methodology, to the predominant theme. This level of abstraction may have removed critical information necessary for accurate analysis and interpretation. Moreover during the semantic analysis, it was observed that structural sequences that are very similar can have opposing semantic interpretation, for example a work status report possibly relating to success or a failure in one's endeavor.

Conclusion

Our analysis has showed that text data generated along side software development process is a mine of useful information about the progression in a requirement implementation and the dynamics of developers interaction to address work items efficiently. We used time series to model the chronological evolution of work items' comments chain and with the help of clustering algorithm to group them by structural similarity. The semantic analysis of clusters give an insightful explanation of the delay reasons. We found that late WI exhibit different archetypes of delay and each is associated with a specific reason why the delivery of the requirement is getting late. The common reason for the delay is a lack of fluent communication associated with a poor project management. Conversely non-late WI delegate more to children tasks and are proactive on handling requests.

These finding has a potential to be used to monitor workflow, resolve the knot points quickly, and for more active team management. The comment chains annotations step was done manually. We think there are machine learning and natural language processing challenges here to tackle in our future projects. We also believe that providing communications happening outside the tracking platform (calls, meeting transcripts) can increase the accuracy of the data view.

Figure 1 :

 1 Figure 1: Late and non-late work-item examples

Figure 2 :

 2 Figure 2: Research Methodological Steps

Figure 3 :

 3 Figure 3: WI time series examples; the codes (e.g. AD, FD) characterize groups of consecutive comments (e.g. c1-c9)

4. 1 . 1 .

 11 Cluster 1: Endless work coordination and delivery planning Main Pattern: AD Reason for delay: Coordination and planning take too long to come to an agreement. The discussions in this cluster focus on work item delivery planning or brief work status updates, as shown in the two examples below. I propose we target 7.0.32 at a minimum for 4.0.2. Also, we need to make this happen early in M2. I have implemented all of the changes [...]. I am working on a patch based on [...], and will test it on [...]. The implementation does not work.

[

 ...] Bumping this up to Major severity (my customer actually has it classified as Critical in their ranking).

4. 1 . 4 . 1 :

 141 Cluster 4: Functionality clarification and rescoping that does no longer fit in current iteration Pattern Feature clarification (FD) Reason for delay: Extended functional clarifications without timely decisions.

 More changes required: remove the old unused action label string, add the accelerator for the new menu label [...].

 Maybe I misunderstood; I thought this was for [...].

Pattern 3 :

 3 Additional effort before integration/delivery (TD → RD and TD → NM) Reason for delay: No time left for implementation review and modifications.

@

 User Can you review this and get it into process component once we have a successful build/tests. I brought this WI up at today's PLE Design UI review. The consensus was: [...]

Figure 4 :

 4 Figure 4: Work items distribution based on the average number of days between comments. Average number of days between comments, for a work item, is obtained by dividing the number of elapsed days between first and last comment by the number of comments

Figure 5 :

 5 Figure 5: Late and non-late Work items distribution based on their number of comments

Table 1 :

 1 Overview of Work Item descriptive attributes

	WI attribute	Possible values	Detail in
	Type	Plan Item, Story, Enhancement , Defect, Task	Section 3.1
	Description	Textual description of the WI goals	
	Creation date	WI open date	
	Panned For	Iteration Id	
	Estimate	Implementation duration estimation	
	Resolution Date WI close date	
	Status	On-Track, Behind, Suspended, Abandoned, Done	
	Discussion	Conversation around WI implementation	Section 3.1.1
	Severity	Unclassified, Minor, Normal , Major, Critical, Blocker	Section 3.1.2
	Priority	Unassigned, Low, Medium, High	
	Created By	@UserX	Section 3.1.3
	Owned By	@UserY -WI responsible / coordinator	
	Subscribed By	Collaborators user list	
	Resolved By	@UserY	

Table 2 :

 2 Overview of Work Item types

	Work Item Type Explanation
	Plan Item	Top level items representing requirements or features to be included
		in future releases.
	Story	High level items dividing the work from Plan Items into subsequent
		iterations.
	Enhancement	Item that adds functionality or extends existing features.
	Task	Detailed item contained within a single iteration.
	Defect	Item representing work required for bug fixing.

Table 3 :

 3 Example of Work Item discussion

		Comment	
	Work ID	Number	Comment Text
	115331	1	Extracted from work item 113204.
		2	Additionally, we could implement a substitution parameter in the
			error string so it could read something like: Your client is not com-
			patible with the server...
		3	Running foundation.stable.jcb RJF-T20100625-0850 with these
			changes and then I will try writing the client half to make use of
			this.
			re comment 2: Why does the server return the message? The client
			just needs to know that it's a mismatch and what the server ver-
			sion is. The client could do the message formatting on it's own side
			which will be in the locale/language of the client
		4	The idea is that a server admin can update a setting on the server
			and provide a custom message to all backlevel clients, perhaps pro-
			viding a link to an internal website with client upgrade instructions.
		5	@user I have completed 2 changesets here for this. It sends the server
			version and puts up a new dialog with the link.
			Please review and deliver this if you like it.

Table 4 :

 4 WI severity distribution

				Table 5: WI priority distribution
	Severity	#Non-late	#Late			
	Unclassified	33 (26%)	47 (37%)	Priority	#Non-late	#Late
	Minor	3 (2%)	3 (2%)	Unassigned	31 (25%)	35 (28%)
	Normal	56 (45%)	52 (42%)	Low	2 (2%)	0 (0%)
	Major	22 (18%)	17 (14%)	Medium	20 (16%)	32 (26%)
	Critical	6 (5%)	4 (3%)	High	72 (57%)	58 (46%)
	Blocker	5 (4%)	2 (2%)			

Table 6 :

 6 WI management distribution

	WI management type	#Non-late WIs #Late WIs
	Self (Creator is the Owner of the WI)	45 (36%)	31 (27%)
	Delegate (Creator is not the Owner of the WI)	80 (64%)	94 (73%)

Table 7 :

 7 Code definition and examples of groups of comments they characterize

	Code	Definition	Example group of comments
	AD:	Discussion centered around	-Finished implementing [...] plu-
	Administrative	planning of work as well as	gin to use Composite Context UI
	discussion	status updates regarding implementation, testing or delivery.	(173302) to develop test UI for testing access groups, access group picker and composite contexts. -I updated the description of the
			parent plan item yesterday with my
			current understanding of what we
			should go after in 2012: [...].
	FD:	Discussion related to what	
	Functionality	functionality needs to be	
	or purpose	implemented or its purpose	
	discussion	within the project.	
	TD:	Discussions of technical nature	
	Technical	focused on solving the problems	
	difficulties or	encountered during functionality	
	discussion	implementation.	

-I don't feel strongly about this, but I'm wondering if the confirmation dialog should have OK/Cancel buttons rather than 'Update Stream'/Cancel buttons. -I'm a bit confused about what you are asking for.. Can you tell me how this would be different from the LDAP step in the setup wizard (/setup)? -This new method caused RQM defect [...]. However, we can't implement this new method on the public [...] interface since the return type [...] is internal and it's package is not exported in the plug-in's manifest. -[Logs, Error messages, Code snippets, Component names]

Table 8 :

 8 Clusters of Late work items, and example cluster members (chosen randomly); also included for each WI discussion: respective number of comments and time series. The bold cluster member is the cluster centroid.

	Cluster	WI# #Com. Time series		
	Cluster 1	395124	16	AD			
	10 time series	169941	20	AD			
		170833	15	AD			
	Cluster 2	220330	18	AD	FD		
	18 time series	350131	16	AD	FD	AD	FD
		129055	22	AD	FD	AD	FD
		356527	28	AD	FD	TD	
		72491	15	AD	FD	BI	
		313289	63	AD	FD	AD	AF	TD
	Cluster 3	360792	15	AD	TD		
	20 time series	187151	10	AD	TD		
		267693	15	AD	AD	TD	
		397883	15	AD	TD	RD	
	Cluster 4	106935	20	FD			
	14 time series	174513	23	FD	FD		
		361236	74	FD	NM	FD	FD
		52997	15	NM	FD		
	Cluster 5	193729	17	FD	AD		
	34 time series	356023	54	FD	FD	AD	
		93154	27	FD	AD	FD	AD
		73341	30	FD	FD	AD	BI	FD
		132199	39	FD	TD	FD	AD TD
	Cluster 6	235967	30	TD	AD		
	30 time series	95301	22	TD	AD	TD	
		108122	24	TD	AD	NM	
		90783	18	TD	TD		
		161884	15	TD	TD		
		322783	34	TD	RD		
		254398	15	TD	RD		
		162657	16	TD	NM		
		341921	48	TD	NM		

Table 9 :

 9 Late WI Clusters Overview

		Structural		
	Cluster	pattern	Semantic Pattern	Reason for delay
	Cluster 1 10 time series AD	Endless work coordination and delivery planning	Coordination and planning take too long to come to an
				agreement
	Cluster 2 18 time series AD → FD	Ongoing planning and re-scoping of customer request	Prolonged discussion until an agreement on how to proceed
			functionality	is reached leading to the
				implementation process
				passing the planned iteration
	Cluster 3 20 time series AD → TD	Crisis management	Inadequately elicited requirement
		FD	Endless feature clarification	Extended functional
	Cluster 4			clarifications without timely
	14 time series			decisions
		NM → FD	Feature rescoping resulting in	Major modification
			work beyond current iteration	requirement
	Cluster 5 34 time series FD → AD	Feature design followed by implementation planning	Implementation requires additional work in children
				WIs that are being planned
				for future iterations
		TD	Implementation hesitation	Extended technical
				clarifications
	Cluster 6 30 time series	TD → AD	Technical clarification and coordination	Additional planning and coordination required
		TD → RD	Additional effort before	No time left for implementation
		TD → NM	integration delivery	review and modifications

Table 10 :

 10 Example WI discussion (WI 244762) for pattern AD, Cluster 1

		Day		
	User	Gap	Comment	Theme
	user1	0	@user2 -tomcat 7.0.32 was made available on 12/4 and contains	
			additional fixes. I propose we target 7.0.32 at a minimum for 4.0.2.	
			Also, we need to make this happen early in M2. Can we get this	
			assigned an owner and target?	
	user1	0	correction, to comment 1, 7.0.32 was available 10/9 but the latest	
			security info was made available 12/4.	
			in M2	
			https://w3.tap.ibm.com/w3ki07/display/OSSCProcess/All+ Pack-ages+ List"	AD
	user3	2	The WAS team is telling us that we should be using WAS Liberty	
			Profile instead.	
	user2	3	OSSC approval received for Tomcat 7.0.32	
	user4	3	@user7 FYI	
	user4	0	@user6 and @user5 what is the plan to update Tomcat in 4.0.0.2	
			and 4.0.1.1 to 7.0.32?	
	user5	0	"@user4 There is no such plan that I know of. Since the 4.0.0.2 is in	
			RC 2 next week. Updating Tomcat this late in the game for 4.0.0.2	
			does not seem a good idea."	
	user4	0	@user5 I understand. I didn't get keyed into this problem until	
			this week. Should it be planned for early 4.0.0.3 if that release is	
			planned?	
	user2	1	We should probably consider having separate tasks linked to this	
			plan item for each release where we are going to be bundling Tomcat	
			7.0.32. It needs to go into 4.0.2 and 4.0.1.1.	

user2

2 "Changing the title to reflect 7.0.32. I don't see that version approved yet thru OSSC so need @user3 and Bill Spurlin's help on this. I will be the plan item owner but Christopher Maguire will be the driver from Releng. Plan is to get this early

Table 11 :

 11 Example WI discussion (WI 220330) for pattern AD → FD, Cluster 2

		Day		
	User	Gap	Comment	Theme
	user1	0	@jburns It's intentionally in 4.02 and not schedule for a milestone.	
			I'd like to potentially take another crack at it again in 4.02 at the	
			end in the RC if resources are available or if we institute the run	
			team concept.	

Table 12 :

 12 Example WI discussion (WI 187151) for pattern AD → TD, Cluster 3

		Day		
	User	Gap	Comment		Theme
	user1	0	@user2 I put this in M7. It's probably a stretch for us to get this completely implemented in M7 but hopefully we can do enough that	AD
			it helps us eliminate any grayness with it even if we hold the delivery
			back.	
	user2	35	This is going over the estimate because the migration piece is more
			complicated than I was hoping it would be.	
	user3	14	"This caused 3 new warnings in our tests:	DescriptionRe-
			sourcePathLocationType The method enableTeamAreaReadAccess-Context from the type IProcessServerService is deprecatedPro-	TD
			cessServiceTests.java. The method isTeamAreaReadAccessContex-
			tEnabled from the type IProcessServerService is deprecatedPro-
			cessServiceTests.java The method isTeamAreaReadAccessContex-
			tEnabled(ITeamAreaHandle, String) from the type IProcessSer-
			verService is deprecatedProcessServiceTests.java	
			If the methods are deprecated, seems like the tests should not use
			them"	
	user3			

 Draft understanding question of this work item: [...] What should we do about this? Do we want to [...]? If so there are a couple of issues. The simplest way to do this is via [...]. I've submitted this as work item 124549.

Table 13 :

 13 Example WI discussion (WI 166350) for patter FD, Cluster 4

		Day		
	textbfUser	Gap	Comment	Theme
	user1	0	@user2 @user5 @user3 @user4 Any other ideas?	
	user2	0	Is it possible to ship preloaded process descriptions/ prac-	
			tices(exported from RMC) together with PLM and tell the user	
			that they can benefit from PLM?	
	user3	0	I think we could provide an article in Jazz.net that describing	
			some best practices how to use process authoring. For the	FD
			existing templates, their web sites are generated by RMC from	
			libraries, we might provide some exported process description	
			zips for each templates that let user import it directly.	
	user4	0	My suggestion is provide an extra link in start page to	
			create a sample process description, just like process tem-	
			plate(predefined template) and CLM(financial banking appli-	
			cation) did. Now we have 3 links Create/Import/Associate ,	
			we can add another link named Create a sample process de-	
			scription .	
	user4	0	Continued to comment 4, we can do that in PLM as well.	

Table 14 :

 14 Example WI discussion (WI 52997) for pattern NM → FD

		Day		
	User	Gap	Comment	Theme
	user1	0	@user2 Please review for delivery.	
	user2	0	With the move to the New menu, the action string will need to be	
			changed from Create Process Template... to Process Template... to fit with the New menu conventions.	NM
	user3	1	@user2 Implemented the review comments. Ready for review again.	
	user2	0	"More changes required: remove the old unused action label string	
			add the accelerator for the new menu label	
			We always strive to have unique accelerators for a menu entry. We	
			also work to keep only the strings that are currently in use as each	
			string needs to be paid to be translated.	
			Added a changeset with these additional changes."	
	user2	0	Approved with additional changeset. Please release my changeset	
			as well Shivank. Thanks.	
	user3	0	Resolved.	
	user4	12	"The new location and label of this action loses any of the conno-	
				FD
			wrong	
			direction."	
	user3	2	"@user4, @user1: I agree with the comments above. We are not	
			creating a 'new' process template from scratch but duplicating /	
			extracting process configurations of selected project area and wrap-	
			ping it into a new process template. New action does not give this	
			picture.	
			We should move it back to main context menu and assign it a better	
			caption. I was thinking on the lines of Duplicate Process... Extract	
			Process... Extract Process Configurations... I avoided using keyword	
			'Process Template' above because it might give a picture that we	
			are trying to duplicate the original process template which was used	
			while creating the selected project area.	
			suggestions? :-)	
			ps: I hope, I am getting it right now after learning about the process	
			world a little better :-)"	
	user4	0	I like Extract Process Template... actually.	
	4.1.5. Cluster 5: Feature design followed by implementation that extends beyond
		current iteration	
	Main Pattern: FD → AD	
	Reason for delay: Implementation requires additional work in children WIs
	that are being planned for future iterations.	

tation that this action will create a process template *from* the project area. Now it just looks somehow misplaced. Normal New actions create a basic item, possibly with some values filled in from the context (e.g. new team area shows the selected project area as the parent area). But this action doesn't create a new process template that has some field initialized to the selected project area: it's almost a kind of export. I don't think the previous wording was great by any means and I'd be happy to see it improved. But this change is a move in the

Table 15 :

 15 Example WI discussion (WI 193729) for pattern FD → AD, Cluster 5

	Day
	User

Table 16 :

 16 Example WI discussion (WI 67521) for pattern TD → AD, Cluster 6 Its not different, it just requires some different update paths in order to maintain transaction safety. You cannot use volatile fields for concurrency reasons if updating the value of the field needs to know the previous value of the field. To update a list (add/remove), you need to know the previous value of the list.

		Day		
	User	Gap	Comment	Theme
	user1	0	Can you elaborate on why this is different from any of the other	
			caches?	
	user2	0	""	TD
	user3	0	"You can use volatile fields, that isn't the problem. The problem is	
			you want to update a collection in a transaction safe way. The way	
			it currently is with transactional cachei f you start with t1 adds	
			a meanwhile t2 adds b. t1 commits so now the collection has a if	
			somebody fetches the collection at this point it will be marked as	
			the current value. If t2 now commits, it will commit b, and now the	
			cache is wrong."	
	user1	0	How would that work with items? It would throw a stale data ex-	
			ception when t2 attempts to commit. Why should this be different?	
	user3	0	"Because you want concurrent access to the collection. It should be	
			fine for 2 transactions to add values to it simultaneously."	
	user1	0	Ok, I just took a look with Balaji, because he has similar require-ments with the cache to be used by the context manager service	AD
			(user->list of context ids). We should collaborate on the solution so	
			we don't overlap. If you guys propose something before we do, just	
			let us know.	
	user4	29	We talked about how to do this today, do you want to push this bug	
			down to repo, or should I open our own to implement it?	

Table 17 :

 17 Example WI discussion (WI 90783) for pattern TD, Cluster 6

		Day		
	User	Gap	Comment	Theme
	user1	0	This would come from your working directory argument in your	
			server launch config.	
	user2	2	@user3, JFS needs to create these directories for query and search. There are config props for this -but the default value will be the	TD
			under the working directory.	
	user3	0	"We do not access JFS at all in our tests, I am not sure why this	
			is being eagerly activated. It gets tiring updating all the launch	
			configs every time something like this pops up. (I have over 100, for	
			different databases, test suites, configurations). Why can't you use	
			/tmp in the test context?"	
	user3	0	Or alternatively, we add things to jazzignore for all plugins which	
			contain launches.	
	user2	2	re: using /tmp in the test context -how do we detect that? Yet	
			another property?	
	user3	0	If the property is unspecified, you could put it in a subdirectory of	
			/tmp and print a warning as we do for the versioned content service.	

Table 18 :

 18 Example WI discussion (WI 169891) for pattern TD → RD, Cluster 6

		Day		
	User	Gap	Comment	Theme
	user1	0	"JFS provides such a command, and a mean to repair the orphan	
			data. Why is this needed for 3.0.1.1 ?"	TD
	user2	0	@user1, what command are you talking about? The only related	
			commands I see in my workspace are ListStorageAreaKeysCommand	
			and SetStorageAreaKeysCommand, which deal with oAuth keys and	
			not application keys. Right now we need to get this into 3.0.1.1	
			because it is possible that any customer using a 3.0 or 3.0.1 server	
			can lose their data as discussed in the parent defect 168625 comment	
			16 & 18.	

Table 18 -

 18 Continued from previous page

	user2	12	"We'll need 5 strings translated for the new repotools command.	
			Two of these strings already exist (the log and teamserver.properties	
			parameter descriptions), but it seems the standard is to create a	
			new property in the plugin.properties file for the specific command.	
			Command Strings: Command description Parameter description -	
			log file path (5 words) Parameter description -teamserver.properties	
			(5 words)	
			Output Strings: Invalid Application Ids: Associated Project Areas:	
			[x] more..."	
	user2	1	@user3, I've attached a completed changeset with the necessary strings for the command, because strings needing translation are	RD
			due by tomorrow night's 3.0.1.1 build. Could you take a look and	
			make sure the Messages files are structured properly, and that the	
			messages themselves make sense?	
	user2	25	@user4 The command implementation is basically the same as when	
			we went over it last week; The only change I put in was to add a	
			new error message and log statement to the query service catch	
			statement in queryForInvalidIds.	

Table 19 :

 19 Clusters of non-late work items. Example members choose randomly and their respective number of comments and time series. The bold item is the cluster centroid.

	Cluster	WI#	#Com.	Time series
	Cluster 1	395581	25	AD FD TD TD
	35 time series	302249	15	AD FD TD AD TD
		393762	19	FD AD FD TD AD
		391076	40	FD AD TD TD FD NM
		392077	27	AD TD AD FD AD NM FD TD
		831210	44	AD NM FD TD AD FD AD NM FD TD AD
	Cluster 2	200493	42	AD FD AD FD AD
	27 time series	303580	26	AD FD AD FD AD FD
		377366	31	AD FD FD AD NM NM AD TD FD
		243986	23	FD AD FD AD TD FD AD TD AD
		388777	33	AD FD AD FD AD FD AD TD AD FD
		337404	37	AD FD AD TD AD TD AD TD AD FD AD FD
	Cluster 3	244242	39	FD TD FD TD FD AD
	30 time series	310689	23	FD FD TD FD AD FD AD AD
		244209	58	TD FD TD AD FD TD FD TD AD
		169933	43	AD FD TD FD OP TD FD NM TD AD
		245250	60	FD TD NM FD TD AD FD TD FD TD AD
		342815	52	FD TD AD TD FD TD AD FD TD FD TD AD
	Cluster 4	310617	47	FD AD TD AD FD
	21 time series	342604	38	FD TD AD FD AD TD
		169933	43	FD AD TD AD FD TD AD
		356801	35	FD AD TD AD FD AD NM TD
		266362	69	TD AD OP TD AD FD AD FD TD
		341514	52	AD FD AD NM TD AD FD AD FD TD
	Cluster 5	399037	19	TD AD TD
	12 time series	380891	15	TD AD TD
		320721	16	FD OP AD TD
		395618	17	TD AD TD AD
		305281	25	TD AD TD AD TD
		289587	39	TD AD TD AD FD OP AD TD

https://jazz.net

https://github.com/salaouab/archtype-of-delay