
HAL Id: hal-03493503
https://hal.science/hal-03493503

Submitted on 4 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA implementation of an enhanced chaotic-KASUMI
block cipher

Mahdi Madani, Camel Tanougast

To cite this version:
Mahdi Madani, Camel Tanougast. FPGA implementation of an enhanced chaotic-KASUMI block
cipher. Microprocessors and Microsystems: Embedded Hardware Design , 2021, 80, pp.103644.
�10.1016/j.micpro.2020.103644�. �hal-03493503�

https://hal.science/hal-03493503
https://hal.archives-ouvertes.fr

ACCEPTED MANUSCRIPT - CLEAN COPY

FPGA Implementation of an Enhanced
Chaotic-KASUMI Block Cipher

Mahdi Madani

Laboratory IETR, University of Nantes, Nantes, France
Email :mmadani49@gmail.com

Camel Tanougast

Laboratory LCOMS, University of Lorraine, Metz, France
Email :Camel.Tanougast@univ-lorraine.fr

Abstract

The radio link is a broadcast channel used to transmit data over mobile net-
works. Because of the sensitivity of this network part, a security mechanism is
used to ensure users’ information. For example, the third generation of mobile
network security is based on the KASUMI block cipher, which is standardized
by the Third Generation Partnership Project (3GPP). This work proposes an
optimized and enhanced implementation of the KASUMI block cipher based
on a chaotic generator. The purpose is to develop an efficient ciphering algo-
rithm with better performance and good security robustness while preserving
the standardization. The proposed design was implemented on several Xilinx
Virtex Field Programmable Gate Arrays (FPGA) technologies. The synthesis
results and a comparison with previous works prove the performance improve-
ment of the proposed cipher block in terms of throughput, used hardware logic
resources, and resistance against most cryptanalysis attacks.

Keywords: KASUMI block cipher, Hight performance, Robustness, FPGA
implementation, Finite state machine, Simplified functions, Chaotic generator,
Architectural synthesis.

1. Introduction

Nowadays, wireless technologies are widely used in our lives for communi-
cation in general and for mobile networks in particular. Due to the weaknesses
of the radio link used, the transmitted data is secured by using ciphering algo-
rithms.

In this study, we are mainly focused on mobile networks such as Global
System for Mobile communication (GSM) and Universal Mobile Telecommuni-
cation and System (UMTS). Therefore, the main security algorithm used by
those networks is the KASUMI block cipher, which forms the kernel of GSM

Preprint submitted to Elsevier 10 novembre 2020

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0141933120307900

ACCEPTED MANUSCRIPT - CLEAN COPY

and UMTS security mechanisms [1, 2] widely used in most countries. However,
in the last decade KASAUMI security was the object of many cryptanalyzed
attacks as mentioned in [3–9]. But, investigations are still proposed to improve
the security and resistance of the KASUMI algorithm [10–12]. For this reason,
we decided to try proposing a solution aiming to recover this problem.

In this paper, we propose an efficient implementation of the KASUMI block
cipher while overcoming its weaknesses. The main purpose is to enhance its
robustness against cryptanalysis attacks and to perform improvement in terms
of throughput and used hardware logic resources suitable for embedded systems
like mobile phones.

The main idea is to simplify the internal structure of the standardized al-
gorithm while including a chaotic generator to ensure a high robustness level.
Therefore, the simplification is accomplished on four architectural levels. The
first and low level consists to combine the initial Substitution Boxes (S-Boxes)
S9 and S7 (defined in the KASUMI standard) only in one Global S-box (GS)
using the combinational logic technology. The second level consists to replace
the initial FI function using the ameliorated GS to form a simplified FI’ func-
tion. The third level consists to replace the initial FO function based on initial
FI by a new simplified FO’ function based on the simplified FI’ function. The
fourth level consists to combine two FL and two simplified FO’ functions to
create the new kernel of the proposed algorithm. This technique allows us to
eliminate the well-know problem of odd and even rounds. Finally, we combined
our simplified KASUMI with a chaotic generator to improve the randomness of
the final output keystream. A control unit based on a Finite State Machines
(FSM) manages the connection between the different architecture levels.

The proposed approach has been described using a VHSIC Hardware Des-
cription Language (VHDL) description and implemented on Field-Programmable
Gate Array (FPGA) technology. The robustness has been tested by evaluating
the generated keystream distribution, analyzing the key sensitivity, examining
the key space complexity, and investigating the National Institute of Standards
and Technology (NIST) statistical tests [13]. The comparison with previous
works [14–23], and experimental results show the the originality of the propo-
sed KASUMI architecture which requires low logic resources and low power
consumption while keeping the standardized properties published in the 3GPP
specification documents [1, 2, 24, 25]. In terms of security, the proposed chaotic-
Kasumi cipher enhances the resistance against cryptanalysis attacks compared
to the regular algorithm.

The rest of this paper is organized as follows. In Sections 2, the internal
architecture of the KASUMI block cipher is briefly described. Section 3 de-
tails the proposed simplified functions and optimized KASUMI architecture.
Section 4 presents the proposed Chaotic-KASUMI architecture and associated
used techniques. The security evaluation and analysis form the object of Section
5 including the dynamic chaotic behaviors investigated through the Lyapunov
exponents. FPGA synthesis implementation results and comparisons with pre-
vious works are given in Section 6. Finally, conclusion is given in Section 7.

2

ACCEPTED MANUSCRIPT - CLEAN COPY

2. Standardized KASUMI block cipher

KASUMI’s specifications were standardized by the Third Generation Part-
nership Project (3GPP) [24]. KASUMI is a block cipher based on the previous
MYSTY1 algorithm [26]. It is characterized by a Feistel structure iterating in
eight rounds (see Figure 1(a)). The plaintext is the input parameter to the first
round, and the ciphertext is the output of the last round. It operates using
64-bits blocks under the control of the 128-bits Ciphering Key (CK) [24]. The
internal architecture is based on three main functions : FO (see Figure1(b)), FI
(see Figure1(c)), and FL (see Figure1(d)), respectively. During the execution,
CK is used to generate eight sub-keys for each round i, knowing that i = 0 to 8
(two KLi, three KOi, and three KIi).

2.1. KASUMI processing mechanism

The KASUMI input (64-bits) is divided into two 32-bits strings, mentio-
ned as left L0 and right R0. Then, FL and FO functions are executed in the
corresponding order. The output of the first and all the odd rounds is produ-
ced according to Equation 1 (for i = 0, 2, 4, and 6). Similarly, the output
of the second and all the even round is produced according to Equation 2.
(for i = 1, 3, 5, and 7)

L(i+1) = FO (FL (L(i), KLi), KOi, KIi)
⊕

R(i) ; R(i+1) = L(i) (1)

L(i+ 1) = FL (FO (L(i), KOi, KIi), KLi)
⊕

R(i) ; R(i+ 1) = L(i) (2)

Note that
⊕

designates the bitwise XOR operation.
More details of the KASUMI three main functions are given as follows :
— As it is shown in Figure 1(d), FL is a fast simple linear function. It is

applied to 32-bits data by using KLi1 and KLi2 16-bits sub-keys. This
function presents two advantages. First, this function requires a little
extra cost for its hardware implementation. Second, this function makes
it very difficult to follow the individual bits through the rounds.

— Figure 1(b) shows the nonlinear FO function formed by three internal
rounds. It is applied to 32-bits data.At each round, a non-linear FI func-
tion in which mixing 16-bits is applied. Each output bit of the FO func-
tion depends on all the input bits, which makes it difficult to guess its
output if one input bit is changed.

— The FI function is formed by four rounds. At each round, it uses one of
two S7 or S9 non-linear substitution boxes (see Figure 1(c)) which are
detailed in [24]. The function mixes the input data with the used sub-key
to generate output data [27].

3

ACCEPTED MANUSCRIPT - CLEAN COPY

3. Optimized KASUMI architecture

This section describes the proposed optimized KASUMI architecture based
on the architectural synthesis technique. We simplified the internal architecture
of the regular algorithm at four hierarchical levels. The principle is to use the
first (low) level to develop the second level (hight), and so on, until the last one
(final level). At each level, a control unit based on FSM is used to manage the
architecture.

3.1. Level 1 : joining S9 and S7 S-boxes

In the first and low level, we join S7 and S9 S-boxes of the standardized
algorithm to form only one Global S-box (GS). It takes a 16-bits bloc input and
executes 7/9 combinational functions depending on the control unit (7 right
bits when the control bit is set to ’0’ and 9 left bits when it is set to ’1’). Note
that functions 1 to 7 use the same registers in the architecture to generate the
7 Least Significant Bits (LSB) of S7 and S9, and functions 8 and 9 are designed
only to generate the 2 Most Significant Bits (MSB) of S9. A descriptive scheme
is illustrated in Figure 2. The proposed design is implemented using a specific
combinational function of selection characterized by a good speediness and low
logic cost in the FPGA hardware area. The purpose of this technique is mainly to
simplify the implementation and accelerate the FI function using this proposed
GS.

3.2. Level 2 : the simplified FI’ function

The simplified FI’ function is based on the proposed GS. It is executed on
two rounds instead of four rounds in the original In the second step, we used
the proposed GS to form a simplified FI’ function which can be executed on
two parallel rounds instead of four rounds in the original FI function. For this
purpose, in the first round, the FI’ input (16-bits) is divided into two parts, left
L (9-bits) and right R (7-bits), to form the GS inputs. After this step execution,
GS generates two outputs that are stored on Reg1 (9-bits) and Reg2 (7-bits)
registers. In the second round, the content of Reg1 and Reg2 registers forms the
novel GS inputs. After this execution step, GS generates two new outputs, which
are saved on Reg3 (9-bits) and Reg4 (7-bits) registers. Thereby, the output of
the simplified FI’ function (16-bits) is set up by the concatenation of Reg3 and
Reg4 registers. Consequently, the proposed simplification allows for twice-faster
execution. The detailed architecture is given in Figure 3.

3.3. Level 3 : the simplified FO’ function

In the third step, we considered our simplified FI’ function to realize one
simplified FO’ function deeply difference with the original function based on
the FI function. Indeed, the proposed FO’ function is executed on three rounds.
In the first round, the FO’ input (32-bits) is divided into two parts, left L (16-
bits) and right R (16-bits). L part is combined with subkey KO1 (16-bits) using
bitwise XOR operation to form the first FI’ input (16-bits). Then, the output is

4

ACCEPTED MANUSCRIPT - CLEAN COPY

combined with the R part using a bitwise XOR operation to generate the first
output saved on the Reg1 (16-bits) register. In the second round, the L part is
combined with subkey KO2 (16-bits) using bitwise XOR operation to produce
the second FI’ input. Next, the output is combined with Reg1 using bitwise XOR
operation to generate the second output stored on the Reg2 (16-bits) register.
In the third round, Reg1 is combined with subkey KO3 (16-bits) using bitwise
XOR operation to form the third FI’ input. At this step, the output is combined
with Reg2 using bitwise XOR operation to generate the third output to update
the Reg1 register value. Thus, the output of the simplified FO’ function (32-
bits) is set up by the concatenation of Reg1 and Reg2 registers. The detailed
architecture is depicted in Figure 4.

3.4. Level 4 : the optimized KASUMI

The optimized design of the KASUMI block is based on two FL functions
and two simplified FO’ functions which are looped four times to generate the
same result as the original algorithm. In the first round, the input data (64-bits)
is divided into two equal parts, L1 left and R1 right parts. Then, L1 is processed
by the FL function providing the intermediate result executed by the simplified
FO’. The result is mixed with R1 and stored in the Reg6 register. After that,
the Reg6 register is processed by FO’, and the output is executed by FL. The
result is mixed with L1 and stored in the Reg7 register. The concatenation of
Reg6 and Reg7 registers forms the output of the first round (OUT1). In the
second round, the output of the last round (OUT1) forms the new input. Then,
the same process is executed until the last round. At each round, Reg6 and
Reg7 registers are updated. The detailed architecture of the proposed KASUMI
block is illustrated in Figure 5. Similarly to the original KASUMI block cipher,
the optimized block is controlled with 128-bits CK. At each round, the key
scheduling generator produces 8 sub-keys required for two processing rounds, as
described in the subsection 4.2.

4. Proposed Chaotic-KASUMI algorithm

In this section, we present additional architectural optimizations and the ro-
bustness enhancement of security by considering the proposed Chaotic-KASUMI
architecture.

4.1. The Finite State Machine (FSM)

The FSM is used as a control unit to manage the internal processing of the
simplified functions and blocks. The operating principle is based on the following
steps :

1. controlling the inputs/outputs.

2. updating the intermediary registers.

3. verifying the final output at each level.

5

ACCEPTED MANUSCRIPT - CLEAN COPY

4. ensuring that the output of the low-level function is correctly used by
the high-level function.

To understand this process, we illustrate the following case of the optimized
KASUMI controlled by the FSM at level 4 :

Process : State
Begin
if State = State A then

round = 0 ;
iner = splain ;

else if State = State B then
round = 2 ;
iner = outer ;

else if State = State C then
round = 4 ;
iner = outer ;

else if State = State D then
round = 6 ;
iner = outer ;

else if State = State E then
round = 6 ;
results = outer ;

else
NULL

end if
end Process

The state machine performing this considering case is given in the Figure 6.

4.2. The Key Schedule Generator

KASUMI is controlled using a 128-bits CK. At each round of regular KA-
SUMI, eight 16-bits sub-keys are derived from CK using a Key Schedule Genera-
tor (KSG) and corresponding toKLi1, KLi2 for FL function,KOi1, KOi2, and KOi3
for FO function, KIi1, KIi2, and KIi3 for FI function. The process of the KSG
begins by calculating two 16-bits arrays mentioned designated (Kj and K ′j)
and using CK, and eight 16-bits constants Cj which are summarized in Table 1.

Table 1 – Key scheduling constants.

C1 C2 C3 C4 C5 C6 C7 C8
0x0123 0x4567 0x89AB 0xCDEF 0xFEDC 0xBA98 0x7654 0x3210

Therefore, the 128-bits CK is subdivided into eight 16-bits sub-keys as

CK = K = K1 ||K2 ||K3 ||K4 ||K5 ||K6 ||K7 ||K8 (3)

Then, calculate

K ′j = Kj
⊕

Cj (j = 1, 2, ..., 8) (4)

6

ACCEPTED MANUSCRIPT - CLEAN COPY

In the proposed optimized KASUMI block, the KSG generates two 128-bits
keys called CK1, CK2 as follows :

CK1 = KL11 ||KL12 ||KO11 ||KO12 ||KO13 ||KI11 ||KI12 ||KI13
CK2 = KL21 ||KL22 ||KO21 ||KO22 ||KO23 ||KI21 ||KI22 ||KI23

Note that the two keys are generated at the same time. However, CK1 is used
in the first round while CK2 in the second one, as illustrated in Figure 7.

To understand the key scheduling process, Figure 7 referred in [22] illustrates
an example of generating two rounds of sub-keys. More details of the sub-keys
generation are given in [24].

4.3. Chaotic generator

A chaotic generator is connected with the optimized KASUMI block cipher
to improve its randomness and enhance its security [28]. It is considered as an
additional layer in the proposed architecture. The used technique combine the
generated chaotic signals with the optimized KASUMI output at each round.
The resulting signal forms the new input of the algorithm at the next round
and corresponds to a perturbation of the KASUMI internal functions inputs.

In this work, we used Lorenz hyper-chaotic generator. It is a four-dimensional
dynamical controlled system. It is very sensitive to initial conditions and presents
high recurrences [29]. It is characterized by the following equation set (5) [30,
31] :

ẋ = a(y-x)
ẏ = cx-xz-y+w
ż = xy-bz
ẇ = -dx

(5)

where the control parameters a, b, c, d are positive. Usually a = 10, b = 8/3,
d = 5, and c is varied. The system exhibits one chaotic behaviour for c = 28.
The initial conditions x0 = y0 = z0 = w0 are set to (-10). The system of
equations (5) is solved using the Runge Kutta fourth order resolution method
(RK-4 method) [32–34]. The chaotic signals generated are illustrated in Figures 8
and 9.

To obtain more randomness in the proposed algorithm, we used the decimal
part of the generated chaotic signals in the perturbation mechanism. Figures 8
and 9 prove the enhanced randomness by considering only the decimal part
(compared to real and decimal parts) of the chaotic signals.

4.4. Chaotic-KASUMI global architecture

After a description of the optimized blocks, this section presents the global
architecture of the proposed Chaotic-KASUMI algorithm.

The process begin by initializing the initial conditions and control para-
meters in the chaotic generator. In parallel, CK and Cj are loaded into the
KSG to generate two keys at each round. In the first round, the external text
(64-bits) forms the input to the optimized KASUMI block cipher. Then, the
output is combined with generated chaotic signals using a XOR operation. The

7

ACCEPTED MANUSCRIPT - CLEAN COPY

result forms the input to the next round, and so on, until the fourth and last
round. The output signal forms the generated chaotic keystream (64-bits) used
to cipher (decipher) the plaintext (ciphertext) in mobile networks. This process
is executed n times, where n is the number of blocks (size of one block is 64-
bits) to be encrypted. For further understanding, the architecture is depicted in
Figure 10.

In this proposition, we improved three main properties compared to the
original KASUMI algorithm. Firstly, we reduced the algorithm complexity by
optimizing its internal functions. Secondly, we dynamically updated the inter-
mediary inputs to the optimized KASUMI by using the perturbation technique.
Thirdly, we improved the randomness and the robustness of the generated out-
put keystream. Consequently, we obtained an enhanced block cipher, which is
able to resist the most important cryptanalysis attacks. The detailed evaluation
results are the object of the next section.

4.5. Generated outputs comparison

To prove the efficiency of the proposed implementation, we used the 3GPP
test set vector [25] designed to help implementers in their realization. This
document provides test data for the algorithms as well as details on the internal
states of the algorithms when they process the input data. For example, the test
set vectors 2 is defined as presented in Table 2.

To validate the outputs generated by the proposed algorithm, we used the
3GPP reference data presented in Table 2 and the ISE Simulator (ISim). The
simulation results (VHDL test bench waveform) are shown in Figure 11.

By comparing the original algorithm output (presented in Table 2) with
the optimized algorithm output (presented in Figure 11), it is clear that the
optimized implementation generates the same and expected output (signal blue
in Figure 11) as the original one. In parallel, the introduced random generator
generates a chaotic signal (signal red in Figure 11). Then, the two signals are
mixed to generate the output keystream (signal brown in Figure 11), as we
discussed in Subsection 4.4 (see Figure 10). We note that one clock cycle of the
represented signal concerns the execution of one internal function tour (FO’ or
FL). Therefore, we need 8 clock cycles to generate the expected keystream, as
shown in Figure 11.

5. Dynamic behavior and security evaluation

In this section, we justify the existence of chaos by investigating the Lyapu-
nov exponents and we give the security tests used to evaluate the robustness of
the proposed architecture. The aim of this evaluation is to prove the enhanced
security level of the designed Chaotic-KASUMI block cipher. The principal pro-
perties examined in this work are randomness, robustness, key sensitivity, key
space, and statistical analysis [35].

8

ACCEPTED MANUSCRIPT - CLEAN COPY

5.1. Lyapunov exponents

The chaos behavior of the proposed system described in (5) is investigated by
considering the Lyapunov Exponents (LE). The LE is the average exponential
of the divergence of initially nearby orbits by considering two points in a space,
X(0) and X(0)+∆X(0) (similarly, Y (n, Y (0)), Z(n,Z(0)) and W (n,W (0))) ge-
nerating in the same space two orbits L(X(0)) and L(X(0)+∆X(0)) (similarly,
L(Y (0)), L(Z(0)) and L(W (0))). The function ∆X(X(0), t) behaves randomly
showing the chaotic behavior. The mean exponential rate divergence of two
initially close orbits is obtained by considering the following expression [36] :

λ = lim
t→∞,∆X(0)→0

[(
1

t
)× ln((

∆X(X(0), t)

t
)×∆X(0))]

Computing the LE values (λi) gives a possibility to detect the presence of
chaos [37]. When the calculated value of (λ) corresponding to the requested
LE is superior to zero (λ > 0), the system is chaotic. Usually, a general chaotic
system has only one positive Lyapunov exponent and a periodic system’s lar-
gest Lyapunov exponent is zero. Considering the system 5 with a = 10, b = 8/3,
c = 28, d = 5 and according to the method presented in [38], the calculation of
the obtained limit values of Lyapunov exponents are as follows [39] :

λ1 > 0.1997;

λ2 > 0.0271;

λ3 = 0;

λ4 > −15.4176;

Therefore, the considered 4D Lorenz system has more than one positive Lyapu-
nov exponent proving that it is a hyperchaotic system and its dynamic behavior
means hyperchaos and more complex than general chaos. Consequently, the
considered chaotic system to perform our proposed Chaotic-KASUMI Block Ci-
pher provides a hyperchaotic behavior (LE¿0) achieving high complex chaotic
trajectories more suitable for encryption purposes since that it offers larger key
space, more non-linear parameters and has more positive number of LE.

5.2. Key sensitivity analysis

The key sensitivity analysis is an important property for evaluating a crypto-
system. In this test, we used 500 random keys to evaluate the proposed Chaotic-
KASUMI block cipher. In each case, we compared two generated keystreams by
changing a single bit in the secret key. The results are analyzed using the Ham-
ming Distance (HD) presented in percent and calculated according to Equa-
tion 6.

HD =

∑N
k=1 Ci ⊕ C ′i

N
× 100% (6)

WhereN is the size in bit level of the keystream, Ci and C ′i are the corresponding
keystreams generated using two secret keys different in one bit CKi and CK ′i,

9

ACCEPTED MANUSCRIPT - CLEAN COPY

respectively. According to the final results shown in Figure 12, we observe that
the average Hamming Distance percent is closer to the optimal value of 50% in
bit level. Consequently, we conclude that a change of a single bit in the secret
key leads to a thoroughly different keystream satisfying the avalanche effect [40].
Therefore, we conclude that the proposed algorithm is very sensitive to the key
changes.

5.3. Key space analysis

In cryptography, the minimum key space is fixed at 2128. According to this
condition, we expected to increase the key space from 2128 with the original KA-
SUMI algorithm to 2526 by considering the proposed chaotic KASUMI cipher.

The strength of the proposed algorithm lies in the additional chaotic ge-
nerator associated with the regular algorithm. The principle property of this
generator is its hight sensitivity to initial conditions (x0, y0, z0, w0) and control
parameters (a, b, c, d) defined in the equation set (5). Thereby, the new key space
is formed by respecting those eight parameters in addition to the original CK.
For example, we fixe the initial conditions and control parameters a, b, c, whe-
reas we consider d the random number generator key. The obtained results show
that the variance ratio of each bit is approximated to 99 %, even if the change
of the key (d) is an extremely small value 10−15, which means that the system
is extremely sensitive to the key changes. Consequently, the keys pace corres-
ponding to the considered key (d) is larger than 1015. Similarly, the four initial
condition values and the three remaining control parameters can be considered
as input keys to our random number generator. Therefore, the random num-
ber generator key space is then equal to (1015)8 = 10120 ≈ 2398. The final key
space is defined by 2398 × 2128 = 2526, which is large enough to make infeasible
exhaustive or brute-force attacks.

5.4. Statistical analysis

To evaluate the statistical properties of the proposed architecture, we used
the NIST statistical tests [13]. In this study, we analyzed 300 vectors of 109-bits
in size generated by the proposed Chaotic-KASUMI block cipher. The obtained
results are presented in Table 3.

According to these results, we remark that the generated keystreams are
characterized by hight statical properties. Consequently, we conclude the re-
sistance of the proposed algorithm against standards tests (linear, frequency,
serial, randomness, etc.).

5.5. Synthesis and discussion

The avalanche effect [40], confusion and diffusion properties defined on Shan-
non’s theory [41] are the main basic references used in cryptography to evaluate
the security of the algorithms. Therefore, the obtained key sensitivity analysis
results prove the satisfaction of the avalanche effect, Shannon’s confusion, and
diffusion properties. Besides, the achieved key space of 2526 is sufficiently large

10

ACCEPTED MANUSCRIPT - CLEAN COPY

to make infeasible the brute-force and exhaustive attacks. Finally, the good sta-
tistical test results prove the high resistance of the proposed algorithm against
cryptanalysis attacks. Furthermore, the added nonreversible chaotic generator
limits the ability of attackers attempting to break the encrypted text while
improving the algorithm robustness.

6. FPGA implementation

The architecture proposed in this work has been described using VHDL
(VHSIC Hardware Description Language) structural description and has been
implemented on Xilinx Virtex FPGA [42–44]. Integrated Synthesis Environment
(ISE) 13.2 of Xilinx tools have been used for this digital implementation allo-
wing us to obtain the logic resource requirements and the associated real-time
constraints. It has been designed in two steps.

We implemented the optimized KASUMI block cipher in the first step. The
corresponding Xilinx Synthesis Technology (XST) results after place and route
are shown in Table 4.

From these results, we conclude that the proposed architecture provides
good performance in terms of throughput 5154.64 Mbps on Virtex-5, 2009.04
Mbps on Virtex-E, and 2811.92 Mbps in Virtex-II) due to reduced latency (8
cycles). We also observe that FPGA hardware logic resources are used efficiently
(slices registers, LUTs and Flip-Flop used by the proposed simplified KASUMI
occupies just 4% on Virtex-5, 32% on Virtex-E, and 2% on Virtex-II).

We implemented the proposed Chaotic-KASUMI block cipher in the second
step. The corresponding XST results after place and route are shown in Table 5.

We remark that the chaotic generator connected to the optimized KA-
SUMI requires some additional hardware resources (644 slices on Virtex-5) (see
Table 5). It should also be known that even if the throughput is reduced to
475.60 Mbps, it remains compatible with the encryption of data exchanged bet-
ween users of mobile networks in real-time. Therefore, by considering the trade-
off between the used resources, throughput, and security level, we conclude that
the enhanced Chaotic-KASUMI architecture forms a good solution to protect
data transmitted over mobile networks.

6.1. Comparison and discussion

To make a comparison with previous works, we implemented the propo-
sed architecture on different Xilinx Virtex devices (Virtex-300E, Virtex-8000II)
including the Virtex 5 technology to improve performance while proving the por-
tability of the proposed architecture. The implementation results are presented
in Table 6.

In this work, the first objective was the improvement of the algorithm
throughput (by maximizing the clock frequency and minimizing the latency)
defined in Equation 7, and which is proved considering the results presented in
Table 6.

Throughput =
block size× clock frequency

latency cycle
(7)

11

ACCEPTED MANUSCRIPT - CLEAN COPY

Based on those results, we conclude that the proposed architecture achieves the
highest throughput due to the high clock frequency (251.13 MHz on Virtex-300E
and 351.49 on Virtex-8000II) and the low latency (8 cycles).

The second objective was the minimization of the used hardware resources.
Therefore, by considering the compromise between the hardware logic area and
throughput, we conclude that the proposed architecture is the best implemen-
tation on FPGA technologies. For example, it is faster than implementation [23]
by a factor of 45.11, and its efficiency is better than implementation [23] by a
factor of 15.41.

The third objective was the enhancement of the robustness of the KASUMI
block cipher to improve its resistance against cryptanalysis attacks. This aim
is obtained according to the used chaotic generator, which is combined with
the original architecture. However, the occupied area on the FPGA device has
slightly increased (see Table 5).

Finally, by considering the compromise between the high level of security
provided by the proposed architecture, and the additional area occupied on
the FPGA device, we conclude that this architecture forms a good solution for
ensuring the security of data transmitted over mobile networks. Additionally,
we note that this architecture can still be used by the embedded applications
in real-time, such as mobile networks in our case study because it still offers a
high throughput (see Table 6) and respects the standardized properties fixed in
the 3GPP documents [1, 24, 25].

6.2. Potential uses

The proposed architecture (enhanced Chaotic-KASUMI) can be used either
as the kernel of current mobile network security mechanisms based on the stan-
dard KASUMI block cipher (f8 confidentiality and f9 integrity functions used
in UMTS, A5/3 and A5/4 algorithms used in GSM, GEA3 algorithm used in
the GPRS and EDGE, etc.), or in the security mechanisms of future mobile
networks. Finally, we specify that the proposed block cipher can be configured
in different operating modes without risk of compromising the security provi-
ded, mainly in ECB (Electronic Codebook) and CBC (Cipher-Block Chaining)
modes.

7. Conclusion

In this paper, we proposed two hardware implementations. In the first one,
we optimized the KASUMI block cipher using four architectural levels. In the
second one, we enhanced the proposed optimized KASUMI by using a chaotic
generator. The used technique is based on simplifiying the internal functions
used by the regular KASUMI block cipher (S-boxes S7, S9 and functions FI,
FO). After that, we combined the generated keystream (output of optimized
KASUMI) with the generated chaotic signals to form an output keystream with
improved randomness properties. The proposed architectures have been imple-
mented on FPGA Virtex technologies.

12

ACCEPTED MANUSCRIPT - CLEAN COPY

Table 2 – 3GPP Test set vector2.

Key = 8CE33E2CC3C0B5FC1F3DE8A6DC66B1F3
Input = D3C5D592327FB11C
Output = DE551988CEB2F9B7

Table 3 – Comparison results of NIST tests.

The NIST test Proposed Chaotic-KASUMI
Frequency (mono-bit) Test success
Frequency Test with a Block success
Runs Test success
Long runs of ones Test success
Binary Matrix Rank Test success
Discrete Fourier Transform (Spectral) Test success
Non-overlapping Template Matching Test success
Overlapping Template Matching Test success
Maurer’s ”Universal Statistical” Test success
Linear complexity Test success
Serial Test success
Approximate Entropy Test success
Cumulative sums (Cusum) Test success
Random excursion Test success
Random excursion variant Test success

To confirm the performance of the proposed architecture, we compared it
with previous works and evaluated it using many security tests. The obtained
results prove the enhancement of the ciphering algorithm performance in terms
of used hardware logic resources, throughput, security level, and robustness.

The development of new confidentiality and integrity functions based on the
proposed Chaotic-KASUMI will be the object of our future works to improve
the security mechanism of current and new mobile networks.

Table 4 – FPGA implementation results of the optimized KASUMI.

Device Latency Frequency Throughput Area(slice)
(cycle) (Mhz) (Mbps) Amount Total Percentage

Virtex-5 8 644.33 5154.64 468 11200 4%
Virtex-II 8 351.49 2811.92 964 46592 2%
Virtex-E 8 251.13 2009.04 972 3072 32%

Table 5 – Chaotic-KASUMI FPGA implementation results.

13

ACCEPTED MANUSCRIPT - CLEAN COPY

(a) Architecture of KA-
SUMI block cipher.

KOi,1

KOi,2

KOi,3

KIi,3

KIi,2

KIi,1

16 16

32

FI i1

FI i2

FI i3

32

(b) The FO function. (c) The FI function.

KLi,1

KLi,2

32
16 16

ROL 1

ROL 1

32

(d) The FL function.

Figure 1 – The Feistel structure of KASUMI [24].

14

ACCEPTED MANUSCRIPT - CLEAN COPY

IN S9 IN S7

OUT S9 OUT S7

FSM_Select

Figure 2 – The proposed Global S-box.

Control

Unit

M

U

X

M

U

X
M

U

X

M

U

X

MUX

MUX

M

U

X

Figure 3 – The simplified FI’ architecture.

15

ACCEPTED MANUSCRIPT - CLEAN COPY

Control

Unit

M

U

X

MUX

KO1 KO2 KO3

MUX

KI1 KI2 KI3

M

U

X

Figure 4 – The simplified FO’ architecture.

KL1 KO1, KI1

KL2 KO2, KI2

Output

Input

32 32

32 32

FL FO '

FO 'FL

64

64

Reg7 || Reg6

Reg6

Reg7

Reg7 || Reg6 Reg7 || Reg6

Clk FSM_State

Figure 5 – The simplified KASUMI block.

16

ACCEPTED MANUSCRIPT - CLEAN COPY

Cipher-text

Sate_E

Round=6

Sate_B

Round=2

Sate_D

Round=6

Sate_C

Round=4

Sate_A

Round=0

Clk Reset Plain-text

Figure 6 – FSM of the proposed optimized KASUMI at the level 4.

<<1

KL11

KI23

KO11

KL21

KL12

KO21

KI12

KL22

KI11

KI22

KO12

KI21

KO13

KO22

KI13

KO23

<<5 <<8 <<13

<<1 <<5 <<8 <<13

K1 K2 K3 K4 K5 K6 K7 K8

C1 C2 C3 C4 C5 C6 C7 C8

First round

Second round

07 08 01 02 03 04 05 06

D7 D8 D1 D2 D3 D4 D5 D6

Figure 7 – Two round of the sub-keys scheduling.

17

ACCEPTED MANUSCRIPT - CLEAN COPY

0 0.02 0.04 0.06 0.08 0.1
�50

0

50

x

0 0.02 0.04 0.06 0.08 0.1
�50

0

50

y

0 0.02 0.04 0.06 0.08 0.1
�100

0

100

z

0 0.02 0.04 0.06 0.08 0.1
�100

0

100

w

t

(a) Real and decimal parts of signals.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

x
d
e
c
im
a
l

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

y
d
e
c
im
a
l

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

z
d
e
c
im
a
l

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

w
d
e
c
im
a
l

t

(b) Decimal part of signals.

Figure 8 – Chaotic signals of the used Lorenz’s hyperchaotic system.

18

ACCEPTED MANUSCRIPT - CLEAN COPY

−30
−20

−10
0

10
20

−40

−20

0

20

40
−20

0

20

40

60

xy

z

(a) Attractors (x,y,z) (real and decimal
parts).

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xy

z

(b) Attractors (x,y,z) (decimal part).

Figure 9 – Attractors of the used Lorenz’s hyperchaotic system.

Simplified

KASUMI

CK1

CK2

CK

64

Input

Output

Output

Perturbed input

Chaotic keystream

Initial conditions

Control parameters

Plaintext

Ciphertext

Chaotic

generator

64

64

64

64

64

6464

Figure 10 – Proposed Chaotic KASUMI stream cipher.

19

ACCEPTED MANUSCRIPT - CLEAN COPY

Figure 11 – The Chaos KASAUMI proposed algorithm outputs.

0 100 200 300 400 500
45

46

47

48

49

50

51

52

53

54

55

%
 H

D

Number of sequence

Figure 12 – The key sensitivity analysis results.

20

ACCEPTED MANUSCRIPT - CLEAN COPY

Device Latency Frequency Throughput Area(slice)
(Virtex-5) (cycle) (Mhz) (475.60) Amount Total Percentage

Optimized KASUMI 8 644.33 5 154.64 468 11200 4%
Chaotic-KASUMI 8 59.45 475.60 1112 11200 9%

Table 6 – Comparison of FPGA implementations.

Source Latency Frequency Throughput Area Efficiency Device
(cycle) (Mhz) (Mbps) (slices) (Kbps/slice)

Work in [14] 8 20.88 167.04 1287 129.79 300E-6BG 432
Work in [15] 56 58.14 66.45 435 152.75 300E-6BG 432
Work in [15] 56 68.13 77.86 435 179 300E-8BG 432
Work in [16] 8 20 110 650 169.23 Virtex-E
Work in [17] 16 41.14 165 488 338.11 300E-8BG 432
Work in [18] 12 41.63 222 566 392.22 300E-8BG 432
Work in [19] 8 71 68 1174 483.81 N/A
Work in [20] 8 54 432 3452 125.14 300E-8BG 432
Work in [21] 16 79.45 318 625 508.8 300E-8BG 432
Work in [22] 16 96.33 385.32 448 860.08 Virtex-II
Work in [23] 54 31.93 36.09 332 108.7 300E-6BG 432
Work in [23] 54 39.4 44.54 332 134.15 300E-8BG 432
This work 8 201.86 1614.88 972 1661.14 300E-6BG 432
This work 8 251.13 2009.04 972 2066.91 300E-8BG 432
This work 8 351.49 2811.92 964 2916.93 Virtex-II
This work 8 644.33 5154.64 468 11014.19 Virtex-5

Références

[1] 3G Security ; Specification of the 3GPP confidentiality and integrity algo-
rithms ; Document 1 : f8 and f9 specification, Technical Specification (TS)
TS 35.201 V15.0.0, 3GPP (2018-06).

[2] 3G Security ; Specification of the A5/3 Encryption Algorithms for GSM
and ECSD, and the GEA3 Encryption Algorithm for GPRS ; Document 4 :
Design and evaluation report, Technical Report (TR) TR 55.919 V12.0.0,
3GPP (Sep 2014-09).

[3] J. Hong, P. Sarkar, New Applications of Time Memory Data Tradeoffs, in :
International Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT), Vol. 3788, LNCS, 2005, pp. 353–372.

[4] Y. Wentan, C. Shaozhen, Multidimensional zero-correlation linear crypta-
nalysis of the block cipher KASUMI, IET Information Security 10 (2016).

[5] Z. Wang, X. Dong, K. Jia, J. Zhao, Diffeential Fault Attack on KASUMI
Cipher Used in GSM Telephony, Mathematical Problems in Engineering
2014 (2014) 7 pages. doi:http://dx.doi.org/10.1155/2014/251853.

21

ACCEPTED MANUSCRIPT - CLEAN COPY

[6] O. Dunkelman, N. Keller, A. Shamir, A Practical-Time Related-Key Attack
on the KASUMI Cryptosystem Used in GSM and 3G Telephony, Journal
of Cryptology 27 (2014).

[7] K. Jia, L. Li, C. Rechberger, J. Chen, X. Wang, Improved Cryptanalysis of
the Block Cipher KASUMI, in : International Conference on Selected Areas
in Cryptography SAC 2012, Lecture Notes in Computer Science, volume
7707, Windsor, Canada, 2012, pp. 222–233.

[8] E. Biham, O. Dunkelman, N. Keller, A related-key rectangle attack on the
full KASUMI, in : International Conference on the Theory and Application
of Cryptology and Information Security ASIACRYPT 2005, LNCS, volume
3788, 2005, pp. 443–461.

[9] M. Blunden, A. Escott, Related Key Attacks on Reduced Round KASUMI,
in : International Workshop on Fast Software Encryption FSE 2001, LNCS,
volume 2355, 2002, pp. 277–285.

[10] M. Salman, R. Yugitama, Amiruddin, R. F. Sari, KAMIES : Security Op-
timization of KASUMI Algorithm by Increasing Diffusion Level, Interna-
tional Journal of Security and Its Applications 12 (3) (2018) 29–46.

[11] R. Muthalagu, S. Jain, Modifying the structure KASUMI to improve its
resistance towards attacks by inserting FSM and S-Box, Journal of Cyber
Security Technology 2 (2018) 37–50.

[12] R. Muthalagu, S. Jain, Reducing the time required by KASUMI to
generate output by modifying the FL and FI functions, Iran Journal
of Computer Science 2 (2019) 33–40. doi:https://doi.org/10.1007/

s42044-018-0017-2.

[13] A. Rukhin, et al, A Statistical Test Suite for the Random
and Pseudorandom Number Generators for Cryptographic Appli-
cations, NIST Special Publication 800-22, 2001 (Revised : April
2010)Http ://csrc.nist.gov/rng/SP800-22b.pdf (Revised : April 2010).

[14] K. Marinis, N. Moshopoulos, F. Karoubalis, K. Pekmestzi, On the Hard-
ware Implementation of the 3GPP Confidentiality and Integrity Algo-
rithms, in : L. N. in Computer Science 2200 (Ed.), Davida, G.I., Frankel,
Y. (eds.) ISC 2001, Springer, Heidelberg, 2001, pp. 248––265.

[15] A. Satoh, S. Morioka, Small and High-Speed Hardware Architectures for
the 3GPP Standard Cipher KASUMI, in : L. N. in Computer Science 2433
(Ed.), Chan.A.H, Gligor.V.D. (eds.) ISC 2002, Springer, Heidelberg, 2002,
pp. 48––62.

[16] H. Kim, Y. Choi, M. Kim, H. Ryu, Hardware implementation of the 3GPP
KASUMI crypto algorithm, in : ITC-CSCC 2002, 2002, pp. 317—-320.

22

ACCEPTED MANUSCRIPT - CLEAN COPY

[17] T. Balderas, R. Cumplido, An Efficient Hardware Implementation of the
KASUMI Block Cipher for Third Generation Cellular Networks, in : GSPx,
2004.

[18] T. Balderas, R. Cumplido, An Efficient Reuse-Based Approach to Imple-
ment the 3GPP KASUMI Block Cipher, in : ICEEE 2004, 2004, pp. 113–
–118.

[19] H. Kim, S. Lee, Design and Implementation of a Private and Public Key
Crypto Processor and Its Application to a Security System, IEEE Transac-
tions on Consumer Electronics 50 (1) (2004) 214––224.

[20] P. Kitsos, M. D. Galanis, O. Koufopavlou, High-speed hardware implemen-
tations of the KASUMI block cipher, in : ISCAS 2004, Vol. 2, 2004, pp.
549––552.

[21] T. Balderas, R. Cumplido, High Performance Encryption Cores for 3G
Networks, in : DAC 2005, 2005, pp. 240—-243.

[22] T. Balderas, R. Cumplido, C. Feregrino-Uribe, On the design and imple-
mentation of a RISC processor extension for the KASUMI encryption al-
gorithm, Computers and Electrical Engineering 34 (6) (2008) 531—-546.

[23] Y. Dai, I. Kouichi, Y. Jun, A Very Compact Hardware Implementation of
the KASUMI Block cipher, in : LNCS 6033, 2010, pp. 293––307.

[24] 3G Security ; Specification of the 3GPP Confidentiality and Integrity Algo-
rithms ; Document 2 : KASUMI specification, Technical Specification (TS)
TS 35.202 V15.0.0, 3GPP (Jun 2018-06).

[25] 3G Security ; Specification of the 3GPP Confidentiality and Integrity Al-
gorithms ; Document 3 : Implementors Test Data, Technical Specification
(TS) TS 35.203 V15.0.0, 3GPP (2018-06).

[26] M. Matsui, New Block Encryption Algorithm MISTY, in : Proceedings of
the 4th International Fast Software Encryption Workshop FSE’97, LNCS
1267, Springer-Verlag, 1997, pp. 54–68.

[27] P. Kitsos, N. Sklavos, O. Koufopavlou, An End-to-End Hardware Approach
Security for the GPRS, in : Proceedings of the 12th IEEE Mediterranean
Electrotechnical Conference IEEE Cat No04CH37521, Dubrovnik, Croatia,
Croatia, 2004.

[28] C. Li, Y. Zhang, E. Yong Xie, When an attacker meets a cipher-image
in 2018 : A year in review, Journal of Information Security and Appli-
cations 48 (2019) 2214–2126. doi:https://doi.org/10.1016/j.jisa.

2019.102361.

23

ACCEPTED MANUSCRIPT - CLEAN COPY

[29] C. Li, B. Feng, S. Li, J. Kurths, G. Chen, Dynamic analysis of digital
chaotic maps via state-mapping networks, IEEE Transactions on Circuits
and Systems I : Regular Papers 66 (6) (2019) 2322–2335. doi:10.1109/

TCSI.2018.2888688.

[30] M. Madani, I. Benkhaddra, C. Taougast, S. Chitroub, L. Sieler, FPGA Im-
plementation of an enhanced SNOW-3G Stream Cipher based on a Hyper-
chaotic System, in : The 4th international conference on Control, Decision
and Information Technologies (CoDIT’17), IEEE Conference Publications,
2017.

[31] E. Lorenz, Deterministic nonperiodic flow, Journal of Atmospheric Sciences
1963 20 (1963) 130–141.

[32] M. Madani, I. Benkhaddra, C. Taougast, S. Chitroub, L. Sieler, Digital
Implementation of an Improved LTE Stream Cipher SNOW-3G based on
Hyperchaotic PRNG, Security and Communication Networks 2007 (2017).
doi:https://doi.org/10.1155/2017/5746976.

[33] S. Sadoudi, C. Tanougast, M. S. Azzaz, et al., Design and FPGA imple-
mentation of a wireless hyperchaotic communication system for secure real-
time image transmission, Eurasip Journal on Image and Video Processing,
Springer (43) (2013) 1–18. doi:10.1186/1687-5281-2013-43.

[34] J.-P. Demailly, Analyse numérique et équations différentielles, EDP
Sciences 4, Collection Grenoble Sciences, 2006.

[35] M. Murillo-Escobar, C. Cruz-Hernándezl, F. Abundiz-Pérez, R. López-
Gutiérrez, Implementation of an improved chaotic encryption algorithm for
real-time embedded systems by using a 32-bit microcontroller, Micropro-
cessors and Microsystems (45) (2016) 297–309. doi:10.1016/j.micpro.

2016.06.004.

[36] M. Sano, Y. Sawada, Measurement of the lyapunov spectrum from a chaotic
time series, Phys. Rev. Lett. 55 (1985) 1082–1085.
URL https://link.aps.org/doi/10.1103/PhysRevLett.55.1082

[37] Z. Sandor, B. Erdi, A. Szell, B. Funk, The relative lyapunov indicator: An
efficient method of chaos detection, Celestial Mechanics and Dynamical
Astronomy 90 (2004) 127–138. doi:10.1007/s10569-004-8129-4.
URL https://doi.org/10.1007/s10569-004-8129-4

[38] K. Ramasubramanian, M. S. Sriram, A comparative study of computation
of lyapunov spectra with different algorithms, Physica D 139 (2000) 72–86.
URL https://doi.org/10.1016/S0167-2789(99)00234-1

[39] X. Wang, M. Wang, A hyperchaos generated from lorenz system, Physica
A 387 (2008) 3751–3758.
URL https://doi.org/10.1016/j.physa.2008.02.020

24

ACCEPTED MANUSCRIPT - CLEAN COPY

[40] D. Han, L. Min, G. Chen, A Stream Encryption Scheme with Both Key
and Plaintext Avalanche Effects for Designing Chaos-Based Pseudoran-
dom Number Generator with Application to Image Encryption, Inter-
national Journal of Bifurcation and Chaos 26 (5) (May 2016). doi:

10.1142/S0218127416500917.

[41] C. Shannon, Communication Theory of Secrecy Systems, Bell Systems
Technical Journal 28 (1949) 656–715.

[42] Xilinx, Virtex�-E 1.8 V Field Programmable Gate Arrays, Production Pro-
duct Specification, DS022-1 (v3.0) March 21, 2014.

[43] Virtex 5 FPGA Configuration User Guide, ug702, Xilinx.

[44] Virtex devices specification, http://www.xilinx.com/.

25

