Linyuan Liu 
  
Jens Carsten 
  
ON THE COHOMOLOGY OF LINE BUNDLES OVER CERTAIN FLAG SCHEMES II

Keywords: Mathematics Subject Classification. 05E05, 05E10, 14L15, 20G05 . cohomology, line bundles, flag schemes, Weyl modules, symmetric functions

Over a field K of characteristic p, let Z be the incidence variety in P d × (P d ) * and let L be the restriction to Z of the line bundle

. When f = 0, using the first author's description of H d (Z, L ) and Jantzen's sum formula, we obtain as a by-product that the sum of the monomial symmetric functions m λ , for all partitions λ of 2p -1 less than (p -1, p -1, 1) in the dominance order, is the alternating sum of the Schur functions S p-1,p-1-i,1 i+1 for i = 0, . . . , p -2.

Introduction. This paper is an addition to the first author's paper [START_REF] Liu | On the cohomology of line bundles over certain flag schemes[END_REF]. We now consider the group scheme G = SL d+1 over an arbitrary field K of characteristic p > 0. For m, n ∈ N, set µ m,n = mω 1 -(n + d)ω d and write simply µ n instead of µ n,n . We describe the H i (µ m,n ) when p > n (thus recovering and extending [START_REF] Liu | On the cohomology of line bundles over certain flag schemes[END_REF], Cor. 2) and for n = p + f with 0 ≤ f ≤ p -2 we prove that H d (µ n ) is the simple G-module L(λ f ) = L(f ω 1 + (p -2 -f )ω 2 + (f + 1)ω 3 ). Further, when f = 0 we express the character of L(λ f ), using Jantzen sum formula, as an alternating sum of Weyl characters. Comparing this with the character of H d (µ p ) given in [START_REF] Liu | On the cohomology of line bundles over certain flag schemes[END_REF], Cor. 3, we obtain as a by-product that the sum of the monomial symmetric functions m λ , for all partitions λ of 2p-1 less than λ f in the dominance order, is the alternating sum of the Schur functions S p-1,p-1-i,1 i+1 for i = 0, . . . , p -2.

1.1. Notation. We keep the notation of [START_REF] Liu | On the cohomology of line bundles over certain flag schemes[END_REF], except that we now consider the group scheme G = SL d+1 over an arbitrary field K of characteristic p > 0 and denote simply by P the maximal parabolic subgroup P 1 . Let W P be the Weyl group of (P, T ) and define W Q similarly. Let ch V denote the character of a T -module V . For each simple root α i , let s i ∈ W be the corresponding simple reflection. Let w 0 (resp. w P , resp. w Q ) be the longest element of W (resp. W P , resp. W Q ) and set N = (w Q ). Then (w P ) = N + d -1.

Let ρ Q (resp. ρ P ) denote the half-sum of the positive roots of Q (resp. P ). Then one has:

(1.1.1) 2ρ Q = (2-d)(ω 1 +ω d )+2 d-1 i=2 ω i , 2ρ P = (1-d)ω 1 +2 d i=2 ω i .
Recall that, since 2ρ

-2ρ Q = d(ω 1 + ω d ), the dualizing sheaf on Z = G/Q is L (-dω 1 -dω d ). Hence, by Serre duality on G/Q, one has (1.1.2) H d (µ m,n ) H d-1 (-(m + d)ω 1 + nω d ) * .
Further, let τ be the (involutive) automorphism of (G, T ) induced by the automorphism of the Dynkin diagram which swaps α i and α d+1-i for i = 1, . . . , d. Note that τ also acts on X(T ) and preserves X(T ) + . For any G-module V , let τ V denote the corresponding module twisted by τ . For example, for a Weyl module V (λ) (resp. a simple module L(λ)), one has τ V (λ) V (τ λ) (resp. τ L(λ) L(τ λ)). Then, (1.1.2) can be rewrited as:

(1.1.3)

H d (µ m,n ) H d-1 (τ µ n,m ) * .
Recall (see [START_REF] Carsten | Representations of algebraic groups[END_REF], II.4.6 and its proof) that if P ⊂ P are parabolic subgroups containing B and if V is a P -module, one has for all i ≥ 0:

(1.1.4)

H i (P /B, V ) H i (P /P , V ).
This will be used several times, without always mentioning it.

A description of H

i (µ m,n ). For each i ∈ N, we denote by H i Q (-) the functor H i (Q/B, -) and define H i P (-) similarly. Since -µ m,n is trivial and µ m,n -2ρ Q is anti-dominant with respect to the Levi subgroup of Q one has: (1.2.1) H i Q (-µ m,n ) -µ m,n if i = 0, 0 if i > 0
and, using Serre duality on Q/B:

(1.2.2)

H i Q (µ m,n -2ρ Q ) 0 if i < N, H 0 Q (-µ m,n ) * µ m,n if i = N.
Consider induction from B to P . Thanks to (1.2.2), the spectral sequence of composite functors (see [START_REF] Carsten | Representations of algebraic groups[END_REF], I.4.5) degenerates and gives (together with (1.1.4) applied to P = Q and P = P ) isomorphisms for each i ≥ 0:

(1.2.3)

H i P (µ m,n ) H i+N P (µ m,n -2ρ Q ) and since µ m,n -2ρ Q = (m+d-2)ω 1 -2 d-1 j=2 ω j -(n+2
)ω d is anti-dominant with respect to P , the latter group is zero unless i + N = dim(P/B), i.e. i = d -1. Moreover, by Serre duality on P/B, one has:

H N +d-1 P (µ m,n -2ρ Q ) H 0 P (-µ m,n + 2ρ Q -2ρ P ) * = H 0 P ((1 -m)ω 1 + nω d ) * . Set ν m,n = (1 -m)ω 1 + nω d and π m,n = -w P ν m,n . Since w P = s 2 • • • s d w Q , one has (1.2.4) π m,n = (m -n -1)ω 1 + nω 2
and since H 0 P (ν m,n ) * is isomorphic with V P (π m,n ), the Weyl module for P with highest weight π m,n , one obtains: Lemma 1.2.1. For each m, n ∈ N and i ∈ N, one has

H i P (µ m,n ) V P (π m,n ) if i = d -1, 0 if i = d -1.
Now, consider induction from B to G. Thanks to the lemma, the spectral sequence of composite functors degenerates and gives (together with (1.1.4) applied to P = P and P = G) isomorphisms H i (µ m,n ) H i-d+1 (V P (π m,n )) for each i ≥ 0. Since the former is zero for i ∈ {d-1, d} (see [START_REF] Liu | On the cohomology of line bundles over certain flag schemes[END_REF], Section 2), this gives: Proposition 1.2.2. For each m, n ∈ N and i ∈ N, one has

H i (µ m,n )        H 0 (V P (π m,n )) if i = d -1, H 1 (V P (π m,n )) if i = d, 0 if i = d -1, d.
This allows us to recover and extend the result of [START_REF] Liu | On the cohomology of line bundles over certain flag schemes[END_REF], Corollary 2:

Corollary 1.2.3. Suppose that p > n. (i) If m ≥ n, then H d (µ m,n ) = 0 and H d-1 (µ m,n ) H 0 (π m,n ). In particular, H i (µ n ) = 0 for all i ≥ 0. (ii) If n ≥ m, then H d-1 (µ m,n ) = 0 and H d (µ m,n ) H 1 (π m,n ) H 0 (π n,m ). (iii) Furthermore, if p > m ≥ n then H d-1 (µ m,n ) L(π m,n ) H d (µ n,m ).
Proof. Suppose p > n. Then V P (π m,n ) is irreducible as a P -module, being isomorphic as a module over the Levi subgroup of P to the GL d -module S n K d which is irreducible since n < p. Therefore, V P (π m,n ) H 0 P (π m,n ). Thus, the proposition gives for all i ≥ 0 that [START_REF] Carsten | Representations of algebraic groups[END_REF], II.5.4), which proves (ii).

H i (µ m,n ) H i-d+1 (π m,n ). If m ≥ n then π m,n belongs to C := X(T ) + -ρ and hence H j (π m,n ) = 0 for j > 0 (and also for j = 0 if m = n). This proves (i). If m < n, then H 0 (π m,n ) = 0. Further, π n,m = (n-m-1)ω 1 +mω 2 belongs to C and one has π m,n = s α 1 • π n,m . Since 0 ≤ (π n,m + ρ, α ∨ 1 ) = n -m < p, one has H 1 (π m,n ) H 0 (π n,m ) (see
Suppose now that p > m ≥ n. By (i) and Serre duality on G/Q, one has

H 0 (π m,n ) H d-1 (µ m,n ) H d (-(m + d)ω 1 + nω d ) * = H d (τ µ n,m ) * .
Now, using the automorphism τ of (G, T ), one deduces from (ii) that

H d (τ µ n,m )) * H 0 (τ π m,n ) * .
Since the latter is the Weyl module V (π m,n ), one obtains that H 0 (π m,n ) L(π m,n ). This proves (iii).

Our goal in the next subsection is to determine H d (µ p ). Since for d = 2 the SL 3 -modules H 2 (m, -n -2) have been described in [START_REF] Liu | Cohomologie des fibrés en droites sur SL3/B en caractéristique positive: deux filtrations et conséquences[END_REF], where it is proved in particular (see [START_REF] Liu | Cohomologie des fibrés en droites sur SL3/B en caractéristique positive: deux filtrations et conséquences[END_REF], Th. 3) that H 2 (p, -p -2) is the Weyl module V (0, p -2), which is simple, we will henceforth assume that d ≥ 3.

Computation of H

d (µ n ) for p ≤ n ≤ 2p -1. Suppose now that d ≥ 3 and n = p + f with 0 ≤ f ≤ p -1.
For each weight ν which is dominant (resp. dominant with respect to P ), denote by L(ν) (resp. L P (ν)) the irreducible G-module (resp. P -module) with highest weight ν. Let (1.3.1)

λ f = f ω 1 + (p -2 -f )ω 2 + (f + 1)ω 3 if f ≤ p -2, (p -1)ω 1 + (p -2)ω 3 + ω 4 if f = p -1 (with the convention ω 4 = 0 if d = 3), and set L f = L(λ f ) and N f = L P (λ f ). Proposition 1.3.1. One has H d-1 (µ n ) L f H d (µ n ).
Remark 1.3.2. This generalizes Corollary 3 in [START_REF] Liu | On the cohomology of line bundles over certain flag schemes[END_REF], which was the case f = 0. Note that if f > 0 and d > p-f +1 then µ p+f does not belong to the closure of the facet containing µ p . Indeed, denoting by α 1 , . . . , α d the simple roots and setting

β = α 1 + • • • + α p-f +1 , one has µ p + ρ, β ∨ = 2p -f + 1 whereas µ p+f +ρ, β ∨ = 2p+1.
Hence the result for µ p+f cannot be deduced from the one for µ p by applying a functor of translation.

Proof. Set π n = -ω 1 + nω 2 and M = V P (π n ). According to Doty [Dot85], § §2.3-2.4, one has exact sequences of P -modules:

(1.3.2) 0 / / N f / / M / / C / / 0 and (1.3.3) 0 / / C / / H 0 P (π n ) / / N f / / 0
where C = L P (π n ). Applying the functor H 0 to (1.3.3) and using that:

(1.3.4)

H i (H 0 P (π n )) = H i (π n ) =
0 for all i ≥ 0, one obtains H 0 (C) = 0 and isomorphisms H i (C) H i-1 (N f ) for all i ≥ 1. Taking this and Proposition 1.2.2 into account and applying the functor H 0 to (1.3.2), one obtains isomorphisms:

(1.3.5) H d-1 (µ n ) H 0 (M ) H 0 (N f ),
an exact sequence:

(1.3.6)

0 / / H 1 (N f ) / / H d (µ n ) / / H 0 (N f ) / / H 2 (N f ) / / 0 and isomorphisms (1.3.7) H i (N f ) H i+1 (C) H i+2 (N f ) for i ≥ 1. Since H i (N f ) = 0 for i > |R + |, one obtains H i (N f ) = 0 for all i ≥ 1.
Together with (1.3.6) and (1.3.5), this gives isomorphisms:

(1.3.8)

H d (µ n ) H 0 (N f ) H d-1 (µ n ).
On the other hand, by [START_REF] Liu | On the cohomology of line bundles over certain flag schemes[END_REF], Cor. 4,

λ f has multiplicity 1 in H d (µ n ), which is therefore non-zero. Thus H d (µ n ) H d-1 (µ n ) H 0 (N f ) is a non-zero submodule of H 0 (H 0 P (λ f )) = H 0 (λ f ). Now, using the automorphism τ of (G, T ), one obtains that H d (µ n ) H d-1 (τ µ n ) * is a quotient of H 0 (τ λ f ) * V (λ f ). Since any non-zero mor- phism V (λ f ) → H 0 (λ f ) has image L f (see [Jan03] II.6.16 Remark), then (1.3.8) gives that H d (µ n ) L f H d-1 (µ n ).
Remark 1.3.3. 1 Seitz has shown ([Sei87], Prop. 6.1) that if a simple SL d+1module L(µ) with µ p-restricted has one-dimensional weight spaces then either µ is a fundamental weight ω i or a multiple of ω 1 or ω d , or µ = aω i + (p -1 -a)ω i+1 for some i ∈ {1, . . . , d -1} and a ∈ {0, . . . , p -1}. Since λ f is not in that list when f > 0, it follows that H d (µ p+f ) L(λ f ) never has all its weight spaces of dimension 1 when f > 0. This improves on Remark 3 (2) of [START_REF] Liu | On the cohomology of line bundles over certain flag schemes[END_REF].

1.4. Jantzen sum formula and consequences. Now, consider the case f = 0, i.e. n = p. Then λ 0 = (p -2)ω 2 + ω 3 . We shall use Jantzen sum formula ([Jan03], II.8.19) to express ch L 0 in terms of Weyl characters. Set r = min(d, p). In addition to λ 0 , define for i = 1, . . . , r -2 the dominant weights:2 

(1.4.1)

λ i = iω 1 + (p -2 -i)ω 2 + ω 3+i
(with the convention ω d+1 = 0) and set L i = L(λ i ) and

N i = L P (λ i ). In other words, if d > p the sequence ends with λ p-2 = (p -2)ω 1 + ω p+1 whilst if d ≤ p it ends with λ d-2 = (d -2)ω 1 + (p -d)ω 2 + ω d+1 = (d -2)ω 1 + (p -d)ω 2 .
Lemma 1.4.1. Consider SL n+1 for some n ≥ 2 and for k = 1, . . . , n consider the weight For α ∈ R + let α ∨ be the corresponding coroot. Then, for m ∈ Z, let s α,mp be the affine reflection defined for all λ ∈ X(T ) by

θ k = ω 1 -kω k + (k -1)ω k+1 . Note that θ 1 = 0. (i) For k ≥ 2, one has s k • θ k = θ k-1 . (ii) For k ≥ 2, one has ω 1 -kω k + kω k+1 = s k • • • s 2 • ω k+1 . Proof. One has s k • θ k = θ k + (k -1)α k = θ k-1 . Thus s 2 • • • s k • θ k = θ 1 = 0, whence θ k = s k • • • s 2 • 0. Next,
s m,α (λ) = λ -((λ, α ∨ ) -m)α. Further, one sets s α,m • λ = s m,α (λ + ρ) -ρ.
For each Weyl module V (λ), Jantzen has defined a decreasing filtration 

V (λ) ⊃ V (λ) 1 ⊃ V (λ) 2 ⊃ • • •
i≥1 ch V (λ) i = α∈R + m 0<mp<(λ+ρ,α ∨ ) v p (m)χ(s α,mp • λ)
where v p denotes the p-adic valuation and χ is the Weyl character. Recall that χ(µ) = 0 if µ is singular for the dot action of W , i.e. if there exists α ∈ R + such that (µ + ρ, α ∨ ) = 0, and otherwise there exists a unique couple (w, µ + ) ∈ W × X(T ) + such that µ = w • µ + and then χ(µ) = (-1) (w) ch V (µ + ). In particular, if the right-hand side, to which we shall refer as "Jantzen's sum" (relative to λ), equals ch L for some simple module L (resp. equals 0), then one has ch V (λ) = ch L(λ) + ch L (resp. V (λ) = L(λ)).

Proposition 1.4.2. For i = 0, . . . , r -2 one has the equality:

(1.4.2) ≥1 ch V (λ i ) = r-2 j=i+1 (-1) j-i-1 ch V (λ j )
and the exact sequences:

(1.4.3) 0 / / L i / / H 0 (λ i ) / / L i+1 / / 0 and (1.4.4) 0 / / N i / / H 0 P (λ i ) / / N i+1 / / 0
with the convention L r-1 = 0 = N r-1 . Therefore, one has exact sequences:

(1.4.5) 0 → L(λ 0 ) → H 0 (λ 0 ) → H 0 (λ 1 ) → • • • → H 0 (λ r-2 ) → 0 and (1.4.6) 0 → L P (λ 0 ) → H 0 P (λ 0 ) → H 0 P (λ 1 ) → • • • → H 0 P (λ r-2 ) → 0. Proof. Fix i ∈ {0, . . . , r -2} and for 1 ≤ j ≤ k ≤ d, set α j,k = α j + • • • + α k and c i,j,k = (λ i + ρ, α ∨ j,k
). We are going to prove that all terms in Jantzen's sum (for both G and P ) are zero, except the ones given in (1.4.2). Fix j ≤ k such that c i,j,k > p, let m ∈ N * such that mp < c i,j,k and set t = -mp and ν m = s α j,k ,mp • λ i = λ i -tα j,k . There are four cases to consider.

Case 1: c i,j,k = k -j + 1 (this occurs only j > i + 3 and k ≥ j + p). Then the expression of ν m in terms of the fundamental weights contains the "sequence" -tω j -tω k , the coefficients of the ω for j < < k being 0, and hence ν m + ρ is orthogonal to both α ∨ j,j+t-1 and α ∨ k-t+1,k . Therefore ν m gives no contribution to Jantzen's sum, neither for G nor for P .

Case 2: c i,j,k = k -j + 2 (this occurs only if j ≤ i + 3 ≤ k, including the case k = i + 3, j = 2 and i = p -2). Assume first that j < i + 3 < k. Then the expression of ν m in terms of the fundamental weights contains the "sequence" -tω j + ω i+3 -tω k , the coefficients of the ω for j < < k and = i + 3 being 0. For s = 0, . . . , i + 2 -j, i + 3 -j, . . . , k -j -1, (ν m + ρ, α ∨ j,j+s ) takes all the values from 1 -

t to k -j + 1 -t, except i -j + 4 -t. Since 1 -t ≤ 0 and k -j + 1 -t > 0 (since t ≤ k -j + 2 -p ≤ k -j), the value 0 is obtained unless t = i -j + 4. Similarly, for s = 0, . . . , k -i -4, k -i -3, . . . , k -j -1, (ν m + ρ, α ∨ k-s,k ) takes all the values from 1 -t to k -j + 1 -t, except k -i -2 -t. Hence the value 0 is obtained, unless t = k -i -2. This shows that ν m + ρ is singular, except possibly if t = i -j + 4 = k -i -2.
But in this case one has 2t = k -j + 2 and hence:

(ν m + ρ, α ∨ j,k ) = k -j + 2(1 -t) = 0. Consider now the "boundary" cases j = i + 3 or k = i + 3. If j = i + 3 then, since k -t + 1 > j, one has k -t + 1 > i + 3 and hence (ν m + ρ, α ∨ k-t+1,k ) = 0. If k = i + 3, then j + t -1 < k = i + 3
and hence (ν m + ρ, α ∨ j,j+t-1 ) = 0. Thus, in any case ν m gives no contribution to Jantzen's sum, neither for G nor for P .

To close this case, note that since i

+ 3 ≤ p + 1 ≤ k -j + 2, the case k = i + 3 can occur only if j ≤ 2, in which case c i,j,k = k -j + 2 implies i = p -2. Case 3: j = 2 and c i,j,k = k + p -2 -i and i < p -2. (Note that c i,2,i+2 = p -1 hence the hypothesis c i,2,k > p implies k ≥ i + 3.) Then one has ν m = (i + t)ω 1 + (p -2 -i -t)ω 2 + ω i+3 -tω k + tω k+1 .
For s = 0, . . . , i, i + 1, . . . , k -3, (ν m + ρ, α ∨ 2,2+s ) takes all the values from

p -i -1 -t to p + k -i -3 -t, except p -t. Since the last value taken is ≥ p -1 > 0, the value 0 is obtained except if t = p or if the initial value p -i -1 -t is > 0, i.e. t ≤ p -i -2. Similarly, for s = 0, . . . , k -i -4, k -i -3, . . . , k -3, (ν m + ρ, α ∨ k-s,k ) takes all the values from 1 -t to k -1 -t, except k -i -2 -t. Moreover one has 1 -t ≤ 0 < k -1 -t, hence the value 0 occurs unless t = k -i -2. Thus, ν m + ρ is singular except possibly if t = k -i -2 belongs to {1, . . . , p -i -2} or if t = k -i -2 = p. In the latter case, one has 2t = p + k -i -2 and hence (ν m + ρ, α ∨ 2,k ) = k -2 + p -i -2t = 0. In the former case, one has k = i + 2 + t with t = 1, . . . , p -i -2, whence m = 1. In fact, since k = i + 2 + t is ≤ d, we have t ∈ {1, . . . , r -i -2}, recalling that r = min(p, d). For t = 1, . . . , r -i -2, set θ t = s α 2,i+2+t ,p • λ i = (i + t)ω 1 + (p -2 -i -t)ω 2 + ω i+3 -tω i+2+t + tω i+3+t .
Using Lemma 1.4.1 with a shift of i + 2 in the indices, one obtains that θ 1 = λ i+1 and that

θ t = s i+2+t • • • s i+4 • λ i+t for t ≥ 2.
Denote by G P the Levi subgroup of P containing T and recall ([Jan03], II.5.21) that V P (λ i ) is just the corresponding Weyl module for G P on which the unipotent radical of P acts trivially. Therefore, applying Jantzen's sum formula for G P , one already obtains the equality:

(1.4.7)

≥1 ch V P (λ i ) = r-i-2 t=1 (-1) t-1 ch V P (λ i+t ).
To prove the analogous equality for G we must consider the last case, where j = 1.

Case 4: j = 1. Note that the assumption c i,1,k > p implies k ≥ 3. If k ≤ i + 3 then c i,1,k = p + k -2 + δ k,i+3 is ≤ 2p (since i ≤ p -2), hence m = 1 and t = k -2 + δ k,i+3
and the expression of ν m in terms of the fundamental weights contains the "sequence" (p -i -2)ω 2 -(k -2)ω k , the coefficients of the ω for 2 < < k being 0. Then (ν m + ρ, α ∨ 3,k ) = 0 hence ν m gives no contribution to Jantzen's sum. Suppose now that k > i + 3. Then c i,1,k = k -1 + p and

ν m = (i -t)ω 1 + (p -2 -i)ω 2 + ω i+3 -tω k + tω k+1 . For s = 0, . . . , k -i -4, k -i -3, . . . , k -3, (ν m + ρ, α ∨ k-s,k ) takes all the values from 1 -t to k -1 -t, except k -i -2 -t. Moreover one has 1 -t ≤ 0 ≤ k -1 -t, hence the value 0 occurs unless t = k -i -2.
Let us assume henceforth that t = k -i -2. Then t > p, for otherwise one would have

k -i -2 ≤ p hence k ≤ 2p (since i ≤ p -2) whence m ≤ 2; but m = 1 gives k -i -2 = t = c i,1,k -p = k -1, a contradiction, whereas m = 2 gives k -i -2 = t = c i,1,k -2p = k -p -1, a contradiction too, since i ≤ p -2.
Now, for s = 0, . . . , i, i + 1, . . . , k -3, (ν m + ρ, α ∨ 1,2+s ) takes all the values from p -t to p + k -2 -t, except p + i + 1 -t. Moreover since p < t ≤ k -1, the initial term is < 0 and the final term > 0, hence the value 0 occurs unless t

= p + i + 1. Now, if t = k -i -2 = p + i + 1 then 2t = p + k -1 and hence (ν m + ρ, α ∨ 1,k ) = p + k -1 -2t = 0.
Thus, in any case ν m gives no contribution to Jantzen's sum. This proves (1.4.2).

It follows from (1.4.2) that H 0 (λ r-2 ) = L r-2 ; then for λ r-3 the Jantzen sum equals ch L r-2 hence ch H 0 (λ r-3 ) = ch L r-3 + ch L r-2 . By decreasing induction one obtains that ch H 0 (λ i ) = ch L i + ch L i+1 for i = r -3, . . . , 0, whence the exact sequences (1.4.3). Similarly, using (1.4.7) one obtains that H 0 P (λ r-2 ) = N r-2 and ch H 0 P (λ i ) = ch N i + ch N i+1 for i = r -3, . . . , 0, whence the exact sequences (1.4.4). This completes the proof of Proposition Let us derive the following corollary (which is not used in the sequel).

Corollary 1.4.3. For i = 0, . . . , r -2, one has H 0 (N i ) = L i and H j (N i ) = 0 for j > 0.

Proof. Applying the functor H 0 to each exact sequence (1.4.4) gives an exact sequence:

0 / / H 0 (N i ) / / H 0 (λ i ) / / H 0 (N i+1 ) / / H 1 (N i ) / / 0
and isomorphisms H j (N i+1 ) H j+1 (N i ) for j ≥ 1. Since H j (N 0 ) = 0 for j ≥ 1, one obtains H j (N i ) = 0 for all i ≥ 0 and j ≥ 1, hence the previous exact sequence becomes:

(

1.4.8) 0 / / H 0 (N i ) / / H 0 (λ i ) / / H 0 (N i+1 ) / / 0 .
Since H 0 (N 0 ) L 0 , the exact sequences (1.4.3) then imply, by induction on i, that H 0 (N i ) L i for i = 0, . . . , r -2.

On the other hand, in [START_REF] Liu | On the cohomology of line bundles over certain flag schemes[END_REF], Cor. 3 and 4, the first author proved, using a result of Suprunenko pointed out by one of the referees, that the dominant weights of L(λ 0 ) (resp. of L(λ 0 ) = L((p -2)ω 1 + ω 2 )) are exactly the dominant weights ≤ λ 0 (resp. λ 0 ), each occuring with multiplicity one. Let us now switch to representations of GL d+1 and identify each λ i (resp. λ i = (p -2 -i)ω 1 + ω 2+i ) with the partition (p -1, p -1 -i, 1 i+1 ) (resp. (p -1 -i, 1 i+1 )). Recall that (see for example [START_REF] Macdonald | Symmetric Functions and Hall Polynomials[END_REF], Chap. I) for a dominant weight λ of GL d+1 , identified with a partition with at most d + 1 parts, the Weyl character ch V (λ) (resp. the orbit sum ν∈W λ e ν ) corresponds to the Schur function S λ (resp. the monomial symmetric function m λ ). Let us assume that d ≥ 2p -2, then the dominant weights smaller than λ 0 correspond to all partitions of 2p -1 which are smaller than (p -1, p -1, 1) in the dominance order. Thus, one deduces from Propositions 1.4.2 and 1.3.1 (or Corollary 3 in [START_REF] Liu | On the cohomology of line bundles over certain flag schemes[END_REF]) the following: where the sum on the left hand-side of the first equality (resp. second equality) is taken over all partitions λ of 2p -1 (resp. p) such that λ ≤ (p -1, p -1, 1) (resp. λ ≤ (p -1, 1)) in the dominance order.

Remark 1.4.5. One may conjecture that the previous equality holds for any integer n ≥ 2 (not only for prime numbers). Using a Sage program, we have checked this up to n = 23. 3

  for any weight λ and w ∈ W , one has w • λ = wλ + w • 0, which equals λ + w • 0 if wλ = λ. Applying this to w = s k • • • s 2 and λ = ω k+1 gives assertion (ii).

Corollary 1.4. 4 .

 4 For each prime number p, one has the equality:λ≤(p-1,p-1,1) i S (p-1,p-1-i,1 i+1 ) i S (p-1-i,1 i+1 )

We are grateful to one of the referees for this remark.

These are different from the weights λ f considered in section 1.3.

On August 23, 2019 (the day after the first version of this article was posted on arXiv), a proof of the first equality of this conjecture was kindly sent to us by Darij Grinberg, see[START_REF] Grinberg | Petrie symmetric functions[END_REF].
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