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ON THE COHOMOLOGY OF LINE BUNDLES OVER
CERTAIN FLAG SCHEMES II

LINYUAN LIU AND PATRICK POLO

To Jens Carsten Jantzen on the occasion of his 70th birthday

Abstract. Over a field K of characteristic p, let Z be the incidence
variety in Pd× (Pd)∗ and let L be the restriction to Z of the line bundle
O(−n− d) �O(n), where n = p+ f with 0 ≤ f ≤ p− 2. We prove that
Hd(Z,L ) is the simple GLd+1-module corresponding to the partition
λf = (p − 1 + f, p − 1, f + 1). When f = 0, using the first author’s
description of Hd(Z,L ) and Jantzen’s sum formula, we obtain as a
by-product that the sum of the monomial symmetric functions mλ, for
all partitions λ of 2p − 1 less than (p − 1, p − 1, 1) in the dominance
order, is the alternating sum of the Schur functions Sp−1,p−1−i,1i+1 for
i = 0, . . . , p− 2.

Introduction. This paper is an addition to the first author’s paper [Liu19b].
We now consider the group scheme G = SLd+1 over an arbitrary field K of
characteristic p > 0. For m,n ∈ N, set µm,n = mω1 − (n + d)ωd and
write simply µn instead of µn,n. We describe the H i(µm,n) when p > n
(thus recovering and extending [Liu19b], Cor. 2) and for n = p + f with
0 ≤ f ≤ p − 2 we prove that Hd(µn) is the simple G-module L(λf ) =
L(fω1 + (p − 2 − f)ω2 + (f + 1)ω3). Further, when f = 0 we express the
character of L(λf ), using Jantzen sum formula, as an alternating sum of
Weyl characters. Comparing this with the character of Hd(µp) given in
[Liu19b], Cor. 3, we obtain as a by-product that the sum of the monomial
symmetric functionsmλ, for all partitions λ of 2p−1 less than λf in the dom-
inance order, is the alternating sum of the Schur functions Sp−1,p−1−i,1i+1

for i = 0, . . . , p− 2.

1.1. Notation. We keep the notation of [Liu19b], except that we now con-
sider the group scheme G = SLd+1 over an arbitrary field K of character-
istic p > 0 and denote simply by P the maximal parabolic subgroup P1.
Let WP be the Weyl group of (P, T ) and define WQ similarly. Let chV
denote the character of a T -module V . For each simple root αi, let si ∈ W
be the corresponding simple reflection. Let w0 (resp. wP , resp. wQ) be the
longest element of W (resp. WP , resp. WQ) and set N = `(wQ). Then
`(wP ) = N + d− 1.

Let ρQ (resp. ρP ) denote the half-sum of the positive roots of Q (resp. P ).
Then one has:

Date: August 22, 2020.
1991 Mathematics Subject Classification. 05E05, 05E10, 14L15, 20G05.
Key words and phrases. cohomology, line bundles, flag schemes, Weyl modules, sym-

metric functions.
1

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0097316520301448
Manuscript_36ee0aa7cb6921664313c0c1ab7b2ea5

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0097316520301448
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0097316520301448


2 LINYUAN LIU AND PATRICK POLO

(1.1.1) 2ρQ = (2−d)(ω1+ωd)+2
d−1∑
i=2

ωi, 2ρP = (1−d)ω1+2
d∑
i=2

ωi.

Recall that, since 2ρ−2ρQ = d(ω1 +ωd), the dualizing sheaf on Z = G/Q
is L (−dω1 − dωd). Hence, by Serre duality on G/Q, one has
(1.1.2) Hd(µm,n) ' Hd−1(−(m+ d)ω1 + nωd)∗.
Further, let τ be the (involutive) automorphism of (G,T ) induced by the
automorphism of the Dynkin diagram which swaps αi and αd+1−i for i =
1, . . . , d. Note that τ also acts on X(T ) and preserves X(T )+. For any
G-module V , let τV denote the corresponding module twisted by τ . For
example, for a Weyl module V (λ) (resp. a simple module L(λ)), one has
τV (λ) ' V (τλ) (resp. τL(λ) ' L(τλ)). Then, (1.1.2) can be rewrited as:
(1.1.3) Hd(µm,n) ' Hd−1(τµn,m)∗.

Recall (see [Jan03], II.4.6 and its proof) that if P ′ ⊂ P ′′ are parabolic
subgroups containing B and if V is a P ′-module, one has for all i ≥ 0:
(1.1.4) H i(P ′′/B, V ) ' H i(P ′′/P ′, V ).
This will be used several times, without always mentioning it.

1.2. A description of H i(µm,n). For each i ∈ N, we denote by H i
Q(−) the

functor H i(Q/B,−) and define H i
P (−) similarly. Since −µm,n is trivial and

µm,n−2ρQ is anti-dominant with respect to the Levi subgroup of Q one has:

(1.2.1) H i
Q(−µm,n) '

{
−µm,n if i = 0,
0 if i > 0

and, using Serre duality on Q/B:

(1.2.2) H i
Q(µm,n − 2ρQ) '

{
0 if i < N,

H0
Q(−µm,n)∗ ' µm,n if i = N.

Consider induction from B to P . Thanks to (1.2.2), the spectral sequence
of composite functors (see [Jan03], I.4.5) degenerates and gives (together
with (1.1.4) applied to P ′ = Q and P ′′ = P ) isomorphisms for each i ≥ 0:
(1.2.3) H i

P (µm,n) ' H i+N
P (µm,n − 2ρQ)

and since µm,n−2ρQ = (m+d−2)ω1−2
∑d−1
j=2 ωj−(n+2)ωd is anti-dominant

with respect to P , the latter group is zero unless i+N = dim(P/B), i.e. i =
d− 1. Moreover, by Serre duality on P/B, one has:

HN+d−1
P (µm,n − 2ρQ) ' H0

P (−µm,n + 2ρQ − 2ρP )∗

= H0
P ((1−m)ω1 + nωd)∗.

Set νm,n = (1−m)ω1 + nωd and πm,n = −wP νm,n. Since wP = s2 · · · sdwQ,
one has
(1.2.4) πm,n = (m− n− 1)ω1 + nω2

and since H0
P (νm,n)∗ is isomorphic with VP (πm,n), the Weyl module for P

with highest weight πm,n, one obtains:
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Lemma 1.2.1. For each m,n ∈ N and i ∈ N, one has

H i
P (µm,n) '

{
VP (πm,n) if i = d− 1,
0 if i 6= d− 1.

Now, consider induction from B to G. Thanks to the lemma, the spectral
sequence of composite functors degenerates and gives (together with (1.1.4)
applied to P ′ = P and P ′′ = G) isomorphismsH i(µm,n) ' H i−d+1(VP (πm,n))
for each i ≥ 0. Since the former is zero for i 6∈ {d−1, d} (see [Liu19b], Section
2), this gives:

Proposition 1.2.2. For each m,n ∈ N and i ∈ N, one has

H i(µm,n) '


H0(VP (πm,n)) if i = d− 1,
H1(VP (πm,n)) if i = d,

0 if i 6= d− 1, d.

This allows us to recover and extend the result of [Liu19b], Corollary 2:

Corollary 1.2.3. Suppose that p > n.
(i) If m ≥ n, then Hd(µm,n) = 0 and Hd−1(µm,n) ' H0(πm,n). In

particular, H i(µn) = 0 for all i ≥ 0.
(ii) If n ≥ m, then Hd−1(µm,n) = 0 and

Hd(µm,n) ' H1(πm,n) ' H0(πn,m).

(iii) Furthermore, if p > m ≥ n then Hd−1(µm,n) ' L(πm,n) ' Hd(µn,m).

Proof. Suppose p > n. Then VP (πm,n) is irreducible as a P -module, being
isomorphic as a module over the Levi subgroup of P to the GLd-module
SnKd which is irreducible since n < p. Therefore, VP (πm,n) ' H0

P (πm,n).
Thus, the proposition gives for all i ≥ 0 that

H i(µm,n) ' H i−d+1(πm,n).
If m ≥ n then πm,n belongs to C := X(T )+ − ρ and hence Hj(πm,n) = 0

for j > 0 (and also for j = 0 if m = n). This proves (i).
Ifm < n, thenH0(πm,n) = 0. Further, πn,m = (n−m−1)ω1+mω2 belongs

to C and one has πm,n = sα1 · πn,m. Since 0 ≤ (πn,m + ρ, α∨1 ) = n−m < p,
one has H1(πm,n) ' H0(πn,m) (see [Jan03], II.5.4), which proves (ii).

Suppose now that p > m ≥ n. By (i) and Serre duality on G/Q, one has

H0(πm,n) ' Hd−1(µm,n) ' Hd(−(m+ d)ω1 + nωd)∗ = Hd(τµn,m)∗.
Now, using the automorphism τ of (G,T ), one deduces from (ii) that

Hd(τµn,m))∗ ' H0(τπm,n)∗.
Since the latter is the Weyl module V (πm,n), one obtains that H0(πm,n) '
L(πm,n). This proves (iii). �

Our goal in the next subsection is to determine Hd(µp). Since for d = 2
the SL3-modules H2(m,−n − 2) have been described in [Liu19a], where it
is proved in particular (see [Liu19a], Th. 3) that H2(p,−p − 2) is the Weyl
module V (0, p− 2), which is simple, we will henceforth assume that d ≥ 3.
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1.3. Computation of Hd(µn) for p ≤ n ≤ 2p − 1. Suppose now that
d ≥ 3 and n = p + f with 0 ≤ f ≤ p − 1. For each weight ν which is
dominant (resp. dominant with respect to P ), denote by L(ν) (resp. LP (ν))
the irreducible G-module (resp. P -module) with highest weight ν. Let

(1.3.1) λf =
{
fω1 + (p− 2− f)ω2 + (f + 1)ω3 if f ≤ p− 2,
(p− 1)ω1 + (p− 2)ω3 + ω4 if f = p− 1

(with the convention ω4 = 0 if d = 3), and set Lf = L(λf ) andNf = LP (λf ).

Proposition 1.3.1. One has Hd−1(µn) ' Lf ' Hd(µn).

Remark 1.3.2. This generalizes Corollary 3 in [Liu19b], which was the case
f = 0. Note that if f > 0 and d > p−f+1 then µp+f does not belong to the
closure of the facet containing µp. Indeed, denoting by α1, . . . , αd the simple
roots and setting β = α1 + · · ·+ αp−f+1, one has 〈µp + ρ, β∨〉 = 2p− f + 1
whereas 〈µp+f+ρ, β∨〉 = 2p+1. Hence the result for µp+f cannot be deduced
from the one for µp by applying a functor of translation.

Proof. Set πn = −ω1 + nω2 and M = VP (πn). According to Doty [Dot85],
§§2.3–2.4, one has exact sequences of P -modules:
(1.3.2) 0 // Nf

// M // C // 0

and
(1.3.3) 0 // C // H0

P (πn) // Nf
// 0

where C = LP (πn). Applying the functor H0 to (1.3.3) and using that:
(1.3.4) H i(H0

P (πn)) = H i(πn) = 0
for all i ≥ 0, one obtains H0(C) = 0 and isomorphisms H i(C) ' H i−1(Nf )
for all i ≥ 1. Taking this and Proposition 1.2.2 into account and applying
the functor H0 to (1.3.2), one obtains isomorphisms:
(1.3.5) Hd−1(µn) ' H0(M) ' H0(Nf ),
an exact sequence:
(1.3.6)

0 // H1(Nf ) // Hd(µn) // H0(Nf ) // H2(Nf ) // 0

and isomorphisms
(1.3.7) H i(Nf ) ' H i+1(C) ' H i+2(Nf )
for i ≥ 1. Since H i(Nf ) = 0 for i > |R+|, one obtains H i(Nf ) = 0 for all
i ≥ 1. Together with (1.3.6) and (1.3.5), this gives isomorphisms:
(1.3.8) Hd(µn) ' H0(Nf ) ' Hd−1(µn).
On the other hand, by [Liu19b], Cor. 4, λf has multiplicity 1 in Hd(µn),
which is therefore non-zero. Thus Hd(µn) ' Hd−1(µn) ' H0(Nf ) is a
non-zero submodule of H0(H0

P (λf )) = H0(λf ).
Now, using the automorphism τ of (G,T ), one obtains that Hd(µn) '

Hd−1(τµn)∗ is a quotient of H0(τλf )∗ ' V (λf ). Since any non-zero mor-
phism V (λf ) → H0(λf ) has image Lf (see [Jan03] II.6.16 Remark), then
(1.3.8) gives that Hd(µn) ' Lf ' Hd−1(µn). �
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Remark 1.3.3. 1 Seitz has shown ([Sei87], Prop. 6.1) that if a simple SLd+1-
module L(µ) with µ p-restricted has one-dimensional weight spaces then
either µ is a fundamental weight ωi or a multiple of ω1 or ωd, or µ =
aωi + (p − 1 − a)ωi+1 for some i ∈ {1, . . . , d − 1} and a ∈ {0, . . . , p − 1}.
Since λf is not in that list when f > 0, it follows that Hd(µp+f ) ' L(λf )
never has all its weight spaces of dimension 1 when f > 0. This improves
on Remark 3 (2) of [Liu19b].

1.4. Jantzen sum formula and consequences. Now, consider the case
f = 0, i.e. n = p. Then λ0 = (p − 2)ω2 + ω3. We shall use Jantzen sum
formula ([Jan03], II.8.19) to express chL0 in terms of Weyl characters. Set
r = min(d, p). In addition to λ0, define for i = 1, . . . , r − 2 the dominant
weights: 2

(1.4.1) λi = iω1 + (p− 2− i)ω2 + ω3+i

(with the convention ωd+1 = 0) and set Li = L(λi) and Ni = LP (λi). In
other words, if d > p the sequence ends with λp−2 = (p− 2)ω1 +ωp+1 whilst
if d ≤ p it ends with

λd−2 = (d− 2)ω1 + (p− d)ω2 + ωd+1 = (d− 2)ω1 + (p− d)ω2.

Lemma 1.4.1. Consider SLn+1 for some n ≥ 2 and for k = 1, . . . , n con-
sider the weight θk = ω1 − kωk + (k − 1)ωk+1. Note that θ1 = 0.

(i) For k ≥ 2, one has sk · θk = θk−1.
(ii) For k ≥ 2, one has ω1 − kωk + kωk+1 = sk · · · s2 · ωk+1.

Proof. One has sk · θk = θk + (k− 1)αk = θk−1. Thus s2 · · · sk · θk = θ1 = 0,
whence θk = sk · · · s2 · 0. Next, for any weight λ and w ∈ W , one has
w · λ = wλ + w · 0, which equals λ + w · 0 if wλ = λ. Applying this to
w = sk · · · s2 and λ = ωk+1 gives assertion (ii). �

For α ∈ R+ let α∨ be the corresponding coroot. Then, for m ∈ Z,
let sα,mp be the affine reflection defined for all λ ∈ X(T ) by sm,α(λ) =
λ− ((λ, α∨)−m)α. Further, one sets sα,m · λ = sm,α(λ+ ρ)− ρ.

For each Weyl module V (λ), Jantzen has defined a decreasing filtration
V (λ) ⊃ V (λ)1 ⊃ V (λ)2 ⊃ · · · and one has the following character formula
([Jan03], II.8.19):∑

i≥1
chV (λ)i =

∑
α∈R+

∑
m

0<mp<(λ+ρ,α∨)

vp(m)χ(sα,mp · λ)

where vp denotes the p-adic valuation and χ is the Weyl character. Recall
that χ(µ) = 0 if µ is singular for the dot action of W , i.e. if there exists
α ∈ R+ such that (µ + ρ, α∨) = 0, and otherwise there exists a unique
couple (w, µ+) ∈ W × X(T )+ such that µ = w · µ+ and then χ(µ) =
(−1)`(w) chV (µ+). In particular, if the right-hand side, to which we shall
refer as “Jantzen’s sum” (relative to λ), equals chL for some simple module L
(resp. equals 0), then one has chV (λ) = chL(λ)+chL (resp. V (λ) = L(λ)).

1We are grateful to one of the referees for this remark.
2These are different from the weights λf considered in section 1.3.
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Proposition 1.4.2. For i = 0, . . . , r − 2 one has the equality:

(1.4.2)
∑
`≥1

chV (λi)` =
r−2∑
j=i+1

(−1)j−i−1 chV (λj)

and the exact sequences:

(1.4.3) 0 // Li // H0(λi) // Li+1 // 0

and

(1.4.4) 0 // Ni
// H0

P (λi) // Ni+1 // 0

with the convention Lr−1 = 0 = Nr−1. Therefore, one has exact sequences:

(1.4.5) 0→ L(λ0)→ H0(λ0)→ H0(λ1)→ · · · → H0(λr−2)→ 0

and

(1.4.6) 0→ LP (λ0)→ H0
P (λ0)→ H0

P (λ1)→ · · · → H0
P (λr−2)→ 0.

Proof. Fix i ∈ {0, . . . , r− 2} and for 1 ≤ j ≤ k ≤ d, set αj,k = αj + · · ·+ αk
and ci,j,k = (λi + ρ, α∨j,k). We are going to prove that all terms in Jantzen’s
sum (for both G and P ) are zero, except the ones given in (1.4.2). Fix j ≤ k
such that ci,j,k > p, let m ∈ N∗ such that mp < ci,j,k and set t = ci,j,k −mp
and νm = sαj,k,mp · λi = λi − tαj,k. There are four cases to consider.

Case 1: ci,j,k = k − j + 1 (this occurs only j > i + 3 and k ≥ j + p).
Then the expression of νm in terms of the fundamental weights contains the
“sequence” −tωj − tωk, the coefficients of the ω` for j < ` < k being 0, and
hence νm + ρ is orthogonal to both α∨j,j+t−1 and α∨k−t+1,k. Therefore νm
gives no contribution to Jantzen’s sum, neither for G nor for P .

Case 2: ci,j,k = k − j + 2 (this occurs only if j ≤ i + 3 ≤ k, including
the case k = i + 3, j = 2 and i = p − 2). Assume first that j < i + 3 < k.
Then the expression of νm in terms of the fundamental weights contains the
“sequence” −tωj + ωi+3 − tωk, the coefficients of the ω` for j < ` < k and
` 6= i+ 3 being 0.

For s = 0, . . . , i+ 2− j, i+ 3− j, . . . , k − j − 1, (νm + ρ, α∨j,j+s) takes all
the values from 1− t to k− j+ 1− t, except i− j+ 4− t. Since 1− t ≤ 0 and
k − j + 1− t > 0 (since t ≤ k − j + 2− p ≤ k − j), the value 0 is obtained
unless t = i− j + 4.

Similarly, for s = 0, . . . , k− i− 4, k− i− 3, . . . , k− j − 1, (νm + ρ, α∨k−s,k)
takes all the values from 1− t to k − j + 1− t, except k − i− 2− t. Hence
the value 0 is obtained, unless t = k − i − 2. This shows that νm + ρ is
singular, except possibly if t = i − j + 4 = k − i − 2. But in this case one
has 2t = k − j + 2 and hence:

(νm + ρ, α∨j,k) = k − j + 2(1− t) = 0.

Consider now the “boundary” cases j = i+ 3 or k = i+ 3. If j = i+ 3 then,
since k− t+1 > j, one has k− t+1 > i+3 and hence (νm+ρ, α∨k−t+1,k) = 0.
If k = i + 3, then j + t − 1 < k = i + 3 and hence (νm + ρ, α∨j,j+t−1) = 0.
Thus, in any case νm gives no contribution to Jantzen’s sum, neither for G
nor for P .
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To close this case, note that since i + 3 ≤ p + 1 ≤ k − j + 2, the case
k = i + 3 can occur only if j ≤ 2, in which case ci,j,k = k − j + 2 implies
i = p− 2.

Case 3: j = 2 and ci,j,k = k + p − 2 − i and i < p − 2. (Note that
ci,2,i+2 = p− 1 hence the hypothesis ci,2,k > p implies k ≥ i+ 3.) Then one
has νm = (i+ t)ω1 + (p− 2− i− t)ω2 + ωi+3 − tωk + tωk+1.

For s = 0, . . . , i, i+ 1, . . . , k− 3, (νm + ρ, α∨2,2+s) takes all the values from
p − i − 1 − t to p + k − i − 3 − t, except p − t. Since the last value taken
is ≥ p− 1 > 0, the value 0 is obtained except if t = p or if the initial value
p− i− 1− t is > 0, i.e. t ≤ p− i− 2.

Similarly, for s = 0, . . . , k− i−4, k− i−3, . . . , k−3, (νm+ρ, α∨k−s,k) takes
all the values from 1− t to k− 1− t, except k− i− 2− t. Moreover one has
1− t ≤ 0 < k − 1− t, hence the value 0 occurs unless t = k − i− 2.

Thus, νm + ρ is singular except possibly if t = k − i − 2 belongs to
{1, . . . , p − i − 2} or if t = k − i − 2 = p. In the latter case, one has
2t = p+ k − i− 2 and hence

(νm + ρ, α∨2,k) = k − 2 + p− i− 2t = 0.
In the former case, one has k = i + 2 + t with t = 1, . . . , p − i − 2, whence
m = 1. In fact, since k = i + 2 + t is ≤ d, we have t ∈ {1, . . . , r − i − 2},
recalling that r = min(p, d). For t = 1, . . . , r − i− 2, set
θ′t = sα2,i+2+t,p · λi = (i+ t)ω1 + (p− 2− i− t)ω2 +ωi+3− tωi+2+t + tωi+3+t.

Using Lemma 1.4.1 with a shift of i + 2 in the indices, one obtains that
θ′1 = λi+1 and that θ′t = si+2+t · · · si+4 · λi+t for t ≥ 2.

Denote by GP the Levi subgroup of P containing T and recall ([Jan03],
II.5.21) that VP (λi) is just the corresponding Weyl module for GP on which
the unipotent radical of P acts trivially. Therefore, applying Jantzen’s sum
formula for GP , one already obtains the equality:

(1.4.7)
∑
`≥1

chVP (λi)` =
r−i−2∑
t=1

(−1)t−1 chVP (λi+t).

To prove the analogous equality for G we must consider the last case, where
j = 1.

Case 4: j = 1. Note that the assumption ci,1,k > p implies k ≥ 3. If
k ≤ i + 3 then ci,1,k = p + k − 2 + δk,i+3 is ≤ 2p (since i ≤ p − 2), hence
m = 1 and t = k − 2 + δk,i+3 and the expression of νm in terms of the
fundamental weights contains the “sequence” (p− i− 2)ω2 − (k − 2)ωk, the
coefficients of the ω` for 2 < ` < k being 0. Then (νm + ρ, α∨3,k) = 0 hence
νm gives no contribution to Jantzen’s sum.

Suppose now that k > i+ 3. Then ci,1,k = k − 1 + p and
νm = (i− t)ω1 + (p− 2− i)ω2 + ωi+3 − tωk + tωk+1.

For s = 0, . . . , k − i − 4, k − i − 3, . . . , k − 3, (νm + ρ, α∨k−s,k) takes all the
values from 1 − t to k − 1 − t, except k − i − 2 − t. Moreover one has
1− t ≤ 0 ≤ k − 1− t, hence the value 0 occurs unless t = k − i− 2.

Let us assume henceforth that t = k − i − 2. Then t > p, for otherwise
one would have k − i− 2 ≤ p hence k ≤ 2p (since i ≤ p− 2) whence m ≤ 2;
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but m = 1 gives k − i− 2 = t = ci,1,k − p = k − 1, a contradiction, whereas
m = 2 gives k− i− 2 = t = ci,1,k− 2p = k− p− 1, a contradiction too, since
i ≤ p− 2.

Now, for s = 0, . . . , i, i+ 1, . . . , k− 3, (νm + ρ, α∨1,2+s) takes all the values
from p− t to p+k−2− t, except p+ i+ 1− t. Moreover since p < t ≤ k−1,
the initial term is < 0 and the final term > 0, hence the value 0 occurs
unless t = p + i + 1. Now, if t = k − i − 2 = p + i + 1 then 2t = p + k − 1
and hence

(νm + ρ, α∨1,k) = p+ k − 1− 2t = 0.
Thus, in any case νm gives no contribution to Jantzen’s sum. This proves
(1.4.2).

It follows from (1.4.2) that H0(λr−2) = Lr−2; then for λr−3 the Jantzen
sum equals chLr−2 hence chH0(λr−3) = chLr−3 + chLr−2. By decreasing
induction one obtains that chH0(λi) = chLi + chLi+1 for i = r − 3, . . . , 0,
whence the exact sequences (1.4.3). Similarly, using (1.4.7) one obtains that
H0
P (λr−2) = Nr−2 and chH0

P (λi) = chNi + chNi+1 for i = r − 3, . . . , 0,
whence the exact sequences (1.4.4). This completes the proof of Proposition
1.4.2. �

Let us derive the following corollary (which is not used in the sequel).

Corollary 1.4.3. For i = 0, . . . , r − 2, one has H0(Ni) = Li and Hj(Ni)
= 0 for j > 0.

Proof. Applying the functorH0 to each exact sequence (1.4.4) gives an exact
sequence:

0 // H0(Ni) // H0(λi) // H0(Ni+1) // H1(Ni) // 0

and isomorphisms Hj(Ni+1) ' Hj+1(Ni) for j ≥ 1. Since Hj(N0) = 0 for
j ≥ 1, one obtains Hj(Ni) = 0 for all i ≥ 0 and j ≥ 1, hence the previous
exact sequence becomes:

(1.4.8) 0 // H0(Ni) // H0(λi) // H0(Ni+1) // 0 .

Since H0(N0) ' L0, the exact sequences (1.4.3) then imply, by induction on
i, that H0(Ni) ' Li for i = 0, . . . , r − 2. �

On the other hand, in [Liu19b], Cor. 3 and 4, the first author proved,
using a result of Suprunenko pointed out by one of the referees, that the
dominant weights of L(λ0) (resp. of L(λ′0) = L((p− 2)ω1 + ω2)) are exactly
the dominant weights ≤ λ0 (resp. λ′0), each occuring with multiplicity one.
Let us now switch to representations of GLd+1 and identify each λi (resp.
λ′i = (p−2− i)ω1 +ω2+i) with the partition (p−1, p−1− i, 1i+1) (resp. (p−
1− i, 1i+1)). Recall that (see for example [McD95], Chap. I) for a dominant
weight λ of GLd+1, identified with a partition with at most d + 1 parts,
the Weyl character chV (λ) (resp. the orbit sum

∑
ν∈Wλ e

ν) corresponds to
the Schur function Sλ (resp. the monomial symmetric function mλ). Let
us assume that d ≥ 2p − 2, then the dominant weights smaller than λ0
correspond to all partitions of 2p− 1 which are smaller than (p− 1, p− 1, 1)
in the dominance order. Thus, one deduces from Propositions 1.4.2 and
1.3.1 (or Corollary 3 in [Liu19b]) the following:
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Corollary 1.4.4. For each prime number p, one has the equality:∑
λ≤(p−1,p−1,1)

mλ =
p−2∑
i=0

(−1)i S(p−1,p−1−i,1i+1)

and ∑
λ≤(p−1,1)

mλ =
p−2∑
i=0

(−1)i S(p−1−i,1i+1)

where the sum on the left hand-side of the first equality (resp. second
equality) is taken over all partitions λ of 2p − 1 (resp. p) such that λ ≤
(p− 1, p− 1, 1) (resp. λ ≤ (p− 1, 1)) in the dominance order.

Remark 1.4.5. One may conjecture that the previous equality holds for
any integer n ≥ 2 (not only for prime numbers). Using a Sage program, we
have checked this up to n = 23. 3

Acknowledgements. We thank one of the referees for several very useful
comments.
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