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Preconditioning strategies for vectorial finite element linear systems arising
from phase-field models for fracture mechanics

M. A. Badria,∗, G. Rastielloa,∗, E. Foerstera

aDES-Service d’études mécaniques et thermiques (SEMT), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

Abstract

Phase-field models are frequently adopted to simulate fracture mechanics problems in the context of the
finite element method. To depict fracture, this method involves solving a coupled set of Helmholtz-like
damage-field equation and augmented linear momentum balance equation. Solutions to these coupled equa-
tions are then used as descriptions of crack propagation phenomena within solids. However, this method
imposes a constrain of using extremely fine meshing for properly predicting cracks. For practical problems
of interest, this very often leads to linear systems with large sizes that have to be repetitively assembled and
solved. As such, iterative solution procedures such as the Krylov subspace based methods for solving these
large linear systems within the framework of serial/parallel computing environments become mandatory to
obtain results in a feasible time. In this work, the vectorial finite discretization for a hybrid phase-field for-
mulation — a monolithic solving scheme — is presented. The underlying nonlinearity present in the coupled
set of equations of the the hybrid phase-field model is dealt through Picard iteration that helps to preserve
the symmetry of the linearized system to solve. Due to the symmetric positive definite nature of the finite
element linear systems obtained for this problem, the conjugate gradient method makes a standard choice of
iterative solution algorithm. Within this article, to improve convergence rates, consequently time to solution,
of the conjugate gradient method applied to crack propagation problems, different preconditioning strate-
gies are analyzed, tuned, and discussed. Brittle fracture benchmarks are used to measure the performance
of preconditioners which are then applied to massively parallel simulations with millions of unknowns. A
series of numerical experiments show that the algebraic multigrid preconditioner is well suited for solving
the phase-field model for fracture, being superior to the Jacobi and the block Jacobi preconditioning in all
regards: ease of solving the problem, iterations to converge, time to solution, and parallel scaling on more
than a thousand processes.
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1. Introduction1

Fracture mechanics problems are often modeled using phase-field models (see e.g., Francfort and Marigo2

(1998), Bourdin et al. (2000, 2008), Amor et al. (2009), Miehe et al. (2010b)). Mainly due to their strong3

theoretical backgrounds and robust numerical implementation in the context of the finite element method4

(FEM), phase-field formulations are, today, regarded among the robust techniques to model fracture me-5

chanics. Particularly when crack initiation, propagation, and branching need to be modeled accurately. Over6

the past decades, the phase-field formulations have been developed to model diverse problems of fracture7
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Nomenclature

Acronyms
DOF degrees of freedom
FEM finite element method
AMG algebraic multigrid
CG conjugate gradient
IC incomplete Cholesky
ILU incomplete LU factorization
MPI message passing interface
SOR successive over relaxation
Symbols
n outward unit normal vector
t traction vector
u displacement vector
x Cartesian space coordinates
ε strain tensor
Ω domain
Ωh mesh
∂Ω domain boundary

∂Ωh mesh boundary
ψ elastic energy
ψ+ tensile elastic energy
ψ− compressive elastic energy
σ stress tensor
d damage variable
Gc material fracture toughness
h mesh size
l0 length scale parameter
N number of
t time
Subscripts
D Dirichlet
e elements
nz non zeros
N Neumann
p processes
v vertices

mechanics, e.g., to model brittle fracture (Francfort and Marigo, 1998, Bourdin et al., 2000, 2008, Amor8

et al., 2009, Miehe et al., 2010a,b, Ambati et al., 2014), ductile fracture (Miehe et al., 2015, Alessi et al.,9

2015, Ambati et al., 2015), large-deformation fracture (Miehe and Schänzel, 2014, Borden et al., 2018), dy-10

namic fracture (Borden et al., 2012, Hofacker and Miehe, 2012), cohesive fracture (Verhoosel and de Borst,11

2013, May et al., 2015), thermomechanical fracture (Kuhn and Müller, 2009), to cite but a few. It is backed12

by experimental evidence (Ambati et al., 2016, Nguyen et al., 2016, Pham et al., 2017) that these models13

can reliably predict the phenomena of fracture. A recent review article (Wu et al., 2018) provides a general14

overview of different phase-field models available for solving fracture mechanics problems.15

Within the framework of phase-field method, the linear momentum balance equation is supplemented by16

a Helmholtz-like diffusion equation (damage-field equation) describing damage evolution. The resulting17

system of partial differential equations are discretized and solved simultaneously. In other words, to predict18

fracture, for a problem undergoing load variations, the scalar damage-field unknown d = d ∈ [0, 1] is solved19

simultaneously with the vector displacement field u until the internal body forces are in equilibrium with20

the external applied forces. The resulting field d then serves as an indicator to the state of the solid,21

i.e., d = 1 indicates cracked state and d = 0 indicates otherwise. In a finite element context, phase-field22

formulations lead to regularize damage evolution through introducing an internal length scale such that23

damage is diffused over a band of elements, which is finite in width. In that sense, phase-field models share24

some features with other non-local formulations (Pijaudier-Cabot and Bažant, 1987, Bažant and Jirásek,25

2002, Moës et al., 2011, Giry et al., 2011, Rastiello et al., 2018), and in particular with gradient-damage26

formulations (Frémond and Nedjar, 1996, Peerlings et al., 2001). Comparative studies between phase-field27

and gradient-damage formulations were presented in (de Borst and Verhoosel, 2016, Mandal et al., 2019).28

Although the solution procedure seems fairly straightforward, prerequisite of extremely fine meshing for29

capturing cracks, and large-scale simulations lead to computationally challenging scenarios. For standard30

numerical methods, like the finite element method (FEM), one thus ends up solving linear systems with mil-31

lions of unknowns. Further, nonlinear coupling and (pseudo) time-dependent simulations, requires repeated32

solutions of these linear systems. Such reasons highly motivate the application of preconditioned iterative33

solution algorithms to solve the arising linear systems in a serial or a parallel computing framework.34
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The primary aim of the current article is to identify and highlight different preconditioning options to35

improve convergence, consequently time to solution, for the finite element linear systems that arise in the36

phase-field modeling strategy for fracture. Besides this, we also propose a monolithic way of approximating37

the hybrid phase-field model via the vectorial finite element method which provides straightforward means38

of parallelization for coupled set of equations (Badri et al., 2018).39

Literature pertaining use of preconditioners in finite element phase-field modeling of fracture mechanics is40

scarce. Particularly, till date no study on preconditioning strategies for the hybrid phase-field models for41

fracture has been presented. Nevertheless, preconditioned staggered FEM solution approach for phase-field42

model was used by Bilgen et al. (2017) to model conchoidal brittle fracture. The authors investigated43

the Jacobi and the geometric multigrid preconditioner for the Krylov subspace conjugate gradient (CG)44

method (Hestenes and Stiefel, 1952), in conclusion the geometric multigrid preconditioner outran the Jacobi45

preconditioner. Much recently, the Krylov subspace GMRES (Saad and Schultz, 1986) (for non-symmetric46

linear systems) preconditioned with geometric multigrid was used for solving brittle fracture problems in47

the framework of monolithic FEM solution approach (Jodlbauer et al., 2019). Since geometric multigrid48

preconditioning was used in Bilgen et al. (2017), Jodlbauer et al. (2019), the authors ended up using49

structured meshes for the numerical experiments that appear in these studies. A modified staggered FEM50

solution approach was proposed by Farrell and Maurini (2017) to solve brittle fracture problems. The authors51

ended up using the complete LU solver and the Krylov subspace MINRES method (Paige and Saunders,52

1975) (for symmetric positive indefinite linear systems) preconditioned with algebraic multigrid to speed53

up the solver convergence. Heister and Wick (2018) solved pressurized phase-field brittle fracture problems54

using the Krylov subspace GMRES (for non-symmetric linear systems) preconditioned with a block diagonal55

preconditioner. For solving these block diagonal matrices authors used algebraic multigrid as a standalone56

solver.57

Within this study, the underlying coupled partial differential equations of the hybrid phase-field model58

by Ambati et al. (2015) are solved by utilizing the vectorial FEM. This formulation was chosen for the sake59

of studying the solving techniques for phase-field models, but different formulations could have been used.60

Within the framework of vectorial FEM, the unknown fields u and d, are coupled together in a single vectorial61

field w = [u, d] and a single vectorial equation then needs to be solved. Two main approaches — staggered62

approaches (Bourdin, 2007, Miehe et al., 2010a, Ambati et al., 2014, Bilgen et al., 2017) and monolithic63

approaches (Gerasimov and De Lorenzis, 2016, Liu et al., 2016, Wick, 2017, Jodlbauer et al., 2019) — have64

been used in the literature to handle nonlinearity in the governing equations of the phase-field model. In this65

study, the Picard iteration method is used to handle the nonlinearity between the coupled partial differential66

equations of the hybrid phase-field model. Alongside the vectorial FEM this leads to a monolithic approach.67

Consequently, the linear systems obtained are symmetric, sparse, and positive definite in nature. Naturally,68

for memory considerations, the Krylov subspace-based CG method makes a standard choice of iterative69

solution algorithm for such linear systems. For improving the performance of the CG method, the most70

effective preconditioner suggested so far is a geometric multigrid, when solving brittle fracture problems on71

regular structured grids (Bilgen et al., 2017).72

Often for many practical problems of interest, unstructured meshes are preferred over structured ones. The73

reason is that unstructured meshes allow for better geometric representation of complex or simple geome-74

tries. Despite unstructured meshing is simpler to perform compared to a structured one, the recommended75

geometric multigrid preconditioners are not straightforward to set up in that case. Generating a hierarchy76

of unstructured meshes which are mandatory for setting up the geometric multigrid preconditioners is not77

a trivial task. It can be argued that the range of applicability of the geometric multigrid is, therefore,78

limited (Xu and Zikatanov, 2017). An appealing alternative for problems solved with unstructured meshes79

is another class of multilevel preconditioners, dubbed as algebraic multigrid (AMG). A review by Stüben80

(2001) provides an overview of this method. With the AMG methods, the coarser grids and associated81

transfer operators are generated algebraically by using the assembled coefficients of linear system itself. One82

of the motives for this study, is to tune, apply, and report the performance of AMG preconditioning with83

application to phase-field models and compare it to other common one-level preconditioners such as the84

Jacobi and the Block Jacobi.85
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The rest of the paper is organized as follows. In section 2, the boundary value problem of phase-field frac-86

ture mechanics model is introduced briefly. Section 3 then presents the vectorial finite element discretization87

procedure for the phase-field model. The iterative solution technique of CG along with different precondi-88

tioning options is presented in section 4. Results and discussion of the time performance, memory usage,89

convergence behavior, and parameter tuning of different preconditioners is presented next in section 5. The90

article then ends with some conclusions in section 6, which highlights the main results of this article and91

provides recommendations on the use of preconditioners for phase-field fracture mechanics modeling.92

2. Mathematical formulations93

In this section, we present the mathematical formulation of the hybrid phase-field model (Ambati et al.,94

2014) for fracture that is used in this work. Such a model is “hybrid” (Ambati et al., 2014, Wu, 2017,95

Wu and Nguyen, 2018) in the sense that it combines features of the so-called “isotropic” (Bourdin et al.,96

2000) and “anisotropic” (Amor et al., 2009, Miehe et al., 2010b, Wu et al., 2018) phase-field models. Here,97

terms isotropic and anisotropic should not be intended according to their meanings in the Continuum98

Mechanics theory, but following the nomenclature that is generally used in the phase-field community99

(Miehe et al., 2010a,b). In particular, the term anisotropic designates models such that special splits of100

the energy/strain/stress are introduced to represent different dissipative processes occurring in the material101

under prevailing tensile/compressive states.102

2.1. Problem setting103

We consider a n-dimensional solid body Ω ⊂ Rn (n = 1, 2, or 3) submitted to quasi-static external loading104

such that damage occurs. According to the phase-field model, on each point x(x, y, z) ∈ Ω and at any105

pseudo-time t ∈ [0, T ], the state of the system is defined by two fields: the vector-valued displacement field106

u = u(x, t) : Ω× [0, T ]→ Rn and the scalar-valued damage field d = d(x, t) : Ω× [0, T ]→ [0, 1] ⊂ R. From107

now on, the dependency on the space and time variables will be omitted for the sake of compactness. Also,108

we denote u := [u1, u2, u3]T, where u1, u2, and u3 correspond to displacements in x, y, and z directions,109

respectively.110

2.2. Boundary value problem of hybrid phase-field model111

Consider an arbitrary open bounded domain Ω with imposed tractions on Neumann boundary ∂ΩN ⊂ Rn,
and provided with essential Dirichlet conditions on boundary ∂ΩD ⊂ Rn. The split of the domain boundary
∂Ω ⊂ Rn is such that ∂Ω = ∂ΩD ∪ ∂ΩN and ∅ = ∂ΩD ∩ ∂ΩN, with over-line denoting a closure. Under
quasi-static conditions and in the absence of body/volume forces within Ω, the hybrid phase-field model
poses the following boundary value problem (BVP):

find u : Ω× [0, T ]→ Rn and d : Ω× [0, T ]→ [0, 1] such that ∀ t ∈ [0, T ]
div
[
(1− d)2σ(u)

]
= 0 ∀x ∈ Ω, (1)

[
Gc
l0

+ 2H+(u)
]
d−Gcl0∆d− 2H+(u) = 0 ∀x ∈ Ω, (2)

given the boundary conditions
σ(u, d) · n = t ∀x ∈ ∂ΩN, (3)
u = u ∀x ∈ ∂ΩD, (4)
∇d · n = 0 ∀x ∈ ∂ΩN, (5)

where div(•) is the divergence operator applied to (•), ∆(•) = div(∇(•)) denotes the Laplace operator,112

Gc ∈ R+ quantifies the material fracture toughness, and l0 ∈ R+ is the length-scale parameter to control113
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the influence of gradient term. n = n(x) : Ω → R
n is the unit normal vector for surface ∂Ω, t = t(x, t) :114

Ω × [0, T ] → R
n denotes imposed tractions, and u = u(x, t) : Ω × [0, T ] → R

n imposed displacements.115

σ(u) = ∂ψ(u)
∂ε denotes the elastic/effective Chauchy’s stress tensor with ψ being the elastic energy defined116

by117

ψ(u) = 1
2λ tr(ε(u))I + µε(u) : ε(u), (6)

here λ ∈ R+ and µ ∈ R+ are the Lamé parameters, I is the second order identity tensor, tr(•) denotes the118

trace operator applied to (•), and ε(u) : Ω × [0, T ] → R
n×n denotes the second order small strain tensor,119

i.e., the symmetric part of the gradient of the displacement field ∇u, such that ε(u) =
(
∇u+∇Tu

)
/2.120

To account for the experimental evidence that cracking is mainly controlled by tensile stress/strain states,121

Ambati et al. (2014) proposed to consider that damage diffusion (in eq. (2)) be driven by the maximum122

tensile elastic energy history function H+(u) : Ω× [0, T ]→ R+:123

H+(u) = max
τ∈[0,t]

ψ+(u), (7)

with tensile elastic energy ψ+(u) : Ω × [0, T ] → R being defined as ψ+(u) = (1/2)λ
〈
tr
(
ε(u)

)〉
+ +124

µ tr
(
ε2

+(u)
)
, where the bracket operator is expanded as 〈•〉+ = (•+ | • |)/2 and ε+(u) =: Ω× [0, T ]→ Rn×n125

denotes the positive part of stain tensor ε. Definition (7) ensures avoiding cracking in compressed regions.126

Finally, to prevent crack interpenetration the following constrain is applied127

∀x : ψ+(u) < ψ−(u)⇒ d := 0, (8)

with ψ−(u) : Ω × [0, T ] → R denoting the compressive elastic energy, ψ−(u) = (1/2)λ
〈
tr
(
ε(u)

)〉
− +128

µ tr
(
ε2
−(u)

)
, where 〈•〉− = (• − | • |)/2 and ε−(u) : Ω × [0, T ] → R

n×n is now the negative part of strain129

tensor ε1.130

While the chosen hybrid phase-field model suggests performing elastic energy split (to avoid cracking in131

compression regions) and makes use of the tensile elastic energy ψ+ (in eq. (2) via the history function H+)132

to control the damage evolution seldom in tensile regions of the domain, there exists other approaches133

in the literature. Among others, the commonly used ones involve decomposition of elastic energy based134

on volumetric and deviatoric contributions (Amor et al., 2009) and spectral decomposition (Miehe et al.,135

2010a). However, following these approaches one needs to deal with (strong) non-linear system of equations136

for elasticity (eq. (1) becomes nonlinear due to strain tensor decomposition). One of the key advantages of137

using hybrid phase-field model (and perhaps due to which such model was proposed by Ambati et al. (2014))138

is that the momentum balance eq. (1) is retained in its linear form, thereby reducing its computational139

complexity. The only nonlinearity to be dealt with in hybrid phase-field formulation is the one due to140

variational inequality.141

Additionally, as the hybrid phase-field model avoids energy/strain/stress splitting for eq. (1), the operator142 [
(1− d)2] ∂ψ+(u)/∂ε does not exist in the momentum balance eq. (1), which is not the case for other143

phase-field models (Amor et al., 2009, Miehe et al., 2010a). It is well known that this operator is non-convex144

in both variables u and d and leads to difficulties in designing an efficient solution algorithm (Wick, 2017,145

Kopaničáková and Krause, 2020). As such, the hybrid phase-field model becomes an interesting option for146

solving fracture mechanics with ease.147

The hybrid phase-field model has been proven to work for a wide variety of fracture mechanics prob-148

lems (Doan et al., 2016, Jeong et al., 2018, Hirshikesh et al., 2018). While this model ensures accurate crack149

predictions, it is known to reduce the computational cost (due to avoiding strong nonlinearity) by about150

one order of magnitude compared with other anisotropic phase-field formulations Ambati et al. (2014).151

1We recall that, given a second order tensor A, its positive (A+) and negative (A−) parts are defined as A± =∑n

i=1 〈Ai〉± ei ⊗ ei, where {Ai}n
i=1 and {ei}n

i=1 denote the eigenvalues and eigenvectors of A, and symbol ⊗ indicates the
dyadic product between vectors.
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3. Finite element formulations152

This section proceeds with the finite element spatial discretization procedure for the BVP discussed in the153

previous section. A three-dimensional (3D) formulation (n = 3) is considered for the sake of illustration,154

but identical equations hold for other dimensions.155

3.1. Discretized variational formulations156

On a meshed domain Ωh ∈ Ω ⊂ Rn, for eq. (1), the mixed finite element variational formulation in the157

Lagrangian framework for searching the unknown nodal displacements vector uh = [u1, u2, u3]T reads:158

search uh ∈ Vh that satisfies ∀ t ∈ [0, T ] :∫

Ωh

[
(1− dh)2 + κ

]
σ(uh) : ε(vh) dv =

∫

∂Ωh
N

t · vh ds ∀vh ∈ Vh,
(9)

where κ � 1 is a model parameter to prevent numerical singularity when d → 1. In this formulation, the159

notation “:” is used for the double contraction between tensors (i.e., component-wise tensor product) and Vh160

is a mixed third order vector-valued finite element functional space to approximate vector test function vh161

and vector trial function uh:162

Vh =
{
uh ∈ [H1(Ωh)]3 ∀t ∈ [0, T ] | ∀x ∈ ∂ΩhD uh = u

}
, (10)

with H1(Ωh) denoting a square integrable Sobolev functional space. Similarly, for eq. (2), the standard163

finite element variational formulation for the unknown damage scalar dh reads:164

search dh ∈ V h that satisfies ∀ t ∈ [0, T ] :
∫

Ωh

[
Gc
l0

+ 2H+(uh)
]
dhθh dv +

∫

Ωh

Gcl0∇dh · ∇θh dv =
∫

Ωh

2H+(uh)θh dv ∀ θh ∈ V h,
(11)

where, V h denotes the scalar finite element functional space to approximate scalar test function θh and165

scalar trial function dh:166

V h =
{
dh ∈ H1(Ωh) ∀t ∈ [0, T ]

∣∣ dh ∈ [0, 1]
}
. (12)

3.2. Vectorial FEM for the hybrid phase-field model167

Using appropriate basis functions to approximate uh and dh, eqs. (9) and (11) then lead to two separate168

linear systems Auxu = bu and Adxd = bd. One can consider solving these linear systems repeatedly in a169

staggered fashion (one after the another). This way of solving the phase-field model has been used several170

times in the past, e.g., in Ambati et al. (2014), Bilgen et al. (2017), Molnár and Gravouil (2017), Hirshikesh171

et al. (2018). With the hybrid phase-field model, the staggered solution approach leads to linear equilibrium172

(with dh frozen) and damage diffusion (with uh frozen) equations to solve. As a consequence, the only173

iterations needed are those ensuring the coupling between the two equations.174

Alternate to this staggered solving method, another elegant is a the monolithic approach. Here, it involves175

a reformulation of eqs. (9) and (11) in such a way that a single linear system Ax = b arises and is solved176

repeatedly to handle nonlinearity in an iterative way. Studies such as Vignollet et al. (2014), Gerasimov177

and De Lorenzis (2016), Liu et al. (2016), Kopaničáková and Krause (2020) convey that monolithic solution178

strategy (due to faster convergence) in comparison with the staggered strategy lead to a faster solution time179

and higher accuracy for a problem. However, it should be pointed out that staggered strategies are more180

memory efficient than the monolithic ones. As monolithic solvers need to handles a larger matrix system181

(Ax = b) as opposed to two relatively smaller matrix systems (Auxu = bu and Adxd = bd) handled by a182

staggered solver.183
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3.2.1. Discretized variational formulation184

Considerable gains in assembly and solving times can be achieved if a monolithic approach for the hybrid185

phase-field model is constructed by using the vectorial FEM discretization procedure. For that purpose, we186

fully couple the finite element fields uh and dh, and solve these by using vectorial finite elements or in other187

words fully coupled mixed finite element discretization procedure.188

To write the vectorial variational formulation for the hybrid phase-field model, we first exploit the arbitrari-189

ness and independency of trial fields vh and θh, and sum up the two variational eqs. (9) and (11) to obtain:190

191

search (uh, dh) ∈ Vh × V h that satisfies ∀ t ∈ [0, T ] :
∫

Ωh

[(
1 + dh

)2 + κ
]
σ(uh) : ε(vh) dv +

∫

Ωh

[
Gc
l0

+ 2H+(uh)
]
dhθh dv

+
∫

Ωh

Gcl0∇dh · ∇θh dv =
∫

∂Ωh
N

t · vh ds +
∫

Ωh

2H+(uh)θh dv ∀ (vh, θh) ∈ Vh × V h.

(13)

Then, we introduce a fourth order vectorial trial functionwh = [wh1 , wh2 , wh3 , wh4 ]T and a fourth order vectorial192

test function qh = [qh1 , qh2 , qh3 , qh4 ]T, with wh ∈Wh and qh ∈Wh. Here, Wh denotes a fourth order vectorial193

finite element space:194

Wh =
{
wh ∈ [H1(Ωh)]4 ∀t ∈ [0, T ]

∣∣ ∀x ∈ ∂ΩhD {whi }3i=1 = ū ∀x ∈ Ωh wh4 ∈ [0, 1]
}
. (14)

In fact, within the vectorial trial function wh the first three components {whi }3i=1 represent the displacement195

fields {uhi }3i=1 and the fourth component wh4 represents dh, i.e., the scalar damage field2. The vectorial test196

function qh follows the same logic.197

3.2.2. Nonlinear solving based on Picard iterations198

The system of equations resulting from (13) is nonlinear. Different approaches are possible to handle this199

nonlinearity. A usual choice consists in using a Newton–Raphson iterative algorithm. This implies linearizing200

the variational formulation with respect to the unknown displacement and damage fields, and then solve201

for their variations between successive iterations. Linearization process leads, however, to a non-symmetric202

stiffness-like matrix A, which makes CG method non applicable. Here, to obtain a symmetric formulation203

and preserve a certain similarity with the staggered solution of the chosen hybrid phase-field formulation,204

choice was made to use Picard iterations (also commonly known as the method of successive substitution).205

Using wh and qh, at a given t, the vectorial variational formulations for the hybrid phase-field model can206

be written down in the following canonical form:207

given wh,j ∈Wh search wh,j+1 ∈Wh that satisfies :
∫

Ωh

[(
1− wh,j4

)2
+ κ

] [
λ∇({wh,j+1

i }3i=1) · ∇({qhi }3i=1) + 2µε({wh,j+1
i }3i=1) : ε({qhi }3i=1)

]
dv

+
∫

Ωh

[
Gc
l0

+ 2H+({wh,ji }3i=1)
]
wh,j+1

4 qh4 dv +
∫

Ωh

Gcl0∇wh,j+1
4 · ∇qh4 dv

=
∫

∂Ωh
N

t · [{qi}3i=1]T ds +
∫

Ωh

2H+({wh,ji }3i=1)qh4 dv ∀ qh ∈Wh.

(15)

In this equation to deal with the nonlinearity, the superscript indices ‘j’ and ‘j+1’ are introduced (discretize208

pseudo-time). Associated to a finite element variable, these indices correspond to the solutions at previous209

and current iterations of the solving process.210

2For a two-dimensional problem (n = 2) the vectorial trial function wh is of third order, wh = [wh
1 , w

h
2 , w

h
3 ]T where the first

two components {wh
i }2

i=1 represent the displacement fields {uh
i }2

i=1 and the third component wh
3 represents the scalar damage

field dh.
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Finally, to perform a phase-field simulation for all t ∈ [0, T ], at a given t linear systems Ax = b are211

assembled and solved consecutively. In this study, piecewise linear polynomial basis [P1,P1,P1,P1]T are212

used to approximate the Sobolev spaces
[
H1(Ωh)

]4 in order to assemble the matrix A and the vector b from213

the left-hand side and right-hand side of eq. (15) respectively. For a piecewise linear polynomial basis, the214

number of degrees of freedom NDOF (associated to a finite element unknown in mesh Ωh) is equal to the215

number of vertices Nv of the mesh (NDOF = Nv). The solution vector x contains the finite element fields216

such that for a Ωh with Nv vertices:217

x =


wh1,1, wh2,1, wh3,1, wh4,1, . . . , wh1,k, wh2,k, wh3,k, wh4,k︸                        ︷︷                        ︸

kth node

, . . . , wh1,Nv , w
h
2,Nv , w

h
3,Nv , w

h
4,Nv




T

(16)

where {whi,k}4i=1 are the values of the four finite element fields {whi }4i=1 at the kth node of the mesh Ωh with218

k = 1, 2, . . . , Nv.219

In the context of phase-field brittle fracture models, monolithic iterative methods (such as ours) may fail to220

perform in case of “brutal” crack evolution especially in the post-peak regimes (Gerasimov and De Lorenzis,221

2016). Convergence can be attained by employing infinitesimally small continuation steps (Alexander and222

Yorke, 1978) or by applying more advanced methods such as line-search assisted Newton iterations (Gerasi-223

mov and De Lorenzis, 2016), trust region methods (Kopaničáková and Krause, 2020), modified Newtons224

iterations (Wick, 2017), etc. For the chosen Picard iterations in this study we employ the infinitesimally225

small continuation steps in our numerical experiments.226

3.3. Parallelization227

For the vectorial finite element discretization procedure of the hybrid phase-field model, the linear system228

assembled from eq. (15) is of the form, Ax = b, with matrix A ∈ Rm×m and vectors x ∈ Rm and b ∈ Rm,229

with m = (n+ 1)×Nv.230

Simulating real-world three-dimensional problems of fracture mechanics with phase-field models prerequisite231

fine meshes, consequently leading to a large number of finite element unknowns. As such, assembly and232

solving of Ax = b is associated with a large computational overhead in terms of time and memory usage.233

To further complexify the situation, these linear systems need to assembled and solved multiple times234

(thousands) to account for the nonlinear and quasi-static iterations.235

To subdue these problems associated with the computational overhead, we have implemented a message236

passing interface (MPI)-based domain decomposition method of parallelization built on top of our vectorial237

FEM discretization. This enables the use of distributed-memory framework of computing to assemble and238

solve Ax = b in parallel, and largely reduces the computational expenses. Briefly, domain decomposition239

applied in this study can be divided into three main steps:240

(i) for a numerical simulation to be carried out on Np number of of processes, we start with partitioning of241

the global mesh Ωh into Np number of smaller meshes {Ωhi }
Np
i=1 (subdomains) with more or less equal242

number of mesh nodes Nv,i ≈ Nv/Np. The subdomains {Ωhi }
Np
i=1 are then assigned to Np number of243

MPI processes (computational units). These {Ωhi }
Np
i=1 contain a single layer of ghost-nodes that is used244

to build MPI communication patterns between neighboring subdomains;245

(ii) concurrently, within each MPI process, using eq. (15) with mesh Ωhi , we assemble a local matrix246

Ai ∈ Rmi×mi and a local vector bi ∈ Rmi , with mi = (n+1)×Nv,i. As such, we create parallel tables247

of degrees of freedom with local and global views. Globally, Np number of matrices Ai and vectors248

bi correspond to row-wise 1D partitioning (Grama et al., 2003) of the system Ax = b. For a parallel249

simulation with large number of processes Np, since {Ωhi }
Np
i=1 � Ωh, the local matrices and vectors250
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(Ai,bi) are of smaller dimensions than the global (A,b). This implies Np times faster linear system251

assembly phase. This phase of assembly is ‘embarrassingly-parallel’, hence requires no communication252

between the involved MPI processes;253

(iii) finally, by using Np MPI processes, the global problem is solved iteratively by the CG method which254

uses parallel matrix-vector products with a small MPI communication overhead.255

4. Solution algorithm and preconditioning256

The matrix A resulting from the vectorial FEM discretization introduced above is sparse, symmetric, and257

positive definite. As such, the Krylov subspace-based CG method — developed by Hestenes and Stiefel258

(1952) — makes a standard choice of iterative solution algorithm for solving the assembled linear system259

Ax = b. Although the CG method is well established for solving such kind of linear systems, it is likely260

to suffer from slow convergence for practical problems of interest with millions of degrees of freedom, which261

are expected for hybrid phase-field simulations of brittle fracture mechanics. To speed up the convergence262

of CG, preconditioning is used (Málek and Strakos, 2014).263

Preconditioning here refers to transforming the assembled linear system Ax = b into an alternate linear264

system with favorable properties for the CG iterative solution. Generally speaking, preconditioning attempts265

to improve the spectral properties of A, and speeds up the convergence of CG by reducing the spectral266

condition number of the problem. Hence, preconditioning transforms the original linear system Ax = b267

into an alternate one with the same solution x, but which is easier to solve.268

At the linear system level, preconditioning involves in solving:269

M−1Ax = M−1b, (17)

where matrix M is the preconditioner associated to A. For successful preconditioning, the cond2(M−1A) is270

expected to be less than the cond2(A) and/or the eigenvalues of M−1A are clustered around 1. A perfect271

preconditioner would then be the case where M−1 = A−1: in this case, the associated condition number272

cond2(M−1A) is equal to one. However such preconditioner is not practical to use. Note that eq. (17),273

referring to the preconditioned linear system, represents a technique called the left-preconditioning. Besides274

this it is also possible to set up right-preconditioning:275

AM−1y = b, x = M−1y, (18)

or to set up split-preconditioning:276

M−1
1 AM−1

2 y = M−1
1 b, x = M−1

2 y, (19)

with preconditioner M = M1M2. Since the matrices M−1A, AM−1, and M−1
1 AM−1

2 have the same eigen-277

values, therefore, the convergence of the CG method will be same for these different cases of preconditioners,278

eqs. (17) to (19) (Benzi, 2002). As such, only left-preconditioning, eq. (17), is discussed and applied in this279

article. Also, for efficiently solving the linear systems of the hybrid phase-field model for fracture on parallel280

computing environment, the preconditioned CG method is a desirable solution technique since its main281

components — matrix-vector products, dot products, and norms — readily map to distributed memory282

implementations.283

Broadly, preconditioning (constructing a preconditioner) can be achieved via two different approaches, the284

problem-specific approach and the purely algebraic approach. For a given problem, the problem-specific285

approach constructs the preconditioners that are based on approximated physics or method which is easier286

to solve but gives ‘nearly’ same solution than the given problem in hand, or preconditioners are constructed287

based on lower-order discretizations of the considered partial differential equations. On the other hand,288

the purely algebraic approach of preconditioning involves constructing the preconditioner solely by the289
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information contained in coefficients of the assembled matrix A. These are often constructed after matrix290

A has been assembled. While it would be interesting to find/apply optimal preconditioners for fracture291

mechanics problems via the problem-specific approach, however such a preconditioner does not exist yet.292

Although, one should note that the geometric multigrid preconditioner can be considered to be of the293

problem-specific kind and these have been used alongside the CG method for resolving fracture mechanics294

problems with phase-field models in the recent past (see e.g., Bilgen et al. (2017), Jodlbauer et al. (2019)).295

The problem-specific preconditioning is generally very sensitive to the details of the involved problem, and296

even modest changes in the problem can compromise the effectiveness of the solver. For such reasons,297

purely algebraic preconditioners are often preferred. Besides this, other advantages of the purely algebraic298

preconditioners over the problem-specific ones are discussed in Benzi (2002).299

In this study, different preconditioners (purely algebraic ones provided in PETSc package Balay et al. (2019))300

are studied and tested. In particular, attention is focused on:301

(i) Jacobi preconditioning. Also known as the diagonal preconditioner, the Jacobi preconditioning is302

considered to be one of the simplest preconditioning techniques which involves setting M as the303

diagonal of A, such that M = diag(A11, . . . , Ajj , . . . , Amm), with Ajj denoting the diagonal coefficients304

of A and j = 1, 2, . . . ,m. For the parallel variant of Jacobi preconditioning applied in this study,305

the distributed Mi ∈ Rmi is applicable to Ai so that Mi = diag(A11, . . . , Ajj , . . . , Amimi), with306

i = 1, 2, . . . , Np, m =
∑Np
i=1mi, and j = 1, 2, . . . ,mi. This diagonal matrix Mi is trivial to invert, as307

it simply involves replacing the coefficients of the matrix with its reciprocal, M−1
i =

[
{1/Ajj}mi

j=1
]
. As308

such, a Jacobi preconditioner is computationally cheap and straightforward to construct. As discussed309

earlier, a reasonable preconditioner M is such that M−1 ≈ A−1 and is also cheap to construct. While310

the Jacobi preconditioning fulfills the latter condition, it is unlikely for a physics like the fracture311

mechanics that the M−1 constructed solely from the diagonal of A is a good approximate of A−1.312

(ii) Block Jacobi preconditioning. A computationally costlier but more robust preconditioner than the313

Jacobi preconditioner is the block Jacobi preconditioner. It involves setting Mi ∈ Rmi×mi to the314

diagonal block matrix of Ai. The preconditioning matrix Mi is defined by Mi =
[
{Ajk}mi,mi

j=1,k=1

]
.315

Such a preconditioner is particularly more effective than the Jacobi preconditioner since the block316

diagonals succeed in reflecting the nonzero structure of the coefficient matrix A hence hold considerable317

information of the underlying physics. As such, M−1 from block Jacobi preconditioning is a good318

approximate of A−1 in comparison to the Jacobi preconditioning. This statement should hold true319

for the linear systems assembled with the vectorial FEM discretization of the hybrid phase-field model320

for fracture. In this paper, to extract M−1
i from the local diagonal block matrices Mi two options321

are used, namely the incomplete LU (ILU) factorization (Dupont et al., 1968) and the incomplete322

Cholesky (IC) factorization (Kershaw, 1978), both with zero fill-in. For the block Jacobi setup with323

ILU, the preconditioner Mi = L̃iŨi, where L̃i and Ũi are incomplete lower and upper triangular factors324

of local diagonal block matrix of Ai, and M−1
i = (L̃iŨi)−1. And for the block Jacobi setup with IC,325

the preconditioner Mi = L̃iL̃
T
i , and M−1

i = (L̃iL̃T
i )−1.326

(iii) Algebraic multigrid preconditioning. The above discussed preconditioning options are from the class of327

‘one-level’ preconditioners; the AMG preconditioning discussed here falls under the category of ‘multi-328

level’ preconditioners. The AMG preconditioning is widely used, due to its optimal computational329

cost and algorithmic scalability. It accelerates the convergence of the CG method by building a330

hierarchy of coarser grids operators (solutions) from the fine grid operator. In other words, a series of331

independent coarse grid systems are used to accelerate the convergence of the overall fine grid system332

Ax = b. Note that, the AMG does not require access to the geometric grid, “grid” within the context333

of AMG preconditioning refers to set of indices of the unknown variables within the linear system334

Ax = b. The hierarchy of grids are obtained for a problem, starting from the finest grid level A and335

reducing the number of unknowns to get the coarser levels, until the coarsest level is small enough336

to be solved with exact LU factorization. Generally, the coarsest level contains a small number of337
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Table 1: packages used for setting up the monolithic vectorial FEM fracture mechanics solver. Note that, except for Gmsh
all other packages were compiled with the Message Passing Interface standard (MPI) library (Gropp et al., 1999) to set up
workload in distributed parallel computing framework.

package version operation reference

Gmsh 4.3.0 unstructured mesh generator Geuzaine and Remacle (2009)
parMETIS 4.0.3 mesh partitioner Karypis et al. (1997)
FreeFEM 4.5 finite element kernel Hecht (2012)
PETSc 3.12 linear algebra solvers and preconditioners Balay et al. (2019)
ParView 5.5.2 result post processing Ahrens et al. (2005)

unknowns in comparison to the finer levels, thus the cost of performing the exact LU factorization338

for the coarsest level is negligible in comparison to the overall solving time for the finest level linear339

system. Based on how coarsening is achieved, AMG is classified as the classical AMG (Ruge and340

Stüben, 1987), the agglomeration AMG (Jones and Vassilevski, 2001), and the smoothed aggregation341

AMG (Vaněk et al., 1996). Due to symmetric positive definite nature of the assembled matrix A, the342

smoothed aggregation AMG is employed in this study which was originally developed in (Vaněk et al.,343

1996) for elliptic systems. A key component of smoothed aggregation AMG is its smoother, which344

make the underlying error on the fine grids smooth so that it can be approximated accurately on the345

coarser grids. In other words, the smoother eliminates errors associated to large eigenvalues of the346

linear system, while the coarse grid correction eliminates the remaining errors associated to the small347

eigenvalues. There are many well known smoothers that are suitable for parallel AMG, c.f. Baker et al.348

(2011a,b), among these we employ the Richardson’s and the Chebyshev smoothers in this paper.349

5. Results and discussions350

This section presents details, results, and discussions for the series of numerical experiments performed in this351

study. Our primary motive of performing different numerical experiments is to analyze, tune, and propose an352

optimal preconditioner for the hybrid phase-field fracture mechanics vectorial FEM solver capable of handling353

large-scale problems with millions of unknowns. We end this section by applying the tuned preconditioner354

to solve a complex three-dimensional brittle fracture problem with more than 64 million unknowns.355

5.1. Hardware and software specifications356

Different open-source frameworks (domain-specific language, mathematical libraries, etc.) were employed357

in this study to develop and implement the monolithic vectorial FEM solver and consequently perform358

the various sequential/parallel numerical experiments that are to appear in this section. Details of these359

open-source frameworks are provided in table 1.360

The numerical experiments in this study were performed by utilizing computational resources that range361

from an ordinary “desktop PC” to a supercomputer “Inti” hosted at TGCC-CEA3, Bruyères-le-Châtel,362

France. The specifications of these two computational resources are provided in table 2. The “desktop PC”363

was used for executing the numerical experiments appearing in section 5.2, and for the numerical experiments364

in sections 5.3 and 5.4 Skylake nodes of “Inti” were used. For all the numerical experiments to follow, the365

CG algorithm convergence is assumed to be reached when the relative residual norm of the linear system366

is lower than 10−10 or when the absolute residual norm is lower than 10−10. Additionally, the nonlinear367

Picard iteration at a given t are stopped for tolerances lower than 10−8.368

Before proceeding further, in order to assist the analysis of results in the upcoming subsections, we introduce369

the following nomenclature:370

3TGCC-CEA, “Très Grand Centre de Calcul” is an infrastructure for scientific high-performance computing and Big Data,
able to host petascale supercomputers.
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Table 2: details of computational resources used for performing the serial/parallel numerical experiments in this study. In the
table header “PU” denotes processing units (cores/threads).

name #nodes #PU architecture test runs interconnection

desktop PC 1 10 Intel Xeon E5-2680 v2-@2.80GHz sequential/parallel -
Inti 21 48 Intel Xeon E5-8890 v4-@3.4GHz parallel InfiniBand EDR

(i) to annotate different CPU timings, the total solver time ttotal is computed as the sum of three contri-
butions:

ttotal = tassembly + tsetup + tsolve,

where tassembly denotes the CPU time spent in the linear system assembly phase (i.e., to construct A
and b), tsetup is the CPU time spent in setting up the preconditioner operator M−1, and tsolve the CPU
time spent in performing the CG iterations till convergence. We also denote the total solution phase
CPU time tsolution:

tsolution = tsetup + tsolve;

(ii) CG iteration number is denoted by k, the total number of CG iterations to convergence (within one371

iteration of the global iterative solving, i.e., from iteration jth to j+ 1th in eq. (15)) is denoted by kc,372

and
∑
kc denotes the total number of CG iteration during one full simulation (i.e. for executing the373

full phase-field simulation);374

(iii) at kth CG iteration, rk denotes the unpreconditioned residual, such that rk = ||Axk − b||2, with xk375

being the solution of the linear system;376

(iv) the CG residual reduction rate Rrk
is defined by:

Rrk
=
∑kc
k=1(rk−1/rk)
kc − 1 .

5.2. Two-dimensional numerical experiments: solver validation and preconditioner performance assessment377

378

Commonly used numerical tests from literature (see e.g., Ambati et al. (2014), Liu et al. (2016), Jeong et al.379

(2018), Hirshikesh et al. (2018) to cite but a few), the two-dimensional (2D) single-edge notched tensile and380

shear fracture tests, are considered as benchmark problems in this subsection. From here-forth the tensile381

test is referenced as test 1 in the text.382

5.2.1. Problem setting383

The domain of interest is an initially cracked square plate (x, y) ∈ Ω = [0 cm, 1 cm]2 (fig. 1a). With an initial384

crack and a constrained bottom edge ∂ΩD(x, y : y = 0), the plate is subject to increasing displacements on385

its top edge ∂ΩD(x, y : y = 1) until the plate fully cracks open. The initial crack is placed at the center of386

the plate, i.e., ∂ΩD(x : 0 ≤ x ≤ 0.5, y : y = 0.5). These boundary conditions are also illustrated in fig. 1a.387

The plate material is characterized by λ = 121.15 kPa, µ = 80.77 kPa, and Gc = 2.7 kN mm−1.388

Concerning the computational specifications of test 1, the displacement discontinuity imposed by the initial389

crack was modeled by nearly overlapping (tolerance δy = 10−7 m) Dirichlet nodes placed along the cracks390

edge ∂ΩhD(x : 0 ≤ x ≤ 0.5, y : y = 0.5 ± δy) within Ωh. For illustration proposes, a coarse grid featuring391

Dirichlet nodes for the initial crack of test 1 is presented in fig. 1b. The displacement Dirichlet condition392

on the top edge is applied with an increment of ∆ū2 = 1 · 10−5 mm up to u2 = 5 · 10−3 mm and ∆ū2 =393

1 · 10−6 mm up to failure of the specimen. For the lower edge, the constrained displacement Dirichlet394

conditions ū1 = ū2 = 0 are applied. Further, for test 1 and for all the simulations that appear in this study,395
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Figure 1: domain Ω, mesh Ωh, and partitioned mesh {Ωh
i }10

i=1 for test 1. (a) also illustrates the boundary conditions applied
to test 1. (b) represents a coarse unstructured finite element mesh with ‘nearly’ duplicate Dirichlet nodes for the initial crack.

(a) d at mesh level 1. (b) d at mesh level 2. (c) d at mesh level 3.
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Figure 2: initial crack visualization of test 1 via damage-field d at different mesh levels.

parameter κ is set to 1 · 10−6 and l0 is assumed equal to 2h, where h is the characteristic size of the mesh396

Ωh.397

The unstructured Delaunay (triangular) meshes generated with Gmsh are used for solving the finite element398

problem of test 1. To establish mesh convergence, test 1 has been solved multiple times by varying the level399

of mesh refinements, details of these meshes are provided in table 3. The hierarchy of mesh refinements were400

generated by dividing each triangle in Ωh into four equal triangles. As such in table 3, we observe that with401

every refinement, the mesh size h halves and the number of triangles quadruple. The initial crack fields for402

the three mesh refinements (visualized using damage-field d) are presented in fig. 2.403

5.2.2. Solver validation404

Besides being used in the upcoming subsection to assess the performance of different preconditioners, we405

also used the test 1 to cross-validate and compare our vectorial FEM solver (sequential and parallel) against406

benchmark solutions of this test available in the literature. In fig. 3, the top surface reaction force Fy versus407

applied displacements is plotted for finest mesh level 3 (detailed in table 3) and compared to reference408

hybrid phase-field solution from Ambati et al. (2014) and anisotropic phase-field solution from Miehe et al.409

(2010a). The force-displacement curve obtained from our computation at the finest mesh level 3 is in good410

agreement with the two reference solutions. This simulation was executed using 10 processes on the desktop411

PC mentioned in table 2. The parMETIS partitioned mesh with 10 subdomains is presented in fig. 1c.412
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Table 3: characteristics and computational details for the different finite element meshes used for test 1. E1max(Fy) and
E2max(Fy) are are the the maximum reaction force errors computed against references Ambati et al. (2014) and Miehe et al.
(2010a), respectively.

mesh nodes triangles h NDOF Nnz E1max(f) E2max(f)

level 1 8,353 16,384 0.0156 25,059 520,425 15.62% 14.78%
level 2 33,089 65,536 0.0078 99,267 2,073,033 6.71% 5.89%
level 3 131,713 262,144 0.0039 395,139 8,274,825 2.00% 1.01%
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Figure 3: force-displacement plot for the two-dimensional single-edge notched tensile fracture simulation, test 1. The orange
solid line refers to our vectorial FEM solution, the square markers denote the reference hybrid phase-field solution from Ambati
et al. (2014) and the triangular markers denote anisotropic phase-field solution from Miehe et al. (2010b).

To further attest the correctness of the proposed vectorial FEM solver, we compare the errors in computing413

the top surface maximum reaction-force max(Fy) obtained from our solver against two different reference414

solutions provided in Ambati et al. (2014) and Miehe et al. (2010a). The last two columns of table 3415

enumerate these errors at different mesh levels. At finest mesh level 3, these errors decrease down to 2%416

and 1%, respectively in comparison to the hybrid and the anisotropic phase-field solutions. This reduction417

in error while decreasing the mesh size suggests mesh convergence of vectorial FEM solutions towards the418

reference solutions from Ambati et al. (2014) and Miehe et al. (2010a).419

Alongside the plot in fig. 3, four instantaneous snapshots of the calculated damage-fields are presented. These420

damage-fields are obtained from the simulation of test 1 at the finest mesh level 3. Damage-field evolution,421

crack initiation, and propagation can be observed in these snapshots. As expected, under extreme tensile422

loading, the crack can be seen to travel along a (almost) straight line dividing the square specimen into two423

(almost) equal halves.424

Further validation is provided by performing the shear test for the same specimen of test 1. Now, the425

specimen is loaded in shear mode, i.e, the displacement Dirichlet condition (now on u1) on the top edge is426

applied with an increment of ∆ū1 = 1 · 10−5 mm (see fig. 4a). Note that for this test and the previous one427

small displacement increments (< 1 · 10−5 mm) are applied. Such small displacement increments are taken428

in view of easily achieving convergence for the nonlinear Picard iterations. For this test, the applied shear429

loading causes the top half of the specimen (above the initial crack) to be in compressive stress state while430

its bottom half (below the initial crack) remains in tensile stress state. As such, the crack is expected to431
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Figure 4: shear cracking test domain Ω and final cracking trajectory in compared to the trajectories obtained by the hybrid
phase-field model (Ambati et al., 2014), the anisotropic phase-field model (Miehe et al., 2010a), and adaptive phase-field
modeling (Hirshikesh et al., 2019).

propagate within the tensile stress state region (underneath the initial crack). Such a cracking trajectory432

obtained from our solver is compared to other reference cracking trajectories from literature in fig. 4b. The433

finest mesh level 3 was used to obtain this cracking trajectory, and the simulation was executed using 10434

processes on the desktop PC mentioned in table 2.435

In fig. 5, the force-displacements plot for the shear test at the finest mesh level 3 is presented and com-436

pared to reference hybrid phase-field solution from Ambati et al. (2014) and anisotropic phase-field solution437

from Miehe et al. (2010a). Our solution is in good agreement with the reference hybrid phase-field solution438

from Ambati et al. (2014), however some differences are observed post peak force when compared to the439

anisotropic phase-filed solution from Miehe et al. (2010a).440

The mentioned shear test approves the functionality of the use of tensile elastic energy ψ+ to control441

the evolution of damage as suggested by the hybrid phase-field formulation (as previously mentioned in442

section 2.2). It has been previously shown in Ambati et al. (2014), Hirshikesh et al. (2018) use of such443

tensile elastic energy ψ+ becomes inevitable to accurately reproduce the cracking trajectories presented in444

fig. 4b.445

Note that for additional validation, other literature comparative tests (mode I, mode II, and mode III446

fracture) were also performed but these are not shown here for the sake of conciseness.447

5.2.3. Effect of preconditioning on iteration count, condition number, and problem size448

In the phase-field model, the coefficients of A are approximately dependent on (1− d)2E (with E denoting449

the fourth-order elastic stiffness tensor, see eq. (1). As d approaches to 1 at certain (cracked) mesh nodes,450

this causes the condition number, cond2(A), to change during the numerical approximation of cracking451

processes. A direct effect of this change in the cond2(A) is sensed by the CG method, where the total452

number of iterations to converge (kc) drastically change during the progression of the simulation.453

Besides improving the convergence of the CG method, one of the roles of preconditioning operator M−1 is454

also to minimize the drastic change in kc during the full phase-field simulation, or in other words control455

the drastic change in cond2(A). In our numerical experiments from this subsection, we use such quality of456

the preconditioner as a metric to judge the efficiency of the preconditioning operator.457
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Figure 5: force-displacement plot for the two-dimensional single-edge notched shear fracture simulation, test 1a. The orange
solid line refers to our vectorial FEM solution, the square markers denote the reference hybrid phase-field solution from Ambati
et al. (2014) and the triangular markers denote anisotropic phase-field solution from Miehe et al. (2010b).

Iterations. Figure 6 plots the complete evolution of kc observed while performing the full phase-field simu-458

lation, test 1 with level 1 mesh. The simulation was performed in parallel using 10 processes (MPI ranks)459

on the desktop PC from table 2. One can observe the effectiveness of preconditioning by noticing how kc460

gets reduced when CG method is used alongside different preconditioners.461

In particular, kc with a simple Jacobi preconditioner, ranging from 593 to 920 reduces to a range of 152462

to 202 when using a more robust block Jacobi preconditioner. Compared to the Jacobi and block Jacobi463

preconditioners, further drop in kc range can be observed with the AMG preconditioner, the kc iteration464

ranging now from 75 to 91.465

For this test, the diagonal block matrices {Mi}
Np
i=1 of the block Jacobi preconditioner were factorized by466

using zero fill-in incomplete Cholesky (IC) decomposition. For conciseness we shall drop the words “zero467

fill-in” and refer this preconditioner in the text as “block Jacobi IC”. Further, the AMG preconditioner was468

in fact the smoothed aggregate AMG preconditioner (Vaněk et al., 1996) with the Chebyshev smoother and469

block Jacobi IC inner solver for the coarse grids and the coarsest grid being factorized by complete LU. The470

reason for choosing such kind of preconditioners will be discussed in upcoming section 5.3.471

Within fig. 6, a strong rise in CG iterations to converge is observed as the load passes from 5.3 × 10−3 to472

6 × 10−3, i.e., during the damage propagation phase (illustrated in gray color in fig. 6). The strong rise in473

CG iteration count kc serves as an indicator that the conditioning of the assembled preconditioned linear474

systems (cond2(M−1A)) must be changing drastically in the cracking zone.475

In fig. 6, we also provide the data pertaining to the total CG iterations
∑
kc needed to perform the com-476

plete phase-field simulations (1490 pseudo-time steps) with Jacobi, block Jacobi, and AMG preconditioners.477

Compared to the ∼ 1.1 million CG Jacobi iterations needed to completely execute the simulation, the block478

Jacobi (resp. AMG) completed the simulation in ∼ 1/4th (resp. ∼ 1/10th) number of Jacobi iterations.479

Condition numbers. The speed of convergence for the CG method can be predicted by the knowledge of the
condition number of the solved matrix A denoted by cond2(A) ≥ 1. The convergence of the CG method
relies on the eigenvalue distribution of A, and cond2(A) provides a criterion for assessing the width of its
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Figure 6: evolution of the CG iterations to converge kc during execution of the full phase-field simulation (test 1 with level 1
mesh).

spectrum. Following Basermann et al. (1997), let us denote γ := (
√

cond2(A)− 1)/(
√

cond2(A) + 1). The
distance between the CG solution xk at kth iterate from exact solution x̄ is bounded:

‖xk − x̄‖2 ≤ 2γk
√

cond2(A)‖x0 − x̄‖2.

As such, the lower the condition number the faster the convergence of CG, or in other words lower kc.480

Now, to investigate on the effect of preconditioning operators, fig. 7 presents the condition number evolution481

during the full phase-field simulations of test 1 with mesh level 1. The cond2(M−1A) is calculated by482

employing the Lanczos iteration algorithm for eigenvalue computation (Balay et al., 2019).483

In practice, at each pseudo-time step, the Lanczos algorithm is used to calculate the eigenspectrum {λi}Neigen
i=1484

of matrix M−1A, with Neigen denoting the total number of eigenvalues calculated. Then, we use the485

approximation: cond2(M−1A) ≈ max|λi|
/

min|λi|. Note that the eigenspectrum {λi}Neigen
i=1 provided by the486

Lanczos algorithm cannot be used for complete eigenvalue analysis; however it is intended here to assist487

in understanding the convergence behavior of the CG and to quantify the efficiency of the preconditioning488

operators (Balay et al., 2019, Badri et al., 2019).489

Complementary to the results from fig. 6, the condition number evolution provided in fig. 7 reveals that490

AMG preconditioning is able to reduce the condition number deterioration during cracking. Hence the491

problem is easier to solve when compared with other preconditioning options. As suspected by the rise in492

kc from fig. 6, the plots from fig. 7 illustrates that cond2(M−1A) rises exponentially as the crack starts493

to propagate (highlighted in gray color). Further analysis of these data reveals that in comparison to the494

Jacobi preconditioner, the average cond2(M−1A) for the AMG (resp. the block Jacobi) is 1.8 (resp. 1.3)495

times smaller. This proves the superiority of the AMG preconditioner to “easily” solve the brittle fracture496

problems arising in the phase-field modeling.497
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Figure 7: evolution of condition number cond2(M−1A) during execution of the full phase-field simulation (test 1 with level 1
mesh).

The main aim of this subsection was to study condition number degradation caused by cracking, while the498

condition numbers were the ones estimated from the monolithic linear system assembled for the hybrid phase-499

field model. It should be noted that the magnitude deference between displacement and damage fields partly500

contributes to poor conditioning of the studied linear systems. Dealing with a dimensionless formulation501

(i.e., scaling the problem) could lead to linear systems with relatively different condition numbers (possibly502

lower). In this study we do not deal with a dimensionless formulation, however for such cases as well cracking503

should lead to rise in condition number (relative to the non-cracked state). As such, the conclusion that the504

AMG preconditioner for CG is relatively superior to the Jacobi or the block Jacobi preconditioner should505

apply to linear systems assembled from a dimensionless formulations too.506

Influence of the mesh refinement. In order to gauge the sensitivity of the three different preconditioning507

operators with respect to the refining of the mesh (problem size), table 4 presents total CG iterations to508

converge kc for a single pseudo-time step (9th) of the phase-field simulation test 1 with different mesh509

refinements. Since the highest order derivative for the equations of the phase-field model (eqs. (1) and (2))510

looks like the Laplacian, as such, the condition number with the CG method will be O(h). So kc should511

increase as the square root of the problem size (number of elements).512

Denoting the change in iteration count between simulations at mesh levels 1 and i by Dkc,1→i:

Dkc,1→i = kc,i/kc,1 =
√
Ne,i

/
Ne,1,

with kc,i and Ne,i corresponding respectively to CG iterations to converge and number of elements for ith513

mesh level. In our numerical experiment, the mesh elements are quadrupled between mesh levels 1 and 2514

(see table 3), therefore one observes approximately twice (
√

65536/16384 =
√

4 = 2) increase in iterations515

Dkc,1→2 for the CG Jacobi method, since it is a weak preconditioner (see table 4 second row third column).516

This trend continues with the other mesh levels for the Jacobi preconditioner. It indicates that the Jacobi517

preconditioner is a weak preconditioner for the phase-field problems of fracture in the sense of not being518

able to control the rise in CG iteration count Dkc,1→i between mesh refinements.519

In contrast to what was observed for the Jacobi preconditioner, in table 4, we observe that the CG setup520

with the AMG preconditioning remains the least sensitive to mesh refinement. At the finest mesh refinement521

(level 5), for the AMG preconditioner we observe a Dkc,1→5 = 10.63 in comparison to Dkc,1→5 = 14.43522
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Table 4: total CG iterations to converge for different preconditioning options. Numbers in brackets indicate the rise in iteration
count Dkc,1→i. kJacobi

c , kB-Jacobi
c , and kAMG

c refer to the total number of CG iterations to converge kc for Jacobi, block Jacobi,
and AMG preconditioners respectively. Subscript “BJacobi” denotes block Jacobi.

level (i) Ne,i/Ne,1 kJacobi
c kBJacobi

c kAMG
c

1 1 663 (1) 166 (1) 75 (1)
2 4 1,312 (1.98) 312 (1.88) 126 (1.68)
3 16 2,612 (3.94) 604 (3.64) 258 (3.45)
4 64 5,191 (7.83) 1,201 (7.24) 475 (6.34)
5 256 10,375 (15.65) 2,395 (14.43) 797 (10.63)

for the block Jacobi preconditioner, Dkc,1→5 = 15.65 for the Jacobi preconditioner, and Dkc,1→5 = 16523

(theoretical) for no preconditioning. These results again highlight the superiority of the AMG preconditioner524

in comparison to the Jacobi or the block Jacobi preconditioners. Overall these results points out that for the525

AMG preconditioner CG convergence is least effected by mesh refinements. Although only a single pseudo-526

time step (9th one) was used here to showcase the effect of mesh refinement on different preconditioners, from527

the results presented in figs. 6 and 7, we know that similar conclusions should apply for other pseudo-time528

steps of the full phase-field simulation.529

Overall in this subsection, the preconditioning analysis — based on CG iterations to converge kc, total530

CG iterations needed for the full phase-field simulation
∑
kc, sensitivity of kc with mesh refinement, and531

condition number analysis — points towards AMG being an effective choice of preconditioner for solving532

brittle fracture problems using hybrid phase-field models in a vectorial FEM framework.533

5.3. Three-dimensional numerical experiments: preconditioner tuning and scaling assessment534

This subsection aims to test, tune, and compare the previously discussed preconditioning options for solving535

large-scale brittle fracture problems with the CG algorithm. In particular, two three-dimensional (3D)536

problems with 32,764,068 (∼ 33 M) and 80,570,308 (∼ 81 M) unknowns are used as numerical tests in this537

subsection.538

Problem setting. The considered problem in here is a 3D simulation of tensile damage in a pre-cracked539

specimen (fig. 8a) obtained by a unit extrusion (along z direction) of the 2D domain considered in test 1.540

Similar to test 1, the bottom and top surfaces (xz-planes at y = 0 and y = 1) of the cubic geometry are541

respectively constrained and vertically loaded till failure. For the constrained plane ∂ΩD(x, y : y = 0, z),542

the displacements ū1 = ū2 = ū3 = 0; and for loading plane ∂ΩD(x, y : y = 1, z), the displacement Dirichlet543

condition is applied on u2 with an increment ∆ū2 = 1 · 10−5 mm.544

The unstructured finite element mesh used for the∼ 33 M (resp.∼ 81 M) contained 8,191,017 (resp. 20,142,577)545

nodes and 47,759,360 (resp. 118,308,864) tetrahedral elements. From here-forth in the text, we denote the546

∼ 33 M and ∼ 81 M problems by test 2A and test 2B, respectively. Figure 8b shows the partitioned mesh547

used for the test 2A. This partitioned mesh contains 96 subdomains and is used for parallel numerical548

simulations with 96 processes.549

5.3.1. Preconditioner tuning550

To identify the optimal preconditioning option for large-scale phase-field fracture simulations, the linear551

systems obtained by the vectorial FEM discretization of tests 2A and 2B were solved by using the CG552

method setup with Jacobi, block Jacobi, and AMG preconditioners. Each simulations was carried out using553

384 processes on 8 Skylake nodes of the Inti supercomputer.554
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Table 5: solution phase timings tsolution and CG iterations kc observed by varying different tuning parameters of the AMG
preconditioner.

max coarse space Krylov iterations smoothed smoother

problem 1 2 3 4 5 yes no Chebyshev Richardson

Timings

test 2A 20.2 7.8 15.4 18.6 20.4 7.8 35.5 7.8 31.0
test 2B 62.2 24.5 77.1 83.9 95.7 24.5 108.4 24.5 97.3

Iterations

test 2A 176 42 55 34 30 42 155 42 112
test 2B 214 48 108 89 84 48 187 48 214

CPU timings. In fig. 9, comparative CPU timings for the different preconditioning options are presented in555

the form of stacked bar plots. Each stacked bar within the plot represents ttotal and has been color-coded with556

other CPU timings t assembly, tsetup, and tsolve. The color-coding of these stacked bars help in analyzing the557

CPU cost of different phases of the full finite element solution. Note that for performance/tuning/scaling558

analysis of preconditioners presented in this subsection we shall only be using a single pseudo-time step559

(8th one) from the full brittle fracture mechanics simulations. Further, to avoid any hardware related560

discrepancies, all timings are averaged based on three simulation runs for a specific case. Additionally, fig. 9561

also provides information of total CG iterations to convergence kc for each preconditioning option.562

Among the tested preconditioners, as expected, the CG setup with the Jacobi preconditioner yields high563

time to solution ttotal and high number of CG iterations to converge kc. Overall, the total solution time564

ttotal of 22.93 (resp. 65.41) seconds was observed for the numerical simulation of test 2A (resp. test 2B)565

solved parallely using 384 processes. This ttotal is decomposed into tassembly = 7.62 (resp. 18.98) seconds and566

tsolution = 15.31 (resp. 46.43) seconds for the test 2A (resp. test 2B). Further, the Jacobi preconditioned CG567

took 561 (resp. 690) iterations to convergence for test 2A (resp. test 2B). Observe that the preconditioner568

setup cost tsetup is negligible (∼ 1 % of the total solving time ttotal). As the Jacobi preconditioning simply569

involves the use of diag(A) as the preconditioning operator M−1, tsetup is expected to be low.570
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Figure 9: stacked bar plots for CPU timings highlighting the effect of different preconditioners on overall solver timings for two
three-dimensional brittle fracture phase-field problems test 2A and test 2B solved using 384 processes. In the figure “BJacobi”
stand for block Jacobi. The numbers in the brackets next to the bar plots represent overall solver timings ttotal in seconds
(black) and the number of CG iterations kc to convergence (blue).

The CG setup with the block Jacobi preconditioner performed faster (less tsolution and kc) than the CG571

setup with the Jacobi preconditioner. Faster solution timings tsolution were observed when the 384 inner572

diagonal block matrices {Mi}384
i=1 of the block Jacobi preconditioner were solved using the IC factorization,573

in comparison to the zero fill-in incomplete LU factorization (ILU) being used as the block diagonal matrix574

solver.575

Further, the performance of the block Jacobi preconditioners can be improved by increasing the fill-in level576

(“n”) of the ILU(n) or IC(n) used as the block diagonal solver to obtain M−1. Note that with increase577

in n, ILU(n) (resp. IC(n)) approaches to complete LU (resp. Cholesky) factorization leading to a perfect578

preconditioner. However, since the goal of this article is to propose a preconditioner with good parallel579

performance for large-scale phase-field problems, we refrain from using the complete LU (resp. the complete580

Cholesky) factorization as diagonal block solvers to the block Jacobi preconditioner, and only use the zero581

fill-in versions of ILU and IC.582

In comparison to the baseline run results from the Jacobi preconditioner, we observe that the tsolution of583
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Figure 10: conjugate gradient method convergence history for the Jacobi, block Jacobi and algebraic multigrid preconditioners.

block Jacobi ILU is 1.33 (resp. 1.25) times lower than the tsolution of the Jacobi preconditioner for test 2A584

(resp. test 2B). We also observe that the tsolution of block Jacobi IC is 1.61 (resp. 1.31) times lower than the585

Jacobi preconditioner for test 2A (resp. test 2B).586

The CG setup with the AMG preconditioner, when properly tuned, proves to be the fastest preconditioner587

among the other preconditioning options tested in this article. This statement is asserted by values of total588

solving time ttotal and the CG iterations to kc for the AMG preconditioner provided in fig. 9. Moreover, as589

the combined displacement-damage linear systems (from vectorial FEM) to be solved are symmetric, the590

smoothed aggregate AMG preconditioner outruns (both in ttotal and kc) the non-smoothed version (see ta-591

ble 5).592

Among the smoothed aggregate, the Chebyshev smoother performed better (time-wise and iteration-wise)593

than the Richardson’s smoother. To elaborate on this, in comparison to Richardson’s smoother, the Cheby-594

shev smoother uses the eigenvalue estimates for the smoothing procedure. Thanks to positive definite595

symmetric matrices provided by the vectorial FEM discretization, the smallest eigenvalues are easy to ap-596

proximate by using CG as the eigenvalue estimator. As such, the Chebyshev smoother outperforms the597

Richardson’s one.598

Further, we tested which Krylov solver among the Jacobi, block Jacobi, and SOR performs the best as a599

coarse grid solver for the AMG preconditioner. Among them, the block Jacobi IC diagonal block solving600

outran the other two options. To further fine tune the AMG preconditioner, the coarse grid Krylov solver601

iterations were restricted to 1, 2, 3 , 4, and 5. It was revealed that 2 coarse grid solver iterations produce602

the fastest timings. In comparison to the baseline run results from the Jacobi preconditioner, we observe603

that the tsolution of the tuned AMG preconditioner is 2.0 (resp. 1.9) times lower than the tsolution of the Jacobi604

preconditioner for test 2B (resp. test 2A). Observe that in contrast to Jacobi preconditioner, where tsetup was605

negligible in comparison to tsolution, the same is not true for the AMG preconditioners. We observe almost606

50 % of tsolution consists of the preconditioner setup cost, tsetup ≈ 0.5 tsolution.607

The results provided for the tests 2A and 2B in this subsection identify the smoothed aggregate AMG with608

coarse grid block Jacobi IC as the optimal preconditioning option for solving the monolithic (vectorial) finite609

element linear systems that arises from the considered hybrid phase-field model. In comparison to other610

preconditioners that were tested in this subsection, the tuned AMG preconditioner exhibited low iteration611

counts, low solution timings, and faster convergence rates. Note that from here on in the text, we shall refer612

this tuned AMG preconditioner by simply “AMG preconditioner”.613

Convergence history. In fig. 10, we show the convergence history for the three different preconditioners614

applied to CG as it approaches convergence at kcth iteration. Particularly, the relative residual rk is plotted615

as a function of the CG iteration number k ∈ [0, kc] on a semilogarithmic plot. To obtain these plots, and for616

demonstration purposes, we simply used the test 2A solved on 384 processes. A nearly monotonic drop in617
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residual can be observed for the AMG preconditioned CG solver, while the same is not true for the Jacobi or618

the block Jacobi preconditioned CG solvers. The residual reduction rate of the AMG is clearly superior to619

that of the Jacobi or the block Jacobi preconditioned CG solvers. Similar trends were observed (not shown620

here) for the test 2B.621

For both problems, we also approximate the residual reduction rate Rrk
, which quantifies how rapidly a622

preconditioner converges. For the test 2A (resp. test 2B), Rrk
was observed to be equal to 2.09 (resp. 2.09)623

with the AMG preconditioner, whereas it was observed equal to be 1.04 (resp. 1.03) and 1.11 (resp. 1.09)624

for the Jacobi and the block Jacobi preconditioners respectively. As such, with the AMG preconditioner,625

irrespective of the problem size, the residual approximately halves with each CG iterate as CG approaches626

to convergence. This is certainly a superior characteristic of the AMG preconditioner in caparison to the627

Jacobi and the block Jacobi preconditioners.628

5.3.2. Scaling analysis629

To analyze the parallelization efficiency of the proposed preconditioners, we now compare the strong parallel630

scaling performance of the Jacobi, block Jacobi IC, and tuned AMG preconditioners. The test 2A and 2B631

from the previous subsection, are used for the parallel scaling experiments which appear in this subsection.632

However, to avoid confusion, these tests are renamed as tests 3A and 3B. To perform strong scaling analysis,633

96 to 1,008 processes (MPI ranks) on Inti supercomputer (see table 2) were used. On this machine, test runs634

with 96 processes correspond to 2 Skylake nodes (Np = 2× 48 = 96); similarly, 1,008 processes correspond635

to 21 Skylake nodes (Np = 21× 48 = 1008).636

In fig. 11, CPU timings data provided by the scaling analysis are presented in the form of stacked bar plots.637

In particular, the CPU timings for linear system assembly and solving are highlighted. Additionally, the638

observed scaling for the different preconditioners is compared against the expected ideal scaling (theoretical).639

Within the plots, the ideal parallel scaling efficiency and the observed one are also highlighted.640

The scaling data suggests that all the considered preconditioning options lead to quasi-linear scaling behav-641

iors when problem size is sufficiently large.642

For test 3A, we observe excellent scaling efficiencies (∼ 95 %) for the three tested preconditioners, when643

the number of processes is between 96 to 384. However, a slight decrease in parallel efficiency was observed644

when processor count increased above 384. The following scaling efficiencies were observed for Np =1,008:645

∼ 91 % for the CG Jacobi, ∼ 87 % for the CG block Jacobi IC, and ∼ 77 % for the CG AMG. In comparison646

to the parallel efficiency drop observed for the CG Jacobi, the efficiency drop observed for the CG AMG647

(resp. block Jacobi IC) preconditioner was significantly higher. This efficiency decrease is most likely caused648

by the higher MPI communication overhead of the CG AMG (resp. block Jacobi IC) solver in comparison649

to the CG Jacobi solver. Scaling-wise, all three preconditioning options have similar behavior. However,650

timing-wise, the CG AMG remained the fastest option. For instance, at Np =96, the simulation executed651

in 28.2, 37.0, and 57.8 seconds (solving time tsolve) with the CG AMG, the CG block Jacobi IC, and the652

CG Jacobi preconditioners, respectively. This makes the CG AMG solver 2.05 (resp. 1.31) times faster than653

the CG Jacobi (resp. block Jacobi IC) solver. At Np =1,008, the simulation solving times tsolve of 4.1,654

3.8, and 6.1 seconds were reported for the CG AMG, the CG block Jacobi IC, and the CG Jacobi solvers,655

respectively. In this case, due to higher overhead of the CG AMG for this particular problem, the CG block656

Jacobi IC is the better option among the three preconditioners.657

As expected, in comparison to the test 3A, better strong scaling characteristics were observed for the test 3B658

for the three tested preconditioners. Note that, due to the large problem size, scaling data was measured659

in between 192 to 1,008 processes. The following scaling efficiencies were observed for Np =1,008: ∼ 99 %660

for the CG Jacobi, ∼ 97 % for the CG block Jacobi IC, and ∼ 96 % for the CG AMG. As observed for the661

test 3A, timing-wise, the CG AMG remained the fastest option among the three preconditioning options for662

the test 3B. For instance, at Np =196, the simulation solving times tsolve of 47.4, 63.6, and 92.7 seconds were663

reported for the CG AMG, the CG block Jacobi IC, and the CG Jacobi, respectively. This makes the CG664
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Figure 11: bar plots depicting the strong scaling characteristics of different preconditioners up-till 1,008 cores for the three-
dimensional brittle fracture problems, tests 3A and 3B, solved on Skylake nodes of Inti supercomputer. The numbers in the
brackets next to the bar plots represent ideal speedup (black) and observed speedup (red). In the figure “BJacobi” stands for
block Jacobi preconditioner.

AMG 1.96 and 1.34 times faster than the CG Jacobi and the CG block Jacobi IC. In contrast to test 3A, at665

Np =1,008, the simulation solving times tsolve of 9.2, 12.6, and 17.7 seconds were reported for the CG AMG,666

the CG block Jacobi IC, and the CG Jacobi, respectively, making the CG AMG 1.92 and 1.36 times faster667

than the CG Jacobi and the CG block Jacobi IC.668

Overall, all three preconditioner tested in this subsection for CG showed excellent parallel strong scaling669
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Figure 12: large-scale perforated medium test domain Ω and the partitioned mesh {Ωh
i }1008

i=1 . Within (a) the initial crack
surface is highlighted in red color and the different sized holes can also be observed.

characteristics, however, timing-wise CG AMG remains the fastest option.670

5.4. Large-scale application: a three-dimensional perforated medium671

In this subsection, we present a mock application of perforated medium cracking. We demonstrate that by672

using the aforementioned parallel vectorial FEM formulation combined with the AMG preconditioner, we673

can “easily” perform the phase-field simulations of fracture propagation in a topologically complex medium,674

discretization of which leads to about 65,000,000 degrees of freedom.675

Problem setting. A notched cubic specimen with the size of the side equal to 6 cm is submitted to tensile676

loading in the vertical direction (imposed via vertical displacements). The notch is placed at mid-height677

(y = 3 cm) of one side of the sample and is 1 cm in length. Its width is negligible if compared to the other678

dimensions of the computational domain.679

To mimic a realistic perforated media, 44 spherical voids with different diameters are randomly arranged680

inside the specimen to induce a non-planar crack propagation. The generated geometry (fig. 12a) is such681

that the ratio between the solid phase and the voids is almost representative of concrete mortar. Mechanical682

parameters for performing the phase-field simulation are then chosen accordingly: λ = 1.94 kPa, µ =683

2.45 kPa, and Gc = 2.28 N mm−1.684

To induce damage initiation and evolution, the top surface of the numerical sample is loaded imposing a685

directly controlled vertical displacement increment of ∆ū2 = 1 · 10−3 mm, whereas the bottom face is fixed686

in all three directions ū1 = ū2 = ū3 = 0. Remaining lateral faces are stress-free. Similar to the preceding687

tests, these conditions serve as Dirichlet conditions for our finite element formulations.688

The fine meshing constraints of this test case lead to a problem with 64,456,128 degrees of freedom. A689

finite element mesh with 16,114,032 nodes and 98, 295, 595 tetrahedral elements was used for solving this690

test with 1,008 processes on 21 Skylake nodes of Inti supercomputer. Figure 12b shows the partitioned mesh691

with 1,008 subdomains. To complete the full phase-field simulation, 865 total solves of the linear system692

were performed in less than 145 minutes (approximately two and a half hours). Considering that our solver693

possesses linear scaling characteristics, if this problem was solved on a sequential computer, hypothetically694

it would have taken (145× 1008)/(60× 24) ≈ 101 days to solve. This highlights the importance of parallel695
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Figure 13: results of the three-dimensional cracking of the perforated medium. Within the truncated visualizations (right ones
in (b) and (c)) the spherical hole wire-frame meshes are colored according to the vertical displacement field u2.

computations with effective preconditioning for solving large-scale realistic problems of fracture mechanics696

in reasonable times. Additionally, following the timing results from previous subsections, it is reasonable to697

say that CG setup with Jacobi and block Jacobi preconditioners would have taken more time and iterations698

to solve this particular test in comparison to the adopted AMG preconditioner.699

Results. Without going into details of obtained results, briefly, the crack propagates from the notch to the700

right side of the specimen along the x axis. As a result, by the end of the simulation, the specimen is701

split into two halves. Figure 13 presents the displacement and the damage-fields after the crack is fully702

developed. Alongside these fields, the load-displacement plot of the top surface reaction force versus applied703

displacement has also been presented in fig. 13a. Typical tensile cracking behavior (mode I cracking) can704

be inferred from the curve, the reaction force peaks to a maximum value followed by rapid drop caused705

due to fast crack propagation. Notice from the displacement field (fig. 13b), for the whole upper half of706

the specimen u2 ≈ 1 · 10−3 (which is the imposed incremental displacement), while the lower half of the707

specimen remains fixed u2 = 0. Complementary to this result, the damage-field shown in fig. 13c rightly708

suggests that the specimen is fully cracked. As such, we observe a free-body motion for the upper detached709

part of the specimen while the lower part remains static.710

To highlight non-planar crack development, which was expected in this configuration, fig. 14 depicts the711

damage-field and crack surface development for three phases of the simulation, d is filtered for values close to712

unity in order to clearly identify the represented pseudo-crack. The color map in fig. 14-left helps to analyze713

the vertical non-planar deviation of this pseudo-crack (fracture deviation yd−d0). On the derived cracking714

surface, at a particular mesh node (P = P (x, y, z)), the fracture deviation yd−d0 ∈ R is simply obtained by715

yd−d0 = y − 30 mm. Results from fig. 14-left suggests that due to the presence of holes, the crack deviates716
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(compared to a planar crack) by approximately half a centimeter at certain places. As clearly illustrated by717

traversal cross-sections of fig. 14-right, despite what is obtained in the previous case, the damage band is718

no more “planar”, but deviates from the median plane due to the interaction with holes. Holes attract the719

crack due to local stress concentrations, thus leading to a quite realistic crack profile. Being able to trace720

such complex cracking trajectory infers robustness of our monolithic vectorial finite element procedure for721

solving the hybrid phase-field model.722

6. Conclusions723

In the current paper, we presented a monolithic finite element scheme of setting up the hybrid phase-field724

model for solving large-scale brittle fracture mechanics problems with millions of unknowns. To achieve a725

monolithic scheme, the combined discretization of the coupled damage-field equation and the augmented726

linear momentum equation was handled by employing the vectorial finite elements. All the finite element727

unknowns (displacement and damage fields) were consequently approximated via a single vectorial test and728

trial functions. Among others, one key advantage of using the vectorial finite element discretization for the729

phase-field model is that it is straightforward to parallelize via domain-decomposition method. As such in730

this study, we used distributed-memory computing for solving problems with extremely fine meshes which are731

a prerequisite for standard brittle fracture mechanics problems. Moreover, this study shows that when the732

vectorial finite element discretization is combined with the Picard iterations for handling nonlinearity posed733

by the coupled equations of the phase-field model, it leads to a single positive definite symmetric matrix734

system. This allows the use of Krylov subspace-based conjugate gradient method for solving (memory735

efficiently) these linear systems.736

To improve convergence rates, consequently time to solution, of the conjugate gradient method applied to737

crack propagation problems with millions of unknowns, different preconditioning strategies were compared,738

analyzed, tuned, and discussed. Our analysis shows that the conjugate gradient method preconditioned with739

the tuned algebraic multigrid preconditioner is a robust and efficient scheme for solving the monolithic linear740

systems provided by the vectorial finite element discretization of the hybrid phase-field model for large-scale741

fracture mechanics problems.742

By performing the condition number analysis on the monolithic linear systems for the brittle fracture me-743

chanics problems, it was shown that crack initiation (during the phase-field simulations) causes the condition744

number to deteriorate (rise exponentially). This was consequently shown to impact the convergence behav-745

ior of the conjugate gradient solver, the iterations to converge grew drastically as the condition number to746

rose in the cracking zone. As such, the linear systems obtained for the hybrid phase-field problem within747

the cracking zone become more and more difficult to solve as the crack starts to move. Our numerical748

experiments prove that, in comparison to the conjugate gradient preconditioned with the Jacobi or block749

Jacobi preconditioners, the conjugate gradient preconditioned with the tuned algebraic multigrid precon-750

ditioner controls the rise in condition number during crack initiations. Hence, this latter preconditioner751

outruns the other two preconditioning options in the aspect of ease of solving a brittle fracture mechanics752

problem with the hybrid phase-field method. Further, numerical experiments also revealed that this tuned753

algebraic multigrid preconditioner remains least sensitive to mesh refinements. Considering that brittle frac-754

ture problems have a prerequisite of extremely fine meshing for replicating the cracking physics accurately,755

this quality makes the tune algebraic multigrid preconditioner an excellent choice over the Jacobi or block756

Jacobi preconditioners for the conjugate gradient method.757

Results from two large-scale hybrid phase-field numerical simulations (with ∼ 32 and ∼ 81 million unknowns)758

performed for three-dimensional brittle fracture mechanics reveal that timing-wise, the tuned conjugate759

gradient algebraic multigrid preconditioner is approximately two (resp. 1.3) times faster than the conjugate760

gradient method setup with the Jacobi (resp. block Jacobi) preconditioner. Further, these large-scale tests761

were also used to show that the tuned algebraic multigrid preconditioner has the highest residual reduction762

rate (quality of rapidly decreasing the residual ||Ax − b|| to reach faster convergence). It was equally763
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(c) pseudo time-step 266 (ū2 = 2.66× 10−1mm).

Figure 14: results depicting crack propagation within the three-dimensional perforated medium test. Left: truncated damage-
field with fracture deviation color map; Right: different damage-field cross-sections (xy-planes) within the bulk of the material.
For each (a), (b), and (c) the three xy-planes — top, middle, and bottom — are defined by top: (x, y : 20 > y > 40, z : z = 10),
middle: (x, y : 20 > y > 40, z : z = 30), and bottom: (x, y : 20 > y > 40, z : z = 50).
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revealed that the algebraic multigrid preconditioner alongside the block Jacobi and Jacobi preconditioners764

possess excellent parallel strong scaling characteristics (more than 90 % efficiency) when these are applied765

to solve the large-scale phase-field fracture problems which involve linear systems with millions of degrees766

of freedom. However, timing-wise, the tuned algebraic multigrid preconditioner always remains the fastest767

option.768

As an application case, a three-dimensional numerical simulation mimicking perforated media cracking769

which involved more than sixty-four million unknowns was “easily” solved by employing the vectorial finite770

element scheme. Notably, these are scale which would have otherwise not been possible to achieve if the771

tune preconditioning options for the conjugate gradient method was not used, which efficiently uses the772

high-performance computing resources.773
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N. Moës, C. Stolz, P.-E. Bernard, and N. Chevaugeon. A level set based model for damage growth: The thick level set approach.890

International Journal for Numerical Methods in Engineering, 86(3):358–380, 2011.891

G. Molnár and A. Gravouil. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle892

fracture. Finite Elements in Analysis and Design, 130:27–38, 2017.893

T. T. Nguyen, J. Yvonnet, M. Bornert, C. Chateau, K. Sab, R. Romani, and R. Le Roy. On the choice of parameters in the894

phase field method for simulating crack initiation with experimental validation. International Journal of Fracture, 197(2):895

213–226, 2016.896

C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical897

Analysis, 12(4):617–629, 1975.898

R. Peerlings, M. Geers, R. de Borst, and W. Brekelmans. A critical comparison of nonlocal and gradient-enhanced softening899

continua. International Journal of Solids and Structures, 38(44-45):7723–7746, 2001.900

K. H. Pham, K. Ravi-Chandar, and C. M. Landis. Experimental validation of a phase-field model for fracture. International901

Journal of Fracture, 205(1):83–101, 2017.902
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