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Abstract 

All the hallmarks of ageing are observed in the brain, and its cells, especially neurons, are 

characterized by their remarkably long lifetime. Like any organ or system, the brain is 

exposed to ageing processes which affect molecules, cells, blood vessels, gross morphology 

and, uniquely for this organ, cognition. The preponderant cerebral structures are characterized 

by the cellular processes of neurons and glial cells and while the quantity of cerebral 

interstitial fluid is limited, it is now recognized as playing a crucial role in maintaining 

cerebral homeostasis. Most of our current knowledge of the ageing brain derives from studies 

of neurodegenerative disorders. It is interesting to note that common features of these 

disorders, like Tau, phosphoTau and amyloid peptide accumulation, can begin relatively early 

in life as a result of physiological ageing and are present in subclinical cases while also being 

used as early-stage markers of neurodegenerative diseases in progression. 

In this article, we review tissue and cellular modifications in the ageing brain. Commonly 

described macroscopic, microscopic and vascular changes that in the ageing brain are 

contrasted with those seen in neurodegenerative contexts. We also review the molecular 

changes that occur with age in the brain, such as modifications in gene expression, 

insulin/insulin-like growth factor 1 signalling dysfunction, post-translational protein 

modifications, mitochondrial dysfunction, autophagy and calcium conductance changes. 

 

 

1. Introduction 

The histological architecture of the brain is remarkably complex. Grey and white brain matter 

are both characterised by the processes of tightly-interspersed neurons and glial cells. Despite 

its small volume, the interstitial fluid is now known to play a crucial role in maintaining the 

homeostasis of such a complex cellular system. Its composition is highly regulated by the 

blood-brain barrier. It also plays an important role in protecting the brain against neurotoxic 

compounds and in clearing metabolic and peptidic waste, such as the amyloid peptide, from 

the brain to perivascular spaces. Thus, it is sometimes considered to be an equivalent of the 

lymphatic system in the central nervous system, and has come to be known as the glymphatic 

system [1].  

Brain cells, and especially neurons, are remarkable for their long lifetime. Once mature, most 

of our neurons last our entire lifetime and show a high potential for plasticity in order to 

continuously modulate and adapt their complex synaptic network to changing conditions.  

Like any organ or system, the brain is exposed to the ageing process which affects molecules, 

cells, blood vessels, gross morphology. Unlike other organs, however, the ageing process in 

the brain can significantly affect cognition. Changes in the brain with age have been studied 

since the 19th century – the exact nature and precise mechanisms of these changes 

nevertheless remain, for the most part, poorly defined. Furthermore, it remains difficult to 

define the boundary between “normal” changes due to ageing and the early stages of common, 

neurodegenerative diseases such as Alzheimer’s disease (AD) seen in elderly people.  



In this article, we review the macroscopic, structural and molecular changes that occur with 

ageing, the main neuropathological lesions commonly found in normal ageing brains, and 

discuss how ageing affects neuroplasticity.  

 

2. Tissue and cell modifications in the ageing brain 

2.1. Macroscopic brain changes with age 

The volume and the weight of the human brain exhibits significant interindividual variability. 

There also exists a cohort bias since the mean weight of the human brain has significantly 

increased over the 20th century (about 1g/y) [2]. Early post-mortem studies, later confirmed 

by neuroimaging longitudinal studies, have shown that brain weight loss is very subtle 

between 20 and 60 years of age (about 0.1% per year) [3]. The progressive atrophy may be 

more rapid thereafter, particularly over the age of 70 [4], [5], with an annual rate of weight 

loss between 2 and 5%. The reasons for this progressive loss of brain weight with age are not 

clear. The most commonly reported explanations are the decline in volume of pyramidal 

neurons (rather than their number or density) and a decrease in their dendritic and axonal 

arborizations [6]. This decrease is quite diffuse in white matter, but the shrinkage of grey 

matter is less uniform with the frontoparietal cortex more affected than the temporo-occipital 

[7].  As a consequence of this reduced brain volume, the ventricular system expands and the 

subarachnoid space enlarges (Fig. 1A and B).  

 

2.2. Microscopic brain changes with age 

The issue of neuronal loss has long been a matter of controversy. Initial studies, from the 

1950s, overestimated the loss of neurons with age because their density was only evaluated in 

two-dimensions – the cerebral cortex and hippocampus were thought to be particularly 

affected. However, different conclusions were arrived at with the use of modern, 

stereologically-based quantification in three dimensions [8]–[11]. Neuronal loss with ageing 

is now considered as either undetectable or not exceeding 10% over our life span [12], [13]. 

In some parts of the brain such as the locus coeruleus (LC), however, up to 25% of LC 

neurons are lost in the elderly (between the fourth and ninth decade) [14]. Grey matter volume 

also significantly reduces over time, with the most severe losses in the insula, superior parietal 

gyri, central sulci, and cingulate sulci while amygdala, hippocampi, and entorhinal cortex are 

relatively well preserved [15], [16]. However, grey matter shrinkage does not necessarily 

result from neurodegeneration: it is rather suggested that it is mainly caused by extensive 

dendritic regression [17]. A decline in white matter volume and integrity has also been 

reported [18]–[20], notably in the prefrontal cortex [21]. Therefore, normal cellular brain 

ageing is characterized more by subtle changes than a large-scale loss of cells. In the 

hippocampus, dendritic extents may increase in the dentate gyrus [22] while remaining stable 

in the 1 and 3 areas of the cornu ammonis (CA) and in the subiculum [23]–[25]. Similarly, no 

change in spines’ density with age has been reported in the human hippocampus [26], [27]. 

On the other hand, frontal cortex and cingulate pyramidal neurons show a decrease in 

dendritic branching in rats [28], [29] which has also been found in the human medial 

prefrontal cortex [30]. In areas 10 and 18 of the human cortex, a 46% reduction in spine 

number and density has been reported in persons over 50 years [31]. In macaques, spine 



density in the neocortex decreased significantly with ageing [32], [33] and was associated 

with a loss of synapses [34]. Overall dendritic spine changes with age have been well 

described elsewhere [34], [35]. These results reflect well the differences in grey matter 

shrinkage found between the various brain regions, as mentioned above. Myelinated nerve 

fibres from the white matter are also affected by normal ageing. While a part of them are lost, 

another part loses its myelin sheath which is incompletely remyelinated by oligodendrocytes, 

the number of which increases with ageing,  negatively affecting the conduction velocity 

along nerve fibres [36], [37]. Thus, there is a constitutive myelination activity, potentially 

explaining the increase in the expression of genes involved in myelination function during 

ageing [9], [38], [39]. Paradoxically, the sheath thickness of some nerve fibres is continuously 

increasing because of this sustained activity [36], [40]. As these changes seem to occur quite 

early in life, some authors suggest that myelin is the most susceptible part of the brain to 

ageing [41]. On the other hand, glial cells’ activity and number both increase with age [42]–

[45] and most upregulated genes in the brain are of glial origin [46]. In the main, microglia 

activation is recognized as sustaining a pro-inflammatory environment [47], [48] which could 

increase neurons’ susceptibility to neurodegeneration [49] and loss of synapses [50], [51]. 

Finally, neurogenesis is also impaired with ageing. While most neurons in the adult brain are 

produced during embryogenesis or very early in life, adult neurogenesis has been identified in 

the hippocampus, the sub-ventricular zone and in the olfactory bulb of the mammalian brain 

[52], [53]. Although data are still lacking, neurogenesis seems to decline with advancing age, 

with an already significant decline by middle age, particularly in the hippocampus [52]–[55]. 

However, the significance of this decline is not fully understood yet [52]. 

 

2.3. AD-related changes 

Neurofibrillary tangles (NFT) and senile plaques (SP), the two main neuropathological lesions 

associated with the definitive diagnosis of AD, are frequently observed in the brains of elderly 

individuals with normal cognitive functions. This very common occurrence has led to the 

currently unresolved question as to what extent the presence of non-pathological, AD-related 

lesions should be considered as normal ageing (i.e. preclinical AD). 

NFT are characterized by the intracellular accumulation of abnormally-hyperphosphorylated 

Tau proteins into filamentous inclusions known as paired helicoidal filaments [56]. Many 

studies have confirmed the consistency of their localization: the entorhinal cortex and the 

CA1 field of the hippocampus are the first brain regions where NFT occur, while only sparse 

lesions are present in the adjacent temporal neocortex or frontal neocortex (Figure 1C). NFT 

predominate in layer II, and to a lesser extent III and V, of the entorhinal cortex. This typical 

distribution of NFT is now widely recognized as the initial stages I and II (of VI) in the 

hierarchical and progressive spreading of neurofibrillary pathology described 30 years ago by 

Braak and Braak [57]. More recent neuropathological studies, focusing on subcortical and 

brainstem nuclei, have even showed that the first NFT may appear in teenagers in the locus 

coeruleus. Some authors, mostly from the US, consider the early and mid-stages of this 

neurofibrillary pathology to be a specific pathological process, independent of AD pathology, 

and potentially associated with cognitive decline. They coined the term “PART” (Primary 

Age-Related Tauopathy) to describe this neuropathological phenotype [58], but the concept 

has not attained a widespread, international consensus and remains controversial [59].  



SP result from the extracellular aggregation of Aβ peptides [60]. Several Aβ peptides, of 

between 38 and 42 amino acids, derive from a larger transmembrane protein APP (amyloid 

precursor protein) after a complex cleavage process involving three main secretases (α, β, and 

γ). The microscopic aspect of amyloid deposits in brain tissue is heterogeneous. Classically, 

neuropathologists distinguish between diffuse amyloid deposits, characterized by their ill 

limited extent and their lack of affinity for “amyloid” specific stains such as Congo-Red, and 

dense amyloid deposits that are usually well defined and comprise a dense amyloid core 

surrounded by a corona of dystrophic neurites. Amyloid deposits associated with ageing are 

mostly diffuse (Fig. 1D). Their topographical extent usually includes the orbitofrontal, 

occipital and precunei cortex, the hippocampus, and the basal ganglia. In other words, such 

amyloid deposits correspond to Thal phases 1 to 3 (of 5) [61].  

Figure 2 summarises the estimated prevalence of amyloid deposits, hippocampal 

neurofibrillary pathology (Braak stages I and II), and extensive neocortical neurofibrillary 

pathology (Braak V and VI) according to the age of the subjects [62]. These data come from 

large autopsy cohorts, especially from Braak and Braak (more than 2660 brains grouped into 

age classes) [63]. Despite the fact that such post-mortem, epidemiological studies lack clinical 

information and are potentially biased owing to the possibility of unrecorded, underlying 

pathologies which can affect brain ageing, it is interesting to notice that the median age for the 

presence of hippocampal NFT is around 45 years of age. Almost all subjects aged over 80 

years present hippocampal neurofibrillary pathology. The median age for cortical amyloid 

pathology is about 75, but the prevalence curve of amyloid deposits does not seem to reach 

100%, even in centenarians. The prevalence of high Braak stages for neurofibrillary 

pathology is close to that of AD in elderly patients. Such data are important to keep in mind 

when interpreting biological and imaging biomarkers of AD in cohorts of elderly people.  

2.4. Other neurodegenerative lesions in the ageing brain  

Various other pathologies have been described in the ageing brain, among them argyrophilic 

grains (Fig. 1E), characterized by the synaptic accumulation of Tau protein isoforms with four 

microtubule-bonding domains, mostly in the pyramidal layer of the hippocampus. Grains are 

known to be age-related [64], [65] and were consistently observed in the brains of a group of 

29 centenarians [66]. TDP-43 pathology has also been observed in almost 20% of aged 

controls [67]; once again, the hippocampus was the most vulnerable structure for TDP-43 

accumulation. 

2.5. Cerebrovascular changes 

The microvascular system of the brain consists of pre-capillaries and capillaries, devoid of 

smooth muscle cells, forming a three-dimensional network within the brain parenchyma. This 

network is perfused by penetrating arterioles which represent the termini of brain vasculature. 

The absence of functional shunts between the penetrating arteries explains the vulnerability of 

the brain to ischaemia in case of thrombosis or global hypoperfusion. Normal ageing affects 

both the macro- and microvascular systems of the brain, resulting in altered cerebral blood 

flow in elderly people [68]. The arterioles supplying the deep white matter have the longest 

course through the brain and they often become tortuous with age: Hassler found that they 

were sparse in subjects under the age of 60, but common after the age of 70 [69]. Akima et al. 



found them to appear in the 5th decade and to occur in all specimens above 80 years old [70]. 

Capillary loss in normal ageing was evaluated as between 15 and 50%, according to the 

cortical or subcortical region [71], [72]. The high frequency of leukoaraisosis in elderly 

people may be explained by these changes in brain vasculature.  

3. Molecular ageing of the brain 

3.1. Modifications in gene expression 

One of the main hallmarks of ageing is the modification of genes’ expression [73] and an 

increasing number of genes becomes upregulated or downregulated as we grow older. These 

changes in expression are mostly explained by epigenetic alterations which include several 

kinds of DNA and histone modifications that alter transcription [74]. The importance of these 

modifications led to the publication of a recent multi-omic atlas of the brain’s frontal cortex 

during ageing providing data on DNA mutations, changes in RNA and miRNA expression, 

and in DNA methylation and Histone 3 Lysine 9 acetylation [75]. With ageing, DNA 

becomes globally hypomethylated but the hypermethylation of 353 CpG sites is one of the 

best markers of ageing and has even been proposed as an “epigenetic clock” [76]–[78]. While 

there is no significant change in the expression of most genes in the brain, more than 150 do 

undergo a significant modification of their expression with age with a high degree of 

conservation between cohorts [9], [79]. Contrary to most other tissues where genes’ 

expression is mainly upregulated with ageing, changes in gene expression in the human brain 

are predominantly shifts towards downregulation [9]. Genes which are downregulated in the 

brain are associated with the functions of mitochondria, neural plasticity/synapses, inhibitory 

interneurons and the ubiquitin-proteasome system (UPS). On the contrary, genes associated 

with stress response, immune/inflammatory response, metal ion homeostasis, myelin-related 

functions and glia tend to be upregulated [9], [38]. These trends are well conserved between 

rhesus macaques and humans but discrepancies exist in rodents where most changes are 

characterized by an upregulation of genes’ expression, notably of those participating in 

neuronal functions [9], [80]. Accordingly, a recent study identified that genes involved in 

immunity, and more precisely in the complement system, in synaptic transmission and in 

myelination were very good biomarkers of brain ageing. Genes involved in synaptic 

transmission were negatively correlated with the genes related to immunity while genes 

involved in myelination showed a positive correlation with immunity-related genes (Table 1) 

[39]. It is possible that the increased immune reactions with ageing are in fact drivers of the 

downregulation of the expression of genes involved in synaptic transmission [81]–[83]. This 

involvement of immunity in brain ageing is perfectly in line with the concept of inflammaging, 

defined as a chronic, sterile and low-grade inflammation which actively contributes to ageing 

and is considered a very good predictor of successful ageing [84]–[86]. 

Because of modulations in gene expression with ageing, a number of mRNAs and proteins 

essential to brain function are affected. The mRNA levels of brain-derived neutrophic factor 

(BDNF) and its receptor tyrosine kinase B (trkB), key modulators of brain plasticity, seem to 

be affected by ageing in specific areas of the brain. While BDNF levels remained stable over 

time in the hippocampus, the expression of its receptor was significantly decreased with age 

[87]. More changes were found in the prefrontal cortex, notably in the Brodmann area 9, as 

both BDNF and trkB showed a decreased expression with ageing [46], [87], [88]. Interestingly, 



β-amyloid peptides, which accumulate even during normal ageing [89], [90], were shown to 

impair BDNF signalling [91]. As a consequence of decreased BDNF or impaired signalling, 

the expression of many essential genes is compromised, mainly in gamma aminobutyric acid 

(GABA) neurons [92], which results notably in alterations in both inhibitory and excitatory 

synapses [93]. Other neuropeptides such as somatostatin, neuropeptide Y or cortistatin, which 

can be produced in subtypes of GABA interneurons and target dendrites of pyramidal 

dendrites, are also significantly reduced with ageing [79], [93]. Post-synaptic GABA 

receptors were also decreased in older subjects, further impairing the functioning of GABA 

neurons [93]. Such variations in expression or functionality are also found in other receptors 

such as nicotinic and muscarinic acetylcholine receptors [94], [95], metabotropic glutamate 

receptors [96], [97], N-methyl-D-aspartate (NMDA) receptors [98]–[100], serotonin receptors 

[101] or dopamine receptors [102]. 

3.2. Insulin/insulin-like growth factor 1 signalling 

Insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) has also been implicated in brain 

ageing. This pathway is involved in protein synthesis, proliferation and cell survival, notably 

acting through the rapamycin (mTOR) pathway, and is highly conserved through evolution 

[103]–[105]. Its inhibition, through various means, importantly leads to increased lifespan in 

multiple species [106]–[110]. Interestingly, and paradoxically, the IIS pathway has been 

shown to be neuroprotective and IGF-1 acts as a neurotrophic agent [111], [112] but its 

repression can reduce the consequences of AD in murine models [111], [113]. It has been 

suggested that IGF-1 plays an essential role in cell proliferation during recovery after acute 

events such as strokes, while its inhibition of stress-resistance or autophagy becomes 

detrimental in situations like ageing where cellular debris and damage may accumulate [114]. 

Interestingly, growth hormone (GH), produced by the pituitary, is a major regulator of IGF-1 

secretion and limitation of pituitary development significantly increased lifespan in murine 

models [115]–[117]. This suggests an interplay between these components. 

3.3. Post-translational protein modifications 

In addition to the changes described above, major protein modifications occur in the brain 

during normal ageing and participate in the accumulation of cellular debris. The 

ubiquitination of proteins is a process required for degradation of damaged, misfolded 

proteins by the UPS; however undegraded, ubiquitinated proteins are found to accumulate in 

the brain with ageing [118]–[120], suggesting an impairment of the UPS and resulting in the 

accumulation of these detrimental proteins [121]–[123]. In addition, non-enzymatic 

modifications such as oxidation, notably produced when proteins react with reactive oxygen 

species (ROS), are also increased during normal brain ageing [124], [125]. Iron accumulation 

with ageing is also an important contributor to oxidation [31], [126]. This leads to a change in 

proteins’ function and modified proteins can accumulate with other intracellular molecular 

debris to form lipofuscin, which accumulates in brains over time [127], [128]. The number of 

corpora amylacea (spherical polyglucosan bodies which may contain cell debris) also 

increases with age [31], [129]. Products of glycation, another non-enzymatic reaction between 

nucleophiles and carbonyl compounds and favoured by oxidation, also accumulate in ageing 

brains [130]. These modifications all produce significant changes in proteins’ structure, 

leading to their degradation or, on the contrary, to their aggregation. Cross-links can occur, 



forming uncontrolled complex structures with important consequences on protein function 

and leading, for example, to increased vascular stiffness [131]–[134]. In addition, advanced 

glycation end-products (AGEs) can interact with the receptor for AGEs (RAGE), whose 

expression in the brain is increased with age, producing a vicious circle of signalling and 

activation that contributes to chronic, low-grade inflammation [135], [136]. Amyloidosis, an 

aggregation of insoluble and misfolded fibrils more widely studied in the context of AD 

which can be promoted by glycation [137], is also increased in brains of elderly people 

without cognitive impairment [138], [139]. Overall, such loss of proteostasis can notably 

promote the unfolded protein response, lead to apoptosis or induce senescence, all of which 

are particularly detrimental in a tissue in which cell renewal is limited [140]–[142]. 

3.4. Mitochondrial dysfunction 

Together with muscles, the brain has a higher metabolic activity than all other organs, hence 

the brain may be more susceptible to mitochondrial dysfunction, a key hallmark of ageing 

[73], [143]. With time, mitochondria accumulate mutations which are associated with 

homoplasmy and, as mentioned earlier, a diminished expression of mitochondrial proteins. As 

a consequence of such modifications, electron leakage occurs throughout the respiratory chain 

producing ROS and, in turn, increasing cell and mitochondrial damage [144]–[148]. 

Disruption of the electron transport chain also results in mitochondria with depolarized 

membranes [149]. Of note, since brain metabolism requires high oxygen consumption, the 

probability of producing ROS may be further increased. It is also important to note that while 

large amounts of ROS are detrimental, lower levels can stimulate a pro-survival response [73], 

[150], [151]. Decline in mitochondrial function provokes a decline in nicotinamide adenine 

dinucleotide (NAD+) levels, notably affecting the activity the NAD+-dependent sirtuins [152], 

[153]. This dysfunction may also lead to increased inflammation, as well as altered apoptosis 

and disrupted crosstalk among organelles [145], [154], [155]. The importance of 

mitochondrial dysfunction in ageing is underlined by an innovative study showing that 

mitochondrial removal from senescent cells diminished pro-ageing features of senescence 

[156]. More specific to the brain, projection neurons rely upon energy production by 

mitochondria to support ion fluxes and axonal transport, making them particularly vulnerable 

to mitochondrial dysfunction [157], [158]. With decreased energy production by mitochondria, 

a reduction in metabolic activities has been reported in the subiculum and dentate gyrus [159], 

a finding which was confirmed in another study in rats where the activities of both 

mitochondrial complexes and nitric oxide synthase were significantly reduced in the 

hippocampus and, to a lesser extent, in the cortex [160]. 

3.5. Autophagy 

Autophagy is a process which permits cells to produce nutrients for themselves when 

extracellular nutrient concentrations are low, or under conditions of stress, and involves 

degrading cell components (mainly damaged cell debris) in autolysosomes formed by the 

fusion of an autophagosome with a lysosome. The mTOR pathway is an inhibitor of 

autophagy and, as mentioned earlier, is stimulated by IGF-1. Thus, sustained IGF-1 and 

mTOR signalling may prevent the autophagic recycling of damaged proteins and facilitate 

their aggregation and subsequent detrimental consequences. A similar process, mitophagy, 

exists for the degradation of damaged mitochondria. Impairment of both of these processes as 



a result of ageing accelerates the deleterious effects of cytotoxic cellular and organelle-

derived components. Hence, suppression of autophagy has been identified as a cause of 

neurodegeneration [161]–[163] while its enhancement ameliorates cognitive functions [164]–

[166]. In murine hippocampus, autophagic activity is decreased with ageing but this 

observation was not explained by an overactivated mTOR signalling, therefore other 

parameters must be responsible for this decline [167]. The decrease in BECN1 expression in 

older human brains, a key regulator of autophagy, [168] suggests that autophagy may also 

decline with age in humans, but as extensively reviewed elsewhere, there is currently 

insufficient data on autophagy evolution during normal human brain ageing to definitively 

conclude on this matter [169]. 

3.6. Calcium conductance 

Correct Ca2+ conductance and homeostasis are essential for signal propagation in the brain 

and their alteration might result in a deterioration of inter-neuronal communication. These 

changes in Ca2+ signalling in the ageing brain have been extensively reviewed elsewhere 

[170]–[172]. Mainly, Ca2+ conductance is increased in aged neurons as shown in the 

hippocampus where there is an increase in L-type, voltage-dependent Ca2+ channels’ density 

and activity in pyramidal cells [173], [174]. The release of Ca2+ from intracellular organelles 

is also altered by ageing as the endoplasmic reticulum calcium releasing channels, the inositol 

trisphosphate receptor (IP3R) and ryanodine receptor (RyR) all show an increased activity 

over time, partly mediated by ROS oxidation [175], [176]. On the other hand, Ca2+ buffering 

is impaired as the activities of both the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 

and the plasma membrane Ca2+ ATPase (PMCA) pumps are decreased, potentially because of 

a reduction in available ATP and oxidation as consequences of mitochondrial dysfunction 

[176]–[178]. Diminished mitochondrial Ca2+ buffering capability has also been reported [179]. 

In addition, calcium-binding proteins such as calbindin 1 are overwhelmingly downregulated 

with age in the prefrontal cortex [46], [180], further impairing Ca2+ signalling. 

4. Conclusion 

All the hallmarks of ageing are observable in the ageing brain and its structures [143]. Most of 

the current knowledge of the ageing brain derives from studies of neurodegenerative disorders. 

It is interesting to recognize that changes like Tau, phosphoTau and amyloid peptide 

accumulation can begin in early life as a result of physiological ageing and are present in 

subclinical cases while also being used as early-stage markers of neurodegenerative diseases 

in progression. It will be important to increase research of normal ageing to better understand 

pathological ageing of the brain. Identification of new biomarkers, and progress in the field of 

functional neuroimaging, will help to better distinguish normal from pathological brain ageing 

and contribute to diagnosing the latter as early as possible. 
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Figure 1: Illustration of common histological changes during normal brain ageing 

 

 

 

Legend:  

A: Gross morphology of a formalin-fixed post mortem brain hemisphere from a 85-yo man 

without any cognitive decline. Note the very subtle and diffuse cortical atrophy and the 

preservation of most associative cortical areas.  B: Coronal view from the same brain specimen.  

Note the absence of significant atrophy of the hippocampus. C: Sparse neurofibrillary tangles 

(arrows) in the hippocampus of the same patient (Tau protein immunohistochemistry). D: 

Diffuse cortical amyloid deposits in the same case (arrow). Note the absence of senile plaque 

(β-amyloid immunohistochemistry). D: Isolated argyrophilic grains (arrows) in the 

hippocampus of a 86-yo cognitively normal woman (Tau protein immunohistochemistry). 

 

 



Figure 2: estimated prevalence of amyloid deposits and neurofibrillary pathology according to 

the age of the subjects 

 

 

 

 



Table 1. Gene expression changes over time in the ageing human brain

 




