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Corneal crosslinking in keratoconus management. 1 

Le crosslinking de la cornée dans la prise en charge du kératocône. 2 

 3 

Abstract 4 

Since two decades, corneal crosslinking (CXL) has been proposed as the sole therapeutic 5 

option to halt progression of keratoconus or other ectatic diseases. CXL aims at stiffening the 6 

cornea using a combination of ultraviolet-A light and a chromophore (vitamin B2, riboflavin), 7 

and has been proposed in various indications, from progressive ectatic diseases to corneal 8 

infection. Despite being in clinical use for many years, many controversies and discrepancies 9 

exist towards CXL procedure and its exact role is still under debate. We report an up-to-date 10 

review of the state of the art of CXL and describe the basic principles, the different existing 11 

CXL techniques reporting basic and clinical evidence, as well as the new perspectives and the 12 

possible future developments of the procedure. 13 

Keywords : cornea; keratoconus; crosslinking 14 
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Résumé  16 

Depuis 2 décennies, le crosslinking de la cornée (CXL) s’est imposé comme la seule 17 

alternative thérapeutique possible pour contrecarrer la progression du kératocône ou d’autres 18 

maladies ectatiques cornéennes. Le CXL, traitement visant à solidifier la cornée à l’aide d’un 19 

chromophore (la riboflavine, ou vitamine B2) irradié par une lumière émise dans le spectre 20 

des ultra-violets, a été proposé dans de nombreuses indications, allant des ectasies cornéennes 21 

progressives aux abcès de cornée. Malgré son utilisation courante en pratique clinique depuis 22 

de nombreuses années, de multiples controverses et contradictions existent à ce jour et son 23 

rôle exact demeure discuté. Nous reportons ici une revue de la littérature se voulant être une 24 

mise à jour des connaissances actuelles concernant le CXL en décrivant ses grands principes 25 
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biologiques et pratiques, ainsi que les données scientifiques cliniques existantes et ses 26 

possibles évolutions futures. 27 

Mots-clefs :cornée ; kératocône ; crosslinking 28 

  29 
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Introduction 30 

Keratoconus, the most common primary ectatic disorder, is a noninflammatory corneal 31 

deformation with progressive, inferior corneal thinning, steepening, and late apical scarring 32 

[1). Keratoconus generally starts during the second decade of life with a variable progression 33 

that tends to naturally stop around the third decade. It affects all ethnic groups and both 34 

genders although it is seen more commonly in countries of the Mediterranean. Although the 35 

exact physiopathology of keratoconus progression is still unknown to date, both 36 

environmental and genetic factors have been incriminated and frequent vigorous eye rubbing 37 

is a well-established risk factor of progression. Other primary forms of corneal ectasia include 38 

pellucid marginal degeneration and keratoglobus, while secondary forms are mainly related to 39 

corneal refractive surgery: Laser Assisted In Situ Keratomileusis (LASIK), Small Incision 40 

Lenticule Extraction (SMILE) or Photorefractive Keratectomy (PRK) procedures [2].  41 

Keratoconus treatments aim at overcoming refractive limitations with optimal refractive 42 

correction with glasses or rigid-gas permeable contact lenses (RGPCL) or intracorneal ring 43 

segments (IRCS) implantation, stabilizing the disease in case of progression and restoring 44 

corneal transparency with corneal transplantation in case of severe visual impairment due to 45 

apical scarring of corneal hydrops. Since visual outcomes following penetrating keratoplasty 46 

(PK) or deep anterior lamellar keratoplasty (DALK) are usually limited for various reasons 47 

(i.e. giant astigmatism, adverse events during surgery or follow-up, graft decompensation), 48 

avoiding or postponing surgery by halting keratoconus progression is crucial.  49 

Corneal crosslinking (CXL) with riboflavin and UVA is a treatment modality for keratoconus 50 

that was first developed in Dresden, Germany in 1998 [3,4] and described in a clinical 51 

practice by Wollensak in 2003 [5]. CXL has been proposed as the first existing treatment to 52 

aim at strengthening corneal tissue [6] and halting progression of keratoconus or secondary 53 

corneal ectasia. However, no existing treatment aims at impeding the exact underlying 54 
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physiopathology of the keratoconus as this latter point remains poorly known to date. We 55 

report an up-to-date review of the state of the art of CXL and describe the basic principles, the 56 

different existing CXL techniques reporting basic and clinical evidence, as well as the new 57 

perspectives and the possible future developments of the procedure. 58 

 59 

Biological principles of corneal CXL 60 

1. Physicochemical basis  61 

Collagen is a triple helical structural protein present abundantly in the corneal extracellular 62 

matrix. Corneal CXL is based on a photochemical reaction between a photo-sensitizer and a 63 

specific light irradiation that induces intermolecular covalent bonds “cross-links” between the 64 

amino-terminals of the collagen side chains and the proteoglycans of the extracellular matrix 65 

[7]. Riboflavin (vitamin B2), the standard photo-sensitizer used in corneal CXL, is excited 66 

when irradiated by a light beam of a specific wavelength (absorption peak: UV-A range), 67 

inducing modifications to the corneal structure and increasing corneal stiffness [8]. 68 

Although induction of crosslinks is a well-established procedure in polymer chemistry to 69 

increase the elastic modulus of materials, the photochemically induced effect of CXL in the 70 

cornea cannot be evidenced directly by staining methods or microscopic techniques. Instead, 71 

CXL effect on corneal tissue is deduced from several indirect signs and changes to collagen-72 

containing tissue [9]. Stress-strain measurements performed in ex-vivo studies on human and 73 

porcine corneas documented an increased corneal rigidity after CXL, that is correlated to the 74 

collagen concentration rate and the age [8,10], explaining the propensity to keratoconus 75 

stabilization with age. Moreover, it has been reported that porcine crosslinked corneas showed 76 

a reduced tendency to swelling and hydration when compared to untreated controls [11]. Ex-77 

vivo studies on corneas showed an increase of collagen fibers thickness after CXL treatment 78 

[12] and modifications in the collagen fibers diameter, interfibrillar spacing, and 79 
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proteoglycans area, resulting in a more uniform distribution of collagen fibrils, a key feature 80 

for corneal transparency [13]. In an ex-vivo study, Wollensak and colleagues [8] reported a 81 

nearly 3.5 fold increase in Young's modulus of human corneas after CXL. To date, most of 82 

ex-vivo studies confirmed the efficiency of CXL in increasing the corneal strength. CXL 83 

procedure also improves the corneal resistance to degradation processes and enzymatic 84 

digestion mediated by pepsin, trypsin and collagenase with lengthening of the turnover time 85 

of the collagen [14].  86 

2. The role of oxygen 87 

Oxygen plays an important role during CXL procedure [15], impacting efficiency and corneal 88 

stiffening. The CXL photoreaction is driven by the interaction of corneal stromal oxygen, 89 

riboflavin, and UVA irradiation and can follow two different reaction pathways depending on 90 

local oxygen availability. The type I reaction pathway occurs in low-oxygen conditions where 91 

toxic hydrogen peroxide is generated as a final product. In the aerobic (nonhypoxic) type II 92 

reaction, the riboflavin triplets react directly with oxygen to form the less toxic singlet oxygen 93 

that cross-links collagen. Hence, riboflavin stromal impregnation and irradiation time and 94 

energy are not the only variables that must be taken into account in the equation. Maintaining 95 

aerobic conditions during the CXL procedure is essential to limit type I mechanism-related 96 

toxic reactive oxygen species formation. 97 

3. Corneal biomechanics 98 

The cornea exhibits complex viscoelastic properties, and evaluating its biomechanical 99 

properties is challenging as the tissue response depends on the strain rate. CXL targets the 100 

anterior 40% of the corneal stroma which is the strongest region according to tensile strength 101 

studies in human donor corneas [16]. 102 

The ORA [17] (Ocular Response Analyzer; Reichert Ophthalmic Instruments, Buffalo, NY), a 103 

non-contact tonometer (NCT) was the first machine able to measure in-vivo corneal 104 
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biomechanics. Although ORA measurements are significantly lower in keratoconus when 105 

compared to healthy corneas, [18,19] most of clinical studies have failed to show any 106 

improvement in corneal hysteresis (CH) and corneal resistance factor (CRF) after CXL to 107 

date, probably because of the high variability of the ORA and the low statistical power of 108 

most of the existing studies [20–24]. 109 

The Corvis ST (Oculus, Wetzlar, Germany), a more recent NCT associated with a 110 

Scheimpflug camera, provides more detailed evaluation of corneal biomechanics than ORA. 111 

Some authors reported improvements in various Corvis ST measurements after CXL 112 

treatment [25,26]. 113 

Corneal biomechanics is a subject of tremendous interest for clinical research and many other 114 

approaches have been proposed to assess in-vivo corneal biomechanical changes after CXL, 115 

but are not readily available in daily clinical practice to date like applanation resonance 116 

tonometer or ART [27], corneal elastography [28] or Brillouin optical microscopy [29–31]. 117 

4. In-vivo aspects following CXL 118 

4.1. In-vivo confocal microscopy (IVCM) 119 

Histological studies suggested that the morphologic and optical changes associated with CXL 120 

are typically restricted to a depth of 200 to 300 μm from the anterior surface [8,32]. These 121 

findings are consistent with similar results with IVCM examinations of crosslinked corneas 122 

revealed distortion of the basal epithelium, typical of keratoconus, a significant decrease in 123 

keratocytes density and constant and early obliteration of the subbasal plexus nerve with 124 

neuroregeneration during the first months. Nerve and keratocytes regeneration over time was 125 

faster following iontophoresis CXL (I-CXL) than epithelium-off techniques as at 6 months 126 

post-operatively, full cellular regeneration is obtained in I-CXL versus 50% of regeneration in 127 

conventional CXL (C-CXL) or accelerated CXL (A-CXL) [33]. After CXL procedure, 128 

corneal nerves appear more distorted (Figure 1) and exhibit a fragmented appearance before 129 
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forming an interconnected network [33] as the ocular surface sensitivity decreases in the first 130 

months postoperatively with progressive recover to normal preoperative levels within 1 year. 131 

After the first year, tear production measured by the Schirmer test and the tear break-up time 132 

is within normal range [34]. 133 

Abnormal stromal microstriae that appeared as multiple, thin, dark lines in contrast with the 134 

brighter reflectivity of the stroma are also visible. Loss of keratocytes with honeycomb edema 135 

and apoptotic bodies is observed till 3 months and keratocytes regeneration is complete 136 

between 6 to 12 months [35]. The endothelium is usually not affected by the CXL procedure. 137 

Interestingly, the exact mechanisms behind corneal CXL responsible for corneal stiffness 138 

improvement remain poorly known to date. In 2018, a comparative study showed that PRK 139 

was safe in keratoconus, and one could suppose that the induced corneal haze could 140 

participate to stabilize corneal ectasia [36].  Furthermore the alteration of the subbasal plexus 141 

nerve after CXL might imply a decrease in ocular pruritus and therefore decreasing eye 142 

rubbing. Plus, CXL reduces stromal melting susceptibility. Hence, CXL might halt 143 

keratoconus progression via various mechanisms: fibrosis, collagen cross-links induction, 144 

stromal melting diminution and pruritus sensation inhibition. 145 

4.2. Anterior segment OCT (AS-OCT)  146 

AS-OCT plays a major role in keratoconus healthcare both at early and advanced stages. An 147 

AS-OCT based classification has recently been proposed to grade keratoconus severity [37]. 148 

Recently, AS-OCT has been shown to improve the diagnostic sensitivity for keratoconus 149 

progression [38] as well as the detection of forme fruste keratoconus (FFKC) by intelligence 150 

analysis of the Bowman's layer [39]. CXL aspect on AS-OCT exhibits typical signs, the most 151 

relevant being the variable existence of a hyperreflective stromal line or demarcation line 152 

(DL)] of various depth depending on the CXL protocol, most visible during the first month 153 

postoperatively that tends to fade with time. Although some authors suggested that the depth 154 
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of the DL marks the border of the corneal stroma that is denuded from keratocytes [40] and 155 

represents an indicator of the effectiveness of CXL treatment as it is deeper and more visible 156 

in C-CXL versus A-CXL and epi-on techniques (Figure 2), most of recent studies argue 157 

against this suggestion suggesting that if even the presence of a DL is related to CXL 158 

effectiveness, a higher DL depth is not correlated with higher CXL efficacy nor with the 159 

probability of lower failure [41]. 160 

Numerous CXL protocols exist to date, and the microstructural corneal alteration differences 161 

found in studying in-vivo imaging following CXL procedures highlight probable differences 162 

in corneal biomechanics improvement following each approach. Hence, in-vivo corneal 163 

imaging could possibly help to understand the underlying mechanisms of CXL and to 164 

determine predictive factors for CXL failure. 165 

 166 

CXL protocols in keratoconus 167 

1. Conventional CXL or Dresden protocol (C-CXL) 168 

The conventional CXL (C-CXL) or Dresden protocol is the first CXL technique described in 169 

the literature (Wollensak and colleagues, 2003 [5]) and is currently considered as the “gold 170 

standard” treatment. Since the epithelial tight junctions block riboflavin absorption, C-CXL 171 

requires the mechanical or excimer laser-guided epithelium debridement in the central zone of 172 

the cornea under sterile condition. Riboflavin is then applied to the corneal surface during 30 173 

minutes to obtain sufficient stromal impregnation and followed by 30 minutes continuous 174 

application of ultraviolet (UV-A, wavelength 370 nm) irradiation at an irradiance of 3.0 175 

mW/cm², resulting in a total surface dose of 5.4 J/cm². This protocol, suffers for 2 major 176 

pitfalls. First, epithelial debridement is mandatory to facilitate penetration of riboflavin into 177 

the cornea and to obtain sufficient penetration of the Riboflavin into the stromal bed. Second, 178 

the C-CXL protocol is time consuming for both surgeon and patient. To overcome these two 179 



 

9 

 

pitfalls, various alternative protocols have been proposed that retain the corneal epithelium or 180 

to reduce the surgery time. 181 

2. Accelerated CXL (A-CXL) 182 

The Bunsen-Roscoe law (BRL) of reciprocity states that a photochemical reaction is directly 183 

proportional to the total energy dose irrespective of the administered regime. Consequently, 184 

after Wollensak first publication in 2003, several accelerated protocols with application of 185 

higher irradiances over shorter times have been proposed as an equivalent alternative to the 186 

Dresden protocol in an effort to reduce treatment times. Kanellopoulos and colleagues [42] 187 

reported the first randomized prospective contralateral eye study on A-CXL (7mW/cm² for 15 188 

minutes) showing similar clinical results in ectasia stabilization when compared to the 189 

Dresden protocol. A-CXL protocols are in constant evolution, especially concerning the 190 

relationship between treatment time and UV intensity. Any protocol (i.e. 9 mW/cm² for 10 191 

minutes, 18 mW/cm² for 5 minutes or 30 mW/cm² for 3 minutes [43]) that delivers a surface 192 

dose of 5.4 J/cm² could be considered comparable to the Dresden protocol. However, A-CXL 193 

protocols yield variable results, as experimental and clinical reports demonstrated significant 194 

differences between the two treatment approaches concerning the demarcation line depth [44] 195 

and the efficacy as described by the induced corneal stiffness [43]. In 2018, a meta-analysis 196 

[45] concluded that C-CXL is more effective but A-CXL may be less likely to reduce central 197 

corneal thickness (CCT) and corneal endothelial cell loss. A drop in efficacy is observed 198 

when higher irradiances are used [46]. Several hypothesis have been suggested to explain 199 

these discrepancies, with the most prominent being higher oxygen depletion rate in A-CXL, 200 

especially in shortest irradiation time protocols, reducing the efficacy of the photochemical 201 

reaction [47]. As a result, pulsed and oxygen enriched CXL were introduced in an effort to 202 

replenish oxygen in the cornea during high fluence treatments. 203 
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3. Oxygen Enriched High Intensity CXL 204 

Oxygen plays an important role during CXL procedure, impacting efficiency and corneal 205 

stiffening.  CXL beneficial effect on the cornea occurs under aerobic conditions (type II 206 

mechanism). After the first 10–15 seconds of the reaction, oxygen becomes totally depleted, 207 

and toxic oxygen-free radicals are generated by riboflavin photolysis (type I mechanism) 208 

explaining the drop of CXL efficacy of A-CXL procedures when higher fluences are used as 209 

oxygen is rapidly depleted and its stromal rediffusion is prevented. In an attempt to increase 210 

CXL effect on corneal biomechanics, some authors suggested to optimize epithelium-on or 211 

epithelium-off accelerated CXL protocols with oxygen enrichment [48–50].  212 

4. Pulsed CXL (p-CXL) 213 

Similarly to oxygen enriched high intensity CXL, pulsing UVA radiation (i.e. 1 second on – 1 214 

second off) have been proposed to achieve higher oxygen concentrations by reducing oxygen 215 

consumption and to enhance the efficacy of CXL treatment. Pulsed CXL (p-CXL) has been 216 

described in both epi-off (p-ACXL) and epi-on techniques (p-ICXL) with interesting results 217 

[51]. 218 

5. Transepithelial CXL (epithelium-on techniques) 219 

5.1. The epithelial barrier 220 

Epithelial debridement is responsible for post-operative ocular pain and most of the severe 221 

adverse effects of CXL (sterile infiltrates, infectious keratitis, and persistent epithelial defect). 222 

Therefore, retaining the corneal epithelium would dramatically increase the safety of CXL. 223 

Riboflavin phosphate is a negatively charged hydrophilic molecule and its permeability into 224 

the corneal epithelium is naturally limited due to the lipophilic epithelial membrane and the 225 

strong repulsion by corneal proteoglycans [52]. Consequently, although its molecular weight 226 

is low, riboflavin penetration through intact epithelium is a real challenge and standard 227 
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formulations used in epi-off techniques do not reach the desired intrastromal concentration 228 

through an intact epithelium [53]. 229 

5.2. Transepithelial CXL (TE-CXL) 230 

First strategies for performing effective TE-CXL used riboflavin formulations associated with 231 

“permeation enhancers” (such as alcohol [54], benzalkonium chloride [55] or other 232 

epitheliotoxic molecules [56,57]) designed to overcome epithelial permeability barriers. These 233 

early TE-CXL exhibited poor outcomes in clinical trials and might lead to focal epithelial 234 

damage due to the drugs toxicity. Because of the convincing evidence of insufficient efficacy 235 

of TE-CXL protocols, these approaches are rarely used in clinical practice [57–59].  236 

5.3. Iontophoresis CXL (I-CXL) 237 

Iontophoresis was developed to ensure sufficient ionized riboflavin penetration through the 238 

intact epithelium by applying a small electric current. Transepithelial iontophoretic riboflavin 239 

loading demonstrated corneal stromal penetration similar to the standard CXL protocol [60] 240 

and numerous studies demonstrated promising results using I-CXL with cessation of 241 

keratoconus progression with improvements in visual acuity and topographic outcomes has 242 

been documented both in adults and pediatric patients [33,61,62]. However, long-term studies 243 

seem to highlight a higher failure rate than C-CXL [63,64], from 1.3% to 27.8% depending on 244 

the initial keratoconus severity (Table 1). There have also been rapid, ongoing developments 245 

in order to enhance I-CXL efficacy such as the pulsed-light enhanced-fluence I-CXL protocol 246 

(EF I-CXL), yielding promising results [51]. 247 

5.4. Epithelial-disruption collagen crosslinking (ED-CXL) 248 

Another approach [65] was to cause mechanical disruption of the epithelium with a corneal 249 

disruptor device, in order to permit the diffusion of riboflavin into the stroma. ED-CXL 250 

approach remains anecdotal as the epithelial disruption is equivalent to a partial debridement 251 
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and this technique has the same safety risks associated with standard CXL as it broaches the 252 

epithelial integrity. 253 

5.5. Stromal “Pocket” Corneal CXL 254 

In 2009, Kanellopoulos [66] described a novel and rapid soak-and-treat method where 255 

riboflavin solution is injected into a 100-µm deep intrastromal pocket incision created by a 256 

femtosecond laser in early keratoconus. In 2014, another study [67] in porcine eyes reported 257 

that the biomechanical effect was 50% less pronounced than that after C-CXL. No other 258 

studies have been reported to date concerning this approach. 259 

5.6. Future perspectives of epithelium-on CXL 260 

Further developments towards TE-CXL concern the design of new riboflavin formulations 261 

that do not alter the integrity of the epithelium. Various molecules designed to enhance 262 

epithelial permeability by the addition of epithelial-toxic agents as MedioCross TE (Peschke 263 

Meditrade GmbH, Waldshut-Tiengen, Germany, formulation: 0.25% Riboflavin, 264 

Hypromellose (HPMC), Benzalkonium Chloride), Paracel plus (Avedro, Inc., formulation: 265 

0.25% Riboflavin, HPMC, sodium edetate (EDTA), trometamol, benzalkonium chloride, 266 

saline - supplemental oxygen), VibeX Xtra (Avedro, Inc., formulation: isotonic solution of 267 

0.25 Riboflavin, saline), Ribocross TE (IROS Srl, Napoli, Italy, formulation: 0.125% 268 

Riboflavin, D-alpha-tocopheryl polyethylene glycol, succinate - vitamin E solution) and 269 

Ribostat CXLO (CXLO, CXL Ophthalmics LLC, dextran-free formulation: Riboflavin + 270 

sodium iodide) have been used in several studies [68,69]. In a prospective, nonrandomized 271 

clinical trial of 25 eyes with a 2-year follow-up, Ribocross TE (a vitamin E-enhanced 272 

riboflavin formulation) demonstrated statistically significant improvements in visual acuity, 273 

refraction, and corneal topography [70]. In a prospective observational study, Stulting and 274 

colleagues [71] reported stable improvement of outcomes on 512 eyes treated with pulsed TE-275 

CXL (4 mW/cm², 30 minutes) using Ribostat CXLO  dextran-free formulation over 2 years, 276 



 

13 

 

inherently safer than epi-off CXL, reducing the risk of infectious keratitis and delayed 277 

epithelial healing, allowing bilateral simultaneous treatment.  278 

Development of novel devices or formulations to deliver proper concentration of 279 

photosensitizer into the stroma is of key importance. Nanoparticles are a promising agent 280 

acting as a vector to allow a molecule to penetrate into epithelium cells without altering the 281 

epithelium integrity. In an ex-vivo study on rabbit corneas, Bottos and colleagues [72] found 282 

similar absorption of a biocompatible  riboflavin-based amphiphilic nanoemulsion through an 283 

intact epithelium than de-epithelialized corneas. In 2017, Lombardo and colleagues [73] 284 

showed that a nanotechnology-based riboflavin 0.1% solution was effective in enriching the 285 

anterior stroma with riboflavin through the intact epithelium of human donor corneas. Labate 286 

and colleagues [74] showed that TE-CXL using a modified Riboflavin with polymeric 287 

nanoparticles of cyclodextrin was effective to improve the biomechanical strength of donor 288 

human corneas.  289 

6. Customized Topography-Guided CXL (TG-CXL) 290 

TG-CXL was developed in 2011 [75] as a customized treatment centered on the ectatic cone 291 

aiming at delivering more energy on the weakest parts of the cornea and limiting the toxicity. 292 

Indeed, a smaller, focal treatment centered on the topographic cone might provide enhanced 293 

flattening effects and reduce the high order aberrations. Therefore, TG-CXL was initially 294 

proposed as a customize approach to improve optical predictability of CXL and maximizing 295 

corneal regularization. Furthermore, a smaller treatment zone and a smaller epithelial defect 296 

might also limit the CXL toxicity with less corneal haze, less UV exposure of the corneal 297 

endothelium, limbal stem cells, and intraocular tissues. In a prospective, nonrandomized 298 

clinical trial, Cassagne and colleagues [76] showed that TG-CXL seems to be as safe as C-299 

CXL with stronger flattening in Kmax and better improvement in CDVA at 1 year 300 

postoperatively. 301 
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7. Future perspectives 302 

CXL technique remains in constant evolution and various ongoing developments are still 303 

under evaluation to improve CXL efficiency and reduce its disadvantages. In attempts to 304 

reduce C-CXL drawbacks, variations on time surgery and epithelium-on techniques also 305 

reduce oxygen diffusion or Riboflavin penetration resulting in less efficacy of the CXL. 306 

Recently, some authors suggested that CXL procedure could be performed at the slit lamp 307 

rather than in the operating room in order to reduce the procedure time and related costs [77]. 308 

The ideal CXL procedure would significantly increase the corneal strength to halt keratoconus 309 

progression with minimal cellular toxicity and minimal time of surgery with no need of 310 

epithelial debridement. 311 

Other photo-inducers have been evaluated as an alternative to riboflavin as Rose Bengal (RB) 312 

plus green light (RGX) [78]. RB penetrates approximately 100 µm into the corneal stroma in 313 

rabbit eyes, where it absorbs the incident green light. RGX has been shown to increase the 314 

elastic modulus selectively in the anterior stroma and the corneal stiffness in a shorter surgery 315 

time than C-CXL (12 minutes total time) with minimal keratocyte toxicity [79]. Similarly, 316 

other chromophores have been proposed such as eosin (green light at 532 nm) or WST-D, a 317 

watersoluble bacteriochlorophyll-derived photosensitizer molecule already used as an 318 

intravenous treatment for prostate cancer (near infrared light at 755 nm) [80]. 319 

Other methods of purely chemical CXL were also investigated such as decorin [81], a small 320 

naturally occurring proteoglycan can bridge collagen fibrils, aliphatic beta-nitroalcohols [82] 321 

or genipin [83], an active molecule derived from the plant Gardenia jasminoides. These have 322 

potential advantages as avoidance of radiation toxicity and epithelial removal and a more 323 

simple delivery method of the active agent.  324 
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CXL in thin corneas 325 

Based on in-vitro studies [84], an endothelial cytotoxic effect is expected when pachymetry 326 

after de-epithelialization is below 400 µm (threshold: 0.35 mW/cm²). As keratoconus severity 327 

is correlated with corneal thickness, and patients with thin corneas are those who would 328 

benefit the most from CXL treatment. Along with TE-CXL and I-CXL that do not require 329 

epithelial debridement, several alternative techniques have been suggested to treat thin 330 

corneas that would otherwise not be eligible for treatment. 331 

1. Hypo-osmolar Riboflavin 332 

In 2009, Hafezi and colleagues [85] described a modified C-CXL protocol using hypotonic 333 

riboflavin without dextran (310 mOsm/L instead of 402.7 mOsmol/L for standard riboflavin 334 

in 20% dextran) to temporarily induce corneal swelling in thin corneas. To avoid corneal 335 

desiccation during the irradiation phase resulting in decreasing in pachymetry, a modified A-336 

CXL using 9 mW/cm² for 10 minutes should be preferred [86,87].  337 

2. Contact lens-assisted Crosslinking (CA-CXL) 338 

Jacob and colleagues [88] described C-CXL technique for thin corneas (pachymetry of 350 339 

µm after debridement) using a bandage contact lens during the procedure to artificially 340 

increase corneal thickness. They found this technique to be effective in their study of 14 eyes. 341 

The advantage of this technique is that it is not dependent on the swelling properties of the 342 

cornea. On the other hand, the riboflavin-soaked contact lens reduces oxygen availability and 343 

absorbs UVA radiation [89]. 344 

3. Lenticule-assisted Crosslinking 345 

Similarly to CA-CXL, Sachdev and colleagues [90] described a modified C-CXL technique 346 

after placing stromal lenticule removed from SMILE surgeries and placed over the apex of the 347 

cone to artificially increase corneal thickness. Thereby, the thickness of the lenticule can be 348 
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customized and is also biologically similar to the treated cornea. This technique remains 349 

anecdotical. 350 

 351 

Clinical application in progressive keratoconus 352 

Defining disease progression and the threshold for surgical intervention in keratoconus 353 

patients under observation remains a challenge. Due to lower repeatability of AS-OCT and 354 

topographic imaging in keratoconus versus normal corneas [91], a change in Kmax of +1.5D 355 

vs baseline on topographic image comparison maps is an interesting threshold for CXL 356 

treatment [92]. However, a lower threshold (+1D vs baseline Kmax) is used in most of 357 

contemporary studies [93–95]. Changes in other criteria (Table 2) may refine keratoconus 358 

progression assessment when the observed increase in Kmax is below +1.5D. When possible, 359 

rigid contact lenses should be left out for a minimum of 2 weeks before each topography 360 

examination to reduce corneal warpage. AS-OCT imaging may also help to refine more 361 

precisely progression of keratoconus assessment as epithelial thickness profile measurements 362 

have been proposed as an adjunctive follow-up tool for monitoring the efficacy of the 363 

treatment [96]. Table 1 presents the CXL efficacy data for adult keratoconus. Recent and 364 

relevant articles published from 2015 onwards about CXL in adult keratoconus with a 365 

reported failure rate were selected and are listed by chronological order. 366 

 367 

Pediatric keratoconus 368 

Pediatric cases often present with keratoconus that progress more rapidly than adult onset 369 

keratoconus. Chatzis and colleagues [97] showed that 88% of pediatric cases progress over a 370 

short period of time and some authors have suggested that CXL in children and adolescents 371 

should be performed as soon as the diagnosis has been made without any documentation of 372 

progression [98]. Other authors recommended a close monitoring of pediatric cases with more 373 
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frequent follow-up visits than adults (i.e. every 1-3 months instead of 6-12 months in adults) 374 

and CXL treatment as soon as progression is documented [99]. Clinicians must keep in mind 375 

that keratoconus is usually more aggressive in children than in adults and control of chronic 376 

habits of abnormal eye rubbing is usually uncertain in the pediatric context. Although C-CXL 377 

has proven its efficacy through long-term studies [100] and constitutes the gold standard 378 

protocol in aggressive cases, this procedure can be difficult to perform in the pediatric 379 

context, and might require general anesthesia in selective cases. In less aggressive 380 

keratoconus, A-CXL could be preferred to improve patient compliance during the procedure. 381 

Eissa and colleagues [101] reported that A-CXL and C-CXL were effective in a prospective, 382 

randomized contralateral eye comparative study in 68 pediatric keratoconus eyes. Invasive 383 

approaches such as epithelium-off CXL, need to be weighed against the risks and benefits, 384 

especially in the pediatric care context. Indeed, potential sight-threatening serious CXL-385 

related adverse effects (corneal haze, infectious keratitis…) could be particularly devastating 386 

in children. In less aggressive cases and when advice to avoid eye rubbing is well understood 387 

by the patient, TE-CXL protocols such as I-CXL can be performed. Table 3 presents the CXL 388 

efficacy data for pediatric keratoconus. Recent and relevant articles published from 2015 389 

onwards about CXL in pediatric keratoconus with a reported failure rate were selected and are 390 

listed by chronological order. 391 

 392 

Beyond the controversies 393 

To date, most of clinical studies have failed to show any improvement in corneal in-vivo 394 

biomechanical properties [20–24]. Although ex-vivo studies have documented an increased 395 

corneal rigidity after CXL [8,10], it remains unclear whether corneal CXL truly improve in-396 

vivo corneal strength or not. Molecular bonds between collagen bundles that are supposed to 397 

be induced by CXL procedure cannot be evidenced directly [9] and one could assume that 398 
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CXL might halt keratoconus progression via various mechanisms that are not necessarily 399 

correlated to the initial expected effect. Corneal CXL induces corneal nerve modification, 400 

keratocytes apoptosis and fibrosis and corneal haze that are visible in IVCM within the first 401 

months postoperatively [33]. The alteration of the subbasal plexus nerve after CXL might 402 

help to decrease ocular pruritus sensation. In 2018, a comparative study showed that PRK was 403 

safe in keratoconus, and one could suppose that the induced corneal haze could also 404 

participate to stabilize corneal ectasia [36]. CXL procedure also reduces stromal melting 405 

susceptibility by improving the corneal resistance to degradation processes and enzymatic 406 

digestion mediated by pepsin, trypsin and collagenase with lengthening of the turnover time 407 

of the collagen [14]. Hence, CXL could halt keratoconus progression via various mechanisms: 408 

fibrosis or corneal haze induction, collagen cross-links induction, stromal melting and pruritus 409 

sensation inhibition. Furthermore, various biases might hinder keratoconus documentation 410 

after CXL. Both epithelium-off and epithelium-on techniques induce epithelial remodeling 411 

[96] which might alter the evaluation of the anterior corneal curvature map and interfere in 412 

keratoconus progression assessment (Figure 3). Hence, most of the existing controversies 413 

result from two major issues: the uncertainty about CXL true effectiveness in stiffening the 414 

cornea in-vivo and the poor understanding of the exact mechanisms of CXL in halting 415 

keratoconus progression. 416 

In 2008, Dresden group reported results of a retrospective study [102] of 241 eyes with a 417 

follow-up of 6 years showing significant decrease in keratometric values, astigmatism and 418 

improvement of visual acuity after C-CXL, with high stability and safety of this procedure 419 

demonstrated in another 10-year-follow-up study [103]. A major meta-analysis [104] 420 

including randomized controlled trials (RCT) and prospective studies concluded that if the 421 

effectiveness of CXL in halting the progression of keratoconus seems real, numerous 422 

limitations exist including the high level of heterogeneity between the studies, the poor 423 
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reporting of drop-out rates and loss to follow-up and the lack of control studies with 424 

comparative matched cohort as well as well-conducted long–term studies. In fact, the majority 425 

of the existing studies concerning CXL consist of case series that cannot provide evidence of 426 

causal effect. A meta-analysis on 6 RCT evaluating C-CXL [105] showed statistically 427 

significant improvement in the maximum keratometry reading (mean: -2.05 D), minimum 428 

keratometry reading, mean keratometry reading, visual acuity and manifest cylinder error 429 

versus control. These results are concordant with many other studies [5,106,107]. Two meta-430 

analysis on 23 heterogeneous studies with 1557 eyes [108] and 5 RCT with 289 eyes [109] 431 

concluded that CXL might effectively halt the progression of keratoconus, although evidence 432 

is limited due to the significant heterogeneity and methodological weaknesses of the 433 

individual studies. Another meta-analysis on 22 studies with 1158 eyes [110] comparing 434 

mixed A-CXL protocols versus C-CXL for adult progressive keratoconus (C-CXL: 577 eyes; 435 

A-CXL: 581 eyes) concluded that if both protocols provided successful results, C-CXL was 436 

superior to A-CXL concerning the DL depth and improvement in Kmin values, that might 437 

indicate higher treatment efficacy.  438 

Despite these controversies, the majority of the panelists for the Global Delphi Panel of 439 

Keratoconus and Ectatic Diseases [111] for keratoconus declared performing CXL in clinical 440 

practice for progressive keratoconus as majority of cornea specialists suppose a beneficial 441 

effect of CXL on corneal biomechanics.  442 

 443 

CXL failure, safety and adverse effects 444 

Treatment failure that occurs in 8.1–33.3 % of the cases according to a 2015 review [112] on 445 

51 heterogeneous articles on epi-off and epi-on techniques is defined in most of the existing 446 

studies as continued progression with an increase in maximum K readings of 1.0 D over the 447 

preoperative value. A high preoperative Kmax-value and a young age were negative 448 
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predictors for CXL failure in many studies. No strong evidence is available on the benefit to 449 

repeat CXL in case of treatment failure. Indeed, in an in-vivo study on mice corneas, Tabibian 450 

and colleagues [113] showed that repeated CXL 3 days after the first procedure did not 451 

improve corneal stiffness. Similarly, another ex- vivo study [114] on human corneas suggested 452 

that no further cross-links are induced when CXL treatment is immediately repeated. 453 

However, in 2015, Antoun and colleagues [115] showed that repeated C-CXL was effective in 454 

halting progression in 7 eyes. In 2020, Turhan and colleagues [116] showed that repeated epi-455 

off A-CXL (9 mW/cm²) was effective in halting keratoconus progression in 12 eyes with 456 

documented progression despite a first epi-off or epi-on CXL procedure. Mean interval 457 

between the two procedures was of 19 months.  458 

The most common complications reported after the procedure are pain, stromal haze and 459 

sterile infiltrates [117]. More serious but rare events include infection, corneal melting, 460 

perforation and ulceration, and stromal scarring. Infectious keratitis or corneal melting and 461 

perforation have been reported in many case reports but remains rare adverse events. A recent 462 

prospective cohort study [118] on 670 eyes reported a post-operative infectious rate of 1.6%. 463 

 464 

Combined procedures: CXL-Plus 465 

1. Combined CXL and photorefractive keratectomy 466 

The key objective of this treatment involves halting the progression of ectasia and improving 467 

the refractive errors simultaneously. Options for epithelium debridement for cross-linking 468 

include mechanical debridement or excimer laser phototherapeutic keratectomy (PTK). As 469 

regional epithelial thickness is highly variable in keratoconus [119], AS-OCT epithelial 470 

measurements and transepithelial PTK may help to normalize the cornea, and resulted in 471 

better visual and refractive outcomes than mechanical debridement in a prospective 472 

comparative study [120]. Surface ablation can also be customized using topoguided-PRK 473 
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customized software (TG-PRK). There is uncertainty on the optimal timing of these 474 

procedures, and whether they should be conducted sequentially or simultaneously. Kymionis 475 

and colleagues reported interesting results following simultaneous TG-PRK with CXL for 476 

keratoconus [121] and PMD [122]. Similarly, Kanellopoulos and colleagues [123] suggested 477 

that simultaneous treatment was superior to sequential treatment with better visual outcomes, 478 

spherical equivalent refraction, and change in keratometry as well as higher safety with more 479 

corneal haze in the sequential approach. There is no consensus on the maximum stromal 480 

ablation depth or the use of mitomycin C to date, but most of authors recommend to be as 481 

conservative as possible [124]. Figure 4 illustrates a clinical case of a patient treated with 482 

CXL plus TG-PTK. 483 

2. CXL-ICRS 484 

ICRS implantation improves visual and topographic outcomes in patients with keratoconus 485 

but do not prevent disease progression, [125] so combination treatment with crosslinking may 486 

be more beneficial than either treatment alone. Although the combination of CXL with ICRS 487 

implantation may be an interesting approach as riboflavin can be directly introduced into the 488 

stromal bed through the ring segment channels created by modified femtosecond laser 489 

settings, iatrogenicity is increased as corneal haze is more frequent and refractive 490 

predictability is lowered [126]. In this combined approach, ICRS implantation is generally 491 

performed prior to the CXL procedure to minimize the femtosecond laser energy delivered to 492 

the cornea, and both simultaneous or sequential combined CXL-ICRS approach have shown 493 

improvement in visual acuity and topography in keratoconus and ectasia [127,128]. In 494 

conclusion, CXL-Plus should be discussed as a treatment option with those keratoconus 495 

patients who wish to improve their uncorrected and corrected visual acuity. In a prospective 496 

non randomized interventional study on 452 eyes, Singal and colleagues [129] showed that 497 

implantation of ICRS induces corneal flattening of both the anterior and posterior surfaces, 498 
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which contribute to the decrease in keratometric power and greater improvement in 499 

astigmatism and corrected distance visual acuity (CDVA). Hence, CXL-ICRS is preferable 500 

for eyes with more irregular astigmatism and worse corrected CDVA and CXL-TG-PRK for 501 

eyes requiring improvements in irregular astigmatism but still have good CDVA. Figure 5 502 

illustrates a clinical case of a patient treated with CXL plus TG-PTK and ICRS implantation. 503 

 504 

Other clinical applications of CXL 505 

1. CXL in other ectatic diseases 506 

In 2017, a meta-analysis [130] showed that CXL is a promising treatment to stabilize 507 

iatrogenic keratectasia after LASIK or PRK surgery, with significant improvement in visual 508 

acuity. Actually there is no distinct difference in the management of progressive keratoconus, 509 

pellucid marginal degeneration (PMD) or iatrogenic keratectasia in literature, and the use of 510 

CXL to stabilize the cornea and stop progression in these particular cases is generally the rule. 511 

Plus, no distinct definition of parameters of progression specific for PMD or iatrogenic 512 

keratectasia exists to date. 513 

2. Prophylactic CXL in refractive surgery: LASIK-Xtra, PRK-Xtra, SMILE-Xtra 514 

Several authors suggested the utility of CXL as an adjuvant treatment of eyes with high-risk 515 

of post-operative ectasia following refractive surgery. For prophylactic use, virtually any 516 

patient could be treated with CXL to reduce the chance of future development of ectasia, 517 

especially patients with thinner than normal corneas, irregular corneal astigmatism, 518 

asymmetry on corneal topography, against-the-rule astigmatism or steeper than normal 519 

corneas. This approach has to be weighed by the risk of lower refractive predictability and 520 

higher adverse effects hazard ratio (infectious keratitis, corneal haze). Despite a recent meta-521 

analysis on 1189 eyes [131], no consensus exists concerning this approach to date and it is 522 

still unclear if the additional CXL step reduces the incidence of iatrogenic keratectasia. 523 
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3. Photorefractive intrastromal CXL (PiXL) 524 

Recently, recent developments concerning CXL demonstrated greater reduction in 525 

keratometry and corneal aberrations following cone-localized smaller diameter treatments in 526 

comparison with the conventional broad-beam profile in keratoconic eyes. Some authors 527 

extrapolated this principle for normal nonectatic corneas, in which smaller diameter high-528 

fluence irradiation is used to selectively target the central cornea to produce a central 529 

flattening, with a subsequent myopic correction. Several studies reported promising results on 530 

low myopia (spherical equivalent: manifest refraction spherical equivalent of −3.00 diopters 531 

or less) in treating low myopia with epithelium-off [132] or epithelium-on [133] CXL as an 532 

alternative to photoablation. Epithelium-on PiXL could represent a novel approach for 533 

myopic correction as a mini-invasive, nonincisional, nonablative treatment modality for 534 

myopic correction. 535 

4. Photoactivated chromophore CXL for infectious keratitis (PACK-CXL) 536 

In vitro studies have shown CXL to be effective against many pathogenic microorganisms 537 

responsible for infectious keratitis [134,135] as well as to improve the corneal resistance to 538 

degradation processes and enzymatic digestion and to prevent corneal melting [14]. Since, 539 

several studies and case reports reported interesting results of CXL in the treatment of 540 

recalcitrant or severe infectious keratitis [136–140]. To date, three prospective clinical trials 541 

have been conducted on this topic. In 2014, a first prospective clinical trial [141] on 40 eyes 542 

showed that CXL is an effective adjuvant therapy in severe bacterial or fungal keratitis with 543 

corneal melting as it lowered the complication and perforation rate although it did not shorten 544 

the time to corneal healing when compared to control. Encouraging results were found by 545 

Bamdad et al [142] in another clinical trial on 32 eyes with moderate bacterial keratitis and 546 

showed significant shorter healing time in CXL group. However, in 2015, a third randomized 547 

clinical trial including 13 eyes with recalcitrant deep stromal fungal keratitis was prematurely 548 
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stopped because of a higher rate of perforation and worse visual outcomes when compared to 549 

control. Interestingly, ulcers caused by Aspergillus species had a poorer healing response 550 

versus Fusarium species. Unfortunately, these studies are under-powered and no definitive 551 

conclusions can be drawn about the efficacy of PACK-CXL, especially on severe fungal 552 

keratitis. Although most of authors considered CXL as an adjuvant therapeutic tool in 553 

infectious keratitis, Makdoumi et al [143] conducted a prospective non-randomized study 554 

with promising results on 16 eyes treated with CXL as the primary therapy for bacterial 555 

keratitis, but this latter approach remains anecdotic to date. In this study, only 2 eyes (12.5%) 556 

required topical antibiotics adjunction. The effectiveness of PACK-CXL on acanthamoeba 557 

keratitis is more controversial. Some clinical studies reported interesting outcomes of epi-off 558 

CXL on acanthamoeba keratitis. [144,145] However, several in vitro studies have shown that 559 

riboflavin mediated CXL did not confer any positive effect on acanthamoeba cyst or 560 

trophozoites [146,147] whereas Rose Bengal mediated CXL did. [146]. A recent meta-561 

analysis concluded that adjuvant PACK-CXL expedites the healing when compared to 562 

standard antibiotics care but given the limitations of the existing studies about PACK-CXL in 563 

treating infectious keratitis in the literature, a larger scale, well-designed randomized clinical 564 

trial is needed to fully assess the efficacy and safety of this approach, especially in fungal 565 

keratitis. PACK-CXL should not be employed to treat viral keratitis as UV radiation may 566 

exacerbate or activate herpes simplex infection. [148–150]. 567 

5. CXL for bullous keratopathy 568 

Bullous keratopathy (BK) results from endothelial dysfunction leading to corneal 569 

decompensation, corneal edema and opacification and epithelial bullae formation. Hence, BK 570 

is responsible for chronic ocular pain as well as visual impairment. Corneal transplantation is 571 

the gold standard treatment for BK, however, donor corneas are not always readily available 572 

and waiting period can last several months. CXL induced chemical bonds between amino-573 
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terminals of the collagen side chains and the proteoglycans of the extracellular matrix that 574 

creates a mechanical barrier, decreased stromal imbibition pressure and reduced 575 

transendothelial inflow, thereby increasing corneal transparency [151]. Ehlers et al. [151] 576 

were the first to used CXL in corneal edema for endothelial decompensation. In a preliminary 577 

study published in 2008, they used C-CXL protocol in 11 eyes with promising improvement 578 

on visual acuity and ocular pain. In 2009, Wollensak et al [152] showed that C-CXL 579 

significantly improved ocular pain and discomfort, visual acuity and corneal edema up to 8 580 

months postoperatively. In a prospective study on 14 eyes with BK, Ghanem et al [153] 581 

showed similar results on corneal transparency, corneal thickness, and ocular pain 1 month 582 

postoperatively using C-CXL protocol, but the effect was transient and lasted for less than 6 583 

months. In 2014, Sharma et al [154] confirmed these results on ocular pain in a retrospective 584 

noncomparative case series, with 44% of bullae recurrences at 6 months. Several other studies 585 

[155,156] confirmed that epi-off CXL reduces symptoms of bullous keratopathy, and could be 586 

beneficial as a temporary measure for patients awaiting or denied for corneal transplant. 587 

 588 

Conclusion  589 

CXL treatment is currently the sole treatment that aims at strengthening the cornea and 590 

stopping progression of keratectasia. Although a considerable number of studies are reported 591 

in the literature concerning CXL, some discrepancies and unresolved issues remain. In any 592 

cases management involves controlling risk factors such as eye rubbing and atopy. If long-593 

term studies showed that C-CXL was effective in halting keratoconus, exact efficacy of newer 594 

protocols remains unclear. Considering this up-to-date review, a pragmatic clinical approach 595 

can be proposed. C-CXL should be preferred in aggressive and rapidly progressive cases. A-596 

CXL could be considered in documented progression in most of cases. When time exposure is 597 

minimal, A-CXL should be enhanced as in pulsed or oxygen enrichment procedures. In 598 
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advanced cases with thin corneas (CCT below 400 µm) or in an effort to minimize 599 

iatrogenicity in specific cases, I-CXL could be considered as a less-invasive alternative, 600 

keeping in mind the higher risk of failure. In case of pediatric keratoconus or poor compliance 601 

in eye rubbing avoidance (i.e. autistic condition), a careful and close monitoring is mandatory. 602 

Various treatment protocols are currently in development, bringing the hope of less invasive 603 

approaches and promising refinements and improvements in keratoconus management.604 
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Figures legends 1104 

Figure 1: In-vivo confocal microscopy aspect of the sub-basal nerve plexus and mid-stromal 1105 

keratocytes of the cornea following epithelium-off accelerated-CXL procedure (10 minutes, 9 1106 

mW/cm²) showing: 1107 

A: Pre-operative aspect of the sub-basal nerve plexus showing distorted nerves along with 1108 

numerous anastomoses with characteristic Y shaped bifurcations and H shaped 1109 

interconnections (white arrows); B: 1 month post-operatively, showing early and complete 1110 

obliteration of the sub-basal nerve plexus (white arrows); C: 6 months post-operatively, 1111 

showing neuroregeneration of the sub-basal nerve plexus which appears fragmented. Nerves 1112 

are less tortuous when compared to baseline (white arrows); D: 12 months post-operatively, 1113 

showing normal keratocytes density and complete neuroregeneration. A complete 1114 

interconnected network is visible but less anastomosis, bifurcations, interconnections and 1115 

tortuosity are noted when compared to baseline (white arrows); E: Pre-operative mid-stroma 1116 

aspect showing numerous keratocytes as hyper-reflective white- rounded structures (white 1117 

arrows); F: 1 month post-operatively, showing decrease in keratocytes density along with 1118 

stromal fibrosis (white arrows) and honeycomb-like structures (black arrow); G: 6 months 1119 

post-operatively, few keratocytes are visible and less fibrosis is visible but keratocyte density 1120 

remains inferior to baseline (white arrows); H: 12 months post-operatively, showing 1121 

keratocytes repopulation (white arrows) with diminution of stromal fibrosis and a similar 1122 

keratocyte density when compared to baseline. 1123 

 1124 

Figure 2: AS-OCT at 1 month postoperatively showing the demarcation line as a hyper-1125 

reflective line within the stromal bed at various depths. A: Standard Dresden epithelium-off 1126 

procedure (C-CXL); B: Epithelium-on transepithelial CXL procedure with iontophoresis (I-1127 

CXL); C: Epithelium-off accelerated-CXL procedure at 9 m W/cm² for 10 minutes (A-CXL). 1128 
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Figure 3: Change in epithelial thickness mapping from baseline to 12 months postoperatively 1129 

showing typical inferotemporal postoperative epithelial thinning after epithelium-off A-CXL 1130 

protocol (A: baseline; B: 12 months postoperatively)  1131 

 1132 

Figure 4: Topographic aspect following combined CXL-plus double procedure: CXL and 1133 

topoguided-phototherapeutic keratectomy. A: Pre-operative sagittal keratometric curvature 1134 

mapping; B: Post-operative sagittal keratometric curvature mapping; C: Differential sagittal 1135 

keratometric curvature mapping; D: Excimer laser topoguided-ablation profile showing 1136 

maximal keratometric improvement of 5.3 diopters and corneal regularization. 1137 

 1138 

Figure 5: Topographic aspect following combined CXL-plus triple procedure: CXL, 1139 

intracorneal ring segment implantation (ICRS - 320°, 250 µm depth) and topoguided-1140 

phototherapeutic keratectomy (TG-PTK). A: Pre-operative sagittal keratometric curvature 1141 

mapping; B: Post-operative sagittal keratometric curvature mapping following ICRS 1142 

implantation; C: Post-operative sagittal keratometric curvature mapping following TG-PTK; 1143 

D: Differential sagittal keratometric curvature mapping following ICRS implantation versus 1144 

baseline; E: Differential sagittal keratometric curvature mapping following TG-PTK versus 1145 

D; F: Differential sagittal keratometric curvature mapping following the triple procedure 1146 

versus baseline; G: Excimer laser topoguided-ablation profile showing maximal keratometric 1147 

improvement of 14.7 diopters and corneal regularization. 1148 













First author 

(year) 
Design CXL protocol Nb eyes 

Follow-up 

(months) 

Failure rate 

(>1D) 
Conclusion 

Dervenis (2020) [157] RNR pA vs C 19 vs 40 7 NA pA = C 

Ziaei (2020) [158] PNR C, A, TE pA 40 vs 40 vs 40 24 0%, 5%, 3.5% Effective 

Farhat (2020) [159] RNR C 156 36 19.87% Effective 

Hatch (2020) [160] PNR A 612 11 17.9% Effective 

Nicula (2019) [161] RNR C 113 120 0 % Effective, stable 

Singal (2019) [129] PNR A 204 12 21% Effective 

Lombardo (2019) [162] PR I vs C 22 vs 12 24 10% vs 0% C > I 

Liao (2019) [163] PNR I 5min vs 10min 42 12 27.8% vs 16.7% 10 min > 5 min 

Hersh (2018) [164] PNR TE (1 min vs 2 min) 44 vs 38 12 6.8% vs 23.6% Effective 

Kuechler (2018) [165] RNR C 61 24 18% Effective 

Stulting (2018) [71] PNR TE 512 24 8.3% Effective 

Huang (2018) [166] PNR TE 25 24 28% Effective 

Toker (2017) [167] RNR 
C vs A (9mW) vs A 

(30mW) vs pA (30mW) 
34 vs 45 vs 28 vs 27 12 6% vs 7% vs 11% vs 11% C = 9mW but > 30mW 

Hersh (2017) [168] PR C vs sham 91 vs 88  12 14.5% Effective 

Jouve (2017) [64] PNR C vs I 40/40 24 7.5% vs 20% C > I 

Lombardo (2017) [62] PR I vs C 22 vs 12 12 5% vs 8% C > I 

Cantemir (2017) [169] RNR I vs C 40 vs 40 36 2.5% vs 0% I = C 

Bikbova (2016) [170] PR I vs C 73/76 24 1.3% vs 0% C > I 

Seyedian (2015) [171] PR C vs contralateral control 26 vs 26 12 12% vs 38.5% Effective 

Poli (2015) [172] PNR A 36 72 11% Effective 

Soeters (2015) [58] PR TE vs C 35 vs 26 12 23% C > TE 

Shalchi (2015) [112] Review Epi-off vs epi-on >20 >12 8.1–33.3% Effective 

Table 1: CXL protocols efficacy in keratoconus (adults)  



PR: prospective randomized; PNR: perspective non-randomized; RNR: retrospective non-randomized; NA: non-available; pA: pulsed-accelerated; 

CXL; A: accelerated CXL; C: standard CXL; TE: transepithelial CXL; I: iontophoresis transepithelial CXL 

 



Kmax ≥ 1D increase 

Kmax−Kmin ≥ 1D increase 

Kmean ≥ 0.75D increase 

Pachymetry ≥ 2% decrease in CCT 

Corneal apex power > 1D increase 

MRSE > 0.5D increase 

 

Table 2: Criteria for keratoconus progression vs baseline measurement 

CCT: central corneal thickness; D: diopters; Kmax: steepest keratometry; Kmin: flattest 

keratometry; MRSE: manifest refractive spherical equivalent; Kmean = (Kmax + Kmin)/2; 

Corneal apex power is measured with cone location and magnitude index 



 

 

 

 

 

 

 

 

 

 

 

 Table 3: CXL protocols efficacy in keratoconus (pediatric) 

PR: prospective randomized; PNR: perspective non-randomized; RNR: retrospective non-randomized; NA: non-available; A: accelerated CXL; 

C: standard CXL; TE: transepithelial CXL; I: iontophoresis transepithelial CXL 

 

First author 

(year) 
Design CXL protocol Nb eyes 

Follow-up 

(months) 

Failure rate 

(>1D) 
Conclusion 

Tian (2020) [173] PNR A-TE 53 36 20% Effective 

Iqbal (2020) [174] PR C vs A vs TE 91/92/88 24 
0% vs 5.4% vs 

28.4% 
Effective 

Agca (2020) [175] RNR 
30 mW (A) vs 

18 mW (A) 
30 vs 113 60 23% vs 17% Efficacy ↓ if fluence ↑ 

Turhan (2020) [176] RNR C vs A 26 vs 22 24 7.8% vs 18.2% Effective 

Nicula (2019) [177] RNR A vs C 27 vs 37 48 7.4% vs 0% Effective 

Buzzonetti (2019) [178] RNR I vs C 20/20 36 25% vs 50% C > I 

Mazzotta (2018) [179] PNR Siena 62 120 24% Effective, stable 

Sarac (2018) [180] RNR C vs A 38 vs 49 24 13.1% vs 16.3% Effective 

Henriquez (2018) [181] PNR C 26 36 23% Effective 

Henriquez (2017) [182] PNR A-TE vs C 36 / 25 12 5.6% vs 12% A-TE = C 

Godefrooij (2016) [183] PNR C 54 60 22% Effective, stable 




