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Abstract

Scale separation is often assumed in most homogenization-based topology optimization (TO)
frameworks for design of material microstructures. This work goes beyond the mainstream TO
contributions by abandoning the scale separation hypothesis. First, we put to evidence the limits of
the homogenization-based approach when the size of the Representative Volume Element (RVE)
is not negligible with respect to the structure. Then, a re-localized scheme bridging the RVE and
the structure is proposed to reproduce the microscopic fields, while the structure problem at the
macroscopic scale is solved only based on the coarse mesh. Finally, we show interesting results
on 2D lattice structures within the proposed framework giving a hint towards a feasible realization
of the finite-scale lattice structures with current resolution of additive manufacturing technologies.
Numerical experiments evidence that the present method can lead to the same topology and stiff-
ness of the optimized structures as the reference solution when the number of unit cell is relatively
large, while reducing the computational costs significantly.

Keywords: Homogenization, Structural optimization, Scale separation, Representative Volume
Element, relocalization, Stiffness

1. Introduction

The homogenization method [1] has been widely used to predict the effective macroscopic
properties of heterogeneous materials with periodic microstructures such as fiber-reinforced com-
posites. Scale separation is one of the central assumptions. It is stated that the characteristic length
of the microstructural details are much smaller than the dimensions of the whole structure, or that
the characteristic wavelength of the applied load is much larger than that of the local fluctuation
of mechanical fields. On the other hand, the material properties depend on not only its constituen-
t/component phases but also the morphology of its microstructures. Combined with the topology
optimization strategy [2], the material microstructures had been tailored to obtain specific elastic
modulus [3]. This scheme has been extensively extended to design for many other material prop-
erties [4–6] or even exotic/meta- materials [7–10]. Apart from material properties, the design of
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material microstructures has also been extended for considering specific macrostructural perfor-
mance, e.g. stiffness, nature frequency etc. However, in all these works, the assumption of scale
separation is often assumed when classical homogenization method is used to link the material
microstructural geometries and macroscopic properties. By this way, the designed microstructures
have no distinct geometrical dimension, and it is thus cannot be manufactured even by current
additive manufacturing technologies.

To reveal the effectiveness of the homogenization method when the scales are not separated,
size effect of the periodic unit cell has been investigated. Differences between the direct FE dis-
cretization method, the homogenization method and the classical beam theory have been compared
in [11]. It is concluded that the homogenized solution is the limit value whenever the scale factor
tends to be infinitely large. As for the material design problem, the effective material properties
given by homogenization may be inaccurate when the scaling requirement is not meet, leading to
error in the material design process, as stated in [12]. It is then suggested that other tools, e.g.
averaging method, should be provided to link the two scales to overcome some of these limita-
tions. Recently, size effect analysis of optimized microstructures by the inverse homogenization
method has been provided in [13], which elucidates that periodic homogenization method could
be mechanically admissible to predict the equivalent moduli even with small number of unit cell
repetitions. However, to our best knowledge, size effect analysis of the periodic unit cell in the
topology optimization through the homogenization approach for specific structural response has
not been investigated yet.

In the present work, the objective is to develop a topology optimization procedure based on
the classical homogenization method for periodic structures in a context of non-separated scales.
The dimensions of the unit cell will range from large to small as compared with the dimensions of
the whole structure to highlight the size effect. Particularly, a relocalization scheme is proposed
based on the computational homogenization method served a link between two scale fields, allow-
ing performing the topological optimization problem on a coarse mesh. Corresponding reference
solution is obtained by fully meshing the heterogeneities in whole structures as a comparison. The
present paper then tries to answer the question that how good the homogenization method-based
topology optimization for periodic structures with the size of the periodic cell changing from large
to small, comparing the characteristic length of the whole structure. To our best knowledge, in the
context of non-separated scale, topology optimization combined with the classical homogenization
scheme for periodic structures design is investigated here for the first time.

The remainder of the paper is organized as follows. The classical homogenization technique is
reviewed in section 2. Details of numerical computation of effective material properties as well as
the relocalization scheme are provided. Presented topological optimization model and method are
given in section 3. Bi-directional evolutionary structural optimization (BESO) method is adopted
to perform the topology optimization due to the simplicity. Numerical experiments are conducted
in section 4 to fully investigate the size effect of the periodic unit cells and answer the question
that when the optimized cells could be effective for real structural stiffness performance. Finally,
the conclusion is given in section 5.
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(a) (b) (c)
Figure 1: Illustration of a heterogeneous structure composed of periodic unit cells: (a) heterogeneous

structure; (b) RVE; (c) homogenized material.

2. The classical homogenization method

In this section, the computation of effective or homogenized material properties of heteroge-
neous composite in the context of linear elasticity is reviewed. The local problem at microscopic
scale with different types of boundary conditions is firstly introduced, followed by the numerical
implementation to evaluate the effective elastic matrix by means of the classical finite element
method (FEM).

2.1. Localization problem
A heterogeneous structure composed of two-phase composite is considered here as described

in Figure 1 (a). The RVE shown in Figure 1 (b) is associated with a domain Ω and boundary
∂Ω. The objective is to define the effective or homogenized elastic tensor C̄H. The constitutive
material phases are assumed isotropic with constant elastic properties, and the interfaces between
the different constitutive phases are assumed to be perfect. Therefore, the local problem assuming
that the RVE is subject to homogeneous strains is formulated as follows. Applying a constant
macroscopic strain ε̄, find the displacement field µ(x) in Ω satisfying:

∇ · (σ(x)) = 0 in Ω (1)

and
σ(x) = C(x) : ε(x) (2)

with
〈ε〉 = ε̄ in Ω (3)

where C(x) is the constant fourth-order elasticity tensor associated with different phases, ∇ · (·)
denotes the divergence operator, and 〈·〉 denotes the space averaging over Ω. Following [14], the
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split of local strain field into a constant macroscopic strain field ε̄ and a remaining local fluctuation
ε̃ is assumed:

ε(x) = ε̄(x) + ε̃(x) (4)

Taking average of the above equation, we have

〈ε(x)〉 = ε̄ + 〈ε̃(x)〉 = ε̄ +
1
|Ω|

∫
Ω

ε̃(x)dΩ = ε̄ +
1

2|Ω|

∫
Ω

{∇(ũ(x)) + ∇T (ũ(x))}dΩ (5)

where ũ is the unknown fluctuation displacement as ũ = u(x)− ε̄x. Using the divergence theorem,
we have

〈ε(x)〉 − ε̄ =
1

2|Ω|

∫
∂Ω

{ũ(x) ⊗ n + n ⊗ (ũ(x)}dΓ (6)

Note that the condition (3) can be satisfied by solving the present local problem Equations
(1)-(2) with appropriate boundary conditions. In other words, the right-hand side of Equation (6)
should be equal to zero. It can be verified with the following two possible conditions:

ũ(x) = 0 on ∂Ω or ũ(x) is periodic on ∂Ω (7)

Following [14], the corresponding two types of boundary conditions can be obtained by in-
tegrating Equation (4) with respect to x. The first is called Kinematically Uniform Boundary
Conditions (KUBC) and is expressed as

u(x) = ε̄x,∀x ∈ ∂Ω (8)

where the displacement is imposed directly at boundary points. In the second type of boundary
conditions which is named Periodic Boundary Condition (PER), the displacement field over the
boundary ∂Ω takes the form

u(x) = ε̄x + ũ,∀x ∈ ∂Ω (9)

where the fluctuation term ũ(x) is periodic on ∂Ω, i.e. it takes the same values on two points of
opposite faces over ∂Ω. It should be mentioned that an alternative localization problem assuming
that the RVE is subjected to a constant stress field can also be used to predict the effective material
properties. For detailed information about stress averaging theorem as well as the corresponding
boundary conditions one can refer to [14]. In this work, the second type of boundary conditions
is adopted to solve the present localization problem. It is also worth noting that even though
only two-phase RVE are considered here, the procedure can be straightforwardly extended to an
arbitrary number of phases.

2.2. Definition and computation of the effective material properties
With the superposition principle, the solution of the local problem in Equations (1)-(2) can be

viewed as a linear combination of 3 independent components of the strain tensor in 2D:

u(x) = u(11)(x)ε̄11 + u(22)(x)ε̄22 + 2u(12)(x)ε̄12 (10)
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where u(i j)(x) is the displacement field obtained by solving the local problem (Equations (1)-(2))
together with the PER (Equation (9)) using

ε̄ =
1
2

(ei ⊗ e j + e j ⊗ ei) (11)

where ei (i = 1, 2) are unitary basis vectors. To be specific, u(11), u(22) and u(12) are respectively
obtained by solving the local problem with

ε̄ =

[
1 0
0 0

]
, ε̄ =

[
0 0
0 1

]
, ε̄ =

[
0 1/2

1/2 0

]
(12)

Setting ε(i j)(x) = ε(u(i j)(x)), we have:

ε(x) = ε(11)(x)ε̄11 + ε(22)(x)ε̄22 + 2ε(12)(x)ε̄12 (13)

This expression can be re-written in a compact form as

ε(x) = A(x) : ε̄, ∀x ∈ Ω (14)

where A(x) is the fourth-order localization tensor relating microscopic and macroscopic strains
with

Ai jkl(x) = ε(kl)
i j (x) (15)

Using the classical Hooke’s law, we have

σpq(x) = Cpqi j(x)Ai jkl(x)ε̄(kl) (16)

or
σ(x) = C(x) : Ai jkl(x) : ε̄ (17)

By taking the spatial average over Ω, the constitutive relationship at macroscopic scale can be
formulated as:

σ̄ = C̄H : ε̄ (18)

with
C̄H = 〈C(x) : A(x)〉 (19)

Using classical displacement-based FEM, a matrix U containing in each row the nodal dis-
placement solution of the above 3 local problems in one element is defined. Therefore, the matrix
form of the localization tensor A in Equation (14) or (15) can be written as

A(x) = B(x)U (20)

where B is the strain matrix. The matrix form of the effective elasticity tensor C̄H in Equation (19)
is then given by:

C̄H =
1
V

∫
Ω

C(x)B(x)UdΩ (21)
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2.3. Numerical implementation for the local problem with PER
Following [14], a technique based on Lagrange multipliers to enforce the PER in 2D cases is

presented here. From Equation 9, the displacement on the opposite faces of the RVE is expressed
as {

uk+
i = ε̄i jxk+

j + ũ∗i
uk−

i = ε̄i jxk−
j + ũ∗i

(22)

where superscripts ”k+” and ”k−” denote nodes on the pair of opposite surfaces of the cell. ũ∗i
is the periodic fluctuation field which can be eliminated by comparing the difference between the
displacements:

uk+
i − uk−

i = ε̄i j(xk+
j − xk−

j ) = Rk+k− (23)

Therefore, in order to enforce the periodic boundary conditions using the Lagrange multipliers
method, the constraint equations can be written as following:

Pu − R = 0 (24)

The discrete form is written as
Ck+k−

i = Pi ju j − Rk+k−
i = 0 (25)

where P is a matrix relating the whole indices of coupled nodes on opposite faces of the RVE,
which is completely filled with the numbers 1, 0 and -1. It is noted that there are two constraint
equations for each pair of nodes on the boundaries in the case here. The constrained minimization
problem then can be stated as

inf
u

Ci=0, i=1,...,nc

1
2

uT Ku (26)

where u is the global vector of required displacement, and nc is the number of constraint equa-
tions. Introducing the vector of Lagrange multipliers Λ associated with the adopted periodicity
constraints, the above equation can be re-written as

L =
1
2

uT Ku + Λ · (Pu − R) (27)

The stationary of L is found by {
DδuL = 0
DδΛL = 0 (28)

Therefore, we have: {
δuT Ku + Λ · Pδu = 0
δΛT Pu = δΛT R (29)

Since the arbitrariness of δu and δΛ, the following linear system can be obtained:[
K PT

P 0

] [
u
Λ

]
=

[
0
R

]
(30)

where K is the global stiffness matrix after discretizing the elastic problem (1) without enforcing
the Dirichlet boundary conditions, and the vector R can be trivially obtained through Equation
(23).
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3. Topology optimization model and procedure

3.1. Optimization model and sensitivity number
In this work, the macroscopic structure is assumed to be composed of microscopic substruc-

tures/RVEs periodically. Effective material properties of the considered heterogeneous microstruc-
tures are calculated based on the above formulated homogenization method, even though the length
scale of the microscopic RVE is comparable to the higher scale structures. The topology of the
RVE is tailored by means of topology optimization such that the obtained structure has the opti-
mal stiffness with certain amount of materials. The final goal is to investigate the size effect of
the RVE when micro and macro scales are clearly non-separated. Therefore, this work aims to
answer the following question: When the ratio between the size of the RVE and the size of the real
macrostructure is used, the classical homogenization method can be used as an effective tool for
multiscale topology optimization of periodic structures without scale separation. This topology
optimization problem can be stated mathematically as follows:

Find : {ρ(1), . . . , ρ(Ns)} (31)

Minimize : fc(ρ, ū) = F̄T ū (32)
Subject to : K̄ū = F̄ (33)

: V(ρ) =
∑

ρ(k)
e v(k)

e = Vreq, k = 1, . . . ,Ns (34)

: ρ(1)
e = · · · = ρNs

e , e = 1, . . . ,Ne (35)

: ρ(k)
e = ρmin or 1, e = 1, . . . ,Ne, k = 1, . . . ,Ns (36)

where fc is the objective function of macrostructural compliance. F̄ and ū are the global load
and displacement vectors, respectively. Vreq is the required/prescribed volume of solid material in
each RVE. Ns is the number of the periodic unit cells within the structure. Note that the constraint
ρ(1)

e = · · · = ρNs
e , e = 1, . . . ,Ne is prescribed to make sure the structure is composed of periodic

microstructures with the existence of the RVE, which means that the pseudo densities of elements
(ρmin or 1 in Equation (36)) at the corresponding locations in each substructure are the same. Ne is
the number of finite elements in each RVE.

During the process of evolutionary-type structural optimization, the elements are removed or
added based on their sensitivity numbers. Therefore, the elements at the same locations in differ-
ent substructures are removed or added simultaneously. However, the strain/stress distribution in
different substructures/microscopic unit cells may not be the same in most cases. To enforce the
periodic array of the microscopic unit cells, the element sensitivity numbers at the same location
in each unit cell need to be consistent. They are then defined as the summation of the sensitivity
of corresponding elements in all unit cells. In conventional evolutionary structural optimization
method (see e.g. [15]), the element sensitivity number is defined as the change of the structural
compliance or total strain energy since the removal of that element which is then equal to the ele-
mental strain energy. Therefore, the elemental sensitivity number in this scheme can be expressed
as the variation of the overall structural compliance due to the removal of e−th elements in all
substructures:
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αcla
e =


∑Ns

k=1

∫
Ωk

e
σcla(x)εcla(x)dΩk

e, for ρ(k)
e = 1

0 , for ρ(k)
e = ρmin.

(37)

where σcla(x) and εcla(x) are the re-localized stress and strain fields based on the classical homog-
enization method. Details about computation of the re-localized stress and strain as well as the
assembly of global stiffness matrix K̄ in (33) are formulated in the next section.

3.2. Finite element meshes and relocalization scheme
In order to assemble the stiffness matrix K̄ in Equation (33) at the macroscopic scale, the

local problem (1)-(3) should be solved to obtain the effective material properties at the lower
scale. In this scheme, a fine mesh is adopted at microscopic scale to account for all heterogeneous
details within the RVE. However, coarse meshes are used to carry out the finite element analysis
for macrostructure so as to save computational expense. Specific finite element meshes for both
macroscopic and microscopic problems can be seen in the section of numerical examples. It is
noted that the sensitivity number in Equation (37) is formulated at the finest microscopic mesh,
therefore, a relocalization process is required after solving the structural problem based on coarse
meshes at the higher scale to obtain the sensitivities in (37).

With the calculated effective material properties C̄H of the RVE (see Section 2), the global
stiffness matrix K̄ can be assembled in a standard finite element way as:

K̄ =
∑

k

∫
Ωk

BT (x)C̄H B(x)dΩ, (38)

where B and C̄H are the strain matrix and the effective elastic matrix within the coarse mesh
element at the macro scale, respectively. With the solution of the macroscopic problem based on
the coarse mesh at hand, the microscopic strain and stress fields can be reconstructed by using the
localization operator in each RVE as

εcla(x) = A(x) : ε̄(ū(x)), ∀x ∈ Ω (39)

and
σcla(x) = C(x) : A(x) : ε̄(ū(x)), ∀x ∈ Ω (40)

where the strain value ε̄(ū(x)) is defined as ε̄(ū(x)) = 1
2 (∇(ū(x)) + ∇T (ū(x))). The localization

operator A has been obtained previously by solving the RVE problem (1)-(3) (see Section 2).
Therefore, the sensitivity number formulated in (37) can be calculated to perform the topology op-
timization. We note that the sensitivity number can be naturally obtained by a reference solution
when all heterogeneities are fully meshed. However, this could result in a huge amount of calcu-
lations, especially in topology optimization where the finite element analysis needs to be carried
out in each iteration. In the section of examples, the optimized topologies of RVE as well as the
resulted stiffness based on the presented method and on the reference solution will be compared to
investigate the size effect of the RVE, with the size ranging from large to small as compared with
the structure dimensions.
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3.3. Optimization procedure
The BESO method starts from an initial guess of the design domain and tailors the topology

according to the sensitivity numbers iteratively. In this work, the structural problem is solved on
the coarse mesh to save the computational cost, and a relocalized scheme based on the classical
homogenization is adopted to relocalize the microscopic fields so as to compute the sensitivity
number from Equation (37). The overall optimization procedure of the topology optimization
for periodic lattice microstructures using the classical homogenization scheme is formulated as
follows.

1. Set both a coarse mesh and a fine mesh associated with the RVE, resulting a corresponding
coarse mesh for the whole structure.

2. Assign the pseudo densities (0 or 1) to elements in the RVE to construct an initial design
before optimization.

3. Perform the classical homogenization method on the RVE to obtain the localization tensor
A and the effective elastic tensor C̄H, as summarized in Section 2.

4. Solve the structure problem on the coarse mesh with the effective material property.
5. Based on the solution from the structure problem, relocalize the microscopic strain and stress

fields by (39) and (40), respectively.
6. Compute the elemental sensitivity number using (37).
7. Modify the sensitivity number using a filter scheme [16] as:

αe =

∑Ne
j=1 we jα j∑Ne

j=1 we j
,we j = max(0, rmin − ∆(e, j)) (41)

where rmin is the filter radius which can be defined by designer, ∆(e, j) is the center-to-center
distance between elements e and j. The resulted sensitivity number is further modified
with its historical value to avoid big oscillations during the evolutionary process [15], i.e.
α(iter)

e = (α(iter)
e + α(iter−1)

e )/2. iter is the current iteration number.
8. Remove inefficient materials from the RVE according to the modified sensitivity number to

satisfy the volume constraint at the current iteration:

V(iter) = max
{
Vreq, (1 − cer)V(iter−1)

}
, (42)

where cer is an evolutionary volume ratio which can be set by designer to determine the
amount of material to be removed from the previous design iteration.

9. Repeat 3-8 until the material constraint Vreq is satisfied and the following convergence crite-
rion is reached:

|
∑Q

q=1

(
fiter−q+1 − fiter−Q−q+1

)
|∑Q

q=1 fiter−q+1
≤ τ (43)

where f is the objective function, Q is the integral number and τ is a specified small value.

It is worth noted that the present homogenization method allows starting the optimization process
from a homogeneous design with ρe = 1 for any e, since the microscale fields is relocalized
by the nodal value on the coarse mesh of the higher scale. As a result, there is no mandatory
requirement to set on or several holes for initiating the procedure which is the case in most inverse
homogenization schemes for topological design of material microstructures [4, 5].
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4. Numerical examples

In this section, several numerical experiments are presented to investigate the size effect of
unit cell in the classical homogenization-based topology optimization of lattice/periodic struc-
tures. The dimensions of the unit cell range from large to small as compared with the dimensions
of the structure in different cases. The examples consist in comparing the optimized topologies
by the presented homogenization method, which is solved on the coarse mesh, with the refer-
ence solution where all heterogeneities are fully meshed. Regular meshes with 4-node elements
have been adopted for all examples. Plane stress conditions are assumed. At the initiation of the
topology optimization, the material distribution is homogeneous with ρe = 1,∀e within the RVE.
The material constituting the architectural structure is assumed to be isotropic, with Young’s and
Poisson’s coefficients given respectively by Em = 1000 MPa and νm = 0.3. During the topology
optimization procedure, the interior of emerged holes is meshed with highly compliant material to
maintain regular meshes, and fictitious material properties for the holes are taken as Ei = 10−6 MPa
and νi = 0.3. The target volume fraction for the optimized topology of the RVE in all examples is
0.5.

4.1. Doubly-clamped elastic domain
In this first example, we investigate the topology optimization of periodic doubly-clamped

square elastic domain as illustrated in Figure 2. The horizontal and vertical displacements of both
left and right ends of the beam are fixed. A concentrated force F = 100 N is loaded on the centre
point of this beam. The side of the square beam is L = 1000 mm. The structure is a lattice
composed of Ns = η× η unit cells repeated periodically, with η represents the number of unit cells
along each space direction. A coarse mesh composed of 5 × 5 elements is associated to the unit
cells at the structural scale. The fine mesh on the RVE is composed of 40×40 elements to solve the
local problem. 5 cases are studied: (i) η = 2; (ii) η = 4; (iii) η = 8; (iv) η = 16; (v) η = 20. These
different cases correspond to the following coarse meshes for the structure: (i) 10 × 10 elements;
(ii) 20×20 elements; (iii) 40×40 elements; (iv) 80×80 elements; and (v) 100×100 elements. The
reference solution is obtained by discretizing the structure with the fine mesh for accounting for
all heterogeneities, resulting into the following regular meshes for the different studied cases: (i)
80×80 elements; (ii) 160×160 elements; (iii) 320×320 elements; (iv) 640×640 elements; and (v)
800 × 800 elements. It is reminded that the present homogenization method allows re-localizing
the microscopic fields. Then, the homogenization-based topological optimization procedure only
uses the values at the nodes of the coarse mesh, reducing drastically the computational time.

Figure 3 shows the different optimized topologies of the lattice structure for several numbers
of unit cells along each direction to investigate the size effect of the unit cell. Figure 3 (a) shows
the final optimized geometry of the lattice obtained by the reference solution while Figure 3 (b)
shows the final optimized geometry of the lattice obtained by the present homogenization method.
Figure 3 (c) and (d) show the optimized geometry of one unit cell for comparison. Along rows (i)
- (v), the number of unit cells repeated along each direction is increased and the ratio between the
dimensions of the unit cells and the dimensions of the whole structure are decreased. We observe
from Figure 3 (i) to (v) that the optimized topology converges rapidly. We can also note that even
for the case (i) where the two scales can clearly not be separated, both methods lead to the same
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F

L

Figure 2: Doubly-clamped square elastic domain composed of periodic microscale unit cells: geometry
and boundary conditions.

topology, which was not expected. To further illustrate the size effect of unit cell, we compare the
compliances for optimized geometries of the lattice when using the reference solution or present
homogenization-based method in Figure 4 (a). We can see that with the decrease of the unit cell
size, the gap in resulted compliances is getting smaller and smaller. We also note that when the
number of unit cells is large, both methods lead to the same compliance. To quantify the computa-
tional saving, the numbers of degree of freedoms (DOFs) to be solved in two different solutions are
compared in Figure 4 (b). It is observed that the number of DOFs in the homogenization method is
almost negligible compared with the reference solution, especially when the number of unit cells
is large. Even so, the homogenization method could generate the optimized lattice structures with
the same topology as well as the same stiffness as the reference solution.

4.2. L-shaped structure
In the previous example, the boundary conditions of the macrostructure were symmetrical,

resulting in the optimal topological configuration of RVE being orthogonal and in a fast conver-
gence. In this example, a more complicated L-shaped structure is investigated. The geometry of
the problem is depicted in Figure 5, where the dimension of the macroscopic structure is L = 1000
mm. The top end of the L-shape structure is fixed, and the concentrated force is taken as F = 100
N (see Figure 5). The mesh used at the fine scale within the RVE is composed of 40×40 elements.
A coarse mesh composed of 5 × 5 is associated to the unit cells at the structural scale. As in the
previous example, the number of unit cells composing the beam is varied to study the size effect
of the unit cell. Then, the following numbers of unit cells along each direction are investigated:
(i) 2 × 2; (ii) 4 × 4; (iii) 8 × 8; (iv) 16 × 16; and (v) 20 × 20. Since the structure is not square, the
number of unit cells in x− and y− directions is not the same, e.g. there are only three unit cells for
the case (i). Then, the following numbers of DOFs are solved, respectively: (i) 3554; (ii) 4044;
(iii) 5924; (iv) 13,284; (v) 18,764. As a comparison, the numbers of DOFs need to be solved using
reference meshes are respectively: (i) 9922; (ii) 39,042; (iii) 154,882; (iv) 616,962; (v) 963,203.
We can note that using the present technique, the topology optimization procedure only uses the
nodal values of the coarse mesh, thus drastically reducing the computational costs.
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(c) (d)(a) (b)
Figure 3: Optimized topologies for the double-clamped beam: columns (a), (b) compare the global lattice
topologies when using the reference solution or homogenization-based method; columns (c) and (d) show
the corresponding unit cell. Rows (i) to (v) correspond to increasing the number of unit cells in the lattice.
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(a) (b)

Figure 4: Resulted compliance and solved DOFs by topological optimization using reference solution
(blue curve) and homogenization method (red curve). Results are plotted as a function of the number of

unit cells.

F

L

L/2 L/2

Figure 5: L-shaped beam composed of periodic microscale unit cells: geometry and boundary conditions.
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As in the first example, Figure 6 shows the different optimized topologies of the lattice structure
for several number of unit cells along each direction using reference solution and homogenization
method. We can observe from Figures. 6 (i) and (v) that the optimized topologies have huge differ-
ence between two different solutions. However, with the large number of unit cells, the topology
of optimized structure by the homogenization method is also convergent to the reference solution.
We compare the compliance for the optimized geometries of the lattice using two solutions in
Figure 7 (a). In this case, using the homogenization method, the obtained resulting compliance is
much larger than the reference solution for the case (i). As expected, the compliance converges to
the same value with the decrease of unit cell size. As an illustration, the DOFs need to be solved
in two optimized models are compared in Figure 7 (b). Here again, the homogenization topology
optimization method based on the coarse meshes reduces computational time significantly.

4.3. MBB beam
In this last example, we investigate the topology optimization of a periodic Messerschmitt-

Bölkow-Blohm (MBB) beam subjected to a concentrated load, where the aspect ratio of the beam
is chosen as 4. The geometry of the problem is depicted in Figure 8. The concentrated force
load is applied at the centre of the bottom end of the domain with a magnitude F = 100 N. The
dimensions are L × H = 4000 × 1000 mm. Since the symmetry of boundary conditions, only the
right half of the MBB beam is investigated. Therefore, assuming that the half structure consists
of Ns = sx × sy unit cells repeated periodically, with sx and sy denoting the number of unit cells
along x− and y− directions, respectively. In this example, we keep sx = 2sy. 6 cases are studied:
(i) sx×sy = 2×1; (ii) sx×sy = 4×2; (iii) sx×sy = 8×4; (iv) sx×sy = 16×8; (v) sx×sy = 20×10; (vi)
sx× sy = 24×12. These different cases correspond to the following coarse meshes for the structure:
(i) 10×5 elements; (ii) 20×10 elements; (iii) 40×20 elements; (iv) 80×40 elements; (v) 100×50
elements; (vi) 120×60 elements. As in the previous examples, the topology optimization problem
of periodic structure is solved using the reference mesh (fully accounting for the heterogeneities).
In the reference model, the different cases have the following fine meshes for the structure: (i)
80 × 40 elements; (ii) 160 × 80 elements; (iii) 320 × 160 elements; (iv) 620 × 320 elements; (v)
800 × 400 elements; (vi) 960 × 480 elements, respectively.

Figure 9 shows the different optimized topologies of the lattice structure for several number
of unit cells along each direction, using the homogenization-based and reference methods. Here
again, the optimized topologies are different in the first few cases, while both methods lead to
the same topology with the large number of unit cells. We also compare the compliances for
optimized geometries of the lattice using the homogenization-based and reference solutions. It is
observed that obtained resulting compliance using classical homogenization is much larger than
reference solution for the case (i) where the scales can clearly not be separated. However, as
expected, both methods lead to the same value of the compliance when the number of unit cell
in short side is larger than 8. We also compare the DOFs solved in two methods in Figure 10.
It is then suggested that the present classical homogenization method can be chosen for topology
optimization of periodic structures with large number of unit cells.
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(a) (b) (c) (d)
Figure 6: Optimized topologies for the L-shaped beam: columns (a), (b) compare the global lattices

topologies when using the reference solution or homogenization-based method; columns (c) and (d) show
the corresponding unit cell. Rows (i) to (v) correspond to increasing the number of unit cells in the lattice.
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(a) (b)

Figure 7: Resulted compliance and solved DOFs by topological optimization using reference solution
(blue curve) and homogenization method (red curve). Results are plotted as a function of the number of

unit cells.

LH

F

F

Figure 8: MBB beam composed of periodic microscale unit cells: geometry and boundary conditions.
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(a) (b) (c) (d)
Figure 9: Optimized topologies for the half MBB beam: columns (a), (b) compare the global lattice

topologies when using the reference solution and homogenization-based method; columns (c) and (d) show
the corresponding unit cell. Rows (i) to (v) correspond to increasing the number of unit cells in the lattice.
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(a) (b)

Figure 10: Resulted compliance and number of DOFs using reference solution (blue curve) and
homogenization method (red curve). Results are plotted as a function of the number of unit cells.

5. Conclusions

This paper presents a topology optimization of periodic structures based on the classical ho-
mogenization method by abandoning the scale separation hypothesis, i.e. the characteristic dimen-
sions of the periodic unit cells in the lattice are comparable with the dimensions of the whole struc-
ture. The present method uses a coarse mesh corresponding to a homogenized medium based on
the classical numerical homogenization, allowing reducing the micro fields to perform the topol-
ogy optimization. On the other hand, topology optimization using a fully detailed description of
the heterogeneous structure is performed as a comparison. Size effect of the periodic unit cell is
investigated to analysis the effectiveness of the present topology optimization based on classical
homogenization method. We have shown that the present topology optimization will lead to opti-
mized structure with higher compliance when the scales can clearly not be separated (few numbers
of unit cells). Furthermore, with the increase of number of unit cells, the number of degrees of
freedom to be solved can be drastically reduced as compared with the reference solution. In other
words, for a large number of unit cells, the present method takes less time to obtain the optimized
lattice structure without losing any stiffness.
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