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 12 

Abstract 13 

The distributed activation energy model (DAEM) is a widely used, accurate and robust 14 

method to model biomass pyrolysis. However, the appropriate numerical strategy in terms of 15 

distribution number and shape has not been systematically determined. This study analysed 16 

spruce powder pyrolysis under different scenarios of multiple-distribution DAEMs with 17 

symmetric/asymmetric distributions (Gaussian, logistic and exponential) and different 18 

distribution numbers. Dynamic tests at four heating rates (1, 2, 5 and 10 °C/min up to 800 °C) 19 

provided solid numerical learning database, and the optimization of residues between 20 

numerical calculation and database enabled identification of model parameters. Subsequently, 21 

validation was performed with static tests (250 to 500 °C with an interval of 50 °C and 2h-22 

isothermal stages), and their corresponding residue analysis provided a fundamental basis to 23 

assess the model’s true prediction ability. The trade-off between the model’s prediction ability 24 

and degrees of freedom was robustly investigated with regard to the number and shape of the 25 

distribution. As stated by the quality of validations, a series of Gaussian-DAEMs (distribution 26 

number ranged from one to five) allowed for the determination of the best trade-off when the 27 

distribution number was three. Finally, the two-Gaussian plus one exponential distribution 28 
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exhibited the best overall prediction capacity among different multiple-distribution DAEMs, 29 

and was confirmed as the best strategy with regard to both distribution shape and number. A 30 

DTG simulation investigated each model’s simulation effects with three assigned variation 31 

sections and justified the correspondence between pseudo-components and biomass 32 

constituents. Finally, the DAEM’s capability to distinguish the effects of heating rate was 33 

demonstrated. 34 

Keywords: Pyrolysis, DAEM, Exponential distribution, Gaussian distribution, Trade-off 35 

 36 

1. Introduction  37 

Biomass pyrolysis receives substantial attention as a key thermal conversion technology 38 

in bio-refineries [1] in the production of high value-added chemicals (bio-oil, char and biogas). 39 

It also acts as the main initial process for gasification and combustion. The ability to predict 40 

constituent kinetics and thermal behaviours during pyrolysis are therefore of great importance, 41 

namely for reactor design and industrial scale-up. Thermogravimetric analysis (TGA) is an 42 

advanced technology used to study the pyrolysis mechanism relating to devolatilization, 43 

which also provides sufficient data for kinetic modelling [2]. 44 

Pyrolysis is a rather complicated process with numerous chemical reactions, traditional 45 

methods of global first- and second-order kinetics are not applicable to biomass pyrolysis [3], 46 

which encourages the development of more effective models. Among them, a lumped-kinetic 47 

model accounting for more than 30 species has been developed [4], and competitive multi-48 

step models have helped include primary devolatilizations and homogeneous secondary 49 

reactions in biomass components [5]. The distributed activation energy model (DAEM) has 50 

been proposed to manage the complexity of chemical reactions [6]. In this approach, pyrolysis 51 

is assumed to proceed as independently parallel reactions with different activation energies, 52 

which are further described by distribution functions.  53 



The DAEM has been proposed to be the most comprehensive model to represent the 54 

pyrolysis of various complex feedstocks including coal [7], oil shale [8], sewage sludge [9], 55 

and biomass [6]. Its prediction kinetics are believed capable of working as sub-models in 56 

further industrial simulations [10]. Multiple-distribution DAEM is able to represent major 57 

chemical constituents [11] or multiple reaction stages [5], contributing to precise simulations 58 

of kinetics. Three-distribution models are widely applied due to its comprehensiveness and 59 

excellent correspondence with hemicellulose, cellulose and lignin [12]. Meanwhile the 60 

choices of two [13], four [14] and five [15] distributions are also proposed.  61 

Concerning the mathematical forms of distribution, continuous statistic distributions are 62 

normally applied [15]. Meanwhile finite discrete distribution is also employed, which 63 

introduces relations between activation energy and pre-exponential factor either with [16] or 64 

without functional forms [17]. Yet differences between these two distribution types could be 65 

basically limited, since continuous distributions are necessarily discretized for computational 66 

implementations.  67 

While symmetric distributions such as Gaussian and logistic have been widely applied in 68 

DAEMs [18], asymmetric distributions have also attracted attentions, as partial reactivity 69 

distribution in pyrolysis tends to be asymmetric, notably during the final stages [6]. 70 

Asymmetric distributions, including Weibull and gamma, have been assessed in several 71 

studies. Lakshmanan [19] first employed a Weibull DAEM to describe the thermal-chemical 72 

kinetics of multiple types of biomass. Recently, Li [20] found the Weibull outperformed other 73 

distributions in a study of two- and three-distribution DAEMs in polymer pyrolysis testing of 74 

both symmetric and asymmetric distributions. Xu [21] compared single-distribution DAEMs 75 

to asymmetric gamma, Rayleigh and Weibull distributions, and found that kinetic parameters 76 

relied heavily on distribution form. Alok [22] used asymptotic expansion for gamma 77 

distribution’s numerical integral in a DAEM, yet the simulation effect was poor. Gamma 78 



distribution offers a wide range of shapes that are capable to fit various kinetic profiles. In the 79 

decomposition context, its rate parameter measures the average life-time of active component 80 

[23], while its shape parameter endows multiple forms. Exponential distribution, as the 81 

degeneracy of gamma, shows particular features in lifetime distribution, stochastic process in 82 

general [24] and reliability analysis [25]. However, to the best of our knowledge, it has never 83 

been employed in multiple-distribution DAEM. 84 

The application of multiple-distribution DAEMs has usually focused on the 85 

corresponding distribution number with equal pseudo-components or multiple-stage processes 86 

[26, 27], yet the effects of distribution number on prediction ability and numerical complexity 87 

have received little attention. Indeed, the increase of the distribution number in DAEMs could 88 

improve accuracy [15], as more subtle details might be captured in addition to the reaction 89 

kinetics. However, the simultaneous growth in numerical complexity could substantially 90 

endanger model robustness. Furthermore, the determination of parameters would face local 91 

minima or even be meaningless after model identification [28]. On the other hand, single- 92 

distribution DAEM shows insufficiency for biomass pyrolysis. In particular, single-Gaussian 93 

was found  inappropriate to reproduce DTG data [15], and more than one logistic distribution 94 

was required for kinetic description [29]. Therefore, regarding the choice of distribution 95 

number, a trade-off between a model’s prediction capacity and degrees of freedom should be 96 

seriously considered. 97 

In previous studies, kinetic parameters have generally been determined by single non-98 

isothermal experiments, which introduce the risks of local minima or compensation effects 99 

[18].  In this context, multiple experimental data have been proposed to reduce parameter 100 

uncertainties, especially those of activation energy and pre-exponential factors [30]. Pyrolysis 101 

profiles with two or more heating rates have been proved effective to distinguish between 102 



kinetic models [3], and they could mitigate the compensation effect and more closely 103 

resemble operations in a genuine industrial system.  104 

Generally, identification of model parameters has been based on the principle of 105 

minimizing residues between numerical calculations and the learning database, during which 106 

advanced optimization algorithms are applied such as the pattern search method [31], 107 

differential evolution algorithm [32] and genetic algorithm [33]. Beyond the pursuit of high 108 

accuracy and efficiency during model identification, the more important model validations 109 

should be emphasized to assess the model’s true fit qualities under different reaction 110 

conditions. Várhegyi [34] evaluated prediction ability at 40 °C/min with model determined at 111 

4 °C/min. Scott [35] extrapolated kinetic parameters that were identified at 20 °C/min and 112 

30 °C/min to the theoretical curve at 10000 °C/min. Lin [36] performed predictions for 113 

15 °C/min and 25  °C/min  with the model that was identified at 20  °C/min. Nonetheless, 114 

solid validations with quantifiable uncertainties were relatively rare. Only recently, Ahmad 115 

[37] applied artificial neural network (ANN) for validating DAEM accuracy with histogram 116 

error distribution. And error analyses, in forms of absolute percentage error (MAPE) and root 117 

mean square error (RMSE), were employed in predicting mass loss at different heating rate 118 

[38] and biomass type [39] for validation purposes. On the other hand, the kinetic triplets 119 

(activation energy, pre-exponential factor and reaction rate) are barely verified since the 120 

multiple temperature profiles of parameter determinations couldn’t be identical for prediction 121 

tests [40]. However, to assess the true model applicability in pyrolysis kinetics, it is logical 122 

and necessary to test the fitted parameters against reaction conditions that are different from 123 

those used for identification. Therefore, validation with additional temperature profiles should 124 

be conducted. 125 

This work aims to assess the applicability of the multiple-distribution DAEM 126 

considering distribution shape (symmetry/asymmetry), and distribution number using a 127 



rigorous approach. To that purpose, a set of dynamic tests were used as learning database and 128 

a completely different dataset, consisting of static tests over a wide range of plateau 129 

temperatures, was used as a validation database. The best trade-offs between the number of 130 

degrees of freedom and the prediction quality will be determined by using up to five- 131 

Gaussian distributions. The choice of distribution shape will be tested with two extra DAEMs 132 

(three-logistic and two Gaussian + one exponential). Performance of the distributions and its 133 

correspondence with biomass constituents will be studied in the subsequent DTG simulations. 134 

Finally, DAEM’s performance in distinguishing the effect of the heating rate will be analysed.  135 

 136 

2. Material and methods 137 

2.1 Material 138 

The biomass used in this study is European spruce (Picea abies), a softwood species. 139 

A 73-year-old tree was originally cut from the Auvergne region, France and subsequently 140 

processed to samples. A tree log 40–50 cm in diameter, 2 m in length was cut 2 m above the 141 

bottom. It was cut axially into 2.5-cm thick boards, and a portion 10 cm from the centre was 142 

taken to make samples for pyrolysis analysis. A rectangular column 2.5×2.5×5 cm3 was cut 143 

from the healthy sapwood part of the board, where wood properties were relatively uniform. It 144 

was first sliced and ground in a cutting mill (RETSCH SM300) with a bottom sieve of 1 mm 145 

trapezoidal holes, followed by additional grinding with a universal mill (M20-IKA). A sieve 146 

stack of 0.063 mm and 0.08 mm opening sizes was used for sieving wood powder in a 147 

vibratory sieve shaker (RETSCH AS 200) at an amplitude of 90 % for 30 min. The sieved 148 

wood powder between 0.063–0.08 mm was dried at 105 °C for 24 h and stored in a desiccator. 149 

Table 1 lists the basic chemical information of sprue sample. The ultimate and 150 

proximate analyses of the wood sample (density 450 kg/m3) on a dry basis were conducted 151 

using a Thermo Fisher Scientific FLASH 2000 organic elementary analyser and Nabertherm 152 



LV/9/11 furnace, respectively, following the ASTM E1755 and E872 standards. The chemical 153 

composition analysis was based on the standard method of NREL (National Renewable 154 

Energy Laboratory, U.S. Department of Energy). 155 

Table 1. Results of proximate, ultimate and chemical composition analyses of European 156 

spruce powder on a dry basis 157 

 158 

 159 

2.2 Experimental method 160 

Pyrolysis of spruce powder was performed in a thermogravimetric analyser (TGA, STA 161 

449 F3 Jupiter, NETZSCH). TG signals were detected at data acquisition intervals of 0.1 min. 162 

For each test, a ca. 10-mg sample was evenly spread in an alumina crucible. Measurements 163 

were conducted under a pure nitrogen (99.999%) purge and protective gases at 50 ml/min and 164 

20 ml/min, respectively.  165 

Dynamic tests consisted of four different heating rates (1 °C/min, 2 °C/min, 5 °C/min 166 

and 10 °C/min) during the pyrolysis stages. The entire temperature program started by 167 

increasing the temperature from 30 °C to 100 °C at 10 °C/min, then maintaining it for 30 min 168 

to eliminate the residual water presented in sample. The temperature was linearly increased to 169 

800 °C at the four aforementioned heating rates, then cooled to room temperature under the 170 

nitrogen purge. The thermogravimetric data from dynamic tests were set as a learning 171 

database for the subsequent model identification process. 172 

Static tests served as a model validation database. Similar to the dynamic tests above, the 173 

wood sample was heated from 30 °C to 100 °C at 10 °C/min and held for 30 min. Then the 174 

temperature was raised to the plateau at 10 °C/min, and an isothermal period maintained at 175 

Proximate analysis (wt.%)  Ultimate analysis (wt.%)  Chemical composition (wt.%) 

Volatile Ash FC  C H O  Cellulose Hemicellulose Lignin 

84.93 0.29 14.78  47.1 6.0 43.7  42.49 14.89 31.59 



this value for 2 h. A series of tests were performed from 250 °C to 500 °C in 50 °C 176 

increments (250, 300, 350, 400, 450, 500 °C).  177 

 Temperature and sensitivity calibrations were performed in advance with standard 178 

materials specific to crucible type, temperature rate and gas type. The certified standards 179 

(NETZSCH calibration set) include indium, tin, bismuth, zinc, aluminium and silver. A blank 180 

was analysed before every test with the same crucible to exclude buoyancy effects and 181 

thermal drift. Dimensionless residual mass (DRM) and conversion rate (����) were used to 182 

manage TG signals as: 183 

 184 

in which �� is the remaining mass at time �, and �� the dry mass, determined as the mass 185 

after the 30-minute plateau at 100 °C.  186 

All dynamic and static tests were repeated twice to ensure accuracy. Standard deviations 187 

(SD) of all DRM data between two duplicate tests were calculated for verifications, herein 188 

table 2 lists two indexes: mean and maximum values of SD.  The mean values got very 189 

limited range between 0.12% to 0.48%, and the maximum values that represented severe 190 

situation, was ranged between 0.30% to 1.81%. They both provided solid proofs of small 191 

errors between two duplicates and ensured the repeatability of experimental data. 192 

 193 

 194 

 195 

 196 

 197 

	
��� = ���� × 100% ,       ������ = 1 − 	
��� (1) 



Table 2. Mean and maximum values of standard deviations (SD) of DRM values in 198 

duplicate tests 199 

Values of SD 
Static test 

 
Dynamic test 

250 °C 300 °C 350 °C 400 °C 450 °C 500 °C 
 

1 °C/min 2 °C/min 5 °C/min 10 °C/min 

Mean (%) 0.46 0.13 0.12 0.47 0.48 0.29 
 

0.33 0.26 0.41 0.32 

Maximum (%) 0.88 0.30 1.61 1.12 0.73 0.44 
 

1.30 0.98 1.32 1.81 

 200 

3. Model formulation  201 

3.1 DAEM formulation 202 

The distributed activation energy model (DAEM) treats biomass pyrolysis as numerous 203 

parallel and irreversible first-order reactions, among them, decomposition rate of reaction � is： 204 

 205 

in which ��� represents maximum volatile production from reaction �, and ���� is the 206 

generated volatile at time t. Reaction rate constant �� is defined by the Arrhenius equation 207 

with the pre-exponential factor (��) and activation energy (��): 208 

 209 

in which 
 is a universal gas constant and ��� is the temperature at time �. The 210 

compensation effects could provide different but equally good-fit sets of parameters, bringing 211 

much inaccuracy in identifications. Therefore, the value of pre-exponential factor is usually 212 

fixed to avoid ill-conditioned parameters, meantime being consistent with the transition-state 213 

theory (A≈10^11-10^16 s^(-1))  [34]. Here, �� is assumed as constant (�) for all reactions. 214 ��� is the total volatile production at time t, and statistical distribution ��� describes the 215 

activation energy, resulting in the integral form of conversion degree ���: 216 

������� = �� ��� − ����! (2) 

�� = ��"#$ %− ��
���& (3) 



 217 

Wood is treated as the sum of multiple pseudo-components without any interactions 218 

during pyrolysis. Distributions �'�� with a different weighting factor �()��* are assigned to 219 

the pseudo-component * in wood �* ∈ ,1: ./0, ./ is the total number of distributions. 220 

Superposition of their volatile productions provides the final formulation of biomass 221 

conversion degree as: 222 

3.2 Distribution functions and mathematical implementation 223 

Two common symmetric distributions, Gaussian and logistic distributions, and one 224 

asymmetric distribution, gamma distribution, were used in this study. These distributions in 225 

DAEM could represent physically the atomic interactions caused by the variability of 226 

macromolecules and their interaction in the cell wall [41]. Table 3 summarizes their 227 

mathematical formulas of probability density function (PDF), mean value and standard 228 

deviation. Their representative curves are depicted in Figure 1. Gaussian distribution, also 229 

known as normal distribution, is formulated by its mean value (��) and standard deviation 230 

value (1). Its PDF curve is symmetrical and bell-shaped. Logistic distribution is another 231 

important symmetric probability distribution. It resembles Gaussian distribution but has 232 

heavier tails (larger kurtosis value) and thinner peaks around the mean value. The gamma 233 

distribution is defined by the shape parameter 2 and the rate parameter 3. A minimum 234 

activation energy (�(�4) must be added to obtain sufficient degrees of freedom to define the 235 

kinetics. The factor 
5657895789  therefore scales the gamma distribution. The flexibility of the 236 

gamma distribution can produce different curve shapes by suitable combinations of its two 237 

parameters. For instance, when 2 = 1, the gamma distribution becomes an exponential 238 

��� = ����� = 1 − : "#$�
� ;− : �"65/=>�����

�? @ ����� (4) 

��� = 1 − A �()��* BC
'DE F "#$ ;−� : "65/=>�����

� @�
� �'���� (5) 



distribution; when 2 = GH  �� is nature number and 3 = 0.5, it becomes a Chi-squared 239 

distribution.  240 

 241 

Table 3. Three types of distribution used in the research 242 

Distributions PDF Mean 
Standard 
deviation 

Gaussian f�E = 11√2Y "#$ Z− �� − ��H21H [ �� 1 

Logistic f�E = Y√31 "#$ ]− Y�� − ��√31 ^
_1 ` "#$ ]− Y�� − ��√31 ^aH �� 1 

Gamma f�E = 3b c� − �(�4�(�4 db6E "#$ c−3 � − �(�4�(�4 dГ�2  
%23 ` 1& �(�4 

√23  

 243 

 244 

 245 

Figure 1. Examples of Gaussian, logistic distributions (left) and gamma distributions (right) 246 

with different parameters 247 

 248 

Applying the aforementioned distributions into DAEM, the double integration (over time 249 

and energy) and the lack of an exact analytical solution required multiple precautions. 250 

Mathematical implementations were realized using the in-house MATLAB codes, including 251 

numerical discretization and integral approximation. The detailed formulation is shown 252 

hereafter. 253 



(a) Gaussian distribution  254 

In the discretization of Gaussian distribution, the domain �−∞, `∞ changed to finite 255 

intervals as ,�� − g1, �� ` g10, in which g = 3 to ensure 99.9% area coverage (figure 1). 256 

Each interval length 1 was evenly divided by � to generate fine increments: �� = h( . Prior 257 

trials had determined the proper choice of increment number since it might cause solution 258 

oscillation with small values and long calculation time with large values [42]. � = 10 was 259 

found as good compromise for both correct representation of continuous function and 260 

concision in algorithm, the discretized activation energy for reaction � became: 261 

 262 

 The discrete form of Gaussian distribution was therefore presented as: 263 

 264 

(b) Logistic distribution  265 

As in symmetrical distribution, finite intervals ,�� − 31, �� ` 310 were enough for 266 

logistic distribution to ensure 99.9% area coverage. The discretization strategy of activation 267 

energy �� was the same as equation 6, and its discretized function was expressed as 268 

(c) Gamma distribution 269 

Compared to common symmetric distribution, asymmetric gamma distribution had more 270 

complicated numerical implementations. The concepts of minimum (�(�4) and maximum 271 

values (�()�) described the discretized activation energy. They formed a finite function 272 

�� = �� − g1 ` �� − 0.5��, � = ,1, 2�g0 (6) 

���� = 11√2Y exp ;− ��� − ��H21H @ (7) 

���� = Y√31 "#$ ]− Y��� − ��√31 ^
_1 ` "#$ ]− Y��� − ��√31 ^aH      

(8) 



domain to avoid extremely large energies which were impossible to appear in decomposition 273 

reactions. 274 

Here g = 5 was set to ensure a distribution function with good representation and 275 

extended in reasonable ranges. Equal partitioning of the whole interval by gk produced fine 276 

increments ��: 277 

in which the fine interval number gk was set as 100 to ensure accuracy as well as short 278 

solution time. Then gamma distribution discrete normalization form was obtained: 279 

The term c58657895789 db6E
 in gamma distribution demanded preliminary determinations 280 

of discrete strategy, for instance, sudden mutations occurred when 2 becomes less to the unit, 281 

which produces infinite value at zero (�� = �(�4), and invalidates the numerical value at the 282 

zero point. Careful prerequisite determinations had been performed which indicated the 283 

optimal choice of the exponential distribution, a degeneracy of gamma, to facilitate model 284 

implementation. The detailed determination process could be found in supporting materials. 285 

Finally, numerical discretization in exponential distribution can be decided as: 286 

�()� = �(�4 ∙ %1 ` g23 & (9) 

�� = ��()� − �(�4gk  (10) 

���� = 3b c�� − �(�4�(�4 db6E "#$ c−3 �� − �(�4�(�4 dГ�2   (11) 

�� = �(�4 ` �� − 0.5��, � = m1, gkn  (12) 

  ���� = 3"#$ %−3 �� − �(�4�(�4 &  (13) 



For every distribution, the characteristic time-constant of the distribution reduced with 287 

the increasing temperature level. For the smallest values of the activation energies, a simple 288 

first-order derivative might fail [43]. To avoid the difficult problem of checking the time-step 289 

for all activation energy values, the effective increment of chemical reaction ��� was 290 

computed using the exact exponential form [44, 45]: 291 

 292 

in which ./ is the number of distributions, .� is the number of increment points in each 293 

distribution. ��' is the �th activation energy in distribution *. �' ��'! were determined only 294 

once according to the numerical implementations of every distribution at the initialization 295 

stage of the simulation. During the time-increment, the values of ��'�� were updated and 296 

stored in the calculation loop within the numerical domain. The updated conversion rate ��� 297 

at time � was finally obtained as follows: 298 

Parameter identification was based on the optimization of the objective function, OF, 299 

which was the residual sum of squares (RSS) between experimental and calculated conversion 300 

rates of all data points alongside the entire reaction history: 301 

 302 

�� = A Am1 − "#$ −��'��!n���',� − ��'��Bo
�DE

BC
'DE  (14) 

��' = � exp ;− ��'
���@ ;       ��',� = �()��* ∙ �� ∙ �' ��'! ;      ��'�� = 0 = 0 (15) 

��� = 1 − ∑ ∑ rm1 − "#$ −��'��!n���',� − ��'��sBo�DEBC'DE ��  (16) 

tu = A A ������ − ���!H�v
�D�

Bwxo
)DE  (17) 



in which .��� is the total number of experimental data and �y is the final reaction time. Here 303 

four dynamic tests were analysed simultaneously as a learning database. This wide range of 304 

temperature-time pathways together with the large temperature range ensured quasi-complete 305 

pyrolysis was likely to provide an accurate and robust parameter determination. Regarding the 306 

different number and shape of distributions, their initial parameters were reasonably derived 307 

from the relevant literature [6, 26, 41, 46, 47] to avoid local minima in the optimization 308 

algorithm. A derivative-free method of the simplex searching algorithm was adopted, and 309 

sufficient iterations ensured successful identification by ending with no difference between 310 

the penultimate and final optimization values. The whole protocol therefore consists of the 311 

following steps: i) choosing a set of reasonable initial parameters, ii) automatic minimization 312 

algorithm, iii) perturbation of model parameters to check the robustness of the solution. If a 313 

better solution is found at stage iii), steps ii) and iii) are repeated until a stable solution is 314 

found. 315 

To assess the effect of distribution number, a series of Gaussian-DAEMs was proposed 316 

with the distribution number ranging from one to five. Concerning the shape of distributions, 317 

three-logistic DAEM and two-Gaussian + one exponential DAEM were further proposed. 318 

Herein, only one asymmetric exponential distribution was introduced since it was enough to 319 

focus on the performances of high-temperature reactions and provided sufficient flexibility in 320 

the model [3].  321 

To measure the discrepancy between experimental data and model simulations, two 322 

evaluation indexes were applied: root mean square error (RMSE) and the maximum 323 

deviations (	(). They had the same meaning to DRM, aiming to provide comprehensive 324 

views on the average and maximum errors in both model identification and validation phases. 325 



 326 

  327 

For the assessment in DTG simulations, dimensionless DTG was defined as the ratio 328 

between real-time DTG signal (
/(/� ) and initial anhydrous mass (��): 329 

Its local residue  
z��! was defined by the differences between calculated (	�{|)}��) 330 

and experimental values 	�{�����: 331 

With its standard deviation of residue as: 332 

 333 

4. Results and discussions 334 

4.1 Determination of distribution number 335 

Figure 2 shows the effects of Gaussian distribution number on both identification and 336 

validation stages. Initial sections of DRM curves in identifications were magnified here for 337 

comparison among five models; usually, they were challenging to describe numerically 338 

because of their very slow kinetics and absence of asymptotic behaviour [48]. In terms of 339 

identification stages, one-Gaussian presented very poor overlaps due to its limitations in 340 

describing the nature of multiple clusters of reactions [11]. Two-Gaussian demonstrated a 341 

slight improvement, yet several noticeable errors still occurred, and the initial stages were 342 


�~� = �∑ ∑ c������ − ���dH�v�D�Bwxo)DE .���  (18) 

	( = ��#������� − ����,   ∀� ∈ m0, �yn (19) 

	�{�� = 1��
�����  (20) 


z�� = 	�{|)}�� − 	�{����� (21) 

1= = � 1�y − 1 A�
z�� − 
z���H�v
�D�  (22) 



poorly produced. For the distribution number from three to five, simulations exhibited quasi-343 

perfect agreements with all experimental data, where most overlaps indicated successful 344 

identification. The increase in distribution number represented the increase of pseudo-345 

components, an advanced description strategy of thermal features in multi-step reactions [15]. 346 

This was further evidenced by the improved simulation accuracy in initial sections, in which 347 

error reduction could be observed by increasing distribution number, and almost complete 348 

overlap could be realized by five-Gaussian DAEM.  349 

For the validation stages, one-Gaussian showed poor predictive ability at all temperature 350 

levels, and two-Gaussian also performed unsatisfactorily, with obvious errors from 250 to 351 

350 °C. The three-, four- and five-Gaussian showed similarly good predictive abilities, 352 

demonstrating excellent overlap during heating periods and only slight deviations in the 353 

isothermal plateaus. Major deviations occurred on the curves of 300 °C and 350 °C, while at 354 

the other temperatures, the models showed very good predictive abilities throughout the 355 

experiments.  356 

  357 
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Figure 2. DRM curves of identification and validation stages and corresponding simulation 358 

curves based on identified parameters in multiple Gaussian DAEMs 359 

(a) one-Gaussian DAEM, (b) two-Gaussian DAEM, (c) three-Gaussian DAEM, (d) four-360 

Gaussian DAEM and (e) five-Gaussian DAEM 361 

 362 

Identified parameters of five types of Gaussian DAEMs are listed in Table 4. The sum of 363 

weighting factors in each model ranged from 0.8345 to 0.8769, which reflected the total 364 

content of decomposable species in wood. For one-Gaussian DAEM, its coverage of 365 

activation energy was obviously incomplete due to the limitation of distribution number. The 366 

two-Gaussian DAEM introduced two distinct distributions that functioned in both low and 367 

high activation energy zones. The further increase of distribution number in three-, four- and 368 

five-Gaussian DAEM achieved more precise ranges of activation energy. Furthermore, 369 



complicated repartitions and interactions emerged among multiple distributions. For example, 370 

third and fourth Gaussian distributions were partially overlapped in four-Gaussian DAEM, 371 

and the first and second distributions interacted in five-Gaussian DAEM.   372 

 373 

Table 4. Identified model parameters of five multiple-Gaussian DAEMs 374 

DAEM type Distributions �()� ��× 1013�6E �� (kJ/mol) 1 (kJ/mol) 

One-Gaussian 1st Gaussian 0.8345 1.56 183.78 10.59 

      

Two-Gaussian 
1st Gaussian 0.7153 

0.36 
175.70 6.74 

2nd Gaussian 0.1574 215.68 54.00 

      

Three-Gaussian 

1st Gaussian 0.2125 1.37 

170.82 5.77 

2nd Gaussian 0.5001 185.28 1.31×10-9 

3rd Gaussian 0.1553 224.67 45.80 

      

Four-Gaussian 

1st Gaussian 0.1660 

1.75 

170.90 4.21 

2nd Gaussian 0.4954 186.02 6.99×10-7 

3rd Gaussian 0.1205 190.40 25.91 

4th Gaussian 0.0950 259.17 49.18 

      

Five-Gaussian 

1st Gaussian 0.0583 

1.70 

162.40 6.05 

2nd Gaussian 0.1347 172.05 5.74×10-3 

3rd Gaussian 0.5284 185.87 4.01×10-4 

4th Gaussian 0.0347 208.19 6.64 

5th Gaussian 0.1182 244.74 49.57 

 375 



  

Figure 3. Relationships between the model’s degrees of freedom and overall RMSE in 376 

identification and validation of multiple-Gaussian-DAEM 377 

 378 

Figure 3 shows the correlations between multiple-Gaussian DAEM’s degrees of freedom 379 

(	y) and overall values of RMSE in both identification and validation stages. Followed by the 380 

increase of the degrees of freedom, the overall RMSE initially decreased rapidly and then was 381 

stable, indicating that prediction ability was effectively improved by increasing the 382 

distribution number to three. Increasing the distribution number to four and five introduced 383 

limited improvements. A high value of 	y inevitably aggravated the numerical complexity, 384 

and a trade-off was, therefore, necessary with respect to the model’s prediction ability and 385 

complexity. Using the one-Gaussian DAEM as a reference, the decrease ratios of overall 386 

residue were 45.59%, 65.40%, 71.20% and 71.36%, respectively, for two-, three-, four- and 387 

five-Gaussian DAEMs during the validation stage. Using the three-Gaussian model, the 388 

‘inflexion point’ (as highlighted with a red circle) was where a significant improvement in 389 

prediction ability was gained with a relatively small increase in 	y. Even though further 390 

increasing distribution number could still promote prediction potential, the disadvantage was 391 



that one extra distribution introduced three more kinetic parameters. It was doubtless 392 

unnecessary to pursue very limited improvements at the expense of large complexity, or 393 

perhaps even worse, a decline in the model’s robustness with complicated compensation 394 

effects [49]. In this context, the strategy of three Gaussian distributions was the best trade-off 395 

between model’s complexity and prediction capability.  396 

As for the identification process, proposed models showed similar matching 397 

relationships between 	y and RMSE, which also demonstrated the good trade-off of the three-398 

Gaussian DAEM. Considering most studies have applied three-distribution DAEMs because 399 

they can correlate with main chemical constituents [5, 50], the trade-off strategy herein 400 

provides new support for using three distributions in a model. 401 

 402 

4.2 Determination of distribution shapes  403 

4.2.1 Three-distribution DAEMs 404 

As a three-Gaussian model was determined to be the optimal choice among multiple-405 

Gaussian DAEMs, its counterpart models, three-logistic and two Gaussian + one exponential 406 

DAEM, were analysed to determine the shape of the distribution (symmetry/asymmetry).  407 

Identification and validation effects of all three-distribution DAEMs are compared in 408 

Figure 4. In the general view of identification stages for three models, as expected, 409 

simulations exhibited perfect agreements with all experimental data. Three-Gaussian and 410 

three-logistic DAEMs had similar negative deviations during the initial stages of simulations, 411 

and the two Gaussian + one exponential DAEM modified these plateaus with fewer errors. In 412 

the validation stage, the two Gaussian + one exponential DAEM showed noticeable 413 

improvements at 400, 450 and 500 °C compared to those of three-Gaussian and three-logistic 414 

DAEMs.  415 
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Figure 4. DRM curves of identification and validation stages and corresponding simulation 416 

curves of three types of DAEM 417 

(a) three-Gaussian DAEM, (b) three-logistic DAEM and (c) two Gaussian+ one exponential DAEM 418 

 419 



Identified parameters of three models are listed in Table 5. Combinations of distribution 420 

shapes made distinctive impacts on model parameters. Compared to the three-Gaussian 421 

DAEM, the three-logistic DAEM cut back its second and third weighting factors to 422 

compensate on the first. While in the two Gaussian + one exponential DAEM, the second 423 

distribution reduced its weighting factor to account for increased first and third distributions. 424 

This evident alteration was mainly caused by the third exponential distribution, which spread 425 

uniquely in the high activation energy zone due to its asymmetry, and required more 426 

weighting factors to more accurately represent chemical reactions at high temperatures. 427 

Moreover, all three models maintained their second distribution with the largest weighting 428 

factor and narrowest range; this pseudo-component could be correlated to the high content 429 

and crystalline nature of cellulose [51].  430 

Regarding the nature of chemical collisions in reaction rate equation (eq.3), the 431 

activation energy is the barrier of relative translational motion of the reactants [52], and the 432 

pre-exponential factor represents the collision frequency that leads to successful reactions. It’s 433 

therefore only meaningful to analyze the joint effect of these two parameters, which are 434 

performed in our model by fixing � as constant, and further distinguish the kinetic variation 435 

by different distribution profiles of activation energy. Herein, the excellent fitting quality in 436 

multiple experiments, which cover large temperature range and different heating rates, proves 437 

that a constant � can effectively represent pyrolysis kinetics over a large range of conditions. 438 

Thus, this average meaning of collision frequency among all reactions is meaningful and, in 439 

the meantime, keeps the model concise. 440 

Cai [6] reviewed three-distribution DAEM in eight types of biomass, where parameter 441 

features were quite consistent with corresponding values herein. For instance, ��,E ranged 442 

between 169.71 kJ/mol to 186.77 kJ/mol which included our values; the narrowest ranging 443 

nature of second pseudo-component and the widest of the third were also confirmed here. 444 



Várhegyi [34] tested four biomasses with the three-parallel DEAM, showing similar kinetic 445 

parameters as presented in table 5, especially that ��,H (185 kJ/mol) almost equalled our 446 

identified parameters.  447 

Table 5. Identified model parameters of three-distribution DAEM 448 

DAEM type Distributions �()� ��× 1013�6E 
�� or �(�4  

(kJ/mol) 1 (kJ/mol) 

Three-Gaussian 

1st Gaussian 0.2125 1.37 

170.82 5.77 

2nd Gaussian 0.5001 185.28 1.31×10-9 

3rd Gaussian 0.1553 224.67 45.80 

      

Three-Logistic 

1st Logistic 0.2233 

1.43 

171.25 6.63 

2nd Logistic 0.4959 185.50 2.51×10-6 

3rd Logistic 0.1496 227.80 48.87 

      

Two Gaussian 
+ one exponential 

1st Gaussian 0.2816 

1.67 

173.19 8.79 

2nd Gaussian 0.4199 186.15 1.66×10-7 

Exponential 0.1940 175.96 α=1, β=0.43 

 449 

4.2.2 Overall model trade-offs  450 

Table 6 and 7 list the values of RMSE and 	( among all proposed models during 451 

identification and validation stages, respectively. Herein, the individual and overall values of 452 

RMSE were distinguished by their different data number according to eq. 18. Since the one-453 

Gaussian and two-Gaussian DAEMs had poor prediction abilities, they will not be discussed 454 

in detail hereafter. The hybrid model type (one Gaussian+ one logistic+ one exponential) was 455 

previously tested, but the numerical complexity and unobvious improvements in simulation 456 

quality didn’t encourage us to make further investigations. But still we list its corresponding 457 

data in both table 6 and 7. The main comparisons will be made among the three-distribution 458 

DAEMs (three-Gaussian, three-logistic, and two-Gaussian + one exponential), and four- and 459 

five-Gaussian DAEM.  460 

For these models, their identification stages exhibited overall RMSE less than 9×10-5 and 461 

the maximum deviations were reasonably small (from 1.02 to 2.74%), acting as solid proof of 462 



successful identification. Fit qualities generally increased with a decrease in heating rates and 463 

the smallest 	( always appeared at 1 °C/min, possibly caused by the low fluctuation and 464 

stable temperature profiles at low heating rates, when thermal overshoot was less obvious [53]. 465 

The overall identification ability was in the order five-Gaussian > four-Gaussian > two 466 

Gaussian + one exponential > three-Gaussian > three-logistic. Among the three-distribution 467 

DAEMs, asymmetric exponential distribution improved identification accuracy, attributing to 468 

its capability of describing the unique behaviour at high temperatures.  469 

Table 6: Parameter identification qualities in the dynamic tests with an average residual 470 

sum of squares and maximum deviations under each heating rate  471 

DAEM type 
RMSE �× 106�  	( �% 

1°C/min 2°C/min 5°C/min 10°C/min Overall  1°C/min 2°C/min 5°C/min 10°C/min 

One-Gaussian 31.5 35.5 47.2 50.4 35.9  6.50 6.82 6.17 5.26 

Two-Gaussian 12.2 17.1 27.9 33.6 17.0  4.16 4.86 4.66 4.29 

Three-Gaussian 5.0 8.0 16.6 22.4 8.5  1.68 1.42 1.34 2.71 

Four-Gaussian 4.0 6.6 14.4 20.7 7.2  1.21 1.56 1.44 2.59 

Five-Gaussian 3.7 6.2 14.2 20.4 6.9  1.02 1.36 1.41 2.49 

Three-Logistic 5.2 8.2 16.6 22.5 8.7  1.71 1.46 1.30 2.74 

Gaussian + logistic + exponential 4.2 7.1 14.8 21.5 7.6  1.32 1.56 1.43 3.23 

Two-Gaussian + one exponential 4.2 7.2 14.8 20.9 7.5  1.27 1.57 1.43 2.54 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 



 483 

Table 7: Validation qualities in the static tests with an average residual sum of squares 484 

and maximum deviations under each heating rate  485 

DAEM type 
RMSE �× 106�  	( �% 

250°C 300°C 350°C 400°C 450°C 500°C Overall  250°C 300°C 350°C 400°C 450°C 500°C 

One-Gaussian 3.9 6.5 9.7 9.9 6.5 4.3 6.8  2.22 5.71 5.45 5.06 5.09 5.14 

Two-Gaussian 7.1 4.7 4.3 2.3 2.3 2.1 3.7  3.12 4.20 3.91 4.00 4.09 4.03 

Three-Gaussian 1.8 3.9 3.4 2.3 1.9 1.0 2.4  1.29 2.20 1.99 1.46 1.54 1.51 

Four-Gaussian 2.0 3.8 2.5 1.4 1.3 1.1 2.0  1.32 2.24 1.77 1.59 1.53 1.54 

Five-Gaussian 2.3 3.9 2.2 1.1 1.4 1.1 2.0  1.12 2.05 1.76 1.50 1.47 1.44 

Three-Logistic 1.8 3.9 3.4 2.3 1.9 1.0 2.3  1.22 2.17 2.01 1.42 1.51 1.48 

Gaussian + logistic + exponential 1.6 4.1 2.4 1.7 1.3 1.1 2.0  1.22 2.34 1.84 1.73 1.68 1.69 

Two-Gaussian + one exponential 1.5 3.8 2.4 1.7 1.3 1.0 1.9  1.22 2.36 1.67 1.60 1.70 1.67 

 486 

In the validation of static tests, the models’ true prediction potentials were therefore 487 

comparable and quantifiable at different temperature levels. The overall RMSE of five 488 

compared models ranged between 1.9×10-4 to 2.4×10-4, which were plausibly low 489 

considering that model parameters originated from dynamic tests without any further 490 

identification. Maximum deviations were satisfactorily small in every validation stage of all 491 

models. The smallest value appeared at 250 °C (1.12% for five-Gaussian DAEM), and the 492 

largest value was at 300°C (2.36% for two Gaussian+ one exponential DAEM); such low 493 

values were considered good signs of prediction precision [12, 34]. The accuracy benefits 494 

from the comprehensive identification database and numerical training: these two indexes 495 

reflected excellent prediction potential for the five DAEM models. 496 

Generally, the largest errors occurred at 300 °C and 350 °C among all validation phases, 497 

yet good fits were found at the other temperature levels. Because parameters were identified 498 

over the full pyrolysis condition up to 800 °C, they faced some difficulties in describing 499 

incomplete pyrolysis, even though the prediction remained rather good, and was in agreement 500 

with the literature [54] in which higher simulation errors tended to appear at low temperatures. 501 



The mass loss under mild pyrolysis at 250 °C was slow and, in addition, quite well predicted 502 

by the DAEM model. These two reasons explain the relatively small errors found for this test. 503 

 Among these models, overall prediction ability proceeded in the order of two Gaussian 504 

+ one exponential > five-Gaussian > four-Gaussian > three-Gaussian > three-logistic. Notably, 505 

the asymmetric exponential distribution exhibited excellent potential in predicting pyrolysis 506 

kinetics with plausible complexity: it provided the lowest RMSE values at 250, 300 and 507 

500 °C, and most importantly, the lowest overall RMSE. Due to its asymmetry, exponential 508 

distribution expanded uniquely on the side of high activation energy, which only focused its 509 

accuracies in high-temperature reactions. In contrast, Gaussian and logistic distributions 510 

expanded symmetrically. When they intended to describe large ranges of high activation 511 

energies, the symmetry forced distribution to cover the same portion of low values. It 512 

conflicted with the distribution that originally represented low activation energy; thus, overall 513 

prediction potential was not effectively elevated even with additional symmetric distributions. 514 

Beyond that, the increase in distribution number ameliorated identification accuracy in the 515 

cases of four- and five-Gaussian DAEMs, yet their overall prediction potentials were not 516 

necessarily the best. It was, therefore, indispensable to conduct model identification and 517 

validation separately, to obtain correct and comprehensive assessments of the model.  518 

The two Gaussian + one exponential DAEM demonstrated its best performances in 519 

validation stages, proving a superior strategy for the distribution’s shape. This performance 520 

was further verified in Figure 5, which depicted the match relationships between qualities in 521 

both identifications and validations (overall RMSE) and model’s degrees of freedom (	y). As 522 

noticed, even though four- and five-Gaussian had lower RMSE values during model 523 

identifications, their prediction abilities were inferior to two Gaussian+ one exponential 524 

DAEM. On the other hand, three-Gaussian and three-logistic DAEM had identically small 	y 525 

as two Gaussian + one exponential DAEM, yet they both demonstrated worse prediction 526 



potentials. Two Gaussian and one exponential successfully located both its RMSE and 	y in 527 

the low ‘optimal zone’ (highlighted with the red circle), which ensured accurate prediction 528 

ability while avoiding excessive numerical complexity. In this sense, two-Gaussian and one 529 

exponential provided the best trade-off between prediction ability and degrees of freedom. 530 

  

Figure 5. Degrees of freedom and overall RMSE in both identification and validation of five 531 

types of DAEM 532 

 533 

Independent and global first-order reaction mechanism was additionally considered 534 

herein for comparison purpose. This kinetic method often worked for simple approximation 535 

that treated biomass as single or multiple pseudo-components [55, 56], in which each set of 536 

kinetic equation (Arrhenius equation) required at least two independent parameters, i.e. pre-537 

exponential factor and global activation energy. Becidan [57] claimed 7 to 8 partial reactions 538 

were required for acceptable fit, in other words, it needed 8 to 9 independent parameters with 539 

assumption that they shared same pre-exponential factor, which was still too complicated. Its 540 

limited reaction types were unlikely appropriate descriptions of the infinite number in real 541 

pyrolysis. Worse still, the mechanism  faced poor applicability in fitting multiple temperature 542 



profiles [40, 57]. Yet in two-Gaussian + one exponential DAEM, 10 parameters were 543 

sufficient to capture essences of massive reactions, being adequately concise and meantime 544 

powerful. From this perspective, the proposed two-Gaussian + one exponential again 545 

presented as excellent model choice for kinetic determinations.   546 

To further confirm the superiority of two-Gaussian + one exponential DAEM, three-nth-547 

order mechanism was also applied for comparison [58]. Herein, pre-exponential factor (A) 548 

was assumed identical in three reactions, and each scheme had its specific activation energy 549 

(E) and reaction order (n). The superposition of three nth-order reaction schemes was 550 

subsequently fitted in both dynamic and static tests for parameter identification and 551 

verification (table 8). Regarding the overall RMSE in identification, three-nth-order model 552 

had much larger deviation than in two-Gaussian + one exponential DAEM (RMSE=7.6×553 

106�), revealing worse fitting quality. More importantly, this model had worse prediction 554 

capacity compared to two-Gaussian + one exponential DAEM (RMSE=2.0 × 106� in 555 

validation), yet its numerical complexity was hardly simplified (	y = 10), which again 556 

supported the better performances of proposed DAEM.   557 

Table 8. Identified parameters of three-nth-order model and overall RMSE in 558 

identification and validation stages 559 

Pseudo-component �()� A (�6E) E (kJ/mol) n 
Overall RMSE in 

identification 
Overall RMSE in 

validation 

First 0.3234 

2.98× 10EE 

152.88 0.83 

1.9× 106� 4.5 × 106� Second 0.4728 165.53 1.10 

Third 0.2931 227.95 0.69 

 560 

4.3 DTG simulation  561 

DTG simulations were conducted to assess the performance of different distributions in 562 

the five comparable DAEMs. Figure 6 illustrated DTG simulations by the overall model and 563 

individual distributions at 5 °C/min. The heating rate was chosen due to its moderate baseline 564 

fluctuations; DTG simulations at other heating rates are within the supplementary material. It 565 



was obvious that the overall DTG simulations of five models overlapped substantially with 566 

experimental data, and the only visible deviations occurred near the DTG peak. For analysis, 567 

the main variations of local residue  
z��! were manually divided into three noticeable 568 

sections here, ranging between 100–300, 300–400 and 400–800 °C, respectively. The first and 569 

third sections moderately fluctuated, and hemicellulose decomposition was mainly attributed 570 

to the first. Meanwhile, lignin decomposition and secondary reactions were responsible for 571 

the third section [59]. The second section showed the most severe fluctuations with two 572 

obvious peaks; they were believed to originate from the mixed pyrolysis of hemicellulose and 573 

cellulose [60]. Cellulose decomposed rapidly within a very narrow temperature range after its 574 

crystallites melted [61] and it partially merged with hemicellulose. Inevitably more detectable 575 

errors emerged in this section during simulations.  576 
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Figure 6. Experimental, simulated DTG curves and corresponding local residues (left), 577 

separate and overall DTG simulations (right) of five DAEM at the heating rate of 5 °C/min 578 

 579 

Standard deviations �1
 of sectional simulations were compared in Table 9. Among the 580 

DAEMs with three distributions, two Gaussian + one exponential DAEM exhibited the best 581 

simulation improvements, especially in the third section wherein the asymmetric exponential 582 

uniquely functioned. Further compared to two Gaussian + one exponential DAEM, four-583 

Gaussian DAEM showed only slight improvements in first and second sections, and five-584 

Gaussian DAEM improved in all three sections. However, as previously emphasized, it was 585 

not practical nor feasible to increase numerical complexity for limited error improvement. 586 

Using the two Gaussian + one exponential DAEM as a reference, the error reduction ratios in 587 

three sections realized by four-Gaussian DAEM were 4.34 %, 1.60 %, 0 %, respectively, and 588 

42.03 %, 10.49 %, 8.33 %, respectively, by five-Gaussian DAEM. The five-Gaussian DAEM 589 

provided the only notable improvement in the first section, which represented a very small 590 

part of pyrolysis kinetics. So, here the asymmetric exponential distribution again presented a 591 

good trade-off strategy to improve accuracy and maintain numerical concision. 592 

 593 



Table 9. The sectional standard deviation of DTG residue at the heating rate of 5°C/min 594 

of five models 595 

Temperature section 
(°C) 

1= �× 106� 

Three-Gaussian Three-Logistic Two Gaussian+one exponential Four-Gaussian Five-Gaussian 

100–300 7.2 7.4 6.9 6.3 4.0 

300–400 57.3 57.3 56.2 55.3 49.5 

400–800 11.9 12.2 7.2 7.2 6.6 

 596 

Separate DTG simulation further depicted each pseudo component’s contribution to the 597 

overall decomposition rate (right row of Figure 6). The three-Gaussian and three-logistic 598 

DAEMs had same decomposition ranges of three pseudo-components: 200–375 °C (first 599 

pseudo-component), 250–400 °C (second pseudo-component) and 100–800 °C (third pseudo-600 

component). Compared to these two models, two Gaussian + one exponential DAEM altered 601 

the decomposition range of first pseudo-component (200–400 °C), induced no change for 602 

second pseudo-component (250–400 °C), and increased initial decomposition temperature of 603 

the third pseudo-component (270–800 °C). For the four-Gaussian DAEM, four pseudo-604 

components decomposed in the temperature ranges as 220–360, 250–400, 160–550 and 100–605 

800 °C respectively. Finally, the decomposition temperature ranges of five-Gaussian DAEM’s 606 

pseudo-components were: 165–375, 200–350, 240–400, 280–520 and 100–800 °C, 607 

respectively.  608 

It was always worthwhile to identify pseudo-components as the signatures of major 609 

chemical components. The totality of specific species could be described by one unique 610 

distribution, and further assist in understanding the multi-component mechanism of biomass 611 

pyrolysis. In this vein, Table 10 shows relevant thermogravimetric decomposition 612 

temperatures of the three main constituents in biomass. Generally, hemicellulose consists of 613 

polysaccharides that are heterogeneously branched and are non-covalently bonded to the 614 



surface of cellulose microfibril [62]. The less stable chemical structures make hemicellulose 615 

more reactive with lower temperature ranges of decomposition. Cellulose is a saturated linear 616 

polysaccharide with high polymerization and degree of crystallinity and decomposes in very 617 

narrow temperature ranges [63]. Lignin is a set of irregular phenolic polymers consisting of 618 

more than four substituted phenyl propane, which endow lignin with large decomposition 619 

ranges during the entire pyrolysis process [64]. Many published values provided reliable 620 

references for featuring pseudo-components. By comparing chemical constituents’ 621 

decomposition temperatures with model calculations, it was, therefore, feasible to correspond 622 

the three pseudo-components to hemicellulose, cellulose and lignin respectively in the three-623 

Gaussian, three-logistic and two Gaussian + one exponential DAEM, which were well-624 

accepted strategies [6, 34, 65]. For the four-Gaussian DAEM, first and second pseudo-625 

components were linked with hemicellulose and cellulose, while the third and fourth pseudo-626 

components possibly presented the two-stage decomposition scheme of lignin [66]. In the five 627 

-Gaussian DAEM, the first and second pseudo-components together represent hemicellulose, 628 

then the third pseudo-component was assigned to cellulose. The fourth and fifth components 629 

were attributed to two overlapped partial reactions, the scission of oxygen functional groups 630 

and rearrangement of the carbon skeleton were believed responsible for these two 631 

distributions, respectively [48].  632 

 633 

 634 

 635 

 636 

 637 

 638 



Table 10. Summary of individual biomass component’s decomposition temperature range 639 

Heating rate 
(°C/min) 

Decomposition temperature range (°C) 
Reference 

Hemicellulose Cellulose lignin 

10 220–315 315–400 >400 [67] 

10 200–320 280–360 140–600 [68] 

20 200–350 260–430 200–500 [69] 

20 253–308 319–368 259–482 [70] 

20 244–324 294–371 197–653 [71] 

50 250–350 350–500 >500 [72] 

60 200–327 327–450 200–550 [2] 

<5 225–325 324–375 250–500 [73] 

 640 

Peak temperatures observed in both experimental and simulated DTG at different heating 641 

rates are listed in Table 11. The peak temperatures corresponded to the extreme reaction stage 642 

of cellulose decomposition, and they followed a decreasing trend with an increase of heating 643 

rate, which was caused by the altered pyrolysis kinetics relating to inter-particle heat transfer 644 

[74]. In general, five models reproduced the peak temperatures accordingly at four heating 645 

rate conditions, with considerably small errors less than 5 °C. It was clear that multiple-646 

distribution DAEMs were capable of distinguishing the effects of heating rates, which has 647 

rarely been observed in relevant researches. Peak values were usually applied in Kissinger 648 

procedure for determining activation energy [75], as a direct and easy method. However, its 649 

limitations arose in merely staying at observation stage based on existing experimental data. 650 

By comparison, multiple-distribution DAEMs herein presented a precise description of peak 651 

temperatures and confirmed the prediction abilities already proved on mass loss. Therefore, it 652 

would be safe to conclude that the proposed models could advance one step further as 653 

prediction tools in isoconversional kinetics. DAEM may be applied for the accurate 654 

description of global pyrolysis kinetics under different reaction conditions. 655 

 656 



Table 11. Peak decomposition temperature from experiments and model simulations 657 

Heating rate 
(°C/min) 

Experimental Three-Gaussian Three-Logistic Two Gaussian+ one exponential Four-Gaussian Five-Gaussian 

1 366.58 363.58 363.58 362.59 362.59 362.59 

2 354.73 351.73 352.23 350.73 350.73 351.23 

5 339.06 337.08 337.08 335.88 336.08 336.48 

10 329.44 326.64 326.64 325.13 325.43 325.83 

 658 

Conclusion 659 

A rigorous strategy of both identification and validation was applied in the DAEM for 660 

analysing the effects of distribution number and shape. First, in a series of Gaussian-DAEMs 661 

with distribution number ranging from one to five, three-distribution was determined as the 662 

best trade-off between prediction ability and degrees of freedom. Logistic and exponential 663 

distributions were proposed to account for distribution shapes. Exponential distribution 664 

allowed good simulations for high-temperature reactions, and together with two Gaussian 665 

distribution, they exhibited as the best strategy in terms of both prediction capacity and 666 

numerical concision. The overall DTG simulation at 5 °C/min was analysed within three 667 

major variation sections, where two-Gaussian + one exponential DAEM achieved obvious 668 

error reduction with plausible numerical concision. Degradation temperature ranges by 669 

separate DTG simulations evidenced the correspondences between pseudo-components and 670 

chemical components, and DAEM’s was able to distinguish the effect of heating rate on the 671 

peak decomposition temperature.  672 
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