The double-assignment plant location problem with co-location

Alfredo Marín, Mercedes Pelegrín

To cite this version:

Alfredo Marín, Mercedes Pelegrín. The double-assignment plant location problem with co-location. Computers and Operations Research, 2021, 126, pp.105059 -. 10.1016/j.cor.2020.105059 . hal03493309

HAL Id: hal-03493309

https://hal.science/hal-03493309

Submitted on 17 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The double-assignment plant location problem with co-location *

Alfredo Marín ${ }^{\text {a }}$, Mercedes Pelegrín ${ }^{\text {b,* }}$
${ }^{a}$ Department of Statistics and Operational Research, University of Murcia, Spain
${ }^{b}$ LIX, École Polytechnique, 91128 Palaiseau Cedex, France

Abstract

In this paper, a new variant of the Simple Plant Location Problem is proposed. We consider additional conditions in the classic location-allocation problem for clients and facilities. Namely, some pairs have to be served by a common plant. The resulting problem can be addressed with existing models for the case of single assignment. However, to the best of our knowledge, the proposed setting when each client must be assigned to a couple of facilities is still unexplored. We examine the implications of adding such new constraints to standard formulations of the SPLP with double assignment. We compare the resulting formulations from a theoretical point of view. After that, we focus on the study of one of the models, which turned out to be a set packing problem. All the clique facets are identified and a separation algorithm is devised. Although the separation problem is proved to be NP-hard, our computational experience shows that the separation algorithm is effective and efficient, reducing computational times and duality gaps for all the instances tested.

Keywords: Discrete Location, Set Packing, Clique Facets, Separation
Heuristic
2010 MSC: 90C10, 90B80, 90C90

[^0]
1. Introduction

Facility location has been one of the most fruitful areas within operations research (see [1, 2]). One of the reasons is that decision making certainly includes strategic infrastructure layout in almost every corporation, public or private.

5 Industrial companies have to locate their facilities and warehouses so as to reach clients in their marketplaces; government agencies usually decide on the location of schools, hospitals, emergency services, etc. Other than its wide range of applications, the area also entails theoretical challenges, see for instance [3] or [4]. In this paper we study a variant of a well-known model in facility location, which, as far as we know, has not been investigated yet.

One of the seminal problems in discrete location is to decide on sites to install a set of identical facilities and on how clients are allocated to them. The problem, which has been known as Simple Plant Location Problem (SPLP) or Uncapacitated Facility Location Problem, has been extensively studied by operational researchers $[3,5,6,7,8]$. The simplicity of the model has been fundamental as a base for the development of locational analysis, and at the same time has given room for studying a range of variants. Extensions include those considering specialized facilities in different product types [9], customer preferences [10], risk of disruptions in the distribution system [11, 12] or models seeking for sustainable logistics [13]. For more references, see surveys [1] or [14], which focus on the SPLP. It is worth mentioning that [15] presented a Benders decomposition more recently, which found optimal solutions for previously unsolved instances of up to 3000 clients and location candidates and obtained speedups of several orders of magnitude with respect to other methods.

In this work, we propose a new modification of the SPLP, which considers new requirements in relation to the allocation of clients to facilities. The new variant can be considered to belong to the same family than that introduced in [20]. In that previous work, some pairs of clients were supposed to be incompatible, that is, they could not be assigned to the same facility. A set packing formulation for the resulting facility location problem was proposed and its poly-
hedral structure was studied, deriving different types of facets and separation algorithms to manage the inequalities within a branch and cut.

In our new scenario, some pairs of clients, which we will call tied, wish to be allocated to the same facility. This situation could be easily addressed by 35 existing models for the SPLP, since allocation of each tied pair can be decided at once by adding their costs, just as if they were a single client. However, sometimes clients must be assigned to a couple of facilities, for instance when a backup service is needed, just as in [11]. When double assignment is considered, tied clients are pairs that like to be served by at least one common facility. Now,

40 the new scenario gives rise to a new combinatorial problem that is a variant of the classic SPLP. Closely related topics are hub location, where origin and destination pairs have to be connected by using a couple of hubs (see for instance [16]) or warehouse location, where clients are served by a facility through a warehouse (see [17]). In facility location problems with capacities, clients are also frequently assigned to more than one facility, see for instance [18].

The above setting, which we will call double-assignment plant location with co-location, finds interesting applications in telecommunication networks design. A generic telecommunication network consists of a set of terminals (users), connected to concentrators (switches or multiplexers) and a backbone network which interconnects the concentrators. A primary problem in network design is to decide how many concentrators are needed and how the terminals should be assigned to the concentrators. These two decisions can be identified with that of facility location and allocation, a fact that was already observed in [19]. In the context of telecommunication networks, the setting we propose corresponds to a configuration in which some users must share a concentrator. This is a realistic assumption, since there could be users with special communication requirements that want to have a dedicated path to avoid the backbone network.

The contributions of the paper can be summarized as follows: (i) a new variant of the SPLP, which considers double assignment and clients ties is proposed;
6_{0} (ii) two formulations, inspired by classic two and three index facility location models, are presented, and their linear relaxations are theoretically compared
(something that to the best of our knowledge was not done before); (iii) all the clique facets of one of the formulations, which is a set packing, are disclosed; (iv) the corresponding separation problem is proved to be NP-hard and a heuris- developed formulations and algorithm is conducted.

The paper is organized as follows. The next section introduces the doubleassignment plant location problem with co-location, together with two integer programming formulations. In the following section, the linear relaxations of both are compared theoretically. Then, in Section 4 all the clique facets of one of the new models, which is a set packing problem, are described. The problem of separating them is proven to be NP-hard in Section 5, where a heuristic separation algorithm is also proposed. Finally, Section 6 reports the computational tests of the formulations and the heuristic, which includes a 75 comparative analysis with respect to standard clique cuts incorporated by a commercial solver. Some conclusions close the paper.

2. Problem statement and formulations

Consider as initial setting that of the SPLP, where $I:=\{1, \ldots, n\}$ and $J:=\{1, \ldots, m\}$ are the sets of clients and candidate facilities respectively.
${ }_{80}$ Facility location and clients allocation decisions have been typically modeled with the following decision variables,
$y_{j}=1 \mathrm{iff}$ no service is installed at candidate location $j, j \in J$,
$y_{j}^{\prime}=1$ iff a facility is installed at candidate location $j, j \in J$ and
$x_{i j}=1$ iff client i is served by facility at $j, i \in I, j \in J$,

85
where y_{j} and y_{j}^{\prime} satisfy $y_{j}=1-y_{j}^{\prime}$ for all j. The classic formulation of the

SPLP is

$$
\begin{array}{rll}
(\mathrm{SPLP}) \min & \sum_{j \in J} f_{j} y_{j}^{\prime}+\sum_{i \in I} \sum_{j \in J} c_{i j} x_{i j} & \\
\text { s.t. } & \sum_{j \in J} x_{i j}=1 & \forall i \in I \\
x_{i j} \leq y_{j}^{\prime} & \forall i \in I, \forall j \in J \tag{2}\\
x_{i j}, y_{j}^{\prime} \in\{0,1\} & \forall i \in I, \forall j \in J,
\end{array}
$$

where f_{j} and $c_{i j}$ stand for opening and allocation costs respectively. Constraints (1) guarantee that every client in I is assigned to one location candidate in J and (2) ensure that there is a facility at the given site. Many works consider an alternative formulation of the SPLP, which replaces location variables y_{j}^{\prime} by their complementary binary variables y_{j}. This simple idea allows to rewrite (SPLP) into the following set packing formulation, where M is a large enough constant (see [3] for more details),

$$
\begin{array}{rll}
\left(\mathrm{SPLP}_{\leq}\right) \max & \sum_{j \in J} f_{j} y_{j}+\sum_{i \in I} \sum_{j \in J}\left(M-c_{i j}\right) x_{i j}-M n-\sum_{j \in J} f_{j} & \\
\text { s.t. } & \sum_{j \in J} x_{i j} \leq 1 & \forall i \in I \\
x_{i j}+y_{j} \leq 1 & \forall i \in I, \forall j \in J \tag{3}\\
& x_{i j}, y_{j} \in\{0,1\} & \forall i \in I, \forall j \in J .
\end{array}
$$

When double assignment is considered, the problem is usually modeled with two alternative approaches. One is based on the previous formulations, and consists of using the same variables and changing 1 on the right-hand side of (1) or (3) by 2 . The second is to consider new allocation three-indexed variables to represent the pair of facilities that serve each client.

The double-assignment plant location problem with co-location, DPLP from now on, consists of allocating each client to two facilities in such a way that tied clients share at least one. The following subsections present two alternative formulations of the DPLP, which are adapted from the aforementioned strategies to model double assignment. To model co-location relationships, we consider a graph $G_{T}=\left(I, E_{T}\right)$ that has one node per client and an edge $e=\left(i, i^{\prime}\right) \in E_{T}$

$$
\begin{array}{ccl}
\left(\mathrm{DPLP}_{2}\right) \min & \sum_{j \in J} f_{j}\left(1-y_{j}\right)+\sum_{i \in I} \sum_{j \in J} c_{i j} x_{i j} & \\
\text { s.t. } & \sum_{j \in J} x_{i j}=2 & \forall i \in I \\
x_{i j}+y_{j} \leq 1 & \forall i \in I, \forall j \in J \\
& x_{i^{\prime} j}+x_{i^{\prime} j^{\prime}} \geq x_{i j}+x_{i j^{\prime}}-1 & \forall\left(i, i^{\prime}\right) \in E_{T}, \forall j, j^{\prime} \in J: j<j^{\prime} \tag{6}\\
& x_{i j}, y_{j} \in\{0,1\} & \forall i \in I, \forall j \in J .
\end{array}
$$

Constraints (4) stand for double assignment, while (5) guarantee that clients are only allocated to open facilities. Constraints (6) are the co-location constraints. They are only active when their right hand sides equal one, that is, when a client i is allocated to facilities j and $j^{\prime}\left(x_{i j}=x_{i j^{\prime}}=1\right)$. In this case, the constraints ensure that i^{\prime} is allocated to at least one of these two facilities, j or j^{\prime}, for every tied client, $\left(i, i^{\prime}\right) \in E_{T}$. In $\left(\mathrm{DPLP}_{2}\right)$, subscript 2 indicates the use of allocation variables with two indices, as opposed to the following alternative formulation.

Three-indexed formulation

Alternatively to standard allocation variables, one can use $z_{i j k}=1$ iff client i is served by facilities j and k,
for all $i \in I, j, k \in J$ such that $j<k$. For notation simplicity, in the following, j, k, ℓ and t are indices in J if not stated otherwise. With the above variables and location y-variables, the problem can be formulated as a set packing problem in
the following way

$$
\begin{array}{ccl}
\left(\mathrm{DPLP}_{3}\right) \min & \sum_{j \in J} f_{j}\left(1-y_{j}\right)+\sum_{i \in I} \sum_{\substack{ \\
j \in J}} \sum_{\substack{k \in J_{:} \\
k>j}}\left(c_{i j}+c_{i k}-M\right) z_{i j k} & +M n \\
\text { s.t. } & \sum_{j \in J} \sum_{k>j} z_{i j k} \leq 1 & \forall i \in I \\
\sum_{k>j} z_{i j k}+\sum_{k<j} z_{i k j}+y_{j} \leq 1 & \forall i \in I, \forall j \in J \\
z_{i j k}+\sum_{\ell \in J} \sum_{\substack{t>\ell_{:} \\
\{j, k\} \cap\{\ell, t\}=\emptyset}} z_{i^{\prime} \ell t} \leq 1 & \forall\left(i, i^{\prime}\right) \in E_{T}, j<k \\
y_{j} \in\{0,1\} \tag{9}\\
z_{i j k} \in\{0,1\} & \forall j \in J, \\
& \forall i \in I, \forall j, k \in J: j<k
\end{array}
$$

where M is a large enough constant. Constraints (7) and (8) would correspond with (1) and (2) of the SPLP. Co-location constraints (9) ensure that tied clients $\left(i, i^{\prime}\right) \in E_{T}$ are not allocated to non-overlapping pairs of facilities. Indeed, the constraints ensure that $z_{i j k}$ and $z_{i^{\prime} \ell t}$ cannot both take value one if $\{j, k\} \cap\{\ell, t\}=\emptyset$. Instead of (9), simply imposing $z_{i j k}+z_{i^{\prime} \ell t}$ for all $\left(i, i^{\prime}\right) \in E_{T}$ and different facility subscripts j, k, ℓ, t with $j<k$ and $\ell<t$ would have sufficed. Inequalities (9) are just one way of reinforce that simplest translation of co-location requirements into packing constraints. Finally, note that $\sum_{j \in J} \sum_{k>j} z_{i j k}=1$ for an optimal solution, because otherwise $M \gg 0$ is added to the objective value.

In the following section, we explore the relation between x-variables and z-variables. Using that relation, we compare the constraints of formulations $\left(\mathrm{DPLP}_{2}\right)$ and $\left(\mathrm{DPLP}_{3}\right)$ and the optimal solutions of their linear relaxations, ultimately concluding which formulation gives better bounds.

3. Comparing the formulations

Variables x and z are clearly related to each other. Given a client $i, z_{i j k}$ will be one if and only if $x_{i j}$ and $x_{i k}$ are. This is mathematically written as follows

$$
\begin{aligned}
z_{i j k} & =x_{i j} x_{i k} & \forall i \in I, j, k \in J, j<k \\
x_{i j} & =\sum_{k>j} z_{i j k}+\sum_{k<j} z_{i k j} & \forall i \in I, j \in J .
\end{aligned}
$$

140 We use the second formula, which is linear, to replace x in $\left(\mathrm{DPLP}_{2}\right)$ by the corresponding z-variables. The resulting formulation, which we name ($\mathrm{DPLP}_{3}{ }_{3}$), will be written in terms of decision variables y and z. We will use ($\mathrm{DPLP}^{\prime}{ }_{3}$) to compare the objective values of the linear relaxations of $\left(\mathrm{DPLP}_{2}\right)$ and $\left(\mathrm{DPLP}_{3}\right)$.

Starting with (4), we get

$$
\sum_{j \in J} x_{i j}=\sum_{j \in J}\left(\sum_{k>j} z_{i j k}+\sum_{k<j} z_{i k j}\right)=\sum_{j \in J} \sum_{k>j} z_{i j k}+\sum_{j \in J} \sum_{k<j} z_{i k j} .
$$

145 Constraints (4) can be written then as $\sum_{j \in J} \sum_{k>j} z_{i j k}+\sum_{j \in J} \sum_{k<j} z_{i k j}=2$, for all $i \in I$. Second, observe that (5) is (8) by substitution of $x_{i j}$ as a function of z. We last substitute in (6),

$$
\begin{align*}
& x_{i^{\prime} j}+x_{i^{\prime} j^{\prime}} \geq x_{i j}+x_{i j^{\prime}}-1 \equiv \\
& \sum_{k>j} z_{i^{\prime} j k}+\sum_{k<j} z_{i^{\prime} k j}+\sum_{k>j^{\prime}} z_{i^{\prime} j^{\prime} k}+\sum_{k<j^{\prime}} z_{i^{\prime} k j^{\prime}} \geq \sum_{k>j} z_{i j k}+\sum_{k<j} z_{i k j}+\sum_{k>j^{\prime}} z_{i j^{\prime} k}+\sum_{k<j^{\prime}} z_{i k j^{\prime}}-1 \equiv \\
& \sum_{k>j} z_{i j k}+\sum_{k<j} z_{i k j}+\sum_{k>j^{\prime}} z_{i j^{\prime} k}+\sum_{k<j^{\prime}} z_{i k j^{\prime}}-\sum_{k>j} z_{i^{\prime} j k}-\sum_{k<j} z_{i^{\prime} k j}-\sum_{k>j^{\prime}} z_{i^{\prime} j^{\prime} k}-\sum_{k<j^{\prime}} z_{i^{\prime} k j^{\prime}} \leq 1 . \tag{10}
\end{align*}
$$

In order to compare (10) with (9), we unfold the summation in the latter. For
${ }^{150}$ every $\left(i, i^{\prime}\right) \in E_{T}$ and $j, k \in J$ such that $j<k$,

$$
\begin{equation*}
\sum_{\ell} \sum_{\substack{t>\ell: \\\{j, k\} \cap\{\ell, t\}=\emptyset}} z_{i^{\prime} \ell t}=1-\left(\sum_{j^{\prime}>j} z_{i^{\prime} j j^{\prime}}+\sum_{j^{\prime}<j} z_{i^{\prime} j^{\prime} j}+\sum_{j^{\prime}>k} z_{i^{\prime} k j^{\prime}}+\sum_{\substack{j^{\prime}<k: \\ j^{\prime} \neq j}} z_{i^{\prime} j^{\prime} k}\right) . \tag{11}
\end{equation*}
$$

Let

$$
Z_{i^{\prime} j k}:=\sum_{j^{\prime}>j} z_{i^{\prime} j j^{\prime}}+\sum_{j^{\prime}<j} z_{i^{\prime} j^{\prime} j}+\sum_{j^{\prime}>k} z_{i^{\prime} k j^{\prime}}+\sum_{\substack{j^{\prime}<k: \\ j^{\prime} \neq j}} z_{i^{\prime} j^{\prime} k},
$$

which will be one if i^{\prime} is allocated to j, k or both and zero otherwise. Constraints (10) are then,

$$
Z_{i j k}+z_{i j k}-Z_{i^{\prime} j k}-z_{i^{\prime} j k} \leq 1
$$

while (9) can be rewritten as

$$
\begin{equation*}
z_{i j k}+1-Z_{i^{\prime} j k} \leq 1 \tag{12}
\end{equation*}
$$

We eventually obtain the following constraints and objective value for ($\mathrm{DPLP}_{3}{ }_{3}$):

$$
\begin{array}{ccl}
\left(\mathrm{DPLP}_{3}\right) \min & \sum_{j \in J} f_{j}\left(1-y_{j}\right)+\sum_{i \in I} \sum_{j \in J} c_{i j}\left(\sum_{k>j} z_{i j k}+\sum_{k<j} z_{i k j}\right) & \\
\text { s.t. } & \sum_{j \in J} \sum_{k>j} z_{i j k}+\sum_{j \in J} \sum_{k<j} z_{i k j}=2 & \forall i \in I \\
\sum_{k>j} z_{i j k}+\sum_{k<j} z_{i k j}+y_{j} \leq 1 & \forall i \in I, \forall j \in J \\
Z_{i j k}+z_{i j k}-Z_{i^{\prime} j k}-z_{i^{\prime} j k} \leq 1 & \forall\left(i, i^{\prime}\right) \in E_{T}, j<k \\
z_{i j k}, y_{j} \in\{0,1\} & \forall i \in I, \forall j, k \in J . \tag{14}
\end{array}
$$ following proposition shows that the LP bound obtained with $\left(\mathrm{DPLP}_{3}\right)$ is at least as good as that of $\left(\mathrm{DPLP}_{2}\right)$.

Proposition 1. The optimal value of the linear relaxation of $\left(D P L P_{2}\right)$ is less than or equal to that of $\left(D P L P_{3}\right)$.

Proof. Suppose that (\bar{z}, \bar{y}) is an optimal solution of the linear relaxation of $\left(\mathrm{DPLP}_{3}\right)$ and let \bar{f}_{3} be its objective value,

$$
\bar{f}_{3}:=\sum_{j \in J} f_{j}\left(1-\bar{y}_{j}\right)+\sum_{i \in I} \sum_{\substack { \\
j \in J \\
\begin{subarray}{c}{k \in J_{j} \\
k>j{ \\
j \in J \\
\begin{subarray} { c } { k \in J _ { j } \\
k > j } }\end{subarray}}\left(c_{i j}+c_{i k}-M\right) \bar{z}_{i j k}+M n .
$$

We define

$$
\bar{x}_{i j}=\sum_{k>j} \bar{z}_{i j k}+\sum_{k<j} \bar{z}_{i k j} \quad \forall i \in I, j \in J
$$

160 We will show that (\bar{x}, \bar{y}) is a feasible fractional solution of $\left(\mathrm{DPLP}_{2}\right)$ with objective value \bar{f}_{3}. Since $\left(\mathrm{DPLP}_{2}\right)$ is a minimization problem, this will prove the proposition.

Given that (\bar{z}, \bar{y}) is optimal, we know that $\sum_{j} \sum_{k>j} \bar{z}_{i j k}=1$ for all i. Then, (\bar{z}, \bar{y}) satisfies (13). Moreover, since (12) is stronger than (14), (\bar{z}, \bar{y}) is a feasible solution of the linear relaxation of $\left(\mathrm{DPLP}_{3}\right)$. Since $\left(\mathrm{DPLP}_{3}{ }_{3}\right)$ is formulation $\left(\mathrm{DPLP}_{2}\right)$ when $x_{i j}=\sum_{k>j} z_{i j k}+\sum_{k<j} z_{i k j}$, we conclude that (\bar{x}, \bar{y}) is a feasible solution of the linear relaxation of $\left(\mathrm{DPLP}_{2}\right)$.

The objective value of (\bar{x}, \bar{y}) is

$$
\begin{gathered}
\bar{f}_{2}:=\sum_{j \in J} f_{j}\left(1-\bar{y}_{j}\right)+\sum_{i \in I} \sum_{j \in J} c_{i j} \bar{x}_{i j}=\sum_{j \in J} f_{j}\left(1-\bar{y}_{j}\right)+\sum_{i \in I} \sum_{j \in J} c_{i j}\left(\sum_{k>j} \bar{z}_{i j k}+\sum_{k<j} \bar{z}_{i k j}\right) \\
=\sum_{j \in J} f_{j}\left(1-\bar{y}_{j}\right)+\sum_{i \in I} \sum_{j \in J} \sum_{k>j} c_{i j} \bar{z}_{i j k}+\sum_{i \in I} \sum_{j \in J} \sum_{k<j} c_{i j} \bar{z}_{i k j} .
\end{gathered}
$$

On the other hand, the fact that $\sum_{j} \sum_{k>j} \bar{z}_{i j k}=1$ for all $i \in I$ implies

$$
\bar{f}_{3}=\sum_{j \in J} f_{j}\left(1-\bar{y}_{j}\right)+\sum_{i \in I} \sum_{j \in J} \sum_{\substack{k \in J_{i} \\ k>j}}\left(c_{i j}+c_{i k}\right) \bar{z}_{i j k} .
$$

After rearranging the summations, we get $\bar{f}_{2}=\bar{f}_{3}$.

Proposition 1 does not ensure that the LP bounds of $\left(\mathrm{DPLP}_{2}\right)$ and $\left(\mathrm{DPLP}_{3}\right)$ do not always coincide. The following example illustrates that the LP bound of $\left(\mathrm{DPLP}_{3}\right)$ can be strictly greater than that of $\left(\mathrm{DPLP}_{2}\right)$.

Example 1. Consider an instance with $I=J=\{1, \ldots, 6\}$, opening costs $f_{j}=20$ for all $j \in J$ and allocation costs given by the following matrix

$$
c=\left(\begin{array}{llllll}
0 & 30 & 76 & 25 & 18 & 48 \\
30 & 0 & 45 & 50 & 14 & 38 \\
76 & 45 & 0 & 37 & 28 & 53 \\
25 & 50 & 37 & 0 & 60 & 15 \\
18 & 14 & 28 & 60 & 0 & 27 \\
48 & 38 & 53 & 15 & 27 & 0
\end{array}\right) .
$$

Figure 1 shows G_{T} for this example. The optimal solution of this instance is 272, with three facilities opened.

Figure 1: Graph G_{T} of Example 1

The optimal solution of the linear relaxation of $\left(D P L P_{2}\right)$ is

$$
\begin{aligned}
& x_{11}=0.5 \quad x_{14}=1 \quad x_{15}=0.5 \\
& x_{21}=0.5 \quad x_{22}=0.5 \quad x_{25}=0.5 \quad x_{26}=0.5 \\
& x_{33}=1 \quad x_{34}=1 \\
& x_{44}=1 \quad x_{46}=1 \\
& x_{52}=0.5 \quad x_{55}=0.5 \quad x_{56}=1 \\
& x_{64}=1 \quad x_{66}=1 \\
& y_{1}=0.5 \quad y_{2}=0.5 \quad y_{3}=1 \quad y_{4}=1 \quad y_{5}=0.5 \quad y_{6}=1,
\end{aligned}
$$

with optimal value 266.
The linear relaxation $\left(\mathrm{DPLP}_{3}\right)$ has optimal solution

$$
\begin{aligned}
& z_{115}=0.6 \quad z_{145}=0.4 \\
& z_{215}=0.6 \quad z_{225}=0.4 \\
& z_{334}=0.4 \quad z_{335}=0.6 \\
& z_{414}=0.2 \quad z_{436}=0.2 \quad z_{445}=0.4 \quad z_{446}=0.2 \\
& z_{515}=0.4 \quad z_{525}=0.4 \quad z_{556}=0.2 \\
& z_{645}=0.4 \quad z_{646}=0.4 \quad z_{656}=0.2 \\
& y_{1}=0.6 \quad y_{2}=0.4 \quad y_{3}=1 \quad y_{4}=0.8 \quad y_{5}=1 \quad y_{6}=0.6,
\end{aligned}
$$

with optimal value 268.4.

4. Clique facets

In this section, we identify some facets of the integer polytope of $\left(\mathrm{DPLP}_{3}\right)$,

$$
\mathcal{B}_{d p l p}:=\operatorname{conv}\left\{(z, y) \in\{0,1\}^{n \cdot \frac{m(m-1)}{2}} \times\{0,1\}^{m}:(7)-(9)\right\}
$$

Figure 2: A graph G_{T} of five tied clients, Example 2

In order to study the facial arrangement of $\mathcal{B}_{d p l p}$, we will leverage the set packing structure of $\left(\mathrm{DPLP}_{3}\right)$. Any set packing formulation, i.e., any linear program with a $0 / 1$ constraint matrix and a vector of ones as right-hand side, can be the density of the conflict graph, each family of constraints in $\left(\mathrm{DPLP}_{3}\right)$, namely $(7),(8)$ and (9), is illustrated separately for a restricted number of nodes.

Example 2. We consider an instance with five clients and four potential facility locations. The graph describing the tied pairs, G_{T}, is shown on Figure 2. Figures 3-5 illustrate constraints of $\left(D P L P_{3}\right)$ on $G_{d p l p}$. Circular nodes correspond with z-variables, and are tagged with proper subscripts ijk. Square nodes stand for y variables. For a clear illustration, only a sample of the edges are shown. Circular nodes are arranged in groups forming a matrix, each group corresponding to a

Figure 3: Edges in $G_{d p l p}$ corresponding with (7) and $i=2$
pair of facilities j, k with $j<k$ and having five nodes, one for each of the five clients.

Figure 3 depicts how edges link nodes that refer to the same client and corresponds to constraints (7) of ($D P L P_{3}$). Note that they define cliques. In fact, Figure 3 shows a clique of six nodes associated to client 2.

Figure 4 illustrates that nodes corresponding with the same client and facility are adjacent to the node of that facility. Such subsets of nodes also define cliques in $G_{\text {dplp }}$. The edges shown in this figure are due to constraints (8) in the model.

Finally, Figure 5 shows that the groups of nodes displayed in each entry (j, k) are also interconnected by means of the co-location constraints (9).

A first observation is that (9) can be generalized. Take the example depicted in Figure 5 and clients $i=3$ and $i^{\prime}=5,\left(i, i^{\prime}\right) \in E_{T}$. If we add two new plants with indices 5 and 6 , we will have co-location constraints

$$
z_{312}+z_{534}+z_{535}+z_{536}+z_{545}+z_{546}+z_{556} \leq 1,
$$

Figure 4: Edges in $G_{d p l p}$ corresponding with (8) when $i=1$ and $j=3$

Figure 5: Edges in $G_{d p l p}$ corresponding with (9), graph in Figure 2 and $i=3, i^{\prime}=1,2,5$, $j=1, k=2,3,4$

Figure 6: Clique in $G_{d p l p}(15)$ with $(3,5) \in E_{T}, J_{1}=\{1,2,3\}, J_{2}=\{4,5,6\}$

$$
z_{313}+z_{524}+z_{525}+z_{526}+z_{545}+z_{546}+z_{556} \leq 1
$$

for $(j, k)=(1,2)$ and $(j, k)=(1,3)$, respectively. However,

$$
z_{312}+z_{313}+z_{323}+z_{545}+z_{546}+z_{556} \leq 1
$$

which is illustrated by Figure 6, is also valid and not written in the formulation.
This corresponds to forbidding the pairs of facilities that serve tied clients 3 and 5 to be in two non-overlapping subsets of plants $J_{1}, J_{2} \subseteq J, J_{1} \cap J_{2}=\emptyset$. In the example above, $J_{1}=\{1,2,3\}$ and $J_{2}=\{4,5,6\}$, while (9) stand for the particular case of $J_{1}=\{j, \ell\}$ and $J_{2}=J \backslash\{j, \ell\}$.

Proposition 2. Let $\left(i_{1}, i_{2}\right) \in E_{T}$ and $J_{1}, J_{2} \subset J$ both containing at least two
different facilities and such that $J_{1} \cap J_{2}=\emptyset$. The following inequalities are valid for $\left(D P L P_{3}\right)$

$$
\begin{equation*}
\sum_{\substack{j_{1} \in J_{1}}} \sum_{\substack{k_{1} \in J_{1}: \\ k_{1}>j_{1}}} z_{i_{1} j_{1} k_{1}}+\sum_{\substack{j_{2} \in J_{2}}} \sum_{\substack{k_{2} \in J_{2}: \\ k_{2}>j_{2}}} z_{i_{2} j_{2} k_{2}} \leq 1 . \tag{15}
\end{equation*}
$$

Moreover, (15) are facets of $\mathcal{B}_{\text {dplp }}$ if and only if $J_{1} \cup J_{2}=J$. In particular, (9) are facets.

Proof. The fact that (15) are valid is clear from the problem definition. Indeed, ${ }_{220}$ using (9) and the hypothesis $J_{1} \cap J_{2}=\emptyset$, we know that

$$
z_{i_{1} j_{1} k_{1}}+\sum_{\substack{j_{2} \in J_{2}}} \sum_{\substack{k_{2} \in J_{2}: \\ k_{2}>j_{2}}} z_{i_{2} j_{2} k_{2}} \leq 1
$$

holds for every $j_{1}, k_{1} \in J_{1}, k_{1}>j_{1}$. On the other hand, due to (7), a double summation on the two subscripts running in J_{1} can be included in the previous inequality, yielding (15).

For the second statement of the proposition, we will prove that

$$
C:=(\bigcup_{\substack{j_{1} \in J_{1} \\ \underbrace{}_{1} \\ k_{1} \in J_{1}: \\ j_{1}>k_{1}}}\left\{z_{\left.i_{1} j_{1} k_{1}\right\}}\right\}) \bigcup\left(\bigcup_{\substack{j_{2} \in J_{2} \\ j_{2} \\ j_{2} \in J_{2}: \\ j_{2}>k_{2}}}\left\{z_{\left.i_{2} j_{2} k_{2}\right\}}\right\}\right)
$$

define a clique in $G_{d p l p}$ if and only if $J_{1} \cup J_{2}=J$.
Suppose first that $G_{d p l p}[C]$ is a clique and there is $j^{\prime} \in J \backslash\left\{J_{1} \cup J_{2}\right\}$. In this case

$$
\sum_{\substack{k_{1} \in J_{1}: \tag{16}\\
j^{\prime}>k_{1}}} z_{i_{1} j^{\prime} k_{1}}+\sum_{\substack{k_{1} \in J_{1}: \\
j^{\prime}<k_{1}}} z_{i_{1} k_{1} j^{\prime}}+\sum_{\substack{ }} \sum_{j_{1} \in J_{1}}^{k_{1} \in J_{1}:} \begin{align*}
& j_{1}>k_{1} \\
& j_{1} j_{1} k_{1}
\end{align*} \sum_{\substack{j_{2} \in J_{2}}} \sum_{\substack{k_{2} \in J_{2}: \\
j_{2}>k_{2}}} z_{i_{2} j_{2} k_{2}} \leq 1
$$

would be valid and stronger than (15), which is a contradiction.
Conversely, suppose that $J_{1} \cup J_{2}=J$. From the problem definition, we know that $G_{d p l p}[C]$ is a complete subgraph. Then, we have to prove that $G_{d p l p}[C]$ is a maximal complete subgraph. If there is $v \notin C$ such that $G_{d p l p}[C \cup\{v\}]$ is complete, then v does not correspond with a y-variable. This is clear, since a node y_{j} is adjacent only to $z_{i j k}$ and $z_{i k j}$ for all i and k. Since $J_{1} \cap J_{2}=\emptyset$, there cannot be a y-node adjacent to every node in C. Suppose then that v is
a z-node, i.e., $G_{d p l p}\left[C \cup\left\{z_{i^{\prime} j^{\prime} k^{\prime}}\right\}\right]$ is a complete subgraph, for some $i^{\prime}, j^{\prime}, k^{\prime}$. We proposition states that all the clique facets of $\mathcal{B}_{\text {dplp }}$ can be obtained in this way or are of the form (7) or (8).

Theorem 1. The only clique facets of $\mathcal{B}_{\text {dplp }}$ are (7), (8) and

$$
\begin{equation*}
\sum_{i \in C_{T}} \sum_{j \in J_{i}} \sum_{\substack{k \in J_{i}: \\ k>j}} z_{i j k} \leq 1 \tag{17}
\end{equation*}
$$

for all $C_{T} \subseteq I$ such that $G_{T}\left[C_{T}\right]$ is a complete subgraph, and for all $J_{i} \subseteq J$, $i \in C_{T}$, such that $\left|J_{i}\right| \geq 2, \cup_{i \in C_{T}} J_{i}=J$ and $J_{i} \cap J_{i^{\prime}}=\emptyset$ for every pair $i \not \neq \prime i$.

Proof. Suppose that $\pi z+\rho y \leq 1$ is a clique facet of $\mathcal{B}_{d p l p}$. We will show that it has to be one of the inequalities of the statement.

We analyze first the case in which $\rho_{j^{\prime}}=1$ for some $j^{\prime} \in J$, which readily implies $\rho_{j}=0$ for all $j \neq j^{\prime}$. Variables with positive π-coefficients have to be
which corresponds to (8).
Suppose now that $\rho_{j}=0$ for all $j \in J$. Let

$$
C:=\left\{z_{i j k}: \pi_{i j k}=1, i \in I, j, k \in J, j<k\right\}
$$

be the nodes of $G_{d p l p}$ corresponding with the clique facet $\pi z \leq 1$. Let

$$
C_{T}:=\left\{i \in I: z_{i j k} \in C \text { for some } j, k\right\}
$$

be the subset of clients that appear in the indices of the variables of C. We analyze two cases.

1. $C_{T}=\left\{i^{\prime}\right\}$. In this case, $C \subseteq\left\{z_{i^{\prime} j k}: j, k \in J, j<k\right\}$. Due to constraints (7), it has to be $C=\left\{z_{i^{\prime} j k}: j, k \in J, j<k\right\}$. In fact, clique facet $\pi z \leq 1$ corresponds precisely to (7).
2. $\left|C_{T}\right|>1$. In this case, edges of $G_{d p l p}[C]$ between nodes associated to different clients have to be due to (9), which are defined for every $\left(i, i^{\prime}\right) \in$ E_{T}. As a consequence, $G_{T}\left[C_{T}\right]$ is also a complete subgraph. For every $i \in C_{T}$, let $J_{i}^{1}:=\left\{j \in J: z_{i j k} \in C\right.$ for some $\left.k\right\}$ and $J_{i}^{2}:=\left\{k \in J: z_{i j k} \in\right.$ C for some $j\}$. We also define $J_{i}:=J_{i}^{1} \cup J_{i}^{2}$, the set of facilities indices that appear with client i in the variables of C. First, $J_{i} \cap J_{i^{\prime}}=\emptyset$ for all $i, i^{\prime} \in C_{T}$ since $\pi z \leq 1$ will not be valid otherwise. On the other hand, for all $i \in C_{T},\left\{(j, k) \in J \times J: z_{i j k} \in C\right\} \subseteq\left\{(j, k) \in J_{i} \times J_{i}: j<k\right\}$. If, for some $i^{\prime} \in C_{T}$, there was $\left(j^{\prime}, k^{\prime}\right)$ contained in the second subset but not in the first, $\pi z \leq 1$ could be improved by adding $z_{i^{\prime} j^{\prime} k^{\prime}}$ to its left-hand side, which contradicts the fact that it is a facet. Hence, $\{(j, k) \in J \times J$: $\left.z_{i j k} \in C\right\}=\left\{(j, k) \in J_{i} \times J_{i}: j<k\right\}$. It follows that $\pi z \leq 1$ has the form
of (17). It remains to prove that $\cup_{i \in C_{T}} J_{i}=J$. But now it is easy to see that $\pi z \leq 1$ could be improved if there was $j^{\prime} \in J \backslash\left(\cup_{i \in C_{T}} J_{i}\right)$, just by adding j^{\prime} to one of the subsets J_{i}.

Corollary 1. All the constraints of ($\left.D P L P_{3}\right)$ are facets.
Remark 1. In Theorem 1, $G_{T}\left[C_{T}\right]$ is a complete graph but C_{T} is not necessarily a clique. Indeed, (15) are a particular case of (17) when $C_{T}=\left\{i_{1}, i_{2}\right\}$ for $\left(i_{1}, i_{2}\right) \in E_{T}$, which is not necessarily a maximal complete subgraph. This is interesting because, to the best of our knowledge, there is no precedence in set packing of a clique facet ultimately induced by a not maximal complete subgraph.

5. Clique separation

The only clique facets of $\mathcal{B}_{\text {dplp }}$ that are not included in $\left(\mathrm{DPLP}_{3}\right)$ are that of family (17) with $\left|C_{T}\right|>2$ or $\left|C_{T}\right|=2$ and $\left|J_{i}\right| \geq 2, i \in C_{T}$. This section focuses on the latter, which belong to family (15). Given a tied pair $\left(i_{1}, i_{2}\right) \in E_{T}$, (15) define exponentially many inequalities, even when $J_{1} \cup J_{2}=J$. A separation algorithm is then needed to manage these inequalities within a branch and cut scheme. We will first prove the theoretical computational complexity of this problem and then provide a heuristic algorithm to approach it. These results can be extended to separation of the more general family (17). On the one hand, the theoretical complexity does not improve when the size of the partition (which coincides with $\left|C_{T}\right|$) increases. On the other hand, we will see that the proposed heuristic can be easily adapted. However, exhaustive separation of (17) is not expected to be rewarding. We will prefer to address the case $\left|C_{T}\right|=2$ when moving separation from theory to practice (see the computational study of next section).

Given a fractional optimal solution \bar{z}, and given an edge $\left(i_{1}, i_{2}\right) \in E_{T}$, the problem of separation of (15) is to find the partition of J in J_{1} and J_{2} that
maximizes

$$
\begin{equation*}
\sum_{\substack{j_{1} \in J_{1}}} \sum_{\substack{k_{1} \in J_{1}: \\ j_{1}>k_{1}}} \bar{z}_{i_{1} j_{1} k_{1}}+\sum_{\substack{j_{2} \in J_{2}}} \sum_{\substack{k_{2} \in J_{2}: \\ j_{2}>k_{2}}} \bar{z}_{i_{2} j_{2} k_{2}} . \tag{18}
\end{equation*}
$$

This problem can be identified with a max-cut problem in a graph. Given a graph $G=(V, E)$ with weights on its edges, the max-cut is to determine a subset $U \subseteq V$ such that the sum of the weights in the cut - the set of edges with one endnode in U and the other in $V \backslash U$ - is maximal. We identify the separation with the following especial case of max-cut, which we name double-cut.

Definition $1(D O U B L E-C U T)$. Let $G=(V, E)$ be a graph and let W^{1} and W^{2} be two matrices of weights for its edges, $W^{1}=\left(w_{j k}^{1}\right)_{i, k \in V}, W^{2}=\left(w_{j k}^{2}\right)_{i, k \in V}$, $w_{j k}^{1}, w_{j k}^{2} \in \mathbb{R}$. Given $W \in \mathbb{R}$, DOUBLE-CUT is to decide whether there is $V_{1} \subseteq V$ such that $\sum_{j \in V_{1}} \sum_{\substack{k \in V_{1}: \\ k>j}} w_{j k}^{1}+\sum_{j \notin V_{1}} \sum_{\substack{k \notin V_{1}: \\ k>j}} w_{j k}^{2} \geq W$.

We will show that the following problem can be reduced to the decision problem of Definition 1 in polynomial time.

Definition 2 (PARTITION). Let c_{1}, \ldots, c_{n} be integer, $c_{i} \in \mathbb{Z}$. PARTITION is to decide whether there is $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} c_{i}=\sum_{i \notin S} c_{i}$.

The partition problem is one of the six basic NP-complete problems in [22]. Then, giving a polynomial time reduction of PARTITION to DOUBLE-CUT implies that the latter is also NP-complete. The following proposition states and proves such a result.

Proposition 3. DOUBLE-CUT is NP-complete.
Proof. Suppose that $c_{1}, \ldots, c_{n} \in \mathbb{Z}$ is an instance of PARTITION. We will build an instance of DOUBLE-CUT that has positive answer if an only if there is $S \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in S} c_{i}=\sum_{i \notin S} c_{i}$.

Consider an instance of DOUBLE-CUT with $G=K_{n}$ the complete graph
of n nodes and the following weights

$$
\begin{aligned}
w_{j k}^{1}=w_{j k}^{2} & =-c_{j} \cdot c_{k} \quad \forall j, k \in V \\
W & =\frac{1}{2} \sum_{j \in V} c_{j}^{2}-\frac{1}{4}\left(\sum_{j \in V} c_{j}\right)^{2}
\end{aligned}
$$

DOUBLE-CUT has a positive answer if and only if there is $V_{1} \subseteq V$ such that

$$
\begin{equation*}
\sum_{j \in V_{1}} \sum_{\substack{k \in V_{1}: \\ k>j}}-c_{j} \cdot c_{k}+\sum_{j \notin V_{1}} \sum_{\substack{k \notin V_{1}: \\ k>j}}-c_{j} \cdot c_{k} \geq \frac{1}{2} \sum_{j \in V} c_{j}^{2}-\frac{1}{4}\left(\sum_{j \in V} c_{j}\right)^{2} \tag{19}
\end{equation*}
$$

We know that

$$
\sum_{j \in V_{1}} \sum_{\substack{k \in V_{1}: \\ k>j}}-c_{j} \cdot c_{k}=-\frac{1}{2}\left[\left(\sum_{j \in V_{1}} c_{j}\right) \cdot\left(\sum_{k \in V_{1}} c_{k}\right)-\sum_{j \in V_{1}} c_{j}^{2}\right] .
$$

The left-hand side of (19) is then

$$
\begin{gathered}
-\frac{1}{2}\left[\left(\sum_{j \in V_{1}} c_{j}\right) \cdot\left(\sum_{k \in V_{1}} c_{k}\right)+\left(\sum_{j \notin V_{1}} c_{j}\right) \cdot\left(\sum_{k \notin V_{1}} c_{k}\right)-\sum_{j \in V} c_{j}^{2}\right] \\
=\frac{1}{2}\left[\sum_{j \in V} c_{j}^{2}-\left(\sum_{j \in V_{1}} c_{j}\right)^{2}-\left(\sum_{j \notin V_{1}} c_{j}\right)^{2}\right] .
\end{gathered}
$$

In general, function $X^{2}+Y^{2}$ when $X+Y$ is constant attains its minimum at $X=Y$. If we call

$$
X=\sum_{j \in V_{1}} c_{j} \quad \text { and } \quad Y=\sum_{j \notin V_{1}} c_{j}
$$

the left-hand side of (19) attains its maximum when $X^{2}+Y^{2}$ attains its minimum, i.e., when $\sum_{j \in V_{1}} c_{j}=\sum_{j \notin V_{1}} c_{j}=\left(\sum_{j \in V} c_{j}\right) / 2$. In such a case, the left-hand side of (19) would be

$$
\frac{1}{2}\left[\sum_{j \in V} c_{j}^{2}-2 \cdot\left(\frac{\sum_{j \in V} c_{j}}{2}\right)^{2}\right]=\frac{1}{2} \sum_{j \in V} c_{j}^{2}-\frac{1}{4}\left(\sum_{j \in V} c_{j}\right)^{2}=W
$$

330 Then, DOUBLE-CUT can only have positive answer when (19) is satisfied as an equality, which happens if and only if there is $V_{1} \subseteq V$ such that $\sum_{j \in V_{1}} c_{j}=$ $\sum_{j \notin V_{1}} c_{j}$.

Corollary 2. The separation of (15) when $J_{1} \cup J_{2}=J$ is NP-hard.

Given the computational complexity of separation, we propose an algorithm that, given an optimal fractional solution \bar{z} and a pair of tied clients $\left(i_{1}, i_{2}\right) \in$ E_{T}, tries to maximize (18) heuristically. An initial partition $J_{1}, J_{2} \subseteq J$ is considered at first. Facilities are moved from J_{1} to J_{2} and viceversa whenever this produces an increment of (18) and the number of elements is not below three for any of the subsets. If (18) is eventually greater than one, the corresponding inequality is added as a cut. Algorithm 1 describes the pseudo code of the separation heuristic, which is applied for every pair in E_{T} in each callback. Note that the idea of the algorithm can be also applied to i_{1}, i_{2}, i_{3} pairwise adjacent, i.e., inducing a triangle in G_{T}. Partition will be then made of three subsets, $J_{1}, J_{2}, J_{3} \subseteq J$, and a larger combinatorial number of possible movements among their components have to be checked.

6. Computational study

The aim of our computational study is twofold. First, we are interested in providing an empirical comparison between the LP bounds of $\left(\mathrm{DPLP}_{2}\right)$ and $\left(\mathrm{DPLP}_{3}\right)$. Second, we intend to validate the separation heuristic applied on (DPLP_{3}) and test its relative performance with respect to bare formulations $\left(\mathrm{DPLP}_{2}\right)$ and $\left(\mathrm{DPLP}_{3}\right)$.

6.1. Experimental setup

The machine used was an Intel Xeon CPU at $3 \mathrm{Ghz} \times 8$, with 16 GB of RAM. Our testbed was based on four instances of the OR-Library, namely pmed1, pmed2, pmed3 and pmed4, see [23]. In the implementation of $\left(\mathrm{DPLP}_{3}\right)$, instead of (7), we consider the equality constraints $\sum_{j \in J} \sum_{k>j} z_{i j k}=1$ for all $i \in I$, which avoids the use of a big M in the objective.

As already mentioned in previous section, the heuristic described on Algorithm 1, which address the case $\left|C_{T}\right|=2$, can be adapted to separate other inequalities of the family (17). A preliminary computational study was conducted to check the performance of the heuristic when adapted to $\left|C_{T}\right| \in\{2,3\}$.

> | Algorithm 1 Separation heuristic | |
| :--- | :--- |
| | |
| Input | $\bar{z}:$ fractional solution of $\left(\mathrm{DPLP}_{3}\right)$ |
| | $\left(i_{1}, i_{2}\right) \in E_{T}:$ pair of tied clients. |
| | $\epsilon:$ tolerance for cut violation. |

Variables J_{1} : first subset of facility indices.
J_{2} : second subset of facility indices.
$Z_{i_{1} j}\left(J_{1}\right)$: the contribution of j to the left-hand side of the cut when $j \in J_{1}$.
$Z_{i_{2} j}\left(J_{2}\right)$: the contribution of j to the left-hand side of the cut when $j \in J_{2}$.
Output cut: a cut in the family (15) violated by \bar{z}, if exists.

Step $1 \quad J_{1}=\{1, \ldots,\lfloor(m+1) / 2\rfloor\}, J_{2}=\{\lfloor(m+1) / 2\rfloor+1, \ldots, m\}$.

Repeat

Step 2 improved $=$ false
Step 3 If $\left|J_{1}\right| \geq 3$, for all $j \in J_{1}$ do:
$3.1 Z_{i_{1} j}\left(J_{1}\right)=\sum_{\substack{k_{1} \in J_{1}: \\ k_{1}<j}} \bar{z}_{i_{1} k_{1} j}+\sum_{\substack{k_{1} \in J_{1} \\ k_{1}>j}} \bar{z}_{i_{1} j k_{1}}$.
3.2 $Z_{i_{2} j}\left(J_{2}\right)=\sum_{\substack{k_{2} \in J_{2}: \\ k_{2}<j}} \bar{z}_{i_{2} k_{2} j}+\sum_{\substack{k_{2} \in J_{2} \\ k_{2}>j}}: \bar{z}_{i_{2} j k_{2}}$.
3.3 If $Z_{i_{1} j}\left(J_{1}\right)<Z_{i_{2} j}\left(J_{2}\right)$ then

$$
\begin{array}{ll}
J_{1}=J_{1} \backslash\{j\} ; & J_{2}=J_{2} \cup\{j\} ; \\
\text { improved }=\text { true } ; & \text { break } ;
\end{array}
$$

Step 4 If $\left|J_{2}\right| \geq 3$, for all $j \in J_{2}$ do:
4.1 $Z_{i_{1} j}\left(J_{1}\right)=\sum_{\substack{k_{1} \in J_{1}: \\ k_{1}<j}} \bar{z}_{i_{1} k_{1} j}+\sum_{\substack{k_{1} \in J_{1}: \\ k_{1}>j}} \bar{z}_{i_{1} j k_{1}}$.
4.2 $Z_{i_{2} j}\left(J_{2}\right)=\sum_{\substack{k_{2} \in J_{2}: \\ k_{2}<j}} \bar{z}_{i_{2} k_{2} j}+\sum_{\substack{k_{2} \in J_{2} \\ k_{2}>j}} \bar{z}_{i_{2} j k_{2}}$.
4.3 If $Z_{i_{1} j}\left(J_{1}\right)>Z_{i_{2} j}\left(J_{2}\right)$ then
$J_{1}=J_{1} \cup\{j\} ; \quad J_{2}=J_{2} \backslash\{j\} ;$
improved $=$ true; break;
Until not improved
Step 5 If $\sum_{j_{1} \in J_{1}} \sum_{\substack{k_{1} \in J_{1}: \\ j_{1}>k_{1}}} \bar{z}_{i_{1} j_{1} k_{1}}+\sum_{j_{2} \in J_{2}} \sum_{\substack{k_{2} \in J_{2}: \\ j_{2}>k_{2}}} \bar{z}_{i_{2} j_{2} k_{2}}>1+\epsilon$ then cut $=\sum_{j_{1} \in J_{1}} \sum_{\substack{k_{1} \in J_{1}: \\ j_{1}>k_{1}}} z_{i_{1} j_{1} k_{1}}+\sum_{j_{2} \in J_{2}} \sum_{\substack{k_{2} \in J_{2}: \\ j_{2}>k_{2}}} z_{i_{2} j_{2} k_{2}} \leq 1$
else $c u t=\emptyset$
Step 6 Return cut.

Graph G_{T} was generated having many triangles, so that structures $\left|C_{T}\right|=3$ were found. For every $i \in\{1, \ldots,\lfloor n / 2\rfloor\}, E_{T}$ had edges $(i, n-i+1),(i, 2 i)$, $(2 i, n-i+1),(n-i, n-i+1)$ and $(i, n-i)$. The results are shown on Table 3. Dual bounds are the same in almost all the cases, except for those depicted in bold. Running times are not always smaller for one of the alternatives. However, we observe that the improvement of the adapted heuristic is not significant in comparison to those cases when it represents the worst alternative. For instance, when $n=30$ in file pmed3, the adapted heuristic spends more than 100 seconds more than Algorithm 1. Conversely, the adapted heuristic saves no more than 30 seconds with respect to Algorithm 1 in the best cases. In view of these results, we decided to conduct experiments only with the heuristic of Algorithm 1.

For our computational study, we have taken $n=m=10,15,20,25,30,35$, 40. Since Beasley's instances have 100 clients, we have to trim Beasley's matrices $\left(c_{i j}\right)$ to obtain the desired size. A range of constant vectors are considered for the opening costs, for all $j \in J, f_{j}=50,75,100,125,150,175,200$. These costs will imply opening from 12.5% to 68% of candidate facilities in the optimal solution. The testbed is then made of 4 (Beasley's) $\times 7$ (size) $\times 7$ (opening costs)=196 instances in total. Graph G_{T} is generated depending on the size of the instance, i.e., on n. For every $i \in\{1, \ldots,\lfloor n / 2\rfloor\}$ edges $(i, n-i+1)$ and $(i, 2 i)$ are added to E_{T}, which gives graphs with density $\frac{2}{n} \times 100(\%)$.

Each instance of the testbed is solved under four different configurations in Fico Xpress Mosel 64-bit v4.8.4. Default cutting planes, heuristics and presolving strategies are disabled for all the experiments. The configurations are

- C_{1} : formulation (DPLP_{2}),
- C_{2} : formulation (DPLP_{3}),
- C_{3} : formulation $\left(\mathrm{DPLP}_{3}\right)$ and callbacks to Algorithm 1 at the root node of the branching tree,

File	n	f_{j}	OPT	LP		Time (s.)		NodesBB	
				$\left\|C_{T}\right\|=2$	$\left\|C_{T}\right\| \in\{2,3\}$	$\left\|C_{T}\right\|=2$	$\left\|C_{T}\right\| \in\{2,3\}$	$\left\|C_{T}\right\|=2$	$\left\|C_{T}\right\| \in\{2,3\}$
pmed1	10	50	921	921.0	921.0	0.1	0.3	1	1
pmed1	10	100	1161	1161.0	1161.0	0.1	0.1	1	1
pmed1	20	50	2272	2272.0	2272.0	6.3	5.4	1	1
pmed1	20	100	2688	2688.0	2688.0	5.7	4.7	1	1
pmed1	30	50	3410	3410.0	3410.0	139.9	122.0	1	1
pmed1	30	100	3943	3943.0	3943.0	183.7	149.2	1	1
pmed2	10	50	1340	1340.0	1340.0	0.2	0.1	1	1
pmed2	10	100	1590	1590.0	1590.0	0.2	0.1	1	1
pmed2	20	50	2717	2717.0	2717.0	6.3	4.5	1	1
pmed2	20	100	3175	3175.0	3175.0	7.6	5.1	1	1
pmed2	30	50	3969	3969.0	3969.0	110.6	125.1	1	1
pmed2	30	100	4499	4499.0	4499.0	131.4	126.1	1	1
pmed3	10	50	976	976.0	976.0	0.1	0.2	1	1
pmed3	10	100	1209	1209.0	1209.0	0.1	0.1	1	2
pmed3	20	50	2595	2588.0	2588.0	16.5	20.8	5	1
pmed3	20	100	2983	$\mathbf{2 9 7 5 . 2}$	$\mathbf{2 9 7 9 . 3}$	15.4	14.4	13	21
pmed3	30	50	4108	4108.0	4108.0	295.3	379.8	1	3
pmed3	30	100	4687	$\mathbf{4 6 7 2 . 4}$	$\mathbf{4 6 7 3 . 0}$	332.4	483.4	21	1
pmed4	10	50	1442	1442.0	1442.0	0.1	0.1	1	11
pmed4	10	100	1701	1701.0	1701.0	0.1	0.1	1	1
pmed4	20	50	3165	$\mathbf{3 1 6 3 . 0}$	$\mathbf{3 1 6 5 . 0}$	11.3	11.2	1	1
pmed4	20	100	3627	3627.0	3627.0	10.9	11.7	1	1
pmed4	30	50	4491	4491.0	4491.0	183.5	168.4	1	1
pmed4	30	100	5019	5019.0	5019.0	140.4	154.8	1	1
								1	1

Table 3: Preliminary test to check the performance when adapting the heuristic

- C_{4} : formulation $\left(\mathrm{DPLP}_{3}\right)$ and callbacks to Algorithm 1 throughout the branching tree.

Time limit is set to half an hour for all the experiments. The last two configurations solved all the instances within the time limit. Formulations (DPLP_{2}) to manage is probably one of the factors that influence higher running times of $\left(\mathrm{DPLP}_{3}\right)$. The fact that many of the instances are solved at the root when cuts are added is consistent with the extremely tight LP gaps that we get in and $\left(\mathrm{DPLP}_{3}\right)$ solved 122 and 110 instances, respectively.

Tables 4 and 5 show the computational results. The LP gap, running time and the number of nodes explored during the branching are displayed in different columns for the different configurations. The LP gap is relative to the optimal value, and is calculated as a percentage. When Algorithm 1 is used, the LP gap is calculated using the LP bound after adding the cuts at the root node. Due to the large number of instances, we have to display average results. Table 4 shows results on average throughout different costs f_{j} considered, for every Beasley's file and size. On the other hand, computational results are averaged by input size n on Table 5 , where a row is displayed for every Beasley's file and opening cost constant vector. The following section discusses the results.

6.2. Comparative analysis

From Table 4, we can see that $\left(\mathrm{DPLP}_{2}\right)$ and $\left(\mathrm{DPLP}_{3}\right)$ fail to solve the bigger instances, namely those with $n=35,40$. Moreover, $\left(\mathrm{DPLP}_{3}\right)$ still has difficulties to cope when $n=30$. Using the separation heuristic with $\left(\mathrm{DPLP}_{3}\right)$ can dramatically improve the running time to the point of solving all the instances within 538 seconds. Such an improvement with respect to $\left(\mathrm{DPLP}_{2}\right)$ and $\left(\mathrm{DPLP}_{3}\right)$ begins to appear with $n=20$. Columns concerning the nodes of the branch and bound tree also reflect a better performance when the separation is incorporated to the solving procedure. Nevertheless, as opposed to running times, $\left(\mathrm{DPLP}_{3}\right)$ explores less nodes than $\left(\mathrm{DPLP}_{2}\right)$ to obtain the optimal solution. This makes very much sense since $\left(\mathrm{DPLP}_{3}\right)$ LP bounds are better. The number of variables those cases. On the other hand, as expected from the theoretical findings, the

File	n	LP GAP			Time (s.)				NodesBB			
		C_{1}	C_{2}	C_{3}	C_{1}	C_{2}	C_{3}	C_{4}	C_{1}	C_{2}	C_{3}	C_{4}
pmed1	10	4.3	2.2	0.1	0.0	0.3	0.2	0.0	29	19	1	1
	15	14.5	8.8	0.0	0.4	3.5	1.0	0.4	3664	572	1	1
	20	13.5	9.0	0.1	21.3	41.6	4.0	2.4	83068	5408	1	1
	25	12.8	8.5	0.0	267.2	456.9	15.2	9.4	459087	22114	1	1
	30	15.7	9.8	0.1	722.5	1050.3	105.5	50.7	528145	11028	20	7
	35	18.4	11.5	0.0	1088.2	1210.7	293.5	149.6	385108	4265	1	1
	40	21.2	14.0	0.1	1200.2	1213.3	885.1	488.4	303871	1877	4	4
pmed2	10	13.0	6.8	0.0	0.1	0.5	0.1	0.1	218	115	1	1
	15	14.2	8.8	0.0	0.3	3.7	0.5	0.5	1566	955	1	1
	20	16.0	8.7	0.0	3.5	35.9	2.5	2.5	15747	5916	3	2
	25	17.6	8.1	0.0	37.3	165.0	9.2	9.3	61588	5258	2	1
	30	19.9	11.9	0.2	879.9	1203.5	47.4	48.7	600064	14171	18	9
	35	21.0	12.7	0.1	1200.2	1209.4	113.2	130.2	365431	5046	5	4
	40	22.2	13.6	0.1	1200.1	1214.8	483.3	509.7	209979	1660	12	6
pmed3	10	6.4	2.0	0.0	0.0	0.3	0.0	0.1	18	16	1	1
	15	11.5	5.8	0.1	0.3	4.3	0.4	0.4	820	598	1	1
	20	22.2	14.6	0.0	250.1	357.3	3.0	2.9	747206	67113	1	1
	25	20.2	15.0	0.0	514.6	649.6	11.0	11.0	942326	26338	2	1
	30	21.0	14.6	0.0	916.3	1204.2	48.9	48.0	814889	13579	2	1
	35	25.4	17.1	0.2	1200.2	1209.7	216.8	219.7	472411	4249	26	1
	40	24.0	15.7	0.0	1200.3	1214.3	534.6	538.4	238041	1494	2	2
pmed4	10	14.6	6.5	0.0	0.3	0.7	0.1	0.1	180	253	1	1
	15	11.7	6.4	0.0	1.0	3.5	0.4	0.4	1300	560	1	1
	20	13.1	7.0	0.0	8.0	26.3	2.4	2.4	16690	2244	2	1
	25	18.5	10.6	0.2	469.7	675.4	11.6	11.3	713877	29653	8	4
	30	18.8	9.8	0.0	621.9	1116.3	39.2	40.6	514557	7849	2	1
	35	20.8	12.6	0.0	1200.2	1210.1	133.3	138.5	380402	4950	2	2
	40	22.2	14.3	0.1	1200.4	1210.0	460.5	466.6	229642	3005	17	3

Table 4: Average computational results as a function of source file and n

Figure 7: Percentage of instances within different LP gaps

LP gap is always smaller for $\left(\mathrm{DPLP}_{3}\right)$, being the difference with $\left(\mathrm{DPLP}_{2}\right)$ more noticeable with the increase of the problem size.

Table 5 allows to compare the formulations when opening costs change. We observe that the instances with tightest gaps are those with highest opening costs, for which fewer facilities are open in an optimal solution. Conversely, running times do not seem to directly depend on f_{j} in overall terms, nor does the number of nodes explored in the branching.

We further provide several charts that better illustrates the comparison of the four configurations. These depict, for every configuration, an step function to represent the number of instances solved in total after some time or some nodes of the branching tree. LP gaps throughout the testbed are also represented with step functions.

File	f_{j}	LP GAP			Time (s.)				NodesBB			
		C_{1}	C_{2}	C_{3}	C_{1}	C_{2}	C_{3}	C_{4}	C_{1}	C_{2}	C_{3}	C_{4}
pmed1	50	25.8	16.6	0.0	703.7	667.7	164.0	90.3	750966	15994	2	2
	75	20.0	12.6	0.0	594.9	702.2	182.0	98.4	366724	12417	1	1
	100	15.8	10.1	0.1	525.9	616.7	199.7	104.8	217873	6765	12	5
	125	12.6	8.1	0.0	517.8	551.5	197.9	105.7	214929	3921	9	3
	150	10.1	6.4	0.0	368.9	534.1	186.3	102.2	80211	2830	1	1
	175	8.6	5.3	0.0	351.8	478.7	187.2	102.9	103523	2052	2	3
	200	7.5	4.6	0.1	236.9	425.6	187.4	96.6	28744	1304	3	2
pmed2	50	28.7	16.9	0.1	527.4	554.7	79.0	86.5	377056	8417	4	2
	75	23.7	13.7	0.0	530.3	578.9	85.9	94.1	285738	8135	4	3
	100	19.6	11.3	0.0	521.0	553.1	107.4	112.4	191922	4750	16	4
	125	16.3	9.1	0.0	516.0	542.7	91.6	100.7	165141	3559	1	1
	150	13.9	7.6	0.0	422.5	536.5	92.0	100.9	96590	3260	2	2
	175	11.8	6.5	0.1	412.3	535.3	97.8	105.9	74852	2485	5	4
	200	9.9	5.5	0.1	391.7	531.5	102.6	100.6	63294	2513	12	8
pmed3	50	29.9	19.2	0.1	834.4	825.1	101.7	103.7	1161895	46920	2	2
	75	24.7	15.8	0.0	753.3	816.7	125.6	128.2	794468	33435	9	3
	100	20.4	13.1	0.0	681.9	731.8	124.2	118.7	560321	13682	3	1
	125	17.1	11.1	0.0	540.4	603.0	129.7	124.8	297781	7011	1	1
150	14.8	9.7	0.0	521.7	560.8	123.1	123.0	216003	4973	3	2	
	175	12.8	8.5	0.1	387.8	551.6	117.0	120.3	111752	4010	14	11
	200	11.1	7.5	0.0	362.3	550.6	93.4	101.8	73489	3356	3	2
50	28.7	16.9	0.0	690.6	670.9	79.7	82.8	642622	16419	2	2	
	75	23.3	13.2	0.0	687.4	686.7	85.1	88.5	548154	12506	2	2
	100	19.1	10.6	0.1	593.0	694.4	91.4	98.4	343380	8601	1	1
	125	15.6	8.5	0.0	432.8	586.2	88.4	92.6	116445	3913	1	1
	150	13.0	7.0	0.1	379.9	593.2	92.9	92.1	72110	3416	5	2
175	10.8	5.8	0.0	363.3	514.9	114.9	106.7	87922	2167	16	2	
	200	9.1	5.0	0.1	354.6	496.2	95.0	98.7	46012	1492	5	4

Table 5: Average computational results as a function of source file and costs f_{j}

Figure 8: Percentage of solved instances as a function of time

To begin with, a comparison of the LP gaps is given in Figure 7. The ordinate axis shows the percentage of instances that have an LP gap smaller than each LP gap mark. The figure shows relative gaps within the optimumwhich is known for all the instances- and the linear relaxations of $\left(\mathrm{DPLP}_{2}\right)$ and $\left(\mathrm{DPLP}_{3}\right)$ when no cut is added and after adding the cuts to the root. On the one hand, experiments support Proposition 1, i.e., the LP gap is always tighter for $\left(\mathrm{DPLP}_{3}\right)$. On the other hand, applying the separation heuristic at the root surprisingly closes the gap in almost all the cases. This suggests that clique facets (15) are very close to cover the side of the polyhedron $\mathcal{B}_{d p l p}$ that faces towards the direction of optimization.

Figure 8 gives a comparison of the running times of the four configurations tested. The abscissa axis shows the time in seconds. The ordinate axis shows the

Figure 9: Percentage of solved instances as a function of the nodes of the branching tree
percentage of instances that are solved before each time tick mark. According to our experiments, $\left(\mathrm{DPLP}_{2}\right)$ clearly outperforms $\left(\mathrm{DPLP}_{3}\right)$. However, when the separation heuristic is incorporated to $\left(\mathrm{DPLP}_{3}\right)$, things turn out differently. The resulting configurations solve about 70% of the instances in 75 seconds, while $\left(\mathrm{DPLP}_{2}\right)$ can only solve 62% of the instances within the time limit.

Finally, Figure 9 compares the four configurations in terms of the nodes of the branching tree. The abscissa axis shows the number of nodes in the tree, and the ordinate axis depicts the percentage of instances solved up to those number of nodes. Formulations $\left(\mathrm{DPLP}_{2}\right)$ and $\left(\mathrm{DPLP}_{3}\right)$ present a very similar performance in overall terms. The use of the separation heuristic sharply reduces the size of the tree, which consists of only one node for more than 70% of the instances and no more than 50 nodes throughout the testbed.

7. Conclusions

In this work, a new variant of one of the fundamentals problems in discrete location is proposed and studied. Specifically, we propose a modification of the Simple Plant Location Problem where double assignment is considered and some pairs of clients have to share at least one common facility. A set packing three-indexed formulation is proposed and its linear relaxation is proved to provide better bounds than that of a formulation with classic variables. The facial structure of the proposed set packing polytope is investigated and all its clique facets are uncovered. A separation heuristic for the devised inequalities is designed and tested in a computational study. Our experiments reflect the utility of clique inequalities and support the theoretical comparison of the formulations considered.

Our work can be extended for the more general case of multiple assignment (each client allocated to three, four... facilities). We could write a formulation analogous to $\left(\mathrm{DPLP}_{3}\right)$ but with four, five... indices for the z-variables. The ideas to obtain the clique facets would be still valid for the resulting formulation. However, the number of variables would grow exponentially with the number of assignments considered.

References

[1] J. Krarup, P. Pruzan, The simple plant location problem: Survey and synthesis, European Journal of Operational Research 12 (1983) 36-81.
[2] G. Laporte, S. Nickel, F. S. da Gama (Eds.), Location Science, Springer International Publishing, 2015.
[3] D. Cho, E. Johnson, W. Padberg, M. Rao, On the uncapacitated plant location problem I: valid inequalities and facets, Mathematics of Operations Research 8 (4) (1983) 579-589.
[4] M. Labbé, H. Yaman, Projecting the flow variables for hub location problems, Networks: An International Journal 44 (2) (2004) 84-93.
[5] G. Cornuéjols, M. Fisher, G. Nemhauser, On the uncapacitated location problem, Annals of Discrete Mathematics 1 (1977) 163-177.
[6] M. Guignard, Fractional vertices, cuts and facets of the simple plant location problem, Mathematical Programming 12 (1980) 150-162.
[7] G. Cornuéjols, J. Thizy, Some facets of the simple plant location polytope, Mathematical Programming 23 (1982) 50-74.
[8] L. Cánovas, M. Landete, A. Marín, On the facets of the simple plant location packing polytope, Discrete Applied Mathematics 124 (2002) 27-53.
[9] A. Warszawski, Multi-dimensional location problems, Operational Research Quarterly 24 (2) (1973) 165-179.
[10] L. Cánovas, S. García, M. Labbé, A. Marín, A strengthened formulation for the simple plant location problem with order, Operations Research Letters 35 (2) (2007) 141-150.
[11] C. Swamy, D. B. Shmoys, Fault-tolerant facility location, ACM Transactions on Algorithms 4 (4) (2008) 51.
[12] T. Cui, Y. Ouyang, Z. Shen, Reliable facility location design under the risk of disruptions, Operations Research 58 (4) (2010) 998-1011.
[13] T. Xifeng, Z. Ji, X. Peng, A multi-objective optimization model for sustainable logistics facility location, Transportation Research Part D: Transport and Environment 22 (2013) 45-48.
[14] E. Fernández, M. Landete, Fixed-charge facility location problems, in: G. Laporte, S. Nickel, F. S. da Gama (Eds.), Location Science, Springer International Publishing, 2015, pp. 47-77.
[15] M. Fischetti, I. Ljubić, M. Sinnl, Redesigning benders decomposition for large-scale facility location, Management Science 63 (7) (2016) 2146-2162.
[22] M. Garey, D. Johnson, Computers and intractability : a guide to the theory of NP-completeness, W.H. Freeman \& Co, New York, 1979.
[23] J. Beasley, Or-library, Available at http://people.brunel.ac.uk/ ~mastjjb/jeb/orlib/pmedinfo.html (1990).

[^0]: ${ }^{2}$ Research supported by the Ministerio de Economía y Competitividad, project MTM2015-65915-R and Ministerio de Educación, Cultura y Deporte, PhD grant FPU15/05883.

 * Corresponding author

 Email addresses: amarin@um.es (Alfredo Marín),
 pelegringarcia@lix.polytechnique.fr (Mercedes Pelegrín)

