
HAL Id: hal-03493309
https://hal.science/hal-03493309

Submitted on 17 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The double-assignment plant location problem with
co-location

Alfredo Marín, Mercedes Pelegrín

To cite this version:
Alfredo Marín, Mercedes Pelegrín. The double-assignment plant location problem with co-location.
Computers and Operations Research, 2021, 126, pp.105059 -. �10.1016/j.cor.2020.105059�. �hal-
03493309�

https://hal.science/hal-03493309
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


The double-assignment plant location problem with
co-location I

Alfredo Maŕına, Mercedes Pelegŕınb,∗

aDepartment of Statistics and Operational Research, University of Murcia, Spain
bLIX, École Polytechnique, 91128 Palaiseau Cedex, France

Abstract

In this paper, a new variant of the Simple Plant Location Problem is proposed.

We consider additional conditions in the classic location-allocation problem for

clients and facilities. Namely, some pairs have to be served by a common plant.

The resulting problem can be addressed with existing models for the case of

single assignment. However, to the best of our knowledge, the proposed setting

when each client must be assigned to a couple of facilities is still unexplored.

We examine the implications of adding such new constraints to standard for-

mulations of the SPLP with double assignment. We compare the resulting for-

mulations from a theoretical point of view. After that, we focus on the study of

one of the models, which turned out to be a set packing problem. All the clique

facets are identified and a separation algorithm is devised. Although the sep-

aration problem is proved to be NP-hard, our computational experience shows

that the separation algorithm is effective and efficient, reducing computational

times and duality gaps for all the instances tested.

Keywords: Discrete Location, Set Packing, Clique Facets, Separation

Heuristic

2010 MSC: 90C10, 90B80, 90C90

IResearch supported by the Ministerio de Economı́a y Competitividad, project MTM2015-
65915-R and Ministerio de Educación, Cultura y Deporte, PhD grant FPU15/05883.
∗Corresponding author
Email addresses: amarin@um.es (Alfredo Maŕın),

pelegringarcia@lix.polytechnique.fr (Mercedes Pelegŕın)

Preprint submitted to Computers and Operations Research June 8, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0305054820301763
Manuscript_30f5c0e9a4f03bb5ac838d8b5bf5f28b

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0305054820301763
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0305054820301763


1. Introduction

Facility location has been one of the most fruitful areas within operations

research (see [1, 2]). One of the reasons is that decision making certainly includes

strategic infrastructure layout in almost every corporation, public or private.

Industrial companies have to locate their facilities and warehouses so as to5

reach clients in their marketplaces; government agencies usually decide on the

location of schools, hospitals, emergency services, etc. Other than its wide range

of applications, the area also entails theoretical challenges, see for instance [3] or

[4]. In this paper we study a variant of a well-known model in facility location,

which, as far as we know, has not been investigated yet.10

One of the seminal problems in discrete location is to decide on sites to in-

stall a set of identical facilities and on how clients are allocated to them. The

problem, which has been known as Simple Plant Location Problem (SPLP)

or Uncapacitated Facility Location Problem, has been extensively studied by

operational researchers [3, 5, 6, 7, 8]. The simplicity of the model has been15

fundamental as a base for the development of locational analysis, and at the

same time has given room for studying a range of variants. Extensions include

those considering specialized facilities in different product types [9], customer

preferences [10], risk of disruptions in the distribution system [11, 12] or models

seeking for sustainable logistics [13]. For more references, see surveys [1] or [14],20

which focus on the SPLP. It is worth mentioning that [15] presented a Ben-

ders decomposition more recently, which found optimal solutions for previously

unsolved instances of up to 3000 clients and location candidates and obtained

speedups of several orders of magnitude with respect to other methods.

In this work, we propose a new modification of the SPLP, which considers25

new requirements in relation to the allocation of clients to facilities. The new

variant can be considered to belong to the same family than that introduced in

[20]. In that previous work, some pairs of clients were supposed to be incom-

patible, that is, they could not be assigned to the same facility. A set packing

formulation for the resulting facility location problem was proposed and its poly-30

2



hedral structure was studied, deriving different types of facets and separation

algorithms to manage the inequalities within a branch and cut.

In our new scenario, some pairs of clients, which we will call tied, wish to

be allocated to the same facility. This situation could be easily addressed by

existing models for the SPLP, since allocation of each tied pair can be decided35

at once by adding their costs, just as if they were a single client. However,

sometimes clients must be assigned to a couple of facilities, for instance when a

backup service is needed, just as in [11]. When double assignment is considered,

tied clients are pairs that like to be served by at least one common facility. Now,

the new scenario gives rise to a new combinatorial problem that is a variant40

of the classic SPLP. Closely related topics are hub location, where origin and

destination pairs have to be connected by using a couple of hubs (see for instance

[16]) or warehouse location, where clients are served by a facility through a

warehouse (see [17]). In facility location problems with capacities, clients are

also frequently assigned to more than one facility, see for instance [18].45

The above setting, which we will call double-assignment plant location with

co-location, finds interesting applications in telecommunication networks de-

sign. A generic telecommunication network consists of a set of terminals (users),

connected to concentrators (switches or multiplexers) and a backbone network

which interconnects the concentrators. A primary problem in network design is50

to decide how many concentrators are needed and how the terminals should be

assigned to the concentrators. These two decisions can be identified with that of

facility location and allocation, a fact that was already observed in [19]. In the

context of telecommunication networks, the setting we propose corresponds to a

configuration in which some users must share a concentrator. This is a realistic55

assumption, since there could be users with special communication requirements

that want to have a dedicated path to avoid the backbone network.

The contributions of the paper can be summarized as follows: (i) a new vari-

ant of the SPLP, which considers double assignment and clients ties is proposed;

(ii) two formulations, inspired by classic two and three index facility location60

models, are presented, and their linear relaxations are theoretically compared

3



(something that to the best of our knowledge was not done before); (iii) all the

clique facets of one of the formulations, which is a set packing, are disclosed;

(iv) the corresponding separation problem is proved to be NP-hard and a heuris-

tic algorithm is then proposed; (v) finally, a computational study to test the65

developed formulations and algorithm is conducted.

The paper is organized as follows. The next section introduces the double-

assignment plant location problem with co-location, together with two integer

programming formulations. In the following section, the linear relaxations of

both are compared theoretically. Then, in Section 4 all the clique facets of70

one of the new models, which is a set packing problem, are described. The

problem of separating them is proven to be NP-hard in Section 5, where a

heuristic separation algorithm is also proposed. Finally, Section 6 reports the

computational tests of the formulations and the heuristic, which includes a

comparative analysis with respect to standard clique cuts incorporated by a75

commercial solver. Some conclusions close the paper.

2. Problem statement and formulations

Consider as initial setting that of the SPLP, where I := {1, . . . , n} and

J := {1, . . . ,m} are the sets of clients and candidate facilities respectively.

Facility location and clients allocation decisions have been typically modeled80

with the following decision variables,

yj = 1 iff no service is installed at candidate location j, j ∈ J ,

y′j = 1 iff a facility is installed at candidate location j, j ∈ J and

xij = 1 iff client i is served by facility at j , i ∈ I, j ∈ J ,

where yj and y′j satisfy yj = 1 − y′j for all j. The classic formulation of the85

4



SPLP is

(SPLP) min
∑
j∈J

fjy
′
j +

∑
i∈I

∑
j∈J

cijxij

s.t.
∑
j∈J

xij = 1 ∀i ∈ I (1)

xij ≤ y′j ∀i ∈ I, ∀j ∈ J (2)

xij , y
′
j ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,

where fj and cij stand for opening and allocation costs respectively. Constraints

(1) guarantee that every client in I is assigned to one location candidate in J

and (2) ensure that there is a facility at the given site. Many works consider

an alternative formulation of the SPLP, which replaces location variables y′j by90

their complementary binary variables yj . This simple idea allows to rewrite

(SPLP) into the following set packing formulation, where M is a large enough

constant (see [3] for more details),

(SPLP≤) max
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

(M − cij)xij −Mn−
∑
j∈J

fj

s.t.
∑
j∈J

xij ≤ 1 ∀i ∈ I (3)

xij + yj ≤ 1 ∀i ∈ I, ∀j ∈ J

xij , yj ∈ {0, 1} ∀i ∈ I, ∀j ∈ J.

When double assignment is considered, the problem is usually modeled with

two alternative approaches. One is based on the previous formulations, and95

consists of using the same variables and changing 1 on the right-hand side of (1)

or (3) by 2. The second is to consider new allocation three-indexed variables to

represent the pair of facilities that serve each client.

The double-assignment plant location problem with co-location, DPLP from

now on, consists of allocating each client to two facilities in such a way that100

tied clients share at least one. The following subsections present two alternative

formulations of the DPLP, which are adapted from the aforementioned strategies

to model double assignment. To model co-location relationships, we consider a

graph GT = (I, ET ) that has one node per client and an edge e = (i, i′) ∈ ET

5



for every pair (i, i′) of tied clients. Note that one client can be tied more than105

once and that co-location is not transitive but reciprocal.

Two-indexed formulation

Consider standard allocation variables and costs, xij and cij , together with

location variables yj and opening costs fj . The DPLP2 can be formulated by

modifying (SPLP), as follows110

(DPLP2) min
∑
j∈J

fj(1− yj) +
∑
i∈I

∑
j∈J

cijxij

s.t.
∑
j∈J

xij = 2 ∀i ∈ I (4)

xij + yj ≤ 1 ∀i ∈ I, ∀j ∈ J (5)

xi′j + xi′j′ ≥ xij + xij′ − 1 ∀(i, i′) ∈ ET ,∀j, j′ ∈ J : j < j′ (6)

xij , yj ∈ {0, 1} ∀i ∈ I, ∀j ∈ J.

Constraints (4) stand for double assignment, while (5) guarantee that clients are

only allocated to open facilities. Constraints (6) are the co-location constraints.

They are only active when their right hand sides equal one, that is, when a client

i is allocated to facilities j and j′ (xij = xij′ = 1). In this case, the constraints

ensure that i′ is allocated to at least one of these two facilities, j or j′, for every115

tied client, (i, i′) ∈ ET . In (DPLP2), subscript 2 indicates the use of allocation

variables with two indices, as opposed to the following alternative formulation.

Three-indexed formulation

Alternatively to standard allocation variables, one can use

zijk = 1 iff client i is served by facilities j and k,120

for all i ∈ I, j, k ∈ J such that j < k. For notation simplicity, in the following, j,

k, ` and t are indices in J if not stated otherwise. With the above variables and

location y-variables, the problem can be formulated as a set packing problem in

6



the following way

(DPLP3) min
∑
j∈J

fj(1− yj) +
∑
i∈I

∑
j∈J

∑
k∈J:
k>j

(cij + cik −M)zijk +Mn

s.t.
∑
j∈J

∑
k>j

zijk ≤ 1 ∀i ∈ I (7)

∑
k>j

zijk +
∑
k<j

zikj + yj ≤ 1 ∀i ∈ I, ∀j ∈ J (8)

zijk +
∑
`∈J

∑
t>`:

{j,k}∩{`,t}=∅

zi′`t ≤ 1 ∀(i, i′) ∈ ET , j < k (9)

yj ∈ {0, 1} ∀j ∈ J,

zijk ∈ {0, 1} ∀i ∈ I, ∀j, k ∈ J : j < k

where M is a large enough constant. Constraints (7) and (8) would corre-125

spond with (1) and (2) of the SPLP. Co-location constraints (9) ensure that

tied clients (i, i′) ∈ ET are not allocated to non-overlapping pairs of facili-

ties. Indeed, the constraints ensure that zijk and zi′`t cannot both take value

one if {j, k} ∩ {`, t} = ∅. Instead of (9), simply imposing zijk + zi′`t for all

(i, i′) ∈ ET and different facility subscripts j, k, `, t with j < k and ` < t would130

have sufficed. Inequalities (9) are just one way of reinforce that simplest trans-

lation of co-location requirements into packing constraints. Finally, note that∑
j∈J

∑
k>j zijk = 1 for an optimal solution, because otherwise M � 0 is added

to the objective value.

In the following section, we explore the relation between x-variables and135

z-variables. Using that relation, we compare the constraints of formulations

(DPLP2) and (DPLP3) and the optimal solutions of their linear relaxations,

ultimately concluding which formulation gives better bounds.

7



3. Comparing the formulations

Variables x and z are clearly related to each other. Given a client i, zijk will

be one if and only if xij and xik are. This is mathematically written as follows

zijk =xijxik ∀i ∈ I, j, k ∈ J, j < k

xij =
∑
k>j

zijk +
∑
k<j

zikj ∀i ∈ I, j ∈ J.

We use the second formula, which is linear, to replace x in (DPLP2) by the140

corresponding z-variables. The resulting formulation, which we name (DPLP’3),

will be written in terms of decision variables y and z. We will use (DPLP’3) to

compare the objective values of the linear relaxations of (DPLP2) and (DPLP3).

Starting with (4), we get∑
j∈J

xij =
∑
j∈J

(∑
k>j

zijk +
∑
k<j

zikj

)
=
∑
j∈J

∑
k>j

zijk +
∑
j∈J

∑
k<j

zikj .

Constraints (4) can be written then as
∑

j∈J
∑

k>j zijk +
∑

j∈J
∑

k<j zikj = 2,145

for all i ∈ I. Second, observe that (5) is (8) by substitution of xij as a function

of z. We last substitute in (6),

xi′j + xi′j′ ≥ xij + xij′ − 1 ≡∑
k>j

zi′jk +
∑
k<j

zi′kj +
∑
k>j′

zi′j′k +
∑
k<j′

zi′kj′ ≥
∑
k>j

zijk +
∑
k<j

zikj +
∑
k>j′

zij′k +
∑
k<j′

zikj′ − 1 ≡

∑
k>j

zijk +
∑
k<j

zikj +
∑
k>j′

zij′k +
∑
k<j′

zikj′ −
∑
k>j

zi′jk −
∑
k<j

zi′kj −
∑
k>j′

zi′j′k −
∑
k<j′

zi′kj′ ≤ 1. (10)

In order to compare (10) with (9), we unfold the summation in the latter. For

every (i, i′) ∈ ET and j, k ∈ J such that j < k,150 ∑
`

∑
t>`:

{j,k}∩{`,t}=∅

zi′`t = 1−
(∑

j′>j

zi′jj′ +
∑
j′<j

zi′j′j +
∑
j′>k

zi′kj′ +
∑
j′<k:
j′ 6=j

zi′j′k

)
. (11)

Let

Zi′jk :=
∑
j′>j

zi′jj′ +
∑
j′<j

zi′j′j +
∑
j′>k

zi′kj′ +
∑
j′<k:
j′ 6=j

zi′j′k,

8



which will be one if i′ is allocated to j, k or both and zero otherwise. Constraints

(10) are then,

Zijk + zijk − Zi′jk − zi′jk ≤ 1

while (9) can be rewritten as

zijk + 1− Zi′jk ≤ 1. (12)

We eventually obtain the following constraints and objective value for (DPLP’3):

(DPLP’3) min
∑
j∈J

fj(1− yj) +
∑
i∈I

∑
j∈J

cij

(∑
k>j

zijk +
∑
k<j

zikj

)
s.t.

∑
j∈J

∑
k>j

zijk +
∑
j∈J

∑
k<j

zikj = 2 ∀i ∈ I (13)

∑
k>j

zijk +
∑
k<j

zikj + yj ≤ 1 ∀i ∈ I, ∀j ∈ J

Zijk + zijk − Zi′jk − zi′jk ≤ 1 ∀(i, i′) ∈ ET , j < k (14)

zijk, yj ∈ {0, 1} ∀i ∈ I, ∀j, k ∈ J.

Having tight bounds is critical for a branch and cut solving approach. The155

following proposition shows that the LP bound obtained with (DPLP3) is at

least as good as that of (DPLP2).

Proposition 1. The optimal value of the linear relaxation of (DPLP2) is less

than or equal to that of (DPLP3).

Proof. Suppose that (z̄, ȳ) is an optimal solution of the linear relaxation of

(DPLP3) and let f̄3 be its objective value,

f̄3 :=
∑
j∈J

fj(1− ȳj) +
∑
i∈I

∑
j∈J

∑
k∈J:
k>j

(cij + cik −M)z̄ijk +Mn.

We define

x̄ij =
∑
k>j

z̄ijk +
∑
k<j

z̄ikj ∀i ∈ I, j ∈ J.

We will show that (x̄, ȳ) is a feasible fractional solution of (DPLP2) with ob-160

jective value f̄3. Since (DPLP2) is a minimization problem, this will prove the

proposition.

9



Given that (z̄, ȳ) is optimal, we know that
∑

j

∑
k>j z̄ijk = 1 for all i. Then,

(z̄, ȳ) satisfies (13). Moreover, since (12) is stronger than (14), (z̄, ȳ) is a feasible

solution of the linear relaxation of (DPLP’3). Since (DPLP’3) is formulation165

(DPLP2) when xij =
∑

k>j zijk+
∑

k<j zikj , we conclude that (x̄, ȳ) is a feasible

solution of the linear relaxation of (DPLP2).

The objective value of (x̄, ȳ) is

f̄2 :=
∑
j∈J

fj(1−ȳj)+
∑
i∈I

∑
j∈J

cij x̄ij =
∑
j∈J

fj(1−ȳj)+
∑
i∈I

∑
j∈J

cij

(∑
k>j

z̄ijk+
∑
k<j

z̄ikj

)

=
∑
j∈J

fj(1− ȳj) +
∑
i∈I

∑
j∈J

∑
k>j

cij z̄ijk +
∑
i∈I

∑
j∈J

∑
k<j

cij z̄ikj .

On the other hand, the fact that
∑

j

∑
k>j z̄ijk = 1 for all i ∈ I implies

f̄3 =
∑
j∈J

fj(1− ȳj) +
∑
i∈I

∑
j∈J

∑
k∈J:
k>j

(cij + cik)z̄ijk.

After rearranging the summations, we get f̄2 = f̄3.

Proposition 1 does not ensure that the LP bounds of (DPLP2) and (DPLP3)

do not always coincide. The following example illustrates that the LP bound of170

(DPLP3) can be strictly greater than that of (DPLP2).

Example 1. Consider an instance with I = J = {1, . . . , 6}, opening costs

fj = 20 for all j ∈ J and allocation costs given by the following matrix

c =



0 30 76 25 18 48

30 0 45 50 14 38

76 45 0 37 28 53

25 50 37 0 60 15

18 14 28 60 0 27

48 38 53 15 27 0


.

Figure 1 shows GT for this example. The optimal solution of this instance is

272, with three facilities opened.

10



3

4

1 2

6

5

Figure 1: Graph GT of Example 1

The optimal solution of the linear relaxation of (DPLP2) is

x11 = 0.5 x14 = 1 x15 = 0.5

x21 = 0.5 x22 = 0.5 x25 = 0.5 x26 = 0.5

x33 = 1 x34 = 1

x44 = 1 x46 = 1

x52 = 0.5 x55 = 0.5 x56 = 1

x64 = 1 x66 = 1

y1 = 0.5 y2 = 0.5 y3 = 1 y4 = 1 y5 = 0.5 y6 = 1,

with optimal value 266.

The linear relaxation (DPLP3) has optimal solution

z115 = 0.6 z145 = 0.4

z215 = 0.6 z225 = 0.4

z334 = 0.4 z335 = 0.6

z414 = 0.2 z436 = 0.2 z445 = 0.4 z446 = 0.2

z515 = 0.4 z525 = 0.4 z556 = 0.2

z645 = 0.4 z646 = 0.4 z656 = 0.2

y1 = 0.6 y2 = 0.4 y3 = 1 y4 = 0.8 y5 = 1 y6 = 0.6,

with optimal value 268.4.175

4. Clique facets

In this section, we identify some facets of the integer polytope of (DPLP3),

Bdplp := conv{(z, y) ∈ {0, 1}n·
m(m−1)

2 × {0, 1}m : (7)− (9)}.

11



j=1

j=2

j=3

k=2 k=3

y

312

k=4

412

112

512

1
y2 y3

y4

212

313413

113

513

213

314414

114

514

214

323423

123

523

223

324424

124

524

224

334434

134

534

234

34

1

5

2

Figure 2: A graph GT of five tied clients, Example 2

In order to study the facial arrangement of Bdplp, we will leverage the set packing

structure of (DPLP3). Any set packing formulation, i.e., any linear program

with a 0/1 constraint matrix and a vector of ones as right-hand side, can be

uniquely identified with a graph. It is usually called conflict graph or intersection180

graph, and has one node per variable and edges between nodes of variables that

appear in the same constraint. A feasible solution of the set packing corresponds

with a subset of non-adjacent nodes (packing, stable set, independent set) of

the conflict graph. It is standard to identify facets of a set packing with some

structures in its conflict graph, see for instance [8, 20]. In this section, we will185

identify the cliques of Gdplp, the conflict graph of (DPLP3), which are known

to define facets [21]. Note that, throughout the paper, cliques will be maximal

complete subgraphs.

Before starting with the polyhedral analysis of (DPLP3), the following exam-

ple illustrates the structure of Gdplp for a small instance of the problem. Given190

the density of the conflict graph, each family of constraints in (DPLP3), namely

(7), (8) and (9), is illustrated separately for a restricted number of nodes.

Example 2. We consider an instance with five clients and four potential facility

locations. The graph describing the tied pairs, GT , is shown on Figure 2. Figures

3-5 illustrate constraints of (DPLP3) on Gdplp. Circular nodes correspond with195

z-variables, and are tagged with proper subscripts ijk. Square nodes stand for y-

variables. For a clear illustration, only a sample of the edges are shown. Circular

nodes are arranged in groups forming a matrix, each group corresponding to a

12



j=1

j=2

j=3

k=2 k=3

y

312

k=4

412

112

512

1
y2 y3

y4

212

313413

113

513

213

314414

114

514

214

323423

123

523

223

324424

124

524

224

334434

134

534

234

Figure 3: Edges in Gdplp corresponding with (7) and i = 2

pair of facilities j, k with j < k and having five nodes, one for each of the five

clients.200

Figure 3 depicts how edges link nodes that refer to the same client and cor-

responds to constraints (7) of (DPLP3). Note that they define cliques. In fact,

Figure 3 shows a clique of six nodes associated to client 2.

Figure 4 illustrates that nodes corresponding with the same client and facility

are adjacent to the node of that facility. Such subsets of nodes also define cliques205

in Gdplp. The edges shown in this figure are due to constraints (8) in the model.

Finally, Figure 5 shows that the groups of nodes displayed in each entry (j, k)

are also interconnected by means of the co-location constraints (9).

A first observation is that (9) can be generalized. Take the example depicted

in Figure 5 and clients i = 3 and i′ = 5, (i, i′) ∈ ET . If we add two new plants

with indices 5 and 6, we will have co-location constraints

z312 + z534 + z535 + z536 + z545 + z546 + z556 ≤ 1,

13



j=1

j=2

j=3

k=2 k=3

y

312

k=4

412

112

512

1
y2 y3

y4

212

313413

113

513

213

314414

114

514

214

323423

123

523

223

324424

124

524

224

334434

134

534

234

Figure 4: Edges in Gdplp corresponding with (8) when i = 1 and j = 3

j=1

j=2

j=3

k=2 k=3

y

312

k=4

412

112

512

1
y2 y3

y4

212

313413

113

513

213

314414

114

514

214

323423

123

523

223

324424

124

524

224

334434

134

534

234

Figure 5: Edges in Gdplp corresponding with (9), graph in Figure 2 and i = 3, i′ = 1, 2, 5,

j = 1, k = 2, 3, 4

14



j=1

j=2

j=3

k=2 k=3

y

k=4

1
y2

y
3 y

4

312 313

323

545

j=4

k=5

y
5

546

k=6

y
6

556

j=5

Figure 6: Clique in Gdplp (15) with (3, 5) ∈ ET , J1 = {1, 2, 3}, J2 = {4, 5, 6}

z313 + z524 + z525 + z526 + z545 + z546 + z556 ≤ 1

for (j, k) = (1, 2) and (j, k) = (1, 3), respectively. However,

z312 + z313 + z323 + z545 + z546 + z556 ≤ 1,

which is illustrated by Figure 6, is also valid and not written in the formulation.

This corresponds to forbidding the pairs of facilities that serve tied clients 3210

and 5 to be in two non-overlapping subsets of plants J1, J2 ⊆ J , J1 ∩ J2 = ∅.

In the example above, J1 = {1, 2, 3} and J2 = {4, 5, 6}, while (9) stand for the

particular case of J1 = {j, `} and J2 = J \ {j, `}.

Proposition 2. Let (i1, i2) ∈ ET and J1, J2 ⊂ J both containing at least two

15



different facilities and such that J1∩J2 = ∅. The following inequalities are valid215

for (DPLP3) ∑
j1∈J1

∑
k1∈J1:
k1>j1

zi1j1k1
+
∑
j2∈J2

∑
k2∈J2:
k2>j2

zi2j2k2
≤ 1. (15)

Moreover, (15) are facets of Bdplp if and only if J1 ∪ J2 = J . In particular, (9)

are facets.

Proof. The fact that (15) are valid is clear from the problem definition. Indeed,

using (9) and the hypothesis J1 ∩ J2 = ∅, we know that220

zi1j1k1
+
∑
j2∈J2

∑
k2∈J2:
k2>j2

zi2j2k2 ≤ 1

holds for every j1, k1 ∈ J1, k1 > j1. On the other hand, due to (7), a double

summation on the two subscripts running in J1 can be included in the previous

inequality, yielding (15).

For the second statement of the proposition, we will prove that

C :=
( ⋃

j1∈J1

⋃
k1∈J1:
j1>k1

{zi1j1k1
}
)⋃( ⋃

j2∈J2

⋃
k2∈J2:
j2>k2

{zi2j2k2}
)

define a clique in Gdplp if and only if J1 ∪ J2 = J .

Suppose first that Gdplp[C] is a clique and there is j′ ∈ J \ {J1 ∪J2}. In this225

case∑
k1∈J1:

j′>k1

zi1j′k1 +
∑

k1∈J1:

j′<k1

zi1k1j′ +
∑
j1∈J1

∑
k1∈J1:
j1>k1

zi1j1k1 +
∑
j2∈J2

∑
k2∈J2:
j2>k2

zi2j2k2 ≤ 1 (16)

would be valid and stronger than (15), which is a contradiction.

Conversely, suppose that J1∪J2 = J . From the problem definition, we know

that Gdplp[C] is a complete subgraph. Then, we have to prove that Gdplp[C]

is a maximal complete subgraph. If there is v /∈ C such that Gdplp[C ∪ {v}]230

is complete, then v does not correspond with a y-variable. This is clear, since

a node yj is adjacent only to zijk and zikj for all i and k. Since J1 ∩ J2 = ∅,

there cannot be a y-node adjacent to every node in C. Suppose then that v is

16



a z-node, i.e., Gdplp[C ∪ {zi′j′k′}] is a complete subgraph, for some i′, j′, k′. We

distinguish between two different cases.235

1. If i′ = i1 (resp. i′ = i2), one of the facilities j′ or k′ is not in J1 (resp.

J2), otherwise the node was already in C. Without loss of generality, let

j′ be that facility. Since J1 ∪ J2 = J , then j′ ∈ J2 (resp. J1). But this

is a contradiction because zi1j′k′ and zi2j′k2
∈ C are not adjacent (resp.

zi2j′k′ and zi1j′k1
∈ C), for any k2 ∈ J2, k2 > j′ (resp. k1 ∈ J1, k1 > j′).240

2. If i′ 6= i1 and i′ 6= i2, edges between zi′j′k′ and nodes in C will all cor-

respond with co-location constraints. In particular, {i′, i1, i2} define a

complete subgraph in GT . Again, due to the fact that J1 ∪ J2 = J , there

cannot be such co-location constraints between zi′j′k′ and zi1j1k1
if j′ or

k′ are in J1, or between zi′j′k′ and zi2j2k2 if j′ or k′ are in J2.245

Following a similar idea, more valid inequalities can be derived for every

triangle {i, i′, i′′} ⊆ I in GT and partition {J1, J2, J3} of J with Ji consisting

of at least two facilities each. In general, this can be done for every subset of

pairwise tied clients and every partition having the same size. The following250

proposition states that all the clique facets of Bdplp can be obtained in this way

or are of the form (7) or (8).

Theorem 1. The only clique facets of Bdplp are (7), (8) and∑
i∈CT

∑
j∈Ji

∑
k∈Ji:
k>j

zijk ≤ 1, (17)

for all CT ⊆ I such that GT [CT ] is a complete subgraph, and for all Ji ⊆ J ,

i ∈ CT , such that |Ji| ≥ 2, ∪i∈CT
Ji = J and Ji ∩ Ji′ = ∅ for every pair i 6=′ i.255

Proof. Suppose that πz+ ρy ≤ 1 is a clique facet of Bdplp. We will show that it

has to be one of the inequalities of the statement.

We analyze first the case in which ρj′ = 1 for some j′ ∈ J , which readily

implies ρj = 0 for all j 6= j′. Variables with positive π-coefficients have to be

17



in the neighborhood of yj′ in Gdplp, N(yj′). But N(yj′) = {zij′k : i ∈ I, k >260

j′}∪{zikj′ : i ∈ I, k < j′}. In particular, z-variables in N(yj′) all have one of its

plant indices equal to j′. As a consequence, these variables are never adjacent

due to a co-location constraint. Due to the problem constraints, they will be

adjacent if and only if they have the same client index. In other words, there is a

clique containing yj′ for each i ∈ I, namely Cij = {yj′}∪{zij′k}j′<k∪{zikj′}k<j′ ,265

which corresponds to (8).

Suppose now that ρj = 0 for all j ∈ J . Let

C := {zijk : πijk = 1, i ∈ I, j, k ∈ J, j < k}

be the nodes of Gdplp corresponding with the clique facet πz ≤ 1. Let

CT := {i ∈ I : zijk ∈ C for some j, k}

be the subset of clients that appear in the indices of the variables of C. We

analyze two cases.

1. CT = {i′}. In this case, C ⊆ {zi′jk : j, k ∈ J, j < k}. Due to constraints

(7), it has to be C = {zi′jk : j, k ∈ J, j < k}. In fact, clique facet πz ≤ 1270

corresponds precisely to (7).

2. |CT | > 1. In this case, edges of Gdplp[C] between nodes associated to

different clients have to be due to (9), which are defined for every (i, i′) ∈

ET . As a consequence, GT [CT ] is also a complete subgraph. For every

i ∈ CT , let J1
i := {j ∈ J : zijk ∈ C for some k} and J2

i := {k ∈ J : zijk ∈275

C for some j}. We also define Ji := J1
i ∪ J2

i , the set of facilities indices

that appear with client i in the variables of C. First, Ji ∩ Ji′ = ∅ for all

i, i′ ∈ CT since πz ≤ 1 will not be valid otherwise. On the other hand, for

all i ∈ CT , {(j, k) ∈ J × J : zijk ∈ C} ⊆ {(j, k) ∈ Ji × Ji : j < k}. If,

for some i′ ∈ CT , there was (j′, k′) contained in the second subset but not280

in the first, πz ≤ 1 could be improved by adding zi′j′k′ to its left-hand

side, which contradicts the fact that it is a facet. Hence, {(j, k) ∈ J × J :

zijk ∈ C} = {(j, k) ∈ Ji×Ji : j < k}. It follows that πz ≤ 1 has the form

18



of (17). It remains to prove that ∪i∈CT
Ji = J . But now it is easy to see

that πz ≤ 1 could be improved if there was j′ ∈ J \
(
∪i∈CT

Ji
)
, just by285

adding j′ to one of the subsets Ji.

Corollary 1. All the constraints of (DPLP3) are facets.

Remark 1. In Theorem 1, GT [CT ] is a complete graph but CT is not necessarily

a clique. Indeed, (15) are a particular case of (17) when CT = {i1, i2} for290

(i1, i2) ∈ ET , which is not necessarily a maximal complete subgraph. This is

interesting because, to the best of our knowledge, there is no precedence in set

packing of a clique facet ultimately induced by a not maximal complete subgraph.

5. Clique separation

The only clique facets of Bdplp that are not included in (DPLP3) are that of295

family (17) with |CT | > 2 or |CT | = 2 and |Ji| ≥ 2, i ∈ CT . This section focuses

on the latter, which belong to family (15). Given a tied pair (i1, i2) ∈ ET , (15)

define exponentially many inequalities, even when J1 ∪ J2 = J . A separation

algorithm is then needed to manage these inequalities within a branch and cut

scheme. We will first prove the theoretical computational complexity of this300

problem and then provide a heuristic algorithm to approach it. These results

can be extended to separation of the more general family (17). On the one hand,

the theoretical complexity does not improve when the size of the partition (which

coincides with |CT |) increases. On the other hand, we will see that the proposed

heuristic can be easily adapted. However, exhaustive separation of (17) is not305

expected to be rewarding. We will prefer to address the case |CT | = 2 when

moving separation from theory to practice (see the computational study of next

section).

Given a fractional optimal solution z̄, and given an edge (i1, i2) ∈ ET , the

problem of separation of (15) is to find the partition of J in J1 and J2 that

19



maximizes ∑
j1∈J1

∑
k1∈J1:
j1>k1

z̄i1j1k1
+
∑
j2∈J2

∑
k2∈J2:
j2>k2

z̄i2j2k2
. (18)

This problem can be identified with a max-cut problem in a graph. Given a

graph G = (V,E) with weights on its edges, the max-cut is to determine a subset310

U ⊆ V such that the sum of the weights in the cut— the set of edges with one

endnode in U and the other in V \U— is maximal. We identify the separation

with the following especial case of max-cut, which we name double-cut.

Definition 1 (DOUBLE-CUT ). Let G = (V,E) be a graph and let W 1 and W 2

be two matrices of weights for its edges, W 1 = (w1
jk)i,k∈V , W 2 = (w2

jk)i,k∈V ,315

w1
jk, w

2
jk ∈ R. Given W ∈ R, DOUBLE-CUT is to decide whether there is

V1 ⊆ V such that
∑
j∈V1

∑
k∈V1:
k>j

w1
jk +

∑
j /∈V1

∑
k/∈V1:
k>j

w2
jk ≥W .

We will show that the following problem can be reduced to the decision

problem of Definition 1 in polynomial time.

Definition 2 (PARTITION ). Let c1, . . . , cn be integer, ci ∈ Z. PARTITION320

is to decide whether there is S ⊆ {1, . . . , n} such that
∑

i∈S ci =
∑

i/∈S ci.

The partition problem is one of the six basic NP-complete problems in [22].

Then, giving a polynomial time reduction of PARTITION to DOUBLE-CUT

implies that the latter is also NP-complete. The following proposition states

and proves such a result.325

Proposition 3. DOUBLE-CUT is NP-complete.

Proof. Suppose that c1, . . . , cn ∈ Z is an instance of PARTITION. We will

build an instance of DOUBLE-CUT that has positive answer if an only if there

is S ⊆ {1, . . . , n} such that
∑

i∈S ci =
∑

i/∈S ci.

Consider an instance of DOUBLE-CUT with G = Kn the complete graph

20



of n nodes and the following weights

w1
jk = w2

jk = −cj · ck ∀j, k ∈ V,

W =
1

2

∑
j∈V

c2j −
1

4

(∑
j∈V

cj

)2
.

DOUBLE-CUT has a positive answer if and only if there is V1 ⊆ V such that∑
j∈V1

∑
k∈V1:
k>j

−cj · ck +
∑
j /∈V1

∑
k/∈V1:
k>j

−cj · ck ≥
1

2

∑
j∈V

c2j −
1

4

(∑
j∈V

cj

)2
. (19)

We know that∑
j∈V1

∑
k∈V1:
k>j

−cj · ck = −1

2

[( ∑
j∈V1

cj
)
·
( ∑
k∈V1

ck
)
−
∑
j∈V1

c2j

]
.

The left-hand side of (19) is then

−1

2

[( ∑
j∈V1

cj
)
·
( ∑
k∈V1

ck
)

+
( ∑
j /∈V1

cj
)
·
( ∑
k/∈V1

ck
)
−
∑
j∈V

c2j

]

=
1

2

[∑
j∈V

c2j −
( ∑

j∈V1

cj

)2
−
( ∑

j /∈V1

cj

)2]
.

In general, function X2 + Y 2 when X + Y is constant attains its minimum at

X = Y . If we call

X =
∑
j∈V1

cj and Y =
∑
j /∈V1

cj ,

the left-hand side of (19) attains its maximum when X2 + Y 2 attains its min-

imum, i.e., when
∑

j∈V1
cj =

∑
j /∈V1

cj =
(∑

j∈V cj
)
/2. In such a case, the

left-hand side of (19) would be

1

2

[∑
j∈V

c2j − 2 ·
(∑

j∈V cj

2

)2]
=

1

2

∑
j∈V

c2j −
1

4

(∑
j∈V

cj

)2
= W.

Then, DOUBLE-CUT can only have positive answer when (19) is satisfied as330

an equality, which happens if and only if there is V1 ⊆ V such that
∑

j∈V1
cj =∑

j /∈V1
cj .

Corollary 2. The separation of (15) when J1 ∪ J2 = J is NP-hard.

21



Given the computational complexity of separation, we propose an algorithm

that, given an optimal fractional solution z̄ and a pair of tied clients (i1, i2) ∈335

ET , tries to maximize (18) heuristically. An initial partition J1, J2 ⊆ J is

considered at first. Facilities are moved from J1 to J2 and viceversa whenever

this produces an increment of (18) and the number of elements is not below three

for any of the subsets. If (18) is eventually greater than one, the corresponding

inequality is added as a cut. Algorithm 1 describes the pseudo code of the340

separation heuristic, which is applied for every pair in ET in each callback. Note

that the idea of the algorithm can be also applied to i1, i2, i3 pairwise adjacent,

i.e., inducing a triangle in GT . Partition will be then made of three subsets,

J1, J2, J3 ⊆ J , and a larger combinatorial number of possible movements among

their components have to be checked.345

6. Computational study

The aim of our computational study is twofold. First, we are interested

in providing an empirical comparison between the LP bounds of (DPLP2) and

(DPLP3). Second, we intend to validate the separation heuristic applied on

(DPLP3) and test its relative performance with respect to bare formulations350

(DPLP2) and (DPLP3).

6.1. Experimental setup

The machine used was an Intel Xeon CPU at 3Ghz×8, with 16GB of RAM.

Our testbed was based on four instances of the OR-Library, namely pmed1,

pmed2, pmed3 and pmed4, see [23]. In the implementation of (DPLP3), instead355

of (7), we consider the equality constraints
∑

j∈J
∑

k>j zijk = 1 for all i ∈ I,

which avoids the use of a big M in the objective.

As already mentioned in previous section, the heuristic described on Algo-

rithm 1, which address the case |CT | = 2, can be adapted to separate other

inequalities of the family (17). A preliminary computational study was con-360

ducted to check the performance of the heuristic when adapted to |CT | ∈ {2, 3}.

22



Algorithm 1 Separation heuristic

Input z̄: fractional solution of (DPLP3).

(i1, i2) ∈ ET : pair of tied clients.

ε: tolerance for cut violation.

Variables J1: first subset of facility indices.

J2: second subset of facility indices.

Zi1j(J1): the contribution of j to the left-hand side of the cut when j ∈ J1.

Zi2j(J2): the contribution of j to the left-hand side of the cut when j ∈ J2.

Output cut: a cut in the family (15) violated by z̄, if exists.

Step 1 J1 = {1, . . . , b(m+ 1)/2c}, J2 = {b(m+ 1)/2c+ 1, . . . ,m}.

Repeat

Step 2 improved = false

Step 3 If |J1| ≥ 3, for all j ∈ J1 do:

3.1 Zi1j(J1) =
∑

k1∈J1:
k1<j

z̄i1k1j +
∑

k1∈J1:
k1>j

z̄i1jk1
.

3.2 Zi2j(J2) =
∑

k2∈J2:
k2<j

z̄i2k2j +
∑

k2∈J2:
k2>j

z̄i2jk2 .

3.3 If Zi1j(J1) < Zi2j(J2) then

J1 = J1 \ {j}; J2 = J2 ∪ {j};

improved = true; break;

Step 4 If |J2| ≥ 3, for all j ∈ J2 do:

4.1 Zi1j(J1) =
∑

k1∈J1:
k1<j

z̄i1k1j +
∑

k1∈J1:
k1>j

z̄i1jk1
.

4.2 Zi2j(J2) =
∑

k2∈J2:
k2<j

z̄i2k2j +
∑

k2∈J2:
k2>j

z̄i2jk2 .

4.3 If Zi1j(J1) > Zi2j(J2) then

J1 = J1 ∪ {j}; J2 = J2 \ {j};

improved = true; break;

Until not improved

Step 5 If
∑

j1∈J1

∑
k1∈J1:
j1>k1

z̄i1j1k1
+
∑

j2∈J2

∑
k2∈J2:
j2>k2

z̄i2j2k2
> 1 + ε then

cut =
∑

j1∈J1

∑
k1∈J1:
j1>k1

zi1j1k1
+
∑

j2∈J2

∑
k2∈J2:
j2>k2

zi2j2k2
≤ 1

else cut = ∅

Step 6 Return cut.

23



Graph GT was generated having many triangles, so that structures |CT | = 3

were found. For every i ∈ {1, . . . , bn/2c}, ET had edges (i, n − i + 1), (i, 2i),

(2i, n− i+ 1), (n− i, n− i+ 1) and (i, n− i). The results are shown on Table 3.

Dual bounds are the same in almost all the cases, except for those depicted in365

bold. Running times are not always smaller for one of the alternatives. How-

ever, we observe that the improvement of the adapted heuristic is not significant

in comparison to those cases when it represents the worst alternative. For in-

stance, when n = 30 in file pmed3, the adapted heuristic spends more than

100 seconds more than Algorithm 1. Conversely, the adapted heuristic saves no370

more than 30 seconds with respect to Algorithm 1 in the best cases. In view

of these results, we decided to conduct experiments only with the heuristic of

Algorithm 1.

For our computational study, we have taken n = m = 10, 15, 20, 25, 30, 35,

40. Since Beasley’s instances have 100 clients, we have to trim Beasley’s matrices375

(cij) to obtain the desired size. A range of constant vectors are considered

for the opening costs, for all j ∈ J , fj = 50, 75, 100, 125, 150, 175, 200.

These costs will imply opening from 12.5% to 68% of candidate facilities in the

optimal solution. The testbed is then made of 4(Beasley’s)×7(size)×7(opening

costs)=196 instances in total. Graph GT is generated depending on the size of380

the instance, i.e., on n. For every i ∈ {1, . . . , bn/2c} edges (i, n − i + 1) and

(i, 2i) are added to ET , which gives graphs with density 2
n × 100(%).

Each instance of the testbed is solved under four different configurations

in Fico Xpress Mosel 64-bit v4.8.4. Default cutting planes, heuristics and

presolving strategies are disabled for all the experiments. The configurations385

are

- C1: formulation (DPLP2),

- C2: formulation (DPLP3),

- C3: formulation (DPLP3) and callbacks to Algorithm 1 at the root node

of the branching tree,390

24



File n fj OPT LP Time (s.) NodesBB

|CT | = 2 |CT | ∈ {2, 3} |CT | = 2 |CT | ∈ {2, 3} |CT | = 2 |CT | ∈ {2, 3}

pmed1 10 50 921 921.0 921.0 0.1 0.3 1 1

pmed1 10 100 1161 1161.0 1161.0 0.1 0.1 1 1

pmed1 20 50 2272 2272.0 2272.0 6.3 5.4 1 1

pmed1 20 100 2688 2688.0 2688.0 5.7 4.7 1 1

pmed1 30 50 3410 3410.0 3410.0 139.9 122.0 1 1

pmed1 30 100 3943 3943.0 3943.0 183.7 149.2 1 1

pmed2 10 50 1340 1340.0 1340.0 0.2 0.1 1 1

pmed2 10 100 1590 1590.0 1590.0 0.2 0.1 1 1

pmed2 20 50 2717 2717.0 2717.0 6.3 4.5 1 1

pmed2 20 100 3175 3175.0 3175.0 7.6 5.1 1 1

pmed2 30 50 3969 3969.0 3969.0 110.6 125.1 1 1

pmed2 30 100 4499 4499.0 4499.0 131.4 126.1 1 1

pmed3 10 50 976 976.0 976.0 0.1 0.2 1 2

pmed3 10 100 1209 1209.0 1209.0 0.1 0.1 1 1

pmed3 20 50 2595 2588.0 2588.0 16.5 20.8 5 21

pmed3 20 100 2983 2975.2 2979.3 15.4 14.4 13 3

pmed3 30 50 4108 4108.0 4108.0 295.3 379.8 1 1

pmed3 30 100 4687 4672.4 4673.0 332.4 483.4 21 11

pmed4 10 50 1442 1442.0 1442.0 0.1 0.1 1 1

pmed4 10 100 1701 1701.0 1701.0 0.1 0.1 1 1

pmed4 20 50 3165 3163.0 3165.0 11.3 11.2 1 1

pmed4 20 100 3627 3627.0 3627.0 10.9 11.7 1 1

pmed4 30 50 4491 4491.0 4491.0 183.5 168.4 1 1

pmed4 30 100 5019 5019.0 5019.0 140.4 154.8 1 1

Table 3: Preliminary test to check the performance when adapting the heuristic

25



- C4: formulation (DPLP3) and callbacks to Algorithm 1 throughout the

branching tree.

Time limit is set to half an hour for all the experiments. The last two config-

urations solved all the instances within the time limit. Formulations (DPLP2)

and (DPLP3) solved 122 and 110 instances, respectively.395

Tables 4 and 5 show the computational results. The LP gap, running time

and the number of nodes explored during the branching are displayed in different

columns for the different configurations. The LP gap is relative to the optimal

value, and is calculated as a percentage. When Algorithm 1 is used, the LP gap

is calculated using the LP bound after adding the cuts at the root node. Due to400

the large number of instances, we have to display average results. Table 4 shows

results on average throughout different costs fj considered, for every Beasley’s

file and size. On the other hand, computational results are averaged by input

size n on Table 5, where a row is displayed for every Beasley’s file and opening

cost constant vector. The following section discusses the results.405

6.2. Comparative analysis

From Table 4, we can see that (DPLP2) and (DPLP3) fail to solve the bigger

instances, namely those with n = 35, 40. Moreover, (DPLP3) still has difficulties

to cope when n = 30. Using the separation heuristic with (DPLP3) can dramat-

ically improve the running time to the point of solving all the instances within410

538 seconds. Such an improvement with respect to (DPLP2) and (DPLP3) be-

gins to appear with n = 20. Columns concerning the nodes of the branch and

bound tree also reflect a better performance when the separation is incorporated

to the solving procedure. Nevertheless, as opposed to running times, (DPLP3)

explores less nodes than (DPLP2) to obtain the optimal solution. This makes415

very much sense since (DPLP3) LP bounds are better. The number of variables

to manage is probably one of the factors that influence higher running times

of (DPLP3). The fact that many of the instances are solved at the root when

cuts are added is consistent with the extremely tight LP gaps that we get in

those cases. On the other hand, as expected from the theoretical findings, the420

26



File n LP GAP Time (s.) NodesBB

C1 C2 C3 C1 C2 C3 C4 C1 C2 C3 C4

pmed1 10 4.3 2.2 0.1 0.0 0.3 0.2 0.0 29 19 1 1

15 14.5 8.8 0.0 0.4 3.5 1.0 0.4 3664 572 1 1

20 13.5 9.0 0.1 21.3 41.6 4.0 2.4 83068 5408 1 1

25 12.8 8.5 0.0 267.2 456.9 15.2 9.4 459087 22114 1 1

30 15.7 9.8 0.1 722.5 1050.3 105.5 50.7 528145 11028 20 7

35 18.4 11.5 0.0 1088.2 1210.7 293.5 149.6 385108 4265 1 1

40 21.2 14.0 0.1 1200.2 1213.3 885.1 488.4 303871 1877 4 4

pmed2 10 13.0 6.8 0.0 0.1 0.5 0.1 0.1 218 115 1 1

15 14.2 8.8 0.0 0.3 3.7 0.5 0.5 1566 955 1 1

20 16.0 8.7 0.0 3.5 35.9 2.5 2.5 15747 5916 3 2

25 17.6 8.1 0.0 37.3 165.0 9.2 9.3 61588 5258 2 1

30 19.9 11.9 0.2 879.9 1203.5 47.4 48.7 600064 14171 18 9

35 21.0 12.7 0.1 1200.2 1209.4 113.2 130.2 365431 5046 5 4

40 22.2 13.6 0.1 1200.1 1214.8 483.3 509.7 209979 1660 12 6

pmed3 10 6.4 2.0 0.0 0.0 0.3 0.0 0.1 18 16 1 1

15 11.5 5.8 0.1 0.3 4.3 0.4 0.4 820 598 1 1

20 22.2 14.6 0.0 250.1 357.3 3.0 2.9 747206 67113 1 1

25 20.2 15.0 0.0 514.6 649.6 11.0 11.0 942326 26338 2 1

30 21.0 14.6 0.0 916.3 1204.2 48.9 48.0 814889 13579 2 1

35 25.4 17.1 0.2 1200.2 1209.7 216.8 219.7 472411 4249 26 1

40 24.0 15.7 0.0 1200.3 1214.3 534.6 538.4 238041 1494 2 2

pmed4 10 14.6 6.5 0.0 0.3 0.7 0.1 0.1 180 253 1 1

15 11.7 6.4 0.0 1.0 3.5 0.4 0.4 1300 560 1 1

20 13.1 7.0 0.0 8.0 26.3 2.4 2.4 16690 2244 2 1

25 18.5 10.6 0.2 469.7 675.4 11.6 11.3 713877 29653 8 4

30 18.8 9.8 0.0 621.9 1116.3 39.2 40.6 514557 7849 2 1

35 20.8 12.6 0.0 1200.2 1210.1 133.3 138.5 380402 4950 2 2

40 22.2 14.3 0.1 1200.4 1210.0 460.5 466.6 229642 3005 17 3

Table 4: Average computational results as a function of source file and n

27



LP Gap (%)

In
st

an
ce

s 
(%

)

0.5 1 5 10 15 20 25 30 35 40 45 50

5
20

30
40

50
60

70
80

90
10

0

C1

C2

C3

Figure 7: Percentage of instances within different LP gaps

LP gap is always smaller for (DPLP3), being the difference with (DPLP2) more

noticeable with the increase of the problem size.

Table 5 allows to compare the formulations when opening costs change. We

observe that the instances with tightest gaps are those with highest opening

costs, for which fewer facilities are open in an optimal solution. Conversely,425

running times do not seem to directly depend on fj in overall terms, nor does

the number of nodes explored in the branching.

We further provide several charts that better illustrates the comparison of the

four configurations. These depict, for every configuration, an step function to

represent the number of instances solved in total after some time or some nodes430

of the branching tree. LP gaps throughout the testbed are also represented with

step functions.

28



File fj LP GAP Time (s.) NodesBB

C1 C2 C3 C1 C2 C3 C4 C1 C2 C3 C4

pmed1 50 25.8 16.6 0.0 703.7 667.7 164.0 90.3 750966 15994 2 2

75 20.0 12.6 0.0 594.9 702.2 182.0 98.4 366724 12417 1 1

100 15.8 10.1 0.1 525.9 616.7 199.7 104.8 217873 6765 12 5

125 12.6 8.1 0.0 517.8 551.5 197.9 105.7 214929 3921 9 3

150 10.1 6.4 0.0 368.9 534.1 186.3 102.2 80211 2830 1 1

175 8.6 5.3 0.0 351.8 478.7 187.2 102.9 103523 2052 2 3

200 7.5 4.6 0.1 236.9 425.6 187.4 96.6 28744 1304 3 2

pmed2 50 28.7 16.9 0.1 527.4 554.7 79.0 86.5 377056 8417 4 2

75 23.7 13.7 0.0 530.3 578.9 85.9 94.1 285738 8135 4 3

100 19.6 11.3 0.0 521.0 553.1 107.4 112.4 191922 4750 16 4

125 16.3 9.1 0.0 516.0 542.7 91.6 100.7 165141 3559 1 1

150 13.9 7.6 0.0 422.5 536.5 92.0 100.9 96590 3260 2 2

175 11.8 6.5 0.1 412.3 535.3 97.8 105.9 74852 2485 5 4

200 9.9 5.5 0.1 391.7 531.5 102.6 100.6 63294 2513 12 8

pmed3 50 29.9 19.2 0.1 834.4 825.1 101.7 103.7 1161895 46920 2 2

75 24.7 15.8 0.0 753.3 816.7 125.6 128.2 794468 33435 9 3

100 20.4 13.1 0.0 681.9 731.8 124.2 118.7 560321 13682 3 1

125 17.1 11.1 0.0 540.4 603.0 129.7 124.8 297781 7011 1 1

150 14.8 9.7 0.0 521.7 560.8 123.1 123.0 216003 4973 3 2

175 12.8 8.5 0.1 387.8 551.6 117.0 120.3 111752 4010 14 11

200 11.1 7.5 0.0 362.3 550.6 93.4 101.8 73489 3356 3 2

pmed4 50 28.7 16.9 0.0 690.6 670.9 79.7 82.8 642622 16419 2 2

75 23.3 13.2 0.0 687.4 686.7 85.1 88.5 548154 12506 2 2

100 19.1 10.6 0.1 593.0 694.4 91.4 98.4 343380 8601 1 1

125 15.6 8.5 0.0 432.8 586.2 88.4 92.6 116445 3913 1 1

150 13.0 7.0 0.1 379.9 593.2 92.9 92.1 72110 3416 5 2

175 10.8 5.8 0.0 363.3 514.9 114.9 106.7 87922 2167 16 2

200 9.1 5.0 0.1 354.6 496.2 95.0 98.7 46012 1492 5 4

Table 5: Average computational results as a function of source file and costs fj

29



Time (s)

S
ol

ve
d 

in
st

an
ce

s 
(%

)

5 10 25 50 75 100 150 200 300 500 750 1000 1200

10
20

30
40

50
60

70
80

90
10

0

C1

C2

C3

C4

Figure 8: Percentage of solved instances as a function of time

To begin with, a comparison of the LP gaps is given in Figure 7. The

ordinate axis shows the percentage of instances that have an LP gap smaller

than each LP gap mark. The figure shows relative gaps within the optimum—435

which is known for all the instances— and the linear relaxations of (DPLP2)

and (DPLP3) when no cut is added and after adding the cuts to the root. On

the one hand, experiments support Proposition 1, i.e., the LP gap is always

tighter for (DPLP3). On the other hand, applying the separation heuristic at

the root surprisingly closes the gap in almost all the cases. This suggests that440

clique facets (15) are very close to cover the side of the polyhedron Bdplp that

faces towards the direction of optimization.

Figure 8 gives a comparison of the running times of the four configurations

tested. The abscissa axis shows the time in seconds. The ordinate axis shows the

30



Nodes in the branching tree

S
ol

ve
d 

in
st

an
ce

s 
(%

)

1 10 25 50 100 250 500 750 1000 10k 50k 100k 500k 1M

10
20

30
40

50
60

70
80

90
10

0

C1

C2

C3

C4

Figure 9: Percentage of solved instances as a function of the nodes of the branching tree

percentage of instances that are solved before each time tick mark. According445

to our experiments, (DPLP2) clearly outperforms (DPLP3). However, when

the separation heuristic is incorporated to (DPLP3), things turn out differently.

The resulting configurations solve about 70% of the instances in 75 seconds,

while (DPLP2) can only solve 62% of the instances within the time limit.

Finally, Figure 9 compares the four configurations in terms of the nodes of450

the branching tree. The abscissa axis shows the number of nodes in the tree,

and the ordinate axis depicts the percentage of instances solved up to those

number of nodes. Formulations (DPLP2) and (DPLP3) present a very similar

performance in overall terms. The use of the separation heuristic sharply reduces

the size of the tree, which consists of only one node for more than 70% of the455

instances and no more than 50 nodes throughout the testbed.

31



7. Conclusions

In this work, a new variant of one of the fundamentals problems in discrete

location is proposed and studied. Specifically, we propose a modification of

the Simple Plant Location Problem where double assignment is considered and460

some pairs of clients have to share at least one common facility. A set packing

three-indexed formulation is proposed and its linear relaxation is proved to pro-

vide better bounds than that of a formulation with classic variables. The facial

structure of the proposed set packing polytope is investigated and all its clique

facets are uncovered. A separation heuristic for the devised inequalities is de-465

signed and tested in a computational study. Our experiments reflect the utility

of clique inequalities and support the theoretical comparison of the formulations

considered.

Our work can be extended for the more general case of multiple assignment

(each client allocated to three, four. . . facilities). We could write a formulation470

analogous to (DPLP3) but with four, five. . . indices for the z-variables. The

ideas to obtain the clique facets would be still valid for the resulting formulation.

However, the number of variables would grow exponentially with the number of

assignments considered.

References475

[1] J. Krarup, P. Pruzan, The simple plant location problem: Survey and

synthesis, European Journal of Operational Research 12 (1983) 36–81.

[2] G. Laporte, S. Nickel, F. S. da Gama (Eds.), Location Science, Springer

International Publishing, 2015.

[3] D. Cho, E. Johnson, W. Padberg, M. Rao, On the uncapacitated plant480

location problem I: valid inequalities and facets, Mathematics of Operations

Research 8 (4) (1983) 579–589.

[4] M. Labbé, H. Yaman, Projecting the flow variables for hub location prob-

lems, Networks: An International Journal 44 (2) (2004) 84–93.

32



[5] G. Cornuéjols, M. Fisher, G. Nemhauser, On the uncapacitated location485

problem, Annals of Discrete Mathematics 1 (1977) 163–177.

[6] M. Guignard, Fractional vertices, cuts and facets of the simple plant loca-

tion problem, Mathematical Programming 12 (1980) 150–162.

[7] G. Cornuéjols, J. Thizy, Some facets of the simple plant location polytope,

Mathematical Programming 23 (1982) 50–74.490

[8] L. Cánovas, M. Landete, A. Maŕın, On the facets of the simple plant loca-

tion packing polytope, Discrete Applied Mathematics 124 (2002) 27–53.

[9] A. Warszawski, Multi-dimensional location problems, Operational Re-

search Quarterly 24 (2) (1973) 165–179.

[10] L. Cánovas, S. Garćıa, M. Labbé, A. Maŕın, A strengthened formulation for495

the simple plant location problem with order, Operations Research Letters

35 (2) (2007) 141–150.

[11] C. Swamy, D. B. Shmoys, Fault-tolerant facility location, ACM Transac-

tions on Algorithms 4 (4) (2008) 51.

[12] T. Cui, Y. Ouyang, Z. Shen, Reliable facility location design under the risk500

of disruptions, Operations Research 58 (4) (2010) 998–1011.

[13] T. Xifeng, Z. Ji, X. Peng, A multi-objective optimization model for sustain-

able logistics facility location, Transportation Research Part D: Transport

and Environment 22 (2013) 45–48.

[14] E. Fernández, M. Landete, Fixed-charge facility location problems, in:505

G. Laporte, S. Nickel, F. S. da Gama (Eds.), Location Science, Springer

International Publishing, 2015, pp. 47–77.

[15] M. Fischetti, I. Ljubić, M. Sinnl, Redesigning benders decomposition for

large-scale facility location, Management Science 63 (7) (2016) 2146–2162.

33



[16] I. Contreras, Hub location problems, in: G. Laporte, S. Nickel, F. S.510

da Gama (Eds.), Location Science, Springer International Publishing, 2015,

pp. 311–344.

[17] L. Kaufman, M. Eede, P. Hansen, A plant and warehouse location problem,

Journal of the Operational Research Society 28 (3) (1977) 547–554.

[18] L. Wu, X. Zhang, J. Zhang, Capacitated facility location problem with515

general setup cost, Computers & Operations Research 33 (5) (2006) 1226–

1241.

[19] E. Gourdin, M. Labbé, H. Yaman, Telecommunication and location, in:

Z. Drezner, H. Hamacher (Eds.), Facility Location: Applications and The-

ory, Vol. 45, Springer, 2002, Ch. 9, pp. 275–305.520

[20] A. Maŕın, M. Pelegŕın, Adding incompatibilities to the simple plant location

problem: Formulation, facets and computational experience, Computers

and Operations Research 104 (2019) 174–190.

[21] M. Padberg, On the facial structure of set packing polyhedra, Mathematical

Programming 5 (1973) 199–215.525

[22] M. Garey, D. Johnson, Computers and intractability : a guide to the theory

of NP-completeness, W.H. Freeman & Co, New York, 1979.

[23] J. Beasley, Or-library, Available at http://people.brunel.ac.uk/

~mastjjb/jeb/orlib/pmedinfo.html (1990).

34




