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Abstract

The Kuramoto-Sivashinsky equation is a fourth-order partial differential equation
used as a model for physical phenomena such as plane flame propagation and phase
of turbulence. The inverse problem of recovering the second-order coefficient from
the knowledge of the solution in final time, for the linear version of the equation, is
studied in this article. The inverse problem is formulated as a regularized nonlinear
optimization problem, from which the local uniqueness and the stability are proved.
Finally, an algorithm for the reconstruction of the coefficient is proposed and several
numerical simulations are presented.

Keywords: Kuramoto-Sivashinsky equation, inverse problem, non-linear PDE opti-
mization.

1 Introduction

The Kuramoto-Sivashinsky equation is the fourth-order non-linear parabolic equation

ut + uxxxx + γuxx + uux = f, (1)

where γ > 0 is known as the anti-difussion parameter. This equation was derived inde-
pendently by Kuramoto and Tsuzuki [15] and by Sivashinsky [26], as a model for phase
of turbulence in reaction-diffusion systems and for the physical phenomena of plane flame
propagation, respectively.

In this article, we consider the linear Kuramoto-Sivashinsky (KS) equation with non-
constant coefficients σ = σ(x) for the diffusion and γ = γ(x) for the anti-diffusion. For
L, T > 0, this system is given by

ut + (σ(x)uxx)xx + γ(x)uxx = f, (x, t) ∈ (0, L)× (0, T ),

u(0, t) = 0, u(L, t) = 0, t ∈ (0, T ),

ux(0, t) = 0, ux(L, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ (0, L),

(2)
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where f and u0 are the given source term and initial condition, respectively.
This work is concerned with the inverse problem of retrieving the anti-diffusion coefficient

γ = γ(x) in the KS equation (2), from the observation of the solution in final time u(·, T )
in (0, L). The role of the anti-diffusion coefficient in the stability properties of the non-
linear KS equation with constant coefficients is well-known (see [16]). Hence, methods for
recovering this parameter can be useful in getting information about the instability of the
system.

Several kinds of inverse problems for partial differential equations has been widely stud-
ied in the literature. For related problems, we can cite [13], [23] and [24], where inverse
problems of recovering a source term or a coefficient in the cantilevered beam equation
and the linear Korteweg-de Vries (KdV) equation are studied using optimization methods,
and [21], where the identification of the linear velocity coefficient in a scalar dispersive
Benjamin-Bona-Mahony equation is considered. Concerning inverse problems for the linear
Kuramoto-Sivashinsky equation, in [4] and [12], Carleman estimates are used to obtain Lip-
schitz stability of the inverse problem of recovering coefficients of the equation, from knowl-
edge of traces of the solution at one end of the interval, given by uxx(0, ·) and uxxx(0, ·)
on (0, T ), and also a measurement of the solution in a given positive time in the whole
domain. The article [11] studies the case of internal measurements given by u and ut in
ω× (0, T ), in addition to the derivatives of the solution in some positive time. In this article
we follow a more realistic approach, by means of only considering the measurement of the
solution in a given final time T > 0. As far we know, there are no results in the literature
concerning inverse problems and numerical identification of the anti-diffusion coefficient of
the non-linear KS equation, and we intend that this work can serve as a first step in that
direction.

We propose an optimization-based approach for reconstructing γ given the final time
measurement m ∈ L2(0, L). For a coefficient γ ∈ H1(0, L), the unique weak solution of (2),
denoted by u(γ), belongs to C([0, T ];L2(0, L)) (see Theorem 1.1), and thus it makes sense
to consider the functional given by

J(γ) :=
1

2
‖u(·, T ; γ)−m‖2L2 +

α

2
‖γ‖2H1 , (3)

where α > 0. We consider the minimization problem

min
γ∈M

J(γ), (4)

where the admissible set M is defined by

M := {γ ∈ H1(0, L) : ‖γ‖H1 ≤ η},

for some η > 0.
The main result of this work is the following.

Theorem 1.1. Given m and m̃ ∈ L2(0, L), let γ and γ̃ ∈M be solutions of the optimization
problem (4), respectively. Then, there exists T0 > 0 and a positive constant K independent
of T such that for all T ∈ (0, T0),

‖γ − γ̃‖H1 ≤ K‖m− m̃‖L2 . (5)

From this stability result, we directly obtain the uniqueness of the solution of the opti-
mization problem (4):

Corollary 1.1. Assume that the hypothesis of Theorem 1.1 hold. If m = m̃, then we have
that there exists T0 > 0 such that for all T ∈ (0, T0), γ = γ̃.
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Besides, we illustrate numerically the solution of the inverse problem considered for
the KS equation by approximating the solution of the optimization-based approach given
in (4) for the reconstruction of the anti-diffusion parameter and present some numerical
experiments. The minimization of the objective functional constrained by the KS equation is
performed by using the iterative L-BFGS-B algorithm, described for instance by Byrd et al.
[5], and Zhu et al. [27]. The spatial discretization of both the forward and adjoint problem
is developed with the Finite Element Method (FEM), and the corresponding time stepping
is carried out by means of an implicit two-step leap-frog type strategy, which guarantees
the required numerical stability. We found that selecting appropriately the regularization
term in the functional J(γ) and the final time T , we can obtain a good reconstruction of
the parameter, even in the presence of noise in the final measurement. The stability result
established in Theorem 1.1 is also validated by using the numerical scheme proposed.

The remainder of this paper is organized as follows. In section 2, we prove the existence
of a unique weak solution for the KS equation (2). Next, in section 3 we formulate the
inverse problem as a non-linear optimization problem and we show the local uniqueness and
stability. In section 4, we propose an algorithm for the reconstruction of the parameter and
present some numerical simulations. In the final section, we present some conclusions and
future works related to the contents of this paper.

Notation. If there is no danger of confusion, we write Lp instead of Lp(0, L), and
analogously Hk instead Hk(0, L) for Sobolev spaces. The corresponding spaces of functions
with zero traces get an additional index 0. Further, 〈·, ·〉 is the duality product between
H−2 := (H2

0 )′ and H2
0 and (·, ·) is the scalar product of L2. We identify L2 with its dual

space such that we typically work in the Gelfand triple H2
0 ⊂ L2 ⊂ H−2.

2 Well-posedness of the direct problem

This section is devoted to the proof of well-posedness of system (2). More precisely, we
prove that system (2) has a unique weak solution by using Galerkin’s method (see, e.g. [8]).

First, we consider the following definition.

Definition 2.1. Let σ ∈ L∞(0, L) be such that σ(x) ≥ σ0 for a.e. x ∈ (0, L), γ ∈ L∞(0, L),
f ∈ L2(0, T ;L2(0, L)) and u0 ∈ L2(0, L). We say that u is a weak solution of (2) if
u ∈ L2(0, T ;H2

0 (0, L)), ut ∈ L2(0, T ;H−2(0, L)), u(·, 0) = u0 and

〈ut(·, t), ϕ〉+

∫ L

0

σ(x)uxxϕxxdx+

∫ L

0

γ(x)uxxϕdx = (f(·, t), ϕ) a.e. on (0, T ) (6)

for all ϕ ∈ H2
0 (0, L).

Remark 2.1. In the previous definition, the condition u(·, 0) = u0 is well defined because
if u ∈ L2(0, T ;H2

0 ) and ut ∈ L2(0, T ;H−2), in particular we have that u ∈ C([0, T ];L2).

If we set

a : [0, T ]×H2
0 ×H2

0 → R, a(t, u, w) :=

∫ L

0

(σ(x)uxxwxx + γ(x)uxxw)dx,

the weak formulation (6) is equivalent to

〈ut(·, t), ϕ〉+ a(t, u(·, t), ϕ) = (f(·, t), ϕ) for a.e. t ∈ (0, T ), (7)

for all ϕ ∈ H2
0 . In order to prove that there exists a unique weak solution, we proceed by

Galerkin approximation in finite-dimensional subspaces of H2
0 . To this end, choose some

orthogonal basis (wj)j∈N of H2
0 that is at the same time an orthonormal basis of L2.
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For a positive integer N we define EN := span{w1, . . . , wN}. We will look for a function
uN : [0, T ]→ H2

0 of the form

uN (t) :=

N∑
j=1

cN,j(t)wj , (8)

where the coefficients cN,j(t) (0 ≤ t ≤ T, j = 1, . . . , N) satisfies

cN,j(0) = (u0, wj) (j = 1, . . . , N), (9)

and
〈uNt (t), wj〉+ a(t, uN (t), wj) = (f(·, t), wj) (0 ≤ t ≤ T, j = 1, . . . , N). (10)

Lemma 2.1. For each N ∈ N there exists a unique function uN of the form (8) satisfying
(9) and (10).

Proof. Assuming uN satisfies (7), we note that

〈uNt (t), wj〉 = c′N,j(t) (0 ≤ t ≤ T, j = 1, . . . , N).

Additionally,

a(t, uN (t), wj) =

N∑
k=1

ajk(t)cN,k(t),

where ajk(t) = a(t, wj , wk) (j, k = 1, . . . , N). If we write f j(·, t) = (f(·, t), wj) (j =
1, . . . , N), then (7) becomes the linear system of ODE

c′N,j(t) +

N∑
k=1

ajk(t)cN,k(t) = f j(·, t) (j = 1, . . . , N), (11)

subject to the initial condition (9). From standard theory for ordinary differential equations
it follows that there exists a unique absolutely continuous function cN = (cN,1(t), . . . , cN,N (t))
satisfying (9) and (11) for a.e. 0 ≤ t ≤ T . Then, uN defined in (8) solves (10) for a.e.
0 ≤ t ≤ T .

Lemma 2.2. There exists a constant C = C(T, σ0, γ), such that for all N ∈ N, the solution
uN of (10) satisfies

‖uN‖L∞(0,T ;L2) + ‖uN‖L2(0,T ;H2
0 )

+ ‖uNt ‖L2(0,T ;H−2) ≤ C
(
‖u0‖L2 + ‖f‖L2(0,T ;L2)

)
. (12)

Proof. Multiply equation (10) by cN,k(t) and then sum for k = 1, . . . , N , we obtain

〈uNt , uN 〉+ a(t, uN , uN ) = (f, uN ) for a.e. 0 ≤ t ≤ T . (13)

The last line is equivalent to write

1

2

d

dt
‖uN (t)‖2L2 +

∫ L

0

σ(x)|uNxx(t)|2dx = −
∫ L

0

γ(x)uNxx(t)uN (t)dx+ (f(·, t), uN (t)). (14)

If in this equality we consider

−
∫ L

0

γ(x)uN (t)uNxx(t)dx+ (f(·, t), uN (t)) ≤ ‖γ‖
2
L∞

2σ0
‖uN (t)‖2L2 +

1

2

∫ L

0

σ(x)|uNxx(t)|2dx

+
1

2
‖f(·, t)‖2L2 +

1

2
‖uN (t)‖2L2 ,
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then,

d

dt
‖uN (t)‖2L2 +

∫ L

0

σ(x)|uNxx(t)|2dx ≤
(
‖γ‖2L∞
σ0

+ 1

)
‖uN (t)‖2L2 + ‖f(·, t)‖2L2 . (15)

Gronwall’s inequality allows us to conclude from (15) that

‖uN (t)‖2L2 ≤ exp

[
T

(
‖γ‖2L∞
σ0

+ 1

)](
‖uN (0)‖2L2 + ‖f‖2L2(0,T ;L2)

)
≤ exp

[
T

(
‖γ‖2L∞
σ0

+ 1

)](
‖u0‖2L2 + ‖f‖2L2(0,T ;L2)

)
.

(16)

Then, (15) is integrated over (0, T ) and σ(x) ≥ σ0 a.e. x ∈ (0, L) is used to get

‖uN (t)‖2L2(0,T ;H2
0 )
≤ KT

σ0
‖uN (t)‖2L2 + ‖f(·, t)‖2L2 + ‖u0‖2L2 . (17)

To estimate the term ‖uN (t)‖2L2 in (17) we use (16). Thus we obtain

‖uN (t)‖2L2(0,T ;H2
0 )
≤
(
KT

σ0
exp(KT ) + 1

)(
‖u0‖2L2 + ‖f‖2L2(0,T ;L2)

)
, (18)

where

K =
‖γ‖2L∞
σ0

+ 1.

Therefore, combining (16) and (18) leads us to

‖uN‖2L∞(0,T ;L2) + ‖uN‖2L2(0,T ;H2
0 )
≤ C

(
‖u0‖2L2 + ‖f‖2L2(0,T ;L2)

)
. (19)

To obtain H−2 bounds for uNt , let us finally choose any ϕ ∈ H2
0 with ϕ = ϕ1 + ϕ2, where

ϕ1 ∈ EN and ϕ2 ∈ E⊥N . Note that ‖ϕ1‖H2
0
≤ ‖ϕ‖H2

0
. Then,

〈uNt (t), ϕ〉 =

∫ L

0

uNt (t)ϕ1dx = (f(·, t), ϕ1)− a(t, uN (t), ϕ1), (20)

Using the Schwarz and Poincaré inequalities, we infer that

(uNt (t), ϕ) ≤ ‖f(·, t)‖L2‖ϕ1‖L2 + ‖σ‖L∞‖uN (t)‖H2
0
‖ϕ1‖H2

0
+ ‖γ‖L∞‖uN (t)‖H2

0
‖ϕ1‖L2

≤ Cp‖f(·, t)‖L2‖ϕ1‖H2
0

+ ‖σ‖L∞‖uN (t)‖H2
0
‖ϕ1‖H2

0
+ Cp‖γ‖L∞‖uN (t)‖H2

0
‖ϕ1‖H2

0

≤ C(‖uN (t)‖H2
0

+ ‖f(·, t)‖L2)‖ϕ1‖H2
0

≤ C(‖uN (t)‖H2
0

+ ‖f(·, t)‖L2)‖ϕ‖H2
0
,

(21)

where Cp denote the Poincaré constant and C a constant depending only on σ, γ and Cp.
From the last inequality it follows that

‖uNt (t)‖2H−2 ≤ C
(
‖uN (t)‖2H2

0
+ ‖f(·, t)‖2L2

)
. (22)

After integrate over (0, T ) in (22) and then use (18), we get

‖uNt ‖2L2(0,T ;H−2) ≤ C

(∫ T

0

‖uN (t)‖2H2
0
dt+

∫ T

0

‖f(·, t)‖2L2dt

)
≤ C

(
‖u0‖2L2 + ‖f‖2L2(0,T ;L2)

)
.

(23)

Finally, combining (19) and (23) we obtain (12).
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Theorem 2.1. Let σ0 > 0 and σ ∈ L∞(0, L) be such that σ(x) ≥ σ0 a.e. x ∈ (0, L). Let
γ ∈ L∞(0, L), f ∈ L2(0, T ;L2(0, L)) and u0 ∈ L2(0, L). Then, there exists a unique weak
solution

u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H2
0 (0, L))

of (2) with ut ∈ L2(0, T ;H−2(0, L)). Moreover, there exists a constant C = C(T, σ0, γ) ≥ 0
such that

‖u‖L∞(0,T ;L2) + ‖u‖L2(0,T ;H2
0 )

+ ‖ut‖L2(0,T ;H−2) ≤ C
(
‖u0‖L2 + ‖f‖L2(0,T ;L2)

)
. (24)

Proof. According to Lemma 2.2, we see that sequence (uN )N∈N is bounded in L2(0, T ;H2
0 ),

and (uNt )N∈N is bounded in L2(0, T ;H−2). Then, there exists a subsequence of (uN )N∈N,
which for simplicity we still denote by (uN )N∈N, and a function u ∈ L2(0, T ;H2

0 ) and
ut ∈ L2(0, T ;H−2), such that

uN → u weakly in L2(0, T ;H2
0 ), uNt → ut weakly in L2(0, T ;H−2). (25)

Let φ ∈ C∞0 (0, T ) and w ∈ EM for some fixed M ∈ N. Considering ϕ = φ(t)w in (11) and
then integrating over (0, T ), we get that for N ≥M∫ T

0

〈uNt , φw〉dt+

∫ T

0

a(t, uN , φw)dt =

∫ T

0

(f, φw)dt.

Since ϕ ∈ L2(0, T ;H2
0 ), from (25) we deduce that when N →∞,∫ T

0

φ (〈ut, w〉+ a(t, u, w)− (f, w)) dt = 0.

From this last identity and the density of C∞0 (0, T ) in L2(0, T ), we obtain

〈ut, w〉+ a(t, u, w) = (f, w) a.e. t ∈ (0, T ).

Moreover, since ∪M∈NEM is dense in H2
0 , the last identity hold for every w ∈ H2

0 , and
therefore u satisfies (6).
Now we will prove that u(0) = u0. We consider φ ∈ C∞([0, T ]) such that φ(0) = 1 and
φ(T ) = 0. Given w ∈ EM we set ϕ = φ(t)w. Through integrating by parts over (0, T ), we
obtain that

(u(0), w) = −
∫ T

0

〈u,w〉φtdx+

∫ T

0

a(t, u, w)φdt−
∫ T

0

(f, w)φdt. (26)

By using a similar argument we have that for Galerkin approximation with w ∈ EM and
N ≥M , we get that

(uN (0), w) = −
∫ T

0

〈uN , w〉φtdt+

∫ T

0

a(t, uN , w)φdt−
∫ T

0

(f, w)dt.

Taking the limit when N →∞ in the last identity we obtain that

(u0, w) = −
∫ T

0

〈u,w〉φtdt+

∫ T

0

a(t, u, w)φdt−
∫ T

0

(f, w)dt. (27)

Comparing (26) and (27) we find that

(u(0), w) = (u0, w) ∀w ∈ EM ,
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from which we can deduce that u(0) = u0.
Now, we will prove uniqueness. Let u and ũ be weak solutions of (2). We set y = u− ũ and
we note that by linearity of (2), y solves the following equation:

〈yt, ϕ〉+ a(t, y, ϕ) = 0 for all ϕ ∈ H2
0 and a.e. t ∈ (0, T ) and y(0) = 0.

Taking ϕ = y as a test function in the last equation we get

1

2

d

dt
‖y(t)‖2L2 +

∫ L

0

σ(x)|yxx(t)|2dx = −
∫ L

0

γ(x)yxx(t)y(t)dx,

a.e. t ∈ (0, T ) and y(0) = 0. Estimating the right side in the last identity we arrive at

d

dt
‖y(t)‖2L2 +

∫ L

0

σ(x)|yxx(t)|2dx ≤ ‖γ‖
2
L∞

σ0
‖y(t)‖2L2 ,

and then
d

dt
‖y(t)‖2L2 ≤

‖γ‖2L∞
σ0

‖y(t)‖2L2 .

Since y(0) = 0, Gronwall’s inequality implies that y ≡ 0 and then u = ũ.
Finally, the estimate (24) can be shown by using the same arguments used in Lemma 2.2.

3 Inverse problem

In this section we show the stability result for the minimization problem (4). First, in the
subsection 3.1 we prove the existence of solutions of (4), and then in the subsection 3.2
we deduce the first-order necessary conditions. Finally, using the optimality conditions and
energy estimates we prove the local stability result.

3.1 Existence of a minimizer

In the following theorem we establish the existence of a minimizer of the optimization
problem (4).

Theorem 3.1. Let m ∈ L2(0, L). Then there exists a γ∗ ∈ M such that infγ∈M J(γ) =
J(γ∗).

Proof. We have that the boundedness from below of J guarantees the existence of a min-
imizing sequence (γk)k∈N such that ‖γk‖H1 ≤ η ∀k ∈ N. Therefore it contains a weakly
convergent subsequence which for simplicity we still denote by (γk)k∈N, such that γk → γ∗

weakly in H1. As the admissible set M is weakly closed, we have that γ∗ ∈ M. On
the other side, from Theorem 2.1 we deduce that the sequence (u(γk))k∈N is bounded in
L2(0, T ;H2

0 ), and (ut(γk))k∈N is bounded in L2(0, T ;H−2). This implies that there exists a
subsequence of (u(γk))k∈N, which is denoted by (u(γk))k∈N, and a function u∗ ∈ L2(0, T ;H2

0 )
and u∗t ∈ L2(0, T ;H−2), such that

u(γk)→ u∗ weakly in L2(0, T ;H2
0 ), ut(γk)→ u∗t weakly in L2(0, T ;H−2).

We next show that the couple (γ∗, u∗) is a weak solution of (2). First, note that (γk, u(γk))
is a weak solution of (2) for all k ∈ N, that is

〈ut(γk), ϕ〉+ a(t, u(γk), ϕ) = (f(·, t), ϕ) for all ϕ ∈ H2
0 and a.e. t ∈ (0, T ). (28)
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Let φ ∈ C∞0 (0, T ). Multiplying identity (28) by φ and integrating over (0, T ), we obtain∫ T

0

〈ut(γk), ϕφ〉dt+

∫ T

0

∫ L

0

σuxx(γk)ϕxxφdxdt+

∫ T

0

∫ L

0

γ∗uxx(γk)ϕφdxdt

+

∫ T

0

∫ L

0

(γk − γ∗)uxx(γk)ϕφdxdt =

∫ T

0

(f(·, t), ϕ)φdt.

(29)

Now, since H1(0, L) is compactly embedded in L2(0, L), ‖u(γk)‖L2(0,T ;H2
0 )
≤ K and ϕ ∈ H2

0 ,
we have that∫ T

0

∫ L

0

(γk − γ∗)uxx(γk)ϕφdxdt ≤ ‖φ‖L∞(0,T )‖ϕ‖L∞‖γk − γ∗‖L2T 1/2‖u(γk)‖L2(0,T ;H2
0 )

→ 0 as k →∞.

(30)

Taking k →∞ in (29), we arrive at∫ T

0

φ (〈u∗t , ϕ〉+ a(t, u, ϕ)− (f(·, t), ϕ)) dt = 0.

Since the last identity holds for every φ ∈ C∞0 (0, T ), we deduce that

〈u∗t , ϕ〉+

∫ L

0

σ(x)uxxϕxxdx+

∫ L

0

γ∗(x)uxxϕdx = (f(·, t), ϕ) a.e. t ∈ (0, T ) and ∀ϕ ∈ H2
0 ,

(31)

and therefore u∗(x, t) = u(x, t; γ∗). Now, we will prove that u∗(0) = u0. Let φ ∈ C1([0, T ])
such that φ(0) = 1 and φ(T ) = 0. Then, multiplying identity (28) by φ and integrating over
(0, T ), we get

−
∫ T

0

∫ L

0

u(γk)ϕφtdxdt+

∫ T

0

∫ L

0

σuxx(γk)ϕxxφdxdt+

∫ T

0

∫ L

0

γ∗uxx(γk)ϕφdxdt

+

∫ T

0

∫ L

0

(γk − γ∗)uxx(γk)ϕφdxdt =

∫ L

0

u0(x)ϕdx+

∫ T

0

(f(·, t), ϕ)φdt.

Taking k →∞, then integrating by parts in time and finally using (30) and (31), we obtain∫ L

0

u∗(0)ϕdx =

∫ L

0

u0(x)ϕdx ∀ϕ ∈ H2
0 ,

which allows us deduce that u∗(0) = u0. It remains to prove that γ∗ is optimal. Noting that
u(x, T ; γk) ⇀ u(x, T ; γ∗) weakly in L2 and the H1-norm is weak lower semi-continuous, we
obtain

inf
γ∈M

J(γ) ≤ J(γ∗) ≤ lim inf
k→∞

J(γk) = lim
k→∞

J(γk) = inf
γ∈M

J(γ).

Therefore, γ∗ minimizes the functional J .

3.2 Optimality conditions

In this subsection, we derive the first order necessary optimality conditions for the minimizer
of problem (4).

Suppose that γ, γ + δγ ∈ M. We observe that the variation of the functional J defined
by

δJ(γ) = J(γ + δγ)− J(γ),
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satisfies

δJ(γ) =

∫ L

0

(u(x, T ; γ)−m(x))δu(x, T ; γ)dx+ α(γ, δγ) + α(γ′, δγ′)

+
α

2
‖δγ‖2H1 +

1

2
‖δu(·, T ; γ)‖2L2 ,

(32)

where δu(x, t; γ) := u(x, t; γ + δγ)− u(x, t; γ) is solution of the following system:
δut + (σ(x)δuxx)xx + γ(x)δuxx = −(δγ(x))uxx(x, t; γ + δγ), x ∈ (0, L)× (0, T ),

δu(0, t) = δu(L, t) = 0, t ∈ (0, T ),

δux(0, t) = δux(L, t) = 0, t ∈ (0, T ),

δu(x, 0) = 0, x ∈ (0, L).

(33)

Remark 3.1. A similar well-posedness result as that obtained in Theorem 2.1 can be proved
for system (33).

Proposition 3.1. The unique weak solution of (33) satisfies the following estimate:

‖δu‖2L∞(0,T ;L2) + ‖δu‖2L2(0,T ;H2
0 )
≤ K(T, u0, σ0, f)‖δγ‖2H1 . (34)

Proof. From (24) we deduce that it is sufficient to estimate the source term

f := −(δγ(x))uxx(x, t; γ + δγ).

In fact

‖δγ(·)uxx(·, ·; γ + δγ)‖2L2(0,T ;L2) =

∫ T

0

∫ L

0

|(δγ(x))uxx(x, t; γ + δγ)|2dxdt

≤ ‖δγ‖2L∞
∫ T

0

∫ L

0

|uxx(x, t; γ + δγ)|2dxdt

≤ K(T, u0, σ0, f)‖δγ‖2H1 .

The last line follows from Theorem 2.1 and the continuous embedding of H1(0, L) in
L∞(0, L).

In order to obtain the derivative of the functional J and deduce the optimality conditions
for the minimizer of problem (4), we introduce an adjoint system. Let φT ∈ L2. Let
φ = φ(x, t; γ) the unique weak solution of the following system:

− φt + (σ(x)φxx)xx + (γ(x)φ)xx = 0, (x, t) ∈ (0, L)× (0, T ),

φ(0, t) = φ(L, t) = 0, t ∈ (0, T ),

φx(0, t) = φx(L, t) = 0, t ∈ (0, T ),

φ(x, T ) = φT (x), x ∈ (0, L).

(35)

In a similar way as done for system (2), the following energy estimate can be shown for
the adjoint system (35) (see Theorem 2.1):

Proposition 3.2. Let φT ∈ L2(0, L). Then, the unique weak solution φ of (35) satisfies
the following estimate:

‖φt‖2L2(0,T ;H−2) + ‖φ‖2L∞(0,T ;L2) + ‖φ‖2L2(0,T ;H2
0 )
≤ K(T, η, σ0)‖φT ‖2L2 . (36)

The following proposition determines an integral relationship between (2) and the adjoint
system (35).
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Proposition 3.3. Let u0, φT ∈ L2(0, L). Let δu be solution of (33) and φ be a solution of
(35). Then, the following identity hold:∫ L

0

φT (x)δu(x, T ; γ)dx = −
∫ T

0

∫ L

0

uxx(x, t; γ + δγ)φ(x, t)δγ(x)dxdt

=−
∫ T

0

∫ L

0

uxx(x, t; γ)φ(x, t)δγ(x)dxdt

−
∫ T

0

∫ L

0

δuxx(x, t; γ)φ(x, t)δγ(x)dxdt.

(37)

Moreover, there exists a constant K such that∣∣∣∣∣
∫ T

0

∫ L

0

δuxx(x, t; γ)φ(x, t)δγ(x)dxdt

∣∣∣∣∣ ≤ K(T, η, u0, σ0)‖φT ‖L2‖δγ‖2H1 . (38)

Proof. Multiplying equation (33) by φ and integrating over (0, L)× (0, T ), we obtain∫ T

0

∫ L

0

(δut + (σδuxx)xx + γ(x)δuxx)φdxdt = −
∫ T

0

∫ L

0

uxx(x, t; γ + δγ)φδγ(x)dxdt.

(39)
After some integration by parts in time on the left-hand side of (39), we get∫ T

0

∫ L

0

(δut + (σδuxx)xx + γ(x)δuxx)φdxdt =

∫ T

0

∫ L

0

(−φt + (σφxx)xx + (γ(x)φ)xx)) δudxdt

+

∫ L

0

φT (x)δu(x, T ; γ)dx+

∫ T

0

γ(x)δuxφ
∣∣∣x=L
x=0

=

∫ L

0

φT (x)δu(x, T ; γ)dx.

(40)

Combining (39) with (40), we obtain the identity (37). Now, we will prove (38). From (34)
and (36), we deduce the following estimate:∫ T

0

∫ L

0

δuxx(x, t; γ)φ(x, t)δγ(x)dxdt ≤ ‖δγ‖L∞
∫ T

0

∫ L

0

|δuxx(x, t)φ(x, t)| dxdt

≤ ‖δγ‖L∞
∫ T

0

‖δuxx(·, t)‖L2‖φ(·, t)‖L2dt

≤ ‖δγ‖L∞ max
0≤t≤T

‖φ(t)‖L2

√
T‖δu‖L2(0,T ;H2

0 )

≤
√
T‖δγ‖L∞K1(T, η, σ0)‖φT ‖L2K2(T, η, u0)‖δγ‖L∞

≤ K3(T, η, u0, σ0)
√
T‖φT ‖L2‖δγ‖2L∞ .

Finally, since the embedding H1(0, L) in L∞(0, L) is continuous, we conclude (38).

Proposition 3.4. Let u0 ∈ L2(0, L). Then the variation of functional J satisfies the
following:

δJ(γ) =

(
−
∫ T

0

uxx(x, t; γ)φ(x, t)dt, δγ(·)

)
+ α (γ, δγ) + α (γ′, δγ′) + o (‖δγ‖H1) , (41)

where φ is the solution of the adjoint problem (35) with final data φT (·) = u(·, T ; γ)−m(·)
in (0, L). Moreover, the Fréchet derivative of the functional J in γ ∈M is given by

J ′(γ)δγ = −
∫ T

0

∫ L

0

uxx(x, t; γ)φ(x, t)δγ(x)dxdt+ α (γ, δγ) + α (γ′, δγ′) , (42)
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for all δγ ∈M.

Proof. Taking φT (·) = u(·, T ; γ)−m(·) in (0, L) and using (37) in (32), we obtain that the
variation δJ(γ) can be written as

δJ(γ) = −
∫ T

0

∫ L

0

uxx(x, t; γ)φ(x, t)δγ(x)dxdt+ α (γ, δγ) + α (γ′, δγ′) +R(δγ),

where

R(δγ) =
1

2
‖δu(·, T ; γ)‖2L2 −

∫ T

0

∫ L

0

δuxx(x, t; γ)φ(x, t)δγ(x)dxdt+
α

2
‖δγ‖2H1 .

Using (34) and (38), we get

|R(δγ)| ≤ 1

2
‖δu(x, T ; γ)‖2L2 +

∣∣∣∣∣
∫ T

0

∫ L

0

δuxx(x, t; γ)φ(x, t)δγ(x)dxdt

∣∣∣∣∣+
α

2
‖δγ‖2H1

≤
(

1

2
K1(T, η, u0, σ0) +K2(T, η, u0, σ0)‖φT ‖L2 +

α

2

)
‖δγ‖2H1 .

Using estimate (24), we obtain

‖φT ‖2L2 ≤ 2
(
‖u(·, T ; γ)‖2L2 + ‖m‖2L2

)
≤ K3(T, η, u0, σ0).

From this last estimate, we obtain

|R(δγ)| ≤ K4(T, η, u0, α, σ0)‖δγ‖2H1 .

This completes the proof of (42).

We are now ready to state the first order necessary optimality conditions for the mini-
mizer of (4).

Proposition 3.5. Let γ solution of the optimization problem (4) and u = u(γ) the corre-
sponding solution of (2). Then, we have

−
∫ T

0

∫ L

0

uxx(x, t; γ)φ(x, t)(h− γ)(x)dxdt+ α (γ, h− γ) + α (γ′, h′ − γ′) ≥ 0, (43)

for all h ∈M, where φ is the solution of the adjoint system (35) with φT (x) = u(x, T ; γ)−
m(x), x ∈ (0, L).

Proof. Let γ be a solution of the optimization problem (4) and u = u(γ) the corresponding
solution of (2). Let γλ = γ+λ(h−γ) with λ ∈ [0, 1] and h ∈M. We consider uλ = u(x, t; γλ).
Since J is Fréchet differentiable in γλ we have

d

dλ
J(γλ)

∣∣∣
λ=0

=
1

2

∫ L

0

(uλ(x, T )−m(x))
∂uλ
∂λ

∣∣∣
λ=0

dx+ α (γ, h− γ) + α (γ′, h′ − γ′) . (44)

If we set ũλ = ∂uλ

∂λ , then this function solves
(ũλ)t + (σ(ũλ)xx)xx + (h− γ)(uλ)xx + (γ + λ(h− γ))(ũλ)xx = 0, (x, t) ∈ (0, L)× (0, T ),

ũλ(0, t) = ũλ(L, t) = 0, t ∈ (0, T ),

(ũλ)x(0, t) = (ũλ)x(L, t) = 0, t ∈ (0, T ),

ũλ(x, 0) = 0, x ∈ (0, L).
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Now, if we define ρ = ũλ|λ=0 we see that
ρt + (σρxx)xx + γ(x)ρxx = −(h− γ)uxx, (x, t) ∈ (0, L)× (0, T ),

ρ(0, t) = ρ(L, t) = 0, t ∈ (0, T ),

ρx(0, t) = ρx(L, t) = 0, t ∈ (0, T ),

ρ(x, 0) = 0, x ∈ (0, L).

(45)

Since γ is optimal we have that

d

dλ
J(γλ)

∣∣∣
λ=0
≥ 0, ∀h ∈M,

i.e., ∫ L

0

(u(x, T ; γ)−m(x))ρ(x, T )dx+ α (γ, h− γ) + α (γ′, h′ − γ′) ≥ 0.

Using the adjoint system (35) with the final condition φ(x, T ) = u(x, T ; γ)−m(x), x ∈ (0, L),
we have ∫ L

0

φ(x, T )ρ(x, T )dx+ α (γ, h− γ) + α (γ′, h′ − γ′) ≥ 0, ∀h ∈M. (46)

Multiplying the first equation in (35) by ρ and integrating by parts over (0, L)× (0, T ), we
get ∫ L

0

φ(x, T )ρ(x, T )dx = −
∫ T

0

∫ L

0

uxx(x, t; γ)φ(x, t)(h(x)− γ(x))dxdt. (47)

Finally, the result it follows from (46) and (47).

3.3 Local stability result

In this subsection, we prove the stability result stated in Theorem 1.1.
Let u and ũ be the solutions of the system (2) corresponding to the coefficients γ and

γ̃, respectively. Given the measurements m and m̃, we define by φ and φ̃ the corresponding
solutions of the adjoint system (35) with final data

φT (·) = u(·, T ; γ)−m(·) and φ̃T (·) = ũ(·, T ; γ̃)− m̃(·), in (0, L),

respectively. Let U = u − ũ, Q = γ − γ̃ and V = φ − φ̃. We note that U and V satisfies
respectively the following equations:

Ut + (σ(x)Uxx)xx + γ(x)Uxx = −Qũxx, (x, t) ∈ (0, L)× (0, T ),

U(0, t) = U(L, t) = 0, t ∈ (0, T ),

Ux(0, t) = Ux(L, t) = 0, t ∈ (0, T ),

U(x, 0) = 0, x ∈ (0, L),

(48)

and 
− Vt + (σ(x)Vxx)xx + (γ(x)V )xx = −

(
Qφ̃
)
xx
, (x, t) ∈ (0, L)× (0, T ),

V (0, t) = V (L, t) = 0, t ∈ (0, T ),

Vx(0, t) = Vx(L, t) = 0, t ∈ (0, T ),

V (x, T ) = U(x, T )− (m(x)− m̃(x)), x ∈ (0, L).

(49)

In the following propositions we obtain some energy type estimates for the systems (48) and
(49).
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Proposition 3.6. Let γ, γ̃ ∈ L∞(0, L). Then, there exists a positive constant K1 indepen-
dent of T , such that the solution of (48) satisifies

‖U(t)‖2L2 +

∫ T

0

∫ L

0

|Uxx|2dxdt ≤
(
eK1T +

K1T

σ0
+

1

σ0

)
‖Q‖2L∞‖ũ‖2L2(0,T ;H2

0 )
. (50)

Proof. Multiplying the first equation in (48) by U and integrating by parts over (0, L) we
get

1

2

d

dt

∫ L

0

|U |2dx+

∫ L

0

σ(x)|Uxx|2dx = −
∫ L

0

γ(x)UxxUdx−
∫ L

0

Q(x)ũxxUdx.

If we consider the following estimate on the right side of the last identity

−
∫ L

0

γ(x)UxxUdx−
∫ L

0

QũxxUdx ≤
‖γ‖2L∞

2σ0

∫ L

0

|U |2dx+
1

2

∫ L

0

σ|Uxx|2dx

+
1

2

∫ L

0

|U |2dx+
‖Q‖2L∞

2

∫ L

0

|ũxx|2dx,

then we obtain

d

dt

∫ L

0

|U |2dx+

∫ L

0

σ(x)|Uxx|2dx ≤
[
‖γ‖2L∞
σ0

+ 1

] ∫ L

0

|U |2dx+ ‖Q‖2L∞
∫ L

0

|ũxx|2dx. (51)

Using the Gronwal’s inequality in (51), we get∫ L

0

|U |2dx ≤ exp (K1T ) ‖Q‖2L∞
∫ T

0

∫ L

0

|ũxx|2dxdt, (52)

where

K1 =
‖γ‖2L∞
σ0

+ 1.

Integrating over (0, T ) in (52), we obtain∫ T

0

∫ L

0

|Uxx|2dxdt ≤
K1T

σ0
eK1T ‖Q‖2L∞‖ũ‖2L2(0,T ;H2

0 )
+

1

σ0
‖Q‖2L∞‖ũ‖2L2(0,T ;H2

0 )
. (53)

Finally, combining (52) and (53) we deduce (50).

Proposition 3.7. Let γ, γ̃ ∈ L∞(0, L) and m, m̃ ∈ L2(0, L). Then, there exists positive
constants K1 and K2 independents of T , such that the solution V of (49) satisfies

‖V (t)‖2L2 ≤ 2eK2T

(
eK1T +

K1T

σ0
+

1

σ0

)
‖ũ‖2L2(0,T ;H2

0 )
‖Q‖2L∞

+
2T

σ0
‖Q‖2L∞‖φ̃‖2L∞(0,T ;L2) + 2eK2T ‖m− m̃‖2L2 .

(54)

Proof. If we consider the change of variable t 7→ T−t we see that V := V (x, T−t) solves the
system (49) with initial condition given by V (x, 0) = U(x, T )− (m(x)− m̃(x)). Multiplying
the first equation in (49) by V and integrating by parts over (0, L), we get

1

2

d

dt

∫ L

0

|V |2dx+

∫ L

0

σ(x)|Vxx|2dx = −
∫ L

0

γ(x)V Vxxdx−
∫ L

0

Qφ̃Vxxdx. (55)
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If we consider in the last inequality that

−
∫ L

0

γ(x)V Vxxdx−
∫ L

0

Qφ̃Vxxdx ≤
‖γ‖2L∞
σ0

∫ L

0

|V |2dx+
1

4

∫ L

0

σ(x)|Vxx|2dx

+
‖Q‖2L∞
σ0

∫ L

0

|φ̃|2dx+
1

4

∫ L

0

σ(x)|Vxx|2dx,

then we arrive to

d

dt

∫ L

0

|V |2dx+

∫ L

0

σ(x)|Vxx|2dx ≤
2‖γ‖2L∞
σ0

∫ L

0

|V |2dx+
2‖Q‖2L∞
σ0

∫ L

0

|φ̃|2dx. (56)

Using the Gronwall’s inequality for estimate the first term on the right side in (56) we obtain∫ L

0

|V |2dx ≤ exp

[
2T‖γ‖2L∞

σ0

] ∫ L

0

|U(x, T )− (m(x)− m̃(x))|2 dx+
2‖Q‖2L∞
σ0

∫ T

0

∫ L

0

|φ̃|2dxdt.

(57)
Finally, using Proposition 3.6, we estimate the right side in (57) and we get (54).

Now, we present the proof of Theorem 1.1.

Proof Theorem 1.1. Let u and ũ be the solutions of (2) corresponding to the coeffi-

cients γ and γ̃, respectively. Let φ and φ̃ be the solutions of the corresponding auxliar
system (35). Since γ and γ̃ satisfies the optimality condition (44) we have that

−
∫ T

0

∫ L

0

uxxφ(γ̃ − γ)dxdt+ α

∫ L

0

γ′(γ̃′ − γ′)dx+ α

∫ L

0

γ(γ̃ − γ)dx ≥ 0 (58)

and

−
∫ T

0

∫ L

0

ũxxφ̃(γ − γ̃)dxdt+ α

∫ L

0

γ̃′(γ′ − γ̃′)dx+ α

∫ L

0

γ̃(γ − γ̃)dx ≥ 0. (59)

Combining (58) and (59), we get

α‖γ − γ̃‖2H1 ≤
∫ T

0

∫ L

0

(UxxφQ+ ũxxV Q)dxdt. (60)

Using the Höder’s inequality, (24), (36) and Proposition 3.6, we have∫ T

0

∫ L

0

UxxφQdxdt ≤
1

2
√
T

∫ T

0

∫ L

0

|Uxx|2dxdt+
√
T
‖Q‖2L∞

2

∫ T

0

∫ L

0

|φ|2dxdt

≤ 1

2
√
T

(
eK1T +

K1T

σ0
+

1

σ0

)
‖Q‖2L∞‖ũ‖2L2(0,T ;H2

0 )

+ T
√
T
‖Q‖2L∞

2

(
1 +

TK2

σ0

)
eK2T ‖u(·, T )−m(·)‖2L2

≤ K3

√
TeK4T

(
eK1T +

K1T

σ0
+

1

σ0

)
‖Q‖2L∞

+K5T
2
√
TeK6T

(
1 +

TK2

σ0

)
‖Q‖2L∞ .

(61)
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Similarly, using inequality (54) instead (50), we have∫ T

0

∫ L

0

ũV Qdxdt ≤ 1

2

∫ T

0

∫ L

0

|V |2dxdt+
‖Q‖2L∞

2

∫ T

0

∫ L

0

|ũxx|2dxdt

≤ C1T
(
eC2T + T

)
‖ũ‖2L2(0,T ;H2

0 )
‖Q‖2L∞ + C3‖Q‖2L∞‖φ̃‖2L∞(0,T ;L2)

+ C4e
C5T ‖m− m̃‖2L2

≤ C6Te
C7T

(
eC2T + T

)
‖Q‖2L∞ + C8Te

C9T ‖Q‖2L∞ + C4e
C5T ‖m− m̃‖2L2 .

(62)

Then, by using (61) and (62) for estimating the right side on (60), and the continuous
injection of H1(0, L) in L∞(0, L) we obtain

‖γ − γ̃‖2H1 ≤
KT

α
‖Q‖2H1 +

CeCT

α
‖m− m̃‖2L2 , (63)

where

KT = K3

√
TeK4T

(
eK1T +

K1T

σ0
+

1

σ0

)
+K5T

2
√
TeK6T

(
1 +

TK2

σ0

)
+ C6Te

C7T
(
eC2T + T

)
+ C8Te

C9T .

Finally, choosing T = T0 > 0 such that
KT

α
< 1 in (63), we conclude the proof.

4 Numerical algorithm and simulations

In this section we introduce a numerical scheme to recover the anti-diffusion coefficient
γ = γ(x) in the linear Kuramoto-Sivashinsky equation (2) with f ≡ 0. First, we need
to introduce the variational formulation for solving the forward problem (2) for a given
coefficient γ. In order to decrease the order of differentiation in the Kuramoto-Sivashinsky
equation, it is convenient to rewrite it as a system of two coupled second-order partial
differential equations by introducing the variable v := uxx. Thus, we obtain the system{

v = uxx, (x, t) ∈ (0, L)× (0, T ),

ut + (σ(x)v)xx + γ(x)v = 0, (x, t) ∈ (0, L)× (0, T ).
(64)

By multiplying the first and second equation in (64) by functions w ∈ H1 and ϕ ∈ H1
0 ,

respectively, and then integrating by parts on the interval (0, L), we obtain
∫ L

0

vwdx+

∫ L

0

uxwxdx = 0, a.e. t ∈ (0, T ),∫ L

0

utϕdx−
∫ L

0

(σ(x)v)xϕxdx+

∫ L

0

γ(x)vϕdx = 0, a.e. t ∈ (0, T ).

(65)

By following Rothe’s strategy [22] (also called horizontal line method, or the method of
semidiscretization), we first discretize the temporal variable in the previous system with the
second-order two-step implicit method of leap-frog type

∫ L

0

(vn+1 + vn−1

2

)
w +

∫ L

0

un+1
x wxdx = 0,∫ L

0

(un+1 − un−1

2∆t

)
ϕdx− 1

2

∫ L

0

(
σ(x)(vn+1 + vn−1)

)
x
ϕxdx

+

∫ L

0

γ(x)
(vn+1 + vn−1

2

)
ϕdx = 0,

(66)
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given that u0 = u0(x), v0 = u0,xx(x). Here un denotes the approximation of u(x, t) at
time t = n∆t. To compute the values u1, v1 necessary for starting the two-step method
(66), we use the implicit second-order one-step method

∫ L

0

(vn+1 + vn

2

)
w +

∫ L

0

un+1
x wxdx = 0,∫ L

0

(un+1 − un

∆t

)
ϕdx− 1

2

∫ L

0

(
σ(x)(vn+1 + vn)

)
x
ϕxdx

+

∫ L

0

γ(x)
(vn+1 + vn

2

)
ϕdx = 0.

(67)

To discretize the spatial variable in the variational formulation (67), we use the Finite
Element Method (FEM) as implemented by the Python-FeniCS-DOLFIN system [2], [18]
which uses Rothe’s approach. The FEniCS project is a collection of software tools for
automating the solution of differential equations [17]. These components include the Unified
Form Language (UFL) [1], [3], the FEniCS compiler (FFC) [14] and DOLFIN [19], [20]. In
the FEM for problem (2), the interval [0, L] is discretized by an equally-spaced partition xj ,
j = 1, ..., N , and the solution component u(x, t) at time t = n∆t is approximated by

un(x) =

N∑
j=1

unj Sj(x), (68)

where Sj(x) is the system of first-order piecewise linear Lagrange polynomials given by

Sj(x) =



x− xj−1
xj − xj−1

, x ∈ [xj−1, xj ],

x− xj+1

xj − xj+1
, x ∈ [xj , xj+1],

0, in other case,

and the second component v = v(x, t) can be similarly approximated. It is important
to point out that the temporal discretization (66) for the system formulation of the KS
equation given in (64) has better numerical stability properties than the same approach
applied directly to the scalar KS equation.

In order to illustrate the process of approximating numerically the solution of the inverse
problem studied for the KS equation by using an optimization-based approach, we will
conduct some numerical experiments by considering a regularized Tikhonov-type functional
in the form

J1(γ) :=
1

2
‖u(·, T ; γ)−m‖2L2 +

α

2
‖γ − γ0‖2L2 +

α

2
‖γ′‖2L2 , (69)

which is minimized constrained by the KS equation. Here, γ0 ∈ L2 is the initial guess
employed for starting the minimization process of the functional J1 and α > 0.

Observe that the functional J1 is analogous to the functional (3) already analyzed in the
previous sections from the analytical point of view. We point out that the stability result
given in Theorem 1.1 is also valid for the case of the functional J1, provided that γ0 ∈ L2.

In some of the numerical experiments for obtaining a more accurate identification of the
coefficient γ, we need to use instead the following regularized functionals

J2(γ) :=
1

2
‖u(·, T ; γ)−m‖2L2 +

α

2
‖γ − γ0‖2L2 , (70)

J3(γ) :=
1

2
‖u(·, T ; γ)−m‖2H1 +

α

2

∫ L

0

√
(γ(x)− γ0)2 + ε dx, (71)
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and

J4(γ) :=
1

2
‖u(·, T ; γ)−m‖2L2 +

α

2

∫ L

0

√
(γ(x)− γ0)2 + ε dx, (72)

where ε > 0. Although functionals J2, J3, J4 do not satisfy the hypothesis of Theorem 1.1,
we include the corresponding experiments since they result to be appropriate for parameter
identification. It would be an interesting problem to search for a stability result analogous
to Theorem 1.1 for these cases. We recall also that the functional J3 is employed only in
experiment 2, where the observation m is differentiable. In other numerical simulations we
used functionals J1, J2 and J4 where the mismatch between the final time and observation
is measured by using the L2-norm.

The minimization of the above functionals is performed with the help of the Dolfin-
Adjoint library (see [9], [10] ) and the iterative L-BFGS-B algorithm from the SciPy (Scien-
tific Computing Tools for Python) library [25], described by Byrd et al. [5], and Zhu et al.
[27]. We choose to work with the L-BFGS-B algorithm mainly because we do not need to
provide information about the Hessian and the structure of our objective funcional. Also,
storage requirements are low and in general this scheme outperforms other Hessian-free
Newton methods for large scale problems. The Dolfin-Adjoint project automatically derives
the discrete adjoint and tangent linear models written in the Python interface to DOLFIN.
We point out that this kind of approach has already been applied successfully in [21] to
identity the linear velocity coefficient in a scalar dispersive linear Benjamin-Bona-Mahony
equation.

In all numerical experiments, we set the length of the spatial domain L = 3.0, the initial
condition u(x, 0) = e−30(x−1)

2

, x ∈ (0, L), and the initial guess for the unknown coefficient γ
in the minimization process of the objective functional is taken as γ0 ≡ 1. All relative errors
are computed in the supremum norm. In order to illustrate the efficiency of the numerical
strategy proposed, we compute an approximation of the solution u(·, t; γ) of the forward
problem (2) within the time interval [0, T ], corresponding to a given coefficient γ by using
the numerical scheme given in (66). The resulting profile m(·) = u(·, T ; γ) in (0, L) at time
t = T is taken as our final time measurement (target profile) for the numerical identification
process of the anti-diffusion coefficient γ.

Experiment set 1: (Gaussian coefficient) In this experiment we set T = 1.5, σ = 0.5
and we take N = 300 equally spaced points for spatial discretization of the KS equation on
the interval [0, 3]. The exact anti-diffusion coefficient γ is given by the Gaussian profile

γ(x) = 1 + 2e−5(x−1.5)
2

,

and the time step is ∆t = 1.5/800 = 1.875× 10−3 in the numerical solution u(·, t; γ) along
the time interval [0, T ] of both the forward and adjoint problems for the KS equation (2)
with the scheme given in (66). In Figure 1(a) is displayed the result of the minimization after
60 iterations of the L-BFGS-B algorithm for the objective functional J1 restricted to the
KS equation, and regularization parameter α = 10−9. See that the relative error between
the expected and the computed coefficient γ is approximately 3.62 × 10−2, and thus we
have a good accuracy in the identification process. In Figure 1(b), we compare the final
measurement (target profile) m with the corresponding solution u(·, t; γ) computed at time
t = T = 1.5, for the coefficient γ displayed with pointed line in Figure 1(a). We found that
the relative error between these two profiles is about 3.5× 10−5.

Experiment set 2: (A chain of Gaussian profiles) In this experiment we set T = 0.4,
σ = 0.4 and the numerical parameters are N = 200 and ∆t = 0.4/2000 = 2× 10−4. In this
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Figure 1: Experiment 1 : (a) Coefficient γ (pointed line) computed after 60 iterations of
the L-BFGS-B scheme, compared with the expected coefficient (solid line). (b) Final time
measurement m (target profile) compared with the numerical solution u(·, T ; γ) of problem
(2) at the final time T = 1.5.

case, the exact coefficient is given by

γ(x) = 1 + e−10(x−1.5)
2

+ 0.5e−30(x−0.5)
2

+ 0.7e−40(x−2.5)
2

,

and we perform the identification process of the coefficient γ by computing a minimum of
the functional J3 with regularization parameters α = 10−8 and ε = 10−5. The coefficient
computed after 70 iterations of the L-BFGS-B method is shown in Figure 2. In (a) the
relative error between the exact and computed coefficient is about 6×10−2, and the relative
error between the profiles in (b) is roughly 9 × 10−7. Thus, again the coefficient γ is
recovered with good accuracy. In this case where the observation m is smooth, we found
that the functional J4 gave better adjustment between the exact and computed coefficients
than with the rest of functionals.

Experiment set 3: (A non-differentiable coefficient) We now consider the identifica-
tion of a coefficient in the form

γ(x) =


1, 0 ≤ x < 1,

2x− 1, 1 ≤ x < 1.5

5− 2x, 1.5 ≤ x < 2,

1, 2 ≤ x ≤ 3,

(73)

which is non-differentiable. The final time is T = 1.5, the diffusion parameter is σ = 0.3
and the parameters for the numerical solution of the forward and adjoint problems are
N = 600 and ∆t = 1.5/800 = 1.875×10−3. In this case, we use J4 with α = 10−9, ε = 10−5

as the regularized Tikhonov functional for the identification process of the coefficient γ.
The result after 70 iterations of the L-BFGS-B algorithm of the minimization procedure of
this functional is displayed in Figure 3. The relative error in (a) is 5.12 × 10−2 and in (b)
the relative error is 1.2 × 10−5, which also shows that in this case, the coefficient γ is also
recovered with good accuracy.

Experiment set 4: (Influence of noisy data in coefficient identification) In the next
numerical experiments, we consider the case where the final time measurement m has noise.
This is an important subject to study in an inverse problem, since error is always present
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Figure 2: Experiment 2: (a) Coefficient γ (pointed line) computed after 70 iterations of
the L-BFGS-B scheme, compared with the expected coefficient (solid line). (b) Final time
measurement m (target profile) compared with the numerical solution u(·, T ; γ) of problem
(2) at the final time T = 0.4.
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Figure 3: Experiment 3: (a) Coefficient γ (pointed line) computed after 70 iterations of
the L-BFGS-B scheme, compared with the expected coefficient (solid line). (b) Final time
measurement m (target profile) compared with the numerical solution u(·, T ; γ) of problem
(2) at the final time T = 1.5.
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Figure 4: Experiment 4: (a) Coefficient γ (pointed line) computed after 60 iterations of the
L-BFGS-B scheme, compared with the expected coefficient (solid line). (b) Final time mea-
surement m (target profile) with Gaussian noise of order 10−3 compared with the numerical
solution u(·, T ; γ) of problem (2) at the final time T = 1.5.

in a measurement, produced for instance by inherently unpredictable fluctuations in the
reading of a measurement device or in the experimenter’s interpretation of the instrumental
reading.

In first place, we consider the same simulation in the experiment 1, but adding Gaussian
noise of order 1 × 10−3 to the final time measurement m. The result of the minimization
process after 60 iterations of the L-BFGS-B algorithm applied to the functional J1 with
regularization parameter α = 10−8 is presented in Figure 4. The relative difference between
exact and computed coefficient in (a) is about 2.7× 10−2 and in (b) the relative difference
between the two profiles displayed is of order 6.4× 10−3.

Experiment set 5: (Influence of noisy data in coefficient identification). Next, we
repeat the simulation in the experiment 2 but adding Gaussian noise of order 1 × 10−3 to
the final time measurement m. Moreover, we use instead the function J2 as our objective
functional with α = 10−6. Notice that a larger value of the parameter α than in the
experiment 2 was necessary in order to balance the trade-off between data fidelity and
solution size of the regularization problem. The result after 60 iterations of the minimization
process of this functional is displayed in Figure 6. In (a) the relative difference between exact
and computed coefficient is about 0.175, and in (b) the relative error is 2×10−2. Notice that
in this experiment the effect of the noise introduced in the final measurement m is mitigated
by the presence of the regularization. Furthermore, although the regularization parameter
is very small (α = 10−6), it has a significative effect in the inversion process of coefficient
γ. However, the details of the coefficient γ are not recovered with the same accuracy as
in the absence of noise (compare with the result of Experiment 2 in Figure 2). This is a
numerical evidence of the fact that the inverse problem considered here is highly sensitive
to changes in the final measurement m, and without some regularization term (i.e. α = 0)
in the objective functional, the minimization process may fail to converge to the expected
coefficient γ, as it can be seen in Figure 5. In this plot the relative difference between the
profiles in (a) is about 1.34/2.0 = 0.67 and in (b) is 3.3× 10−3/0.18 ≈ 0.018.

For the experiment in Figure 6, we show in Table 1, the error en = ‖γn − γexact‖∞
between the computed minimum γn and exact coefficient γ(x) at the step n, as well as
the corresponding value of the functional J2(γn) as a function of the iterative step n. For
noisy data, we observe that the error en initially decreases as n increases, but when the
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Iteration n en = ‖γn − γexact‖∞ J2(γn)
1 0.893 7.63e-4
3 0.749 9.93e-6
12 0.602 2.16e-6
15 0.321 1.496e-6
18 0.3131 1.474e-6
21 0.3284 1.4725e-6
24 0.3321 1.47113e-6
33 0.3392 1.47099e-6
45 0.34339 1.47090e-6
48 0.34595 1.47088e-6
51 0.34977 1.47086184 e-6
54 0.34936 1.47086055e-6
57 0.34945 1.47086053e-6
60 0.34956 1.47086052e-6
63 0.34951 1.47086045e-6
75 0.34967 1.47085988e-6

Table 1: Semi-convergence phenomenon of the L-BFGS-B algorithm. Observe that after
iteration 18, the error en becomes larger than previous iterations.

algorithm exceeds a certain threshold step, this error becomes larger than the one obtained
in previous iterations. Thus, the L-BFGS-B algorithm shows a behaviour often referred to
as semi-convergence phenomenon, already observed in the literature [6], [7] for this type of
iterative schemes applied to inverse problems. On the other hand, notice that the value of
the functional J2(γn) is always decreasing as long as n increases.

Experiment set 6: (Influence of noisy data in coefficient identification). Next, we
consider the identification of the anti-diffusion coefficient γ in the KS equation from the
same final measurement m as in the experiment 3 but with Gaussian noise of order 1×10−3.
The parameters are the same as in experiment 3, except that the objective functional J4 is
taken with regularization parameters α = 3 × 10−6 and ε = 1 × 10−4. The result after 70
iterations of the corresponding minimization process is displayed in Figure 7. The relative
difference between the profiles in (a) is about 5.8× 10−2, and in (b) is roughly 9.7× 10−3.

The experiments presented above show the robustness and performance of the numerical
strategy proposed in the present paper, even when possible errors are present in the final
measurement m.

Experiment set 7: Finally, in Figure 8 we study the behavior of the solution of
the optimization problem (4) for the functional J1, when small disturbances on the fi-
nal measurement m are introduced. In (a) are displayed the anti-diffusion coefficients γ
and γ̃ corresponding to the measurements m and m̃ (shown in (b)), respectively, which
are separated a distance of 10−3. In this case, the absolute difference between the anti-
diffusion coefficients is around 0.056. The numerical parameters in this experiment were
∆t = 0.2/250 ≈ 8× 10−4, N = 200, σ = 0.4, and the regularization parameter in the func-
tional J1 was taken as α = 10−6. The final measurement m(·) = u(·, T ; γ) was obtained by
solving the forward problem (64) with the synthetic coefficient γ considered in experiment
2 until time t = T = 0.2, and the measurement m̃ was generated by adding Gaussian noise
of order 10−3 to the measurement m.

In Figure 9, we repeat the previous simulation but for a smaller final time T = 0.1.
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Figure 5: Experiment 5: Identification of coefficient γ without regularization. (a) Coefficient
γ (pointed line) computed after 60 iterations of the L-BFGS-B scheme, compared with
the expected coefficient (solid line). (b) Final time measurement m (target profile) with
Gaussian noise of order 10−3 compared with the numerical solution u(·, T ; γ) of problem (2)
at the final time T = 0.4.
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Figure 6: Experiment 5: (a) Coefficient γ (pointed line) computed after 60 iterations of the
L-BFGS-B scheme, compared with the expected coefficient (solid line). (b) Final time mea-
surement m (target profile) with Gaussian noise of order 10−3 compared with the numerical
solution u(·, T ; γ) of problem (2) at the final time T = 0.4.
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Figure 7: Experiment 6: (a) Coefficient γ (pointed line) computed after 70 iterations of the
L-BFGS-B scheme, compared with the expected coefficient (solid line). (b) Final time mea-
surement m (target profile) with Gaussian noise of order 10−3 compared with the numerical
solution u(·, T ; γ) of problem (2) at the final time T = 1.5.

Now the absolute distance between the coefficients γ and γ̃ computed is about 0.02, which
is smaller than in the case of T = 0.2. The numerical parameters are the same as in the
previous simulation, except that ∆t = 0.1/250 ≈ 4 × 10−4. These numerical experiments
are in perfect accordance with Theorem 1.1 on the stability of the solution of the regularized
optimization problem (4).
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Figure 8: Experiment 7: (a) Coefficients γ and γ̃ computed after 70 iterations of the L-
BFGS-B scheme corresponding to the final measurements m, m̃ shown in (b). Here the
final time is T = 0.2.
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Figure 9: Experiment 7: (a) Coefficients γ and γ̃ computed after 70 iterations of the L-
BFGS-B scheme corresponding to the measurements m, m̃ shown in (b). Here the final
time is T = 0.1. Observe that the coefficients γ, γ̃ are closer than those in Figure 8 (a).
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5 Conclusions

This paper aims to study the inverse problem of recovering the anti-diffusion coefficient in
the linear Kuramoto-Sivashinsky equation by means of a final time measurement. The in-
verse problem was formulated as a non-linear optimization problem, showed a local stability
result and developed a numerical scheme for the reconstruction of the parameter, where
the forward and adjoint problems for a proper system formulation of the KS equation were
approximated by combining a finite element strategy for the discretization of the spatial
variable, together with a second-order implicit finite difference method to discretize the
temporal variable. With this approach we found better stability properties than with other
time stepping schemes. The minimization of the corresponding objective functional was per-
formed by using the iterative L-BFGS-B algorithm from the SciPy-Dolfin-Adjoint libraries
implemented in the Python system. We presented several numerical simulations showing
the accuracy and robustness of the optimization-based approach considered for different val-
ues of the model’s parameters, and even in the presence of noise in the final measurement m.

As a future work, we are interested in studying the inverse problem of recovering the
diffusion coefficient σ = σ(x) in the KS equation from a final time measurement and in
extending the analysis to the nonlinear case. Furthermore, we think that the approach
employed in the present paper may be adapted to analyze inverse problems related to other
one-dimensional partial differential equations of diffusive or dispersive type.
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[16] W.J. Liu and M. Krstić, Stability enhancement by boundary control in the Kuramoto-
Sivashinsky equation, Nonlinear Anal. 43 (2001), no. 4, Ser. A: Theory Methods, 485–
507. MR 1807033

[17] A. Logg, Automating the Finite Element Method, Archives of Computational Methods
in Engineering 14 (2007), 93–138.

[18] A. Logg, K.A. Mardal, and G.N. Wells, Automated Solution of Differential Equations
by the Finite Element Method, Springer, 2012.

[19] A. Logg and G.N. Wells, Dolfin: Automated finite element computing, ACM Trans.
Math. Softw. 37 (2010), no. 2.

[20] A. Logg, G.N. Wells, and J. Hake, DOLFIN: a C++/Python finite element library,
Automated solution of Differential Equations by the Finite Element Method, A. Logg,
K.A. Mardal and G.N. Wells eds., Springer, 2011.
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