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Abstract12

Several vibro-acoustic models for either single wall or multi-layer construc-
tions are based on classical plate and first order shear deformation theories.
The equivalent or condensed plate models employ the thin plate model to
extract the dynamic mechanical properties of the multi-layer system consid-
ering only flexural and shear motions for the structure under investigation.
Since these plate models do not account for the compressional or symmetric
motion of the structure, both thin and thick plate theories encounter lim-
itations for mid to high frequency predictions depending on the structures
considered. In this work, analytical expressions for the frequency limit of thin
and thick plate theories are derived for an elastic layer of isotropic material
from the analyses of wavenumbers and admittances. Additionally, refined
expressions for coincidence and critical frequencies are presented. Validation
of these frequency limits are made by comparing the transmission loss (TL)
obtained from both plate theories with the TL computed through the theory
of elasticity for a range of thin/thick and soft/stiff materials.
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NOMENCLATURE15

h Thickness θ Incident angle
k0 Wavenumber in the air kt Transverse wavenumber
kp Natural propagating wavenumber kb Bending wavenumber
ks Corrected shear wavenumber km Membrane wavenumber
δl Longitudinal wavenumber δs Shear wavenumber
ω Circular frequency f Frequency
fcut-on Cut-on frequency fcomp Compressional frequency

fthin/thick
Frequency limit of thin plate the-
ory

fcoincthin
Coincidence frequency of a thin
plate

fcoincthick
Coincidence frequency of a thick
plate

fcrithin Critical frequency of a thin plate

fcrithick Critical frequency of a thick plate fplate/solidoi
Frequency limit of plate theories
for oblique incidence

fplate/soliddf
Frequency limit of plate theories
for diffuse field

c0 Speed of sound in the air

V P State vector of a plate V ES State vector of an elastic layer
p Pressure at a point u Transverse velocity at a point
v Normal velocity at a point σzz Normal stress at a point
σxz Shear stress at a point [T P ] Transfer matrix of a plate
[TES] Transfer matrix of an elastic layer ms Mass density per unit area
ρ Volume density of elastic layer ρ0 Volume density of air
D Bending stiffness E Young’s modulus
K Compressional modulus η loss factor
ν Poisson’s ratio G Shear modulus
G∗ Corrected shear modulus κ Shear correction factor
Iz Mass moment of inertia λ, µ Lamé coefficients

τ Transmission factor ZP
Anti-symmetric impedance of a
plate

Zs Symmetric impedance Za Anti-symmetric impedance
Ys Symmetric admittance Ya Anti-symmetric admittance

Ỹs
Approximated symmetric admit-
tance

Z0 Characteristic impedance of air

Ck
Ratio between bending and shear
wavenumbers

Cy

Minimum value of ratio between
anti-symmetric and symmetric
admittances

ε Error percentage λl Longitudinal wavelength

1. Introduction16

When studying the sound insulation of a wall, the main acoustic indi-17

cator is the transmission loss (TL) which is controlled by the combination18

of several fundamental vibrating modes of the wall. For example, a typical19

sound transmission problem encountered in building applications is presented20

schematically in Fig. 1 along with its vibrating modes as the acoustic energy21

transmitted through the wall depends on its vibro-acoustic behaviour. Al-22

though the wall vibrates in a complex manner for the given acoustic excita-23

tion, this complex motion can be obtained by superposing the fundamental24
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Complex motion Fundamental motions

Bending Shear Compressional

Figure 1: Schematic representation of vibrating motion of a single wall subjected to acous-
tic excitation.

motions (bending, shear and compressional/dilatational motions). Generally,25

looking at the TL characteristics of a single wall as a function of frequency,26

three regions can be identified which are controlled by the mass, damping27

and stiffness of the wall respectively. The mass and stiffness control zones are28

separated by a critical region where strong reduction of transmission loss is29

observed. This critical zone is characterized by its frequency which is called30

the critical frequency. Various vibro-acoustic models of varying complexity31

have been developed to predict the sound insulation properties of plate struc-32

tures, especially with regard to noise attenuation problems. An early model33

was developed by Cremer [1] which was applied to the computation of the34

TL across infinite, thin walls. Related work approaching the same problem35

of computing the acoustic insulation indicators of a thin wall are presented36

in [2–6]. In Cremer’s model, it is assumed that the motion of the plate is37

described only by the bending wave equation, which is based on the classical38

plate theory [7].39

Davy [8] argues that Cremer’s model can only be used below the critical40

frequency since most of the approximations are not valid within and above41

the critical region. Improving on Cremer’s theory, Heckl and Donner [9] de-42

veloped a model based on the first order shear deformation theory (FSDT)43

[10–12] which could be applied to thicker walls to compute sound TL. In44

this model, motion due the transverse shear is also included along with the45

flexural motion of the plate. The corrected TL expression accounting for46

shear deformation of the plate can be found in [13]. Heckl and Donner [9]47

point out that their model is valid only at frequencies well below the first48

dilatational or compressional frequency of the plate. This is due to the fact49

that the FSDT does not account for the thickness stretch motion of the plate50

as it assumes constant velocity at all points through the thickness direction.51

Consequently, the symmetric motion of the plate is not taken into account52
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in zero, first and higher order plate theories. This may lead to deviations53

between the predictions and the actual motion of the plate at higher frequen-54

cies, especially when the material is soft. In the work published by Ljunggren55

[13, 14], the general expression to compute the TL of an infinite wall with56

arbitrary uniform thickness is given, accounting for both antisymmetric and57

symmetric motions of the plate.58

In recent years, instead of single wall structures, multi-layered struc-59

tures have been used widely for better sound comfort and noise attenua-60

tion. These structures provide the designers with more choices for tuning61

the vibro-acoustic performance leading to better sound insulation character-62

istics. Advanced composite structures are one example of multi-layer systems63

that are progressively used in different fields such as the space, energy and64

aeronautical industries. In transport and construction industries, sandwich65

structures are widely used as they provide high stiffness with significantly66

low weight. In most cases, two face sheets are bonded with a viscoelastic67

layer to improve the overall damping response of the structure. There exist a68

large number of theoretical models dedicated to the analysis of the behaviour69

of multi-layer structures. According to Carrera [15, 16], these models can be70

classified into three major categories as: 1) Equivalent Single Layer (ESL)71

models, 2) Layer Wise (LW) models and 3) Hybrid or Zig-Zag models. ESL72

models describe the dynamics of the multi-layer plate in terms of the dis-73

placement field of an equivalent layer. It is noted that, due to this kind74

of displacement description, the number of layers present in the system do75

not influence the displacement functions which gives great flexibility in using76

shear deformation theories of order one [10–12] and higher [17–20]. Layer77

Wise (LW) models describe the displacement field in each layer [21–28]; as78

a consequence, this type of model requires higher computational effort as79

the number of unknowns increases with the number of layers present in the80

structure. Hybrid or Zig-Zag models make use of advantages from the previ-81

ous two categories. Although the displacement field is defined in each layer82

(similar to the LW models), the interface continuity conditions between two83

adjacent layers results in a lower number of unknown functions (as in ESL84

models) which do not depend on the number of layers present in the struc-85

ture. The reader may refer to [29–34] which use this family of models to86

describe the dynamic response of multi-layer systems.87

Since industrial multi-layer structures are manufactured with a diversity88

of materials, they naturally increase the computational burden for detailed89

finite element modelling and it is therefore of interest to condense the be-90

haviour of the multi-layer system into a single layer. A simplified equivalent91

thin plate model was developed in [35–37] for sandwich structures with a92

viscoelastic core. Guyader and Cacciolati [38] have developed an equivalent93
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thin plate model for the multi-layer structure of isotropic layers. Following94

a similar path, Marchetti et al. [39] have recently developed an equivalent95

thin plate model for laminated structures of orthotropic layers. The aim of96

the equivalent plate models is to find the frequency dependent mechanical97

parameters of the equivalent thin plate that incorporates the bending and98

shear motions of the multi-layer structures. Since plate theories do not ac-99

count for the dilatational or compressional motion of the structure, finding a100

frequency domain of validity is necessary to safely use these equivalent plate101

models.102

The reader may note that the words ‘frequency limit’ of a theory refer here103

to the frequency up to which the theory can be applied within pre-defined104

accuracy intervals for computing the desired acoustic indicators. Although in105

structural mechanics and dynamics, thin and thick plates are distinguished106

based on the thickness to lateral dimensions ratio [40, 41], such rules may not107

be sufficient for vibro-acoustic calculations as they depend on the material108

properties of the plate as well. Additionally, although plate theories (both109

for thin and thick plates) are commonly employed in computing the acoustic110

indicators of infinite and finite walls, there is currently no clear-cut frequency111

limit to restrict the applicability of these theories. Qualitative and approxi-112

mate frequency limits are given in the literature but it is often a tedious task113

to find an analytical expression for applicability limits.114

In this work, we derive for the first time analytical expressions for the115

applicability limits in the spectral domain for thin and thick plate theories.116

Through analysis of the propagating wavenumbers and admittances of the117

investigated panels, we quantify the expected accuracy of each theory. The118

paper is organized as follows: Sec. 2 describes the theories behind propagating119

wavenumbers inside thin, thick plates and elastic solids. The theory of elastic120

solids is treated as a reference since it describes the complete motion of an121

infinite layer [42]. In Sec. 3, expressions for the limits of applicability of thin122

plate theories are discussed by comparing propagating wavenumbers of thin123

and thick plate theories. Additionally, refined expressions for the coincidence124

and critical frequencies are also presented. In Sec. 4, an expression for the125

frequency limit of applicability of plate theories is derived in all generality by126

comparing the order of magnitudes of both symmetric and anti-symmetric127

admittances of the plate. In Sec. 5, analytical expressions for the frequency128

limits of different plate theories are presented along with sound transmission129

loss computations for classical industrial materials for validation purposes.130
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2. Vibro-acoustic models for an elastic isotropic layer131

We start by giving the theoretical background for some commonly used132

theories such as the Love-Kirchoff [7, 43] or the Reissner-Mindlin [10–12]133

theory used to describe the vibro-acoustic behaviour of isotropic, single wall134

structures. In subsequent sections, these theories are compared and their135

limitations are discussed.136

2.1. Wave propagation in an elastic isotropic plate137

Let us consider an infinitely extended elastic medium with thickness h138

as shown in Fig. 2. An oblique wave is assumed to be impinging upon one139

of the surfaces of the elastic medium with an incident angle θ. For the sake140

of simplicity, the incident plane wave is assumed to be in the x − z plane.141

Depending on the material properties of the elastic layer, various types of

Figure 2: An oblique plane wave impinging on an infinitely extending elastic isotropic
layer with incident angle θ.

142

wave propagation are possible. The wave propagation in the x − z plane143

will have wave vector components along the x and z axes for each wave.144

The incident wave in free air is exciting waves inside the elastic medium;145

continuity across the interface demands that the transverse or x component146

of the wave vector, kt, for waves propagating in the plate and in air are equal.147

We have148

kt = k0 sin θ =
ω

c0
sin θ, (1)

where k0 is the wavenumber in free air, ω = 2πf is the circular frequency of149

the incident wave and c0 is the speed of sound in air. If the acoustic field in150

the elastic layer (Fig. 2) is described by the state vector V P = {p, v}T (where151

the superscript P denotes plate, p is the acoustic pressure and v, the particle152

velocity normal to the interface), then the general form of the transfer matrix153

for plate theories discussed can be expressed by the following equation:154

V P
M = [T P ]V P

M ′ =

[
1 ZP
0 1

]
V P
M ′ . (2)
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Here, M and M ′ are points on the left and right hand side on the surface155

of the elastic medium, respectively and ZP is the anti-symmetric mechanical156

impedance of the plate, that is, the ratio of the differential complex sound157

pressure across the plate to the complex plate velocity; it is expressed as158

below based on the theory adopted, that is,159

ZP =



Zthin = jωms

(
1− Dk4t

ω2ms

)

Zthick =

k4tD −msω
2 +

(
Izms

G∗h
ω2 − k2t

Dms

G∗h

)
ω2 − k2t Izω2

jω

(
k2tD − Izω2

G∗h
+ 1

) , (3)

where Love-Kirchoff theory applies for thin plates and Reissner-Mindlin the-160

ory for thick plates. Here, ms is the mass density per unit area,161

D =
E(1 + jη)h3

12(1− ν2)

is the bending stiffness, E is the Young’s modulus, j =
√
−1, η is the162

loss/damping factor, ν is the Poisson’s ratio, G∗ = κG with G, the shear163

modulus of the plate and κ, the shear correction factor accounting for the164

transverse shear distribution. Furthermore,165

Iz =
ρh3

12

is the mass moment of inertia of the plate and ρ = ms/h is the volume density166

of the plate material. Detailed derivations of the mechanical impedances167

given in Eq. (3) can, for example, be found in the book by Cremer and Heckl168

[44].169

When using the thick plate theory, the shear correction factor, κ, is sub-170

stituted with different values/expressions by different authors. For example,171

Reissner [11] and Mindlin [10] used the values 5/6 and π2/12, respectively, for172

the shear correction factor, whereas Heckl and Donner [9] used the following173

expression given by Magrab [45],174

κ =

(
0.87 + 1.12ν

1 + ν

)2

which is a function of the Poisson’s ratio of the plate. In this article, the175

value of κ is taken as 5/6.176

7



2.1.1. Dispersion relations177

Given the mechanical impedances of the structure, dispersion relations are178

often obtained by setting the impedance to zero. In other words, dispersion179

relations are used to understand the wave propagation in the structure under180

natural or free vibration conditions.181

For Love-Kirchoff plates (or thin plates), by setting the mechanical impedance182

equal to zero, it can be observed that only one type of wave propagation is183

possible, that is,184

Zthin = 0 ⇒ k4pD −msω
2 = 0 ⇒ kp = kb =

√
ω

√
ms

D
, (4)

where kb corresponds to the bending wavenumber and kp is the natural prop-185

agating wavenumber of the plate.186

For Reissner-Mindlin plates (or thick plates), the dispersion relation is187

obtained as188

Zthick = 0 ⇒ k4pD −msω
2 +

(
Izms

G∗h
ω2 − k2p

Dms

G∗h

)
ω2 − k2pIzω2 = 0. (5)

There are four possible solutions for the above quartic equation, that is,189

kp = ±

√√√√msω2

2G∗h
+
Izω2

2D
±

√
msω2

D
+

(
msω2

2G∗h
− Izω2

2D

)2

. (6)

Out of the four solutions, two correspond to outgoing waves, that is, the real190

part of the wavenumber is positive; these are191

kp = kRM1,2 =

√√√√msω2

2G∗h
+
Izω2

2D
±

√
msω2

D
+

(
msω2

2G∗h
− Izω2

2D

)2

. (7)

It is observed from the above equation that the propagating wavenumber192

(kRM1) has different asymptotic behaviour with respect to low and high fre-193

quencies as shown in Fig. 3, here for the example of a 50 mm plasterboard194

with mechanical properties listed in Table 1. One finds in particular:195

− At low frequency (or ω → 0), we have196

ms

D
�
(

ms

2G∗h
− Iz

2D

)2

ω2

which results in kRM1 tending to kb197
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Figure 3: Propagating wavenumbers of a Reissner-Mindlin plate (50 mm plasterboard
with mechanical properties mentioned in Table 1) and its asymptotic behaviours. It is
observed that the main natural propagating wavenumber kRM1 is approaching bending
(kb) and corrected shear wavenumbers (ks) at low and high frequencies respectively.

− At high frequency (or ω → +∞), we find198

ms

D
�
(
msω

2

2G∗h
− Iz

2D

)2

ω2

which results in kRM1 tending to ks = ω

√
ms

G∗h
with ks, the corrected199

shear wavenumber.200

− kRM2 is evanescent until the cut-on frequency given by Eq. (9) after201

which it becomes propagating and reaches the membrane wavenumber202

km = ω

√
Iz
D

at high frequency.203

− ks is always greater than km since
ks
km

=

√
2

κ(1− ν)
> 1204
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Based on the above observations, Eq. (7) is rewritten in a compact form as,205

kRM1,2 =

√
1

2

[
k2s + k2m ±

√
4k4b + (k2s − k2m)2

]
. (8)

The cut-on frequency can be obtained by considering kRM2 = 0, that is,206

k2s + k2m =
√

4k4b + (k2s − k2m)2 ⇒ k4b = k2sk
2
m

and thus207

fcut-on =
1

2π

√
G∗h

Iz
. (9)

Further, it is observed that the high frequency asymptote given by Ghinet208

and Atalla [27] as209

kG&A = ω

√
4Izms

G∗hIz +msD
. (10)

differs from the correct estimation of the high frequency asymptote ks. It210

may be noted that Eq. (5) can be obtained from two of the three equilibrium211

equations (derived by a Newtonian approach) for thick plates [46]. For the212

sake of completeness, the dispersion relation resulting from third equilibrium213

equation [27] is presented here. The natural wavenumber from the third214

equilibrium equation is given by,215

kp = kRM3 =

√
2

1− ν
Izω

2 −G∗h
D

=

√
δ2s −

2

1− ν
k4b
k2s
, (11)

where δs = ω

√
ρ

G
is the pure shear wavenumber of the isotropic elastic layer.216

Similar to kRM2 , kRM3 is also evanescent until a cut-on frequency (fcut-on) but217

reaches the asymptote δs at higher frequencies as218

δ2s �
2

1− ν
k4b
k2s

when ω → +∞. Fig. 3 illustrates these asymptotic behaviours of the solu-219

tions of kRM for a plasterboard of thickness 50 mm. Mechanical properties220

of the materials used in this paper can be obtained from Table 1.221

The transmission loss across an infinite layer surrounded by air (defined222

by the equation VM = [T ]2×2VM ′) for an oblique incidence may be computed223

from the following expression:224

TL = −10 log10 τ, (12)
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Table 1: Material properties of few typical elastic isotropic layers used in this paper

Properties Aluminium Plasterboard Concrete Soft layer
ρ (kg/m3) 2780 700 2150 8
E (GPa) 71 3 33 0.00016

η 0.01 0.08 0.1 0.1
ν 0.3 0.22 0.23 0.44

where225

τ (θ) = 4/

∣∣∣∣T11 + T22 −
(
T12 cos θ

Z0

+
T21Z0

cos θ

)∣∣∣∣2
is the transmission factor, Z0 = ρ0c0 is the characteristic impedance of air226

and ρ0 is the density of air. In this paper, the values for c0 and ρ0 are taken227

as 343 m.s−1 and 1.2 kg.m−3, respectively. The reader may note that for228

plate theories, the transmission factor is reduced to the form229

τ (θ) = 1/

∣∣∣∣1 +
ZP cos θ

2Z0

∣∣∣∣2 .
In case of a diffuse field excitation with minimum and maximum angle of230

incidences as θmin and θmax, respectively, the TL is obtained computing the231

following integral:232

TLd = −10 log10


∫ θmax

θmin

τ (θ) sin θ cos θ, dθ∫ θmax

θmin

sin θ cos θ, dθ

 . (13)

TL computed based on both thin and thick plate theories for the materials233

given in Table 1, are analyzed in the Section 5.234

It must be realized that both thin and thick plate theories neglect the235

compressional mode (also called the symmetric or dilatational mode) and236

allow only anti-symmetric modes (i.e, bending and/or shear modes), since237

the plate velocity is assumed to be constant through the thickness direction.238

2.2. Wave propagation in elastic isotropic solids239

From the principles of the theory of elasticity, it can be derived that two240

fundamental waves can propagate through an isotropic medium correspond-241

ing to longitudinal and shear displacement in the solid. Longitudinal (δl)242
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and shear (δs) wave numbers are given as [42],243

δl = ω

√
ρ

λ+ 2µ
= ω

√
ρ

K
, δs = ω

√
ρ

µ
, (14)

where K = λ + 2µ is the compressional modulus of the elastic solid which244

highly influences the symmetric motions of the layers in a solid,245

λ =
Eν

(1 + ν)(1− 2ν)

is the first Lamé coefficient and µ = G is the second Lamé coefficient.246

Assuming an acoustic wave incident on the surface of the solid with angle247

θ, the resulting wavenumbers that propagate inside the elastic solid have a z248

component of the form,249

klz =
√
δ2l − k2t , ksz =

√
δ2s − k2t . (15)

By following Folds and Loggins [47], the state vector is taken as V ES =250

{u, v, σzz, σxz}T where the superscript ES denotes elastic solid, σxz and u are251

the transverse components of the stress and the velocity, and σzz and v the252

normal components of the stress and the velocity respectively. The transfer253

matrix for elastic solid is then expressed as254

V ES
M = [TES]4×4V

ES
M ′ , (16)

where the elements of the matrix [TES] are given in the Appendix A. For255

the computation of sound transmission loss across an infinite layer based on256

the solid transfer matrix, the reader may refer to the procedure given in the257

book by Allard and Atalla [42].258

Based on the type of backing at point M ′, the frequency of the first259

compressional mode of an elastic layer is given as260

fcomp =
1

γh

√
K

ρ
, (17)

where γ takes on the values 2 (half wave frequency) and 4 (quarter wave261

frequency) for anechoic and rigid backing respectively.262

Since the motion both of the anti-symmetric and compressional mode of263

an infinite layer of finite thickness can be expressed based on the theory of264

elasticity, calculations of the transfer matrix for elastic solids are considered265

here as reference to the analyse using plate theories. By referring to the two266

fundamental wavenumbers (δl and δs) of the elastic isotropic solid, it can be267

understood that the bending wavenumber is a complex combination of these268

fundamental wavenumbers. It is, however, not straightforward to see this269

relation from the above equations for elastic isotropic solids.270
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3. Comparison between thin and thick plate theories271

3.1. Frequency limit of thin plate theory in comparison with thick plate theory272

In this section, natural propagating wavenumbers of thin and thick plate273

theories are used to find the frequency limit of the thin plate theory. From274

the Fig. 3, it can be seen that the thick plate wavenumber (kRM1) clearly275

deviates from the bending wavenumber (kb) after certain frequency. It may276

be noted that, though there are totally three outgoing waves characterized by277

wavenumbers (kRM1 , kRM2 & kRM3), kRM1 is considered for the present anal-278

ysis as it is the only wavenumber that is always propagative. Additionally,279

since the deviation between kRM1 and kb starts well before the cut-on fre-280

quency (fcut-on), kRM1 would be appropriate to derive the frequency limit of281

thin plate theory. By defining Ck =
kb
ks

, the ratio between bending and shear282

wavenumbers, error percentage (ε) between the propagating wavenumbers of283

the thin and thick plate theories is expressed as284

ε =

(
1− 1

kRM1/kb

)
100%, (18)

where285

kRM1

kb
=

1

2

√√√√2 + κ(1− ν)

C2
k

+

√
16 +

[
2− κ(1− ν)

C2
k

]2
. (19)

The thin plate theory will be valid while ks is negligible compared to kb286

(kb >> ks). The value for Ck can be chosen such that ε is below an accepted287

error percentage and the frequency range of validity for thin isotropic plate288

can be expressed as given by Eq. (20).289

kb ≥ Ckks ⇒ f ≤ fthin/thick =
G∗h

2πC2
k

√
1

msD
=

κ

4πhC2
k

√
12E

ρ

1− ν
1 + ν

, (20)

where fthin/thick is the frequency limit of the ‘thin’ plate theory by keeping the290

‘thick’ plate theory as reference. For instance, choosing Ck = 4 for typical291

isotropic layer corresponds to an error percentage (ε) around 2% between292

kRM1 and kb.293

3.2. Coincidence and critical frequencies of thick plate294

As discussed in the earlier sections, thin plate theory allows only bending295

waves to propagate in the elastic plate and shear wave propagation is in-296

cluded by thick plate theory to correctly capture the anti-symmetric motion297

of the plate. Due to this additional anti-symmetric motion in the plate, the298
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coincidence and critical frequency expressions obtained from thin plate the-299

ory need to be rewritten with terms corresponding to shear and rotational300

inertia.301

The coincidence frequency between a plate and an acoustic wave incident302

on the plate at an angle θ is defined as the frequency at which the transverse303

component of the incident wavenumber is equal to the natural propagating304

wavenumber of the plate. In the case of thin plates, the natural propagating305

wavenumber is the bending wavenumber and the coincidence frequency is306

expressed as,307

kb = k0 sin θ =⇒ fcoincthin =
1

2π

( c0
sin θ

)2√ms

D
. (21)

For thick plates, as the natural propagating wavenumber is given by kRM1 ,308

the coincidence frequency is expressed as,309

kRM1 = k0 sin θ =⇒ fcoincthick =
(c0/ sin θ)2

2π

√(
D

ms

− c20
sin2 θ

Iz
ms

)(
1− c20

sin2 θ

ms

G∗h

) .
(22)

In case of diffuse field excitation, the elastic layer is subjected to all coinci-310

dence frequencies corresponding to θ = [0, π/2] and the lowest coincidence311

frequency is called the critical frequency. In other words, it is the frequency312

at which the speed of sound is equal to the speed of natural propagating313

waves of the plate. This can be computed by letting sin θ = 1 in the coinci-314

dence frequency expression. The critical frequency obtained from thin plate315

theory is given by kb = k0, that is,316

fcrithin =
c20
2π

√
ms

D
. (23)

From the Eq. (22), the critical frequency for thick plate is obtained from317

kRM1 = k0, that is,318

fcrithick =
c20

2π

√(
D

ms

− c20
Iz
ms

)(
1− c20

ms

G∗h

) . (24)

It may be noted that the Eqs. (22) and (24) tend to coincidence and critical319

frequencies obtained from thin plate theory as Iz → 0 and G∗ → ∞. As an320

illustration, for 12.5 mm plasterboard, the coincidence frequencies computed321
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Figure 4: Transmission loss for the infinitely extent plasterboard of thickness 12.5 mm
(properties are mentioned in Table 1) under plane wave excitation with θ = 60o with
coincidence frequencies computed from thin & thick theories and it can be observed that
the estimation of coincidence frequency from thick plate theory is in good agreement with
theory of elasticity computation.

from both plate theories are indicated in the Fig. 4. It is observed from the322

Fig. 4 that the coincidence frequency computed from Eq. (22) is in good323

agreement with elasticity theory. Therefore, it is worth noting that Eqs. (21)324

and (23) are indeed limited to thin plates only, where the transition from325

thin to thick plates is given by the frequency fthin/thick in Eq. (20).326

4. Frequency limit of plate theories in comparison with theory of327

elasticity328

When the thickness of the layer is small compared to the lateral dimension329

and the longitudinal wavelength (λl = 2π/δl) is large compared to thickness,330

a plate theory, controlled by the anti-symmetric motion, is generally con-331

sidered. On the contrary, when the thickness of the plate is of the order332
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of magnitude of longitudinal wavelength, due to the variation in velocity333

through the thickness of the layer, both symmetric and anti-symmetric mo-334

tions contribute for the resulting motion of the plate after a certain frequency335

(Fig. 5). This implies that plate theories might not be able to predict the

(a) Symmetric mode (b) Anti-symmetric mode

Figure 5: Vibrating modes of an infinitely extent elastic layer. While the symmetric mode
corresponds to the thickness stretch motion of the layer where the particle velocity varies
through the thickness, the anti-symmetric motion corresponds to the bending and shear
motions of the layer where the particle velocity is constant through the thickness.

336

correct vibro-acoustic behaviour of the elastic layer after this frequency as337

they assume only anti-symmetric motions in the plate. Therefore, finding338

this frequency limit of plate theories is necessary and in this section, based339

on the symmetric and anti-symmetric motions of the plate, the analytical340

expression of the frequency limit of plate theories is derived.341

Contributions of symmetric and anti-symmetric motions of an isotropic342

layer can be quantified by the impedances or admittances, by following Dym343

and Lang [48]. Impedances of symmetric and anti-symmetric motions are344

defined as follows [48],345

Zs = 2
pM + pM ′

vM − vM ′
, (25)

346

Za = 2
pM − pM ′

vM + vM ′
, (26)

where Zs and Za are symmetric, anti-symmetric impedances of the layer re-347

spectively and p and v are pressure and velocity respectively. It may be noted348

that though Dym and Lang [48] assumed pM ′ = 0 in their analysis, later, they349

have corrected the definitions of impedances with non-zero pressure values350

[49].351

The above equations are rewritten to obtain the transfer matrix relations352

as follows,353 (
p
v

)
M

=
1

Ya − Ys

[
Ya + Ys 1
4YaYs Ya + Ys

](
p
v

)
M ′
. (27)

Here, Ys = 1/Zs and Ya = 1/Za are the symmetric and anti-symmetric354

admittances of the layer respectively. It can be checked that, when the anti-355

symmetric admittance is larger than the symmetric admittance (or Ya � Ys),356

the transfer matrix in Eq. (27) reduces to the transfer matrix of the plate357
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given by Eq. (2). Thus the ratio between Ya and Ys could be a good criterion358

to obtain the frequency limit of plate theories. Comparing the longitudinal359

wavelength (λl) to the thickness of the plate seems less accurate as it does360

not compare the symmetric motion to the anti-symmetric motion.361

Since the symmetric motion is controlled by the longitudinal wave of the362

layer, the transfer matrix from Eq. (16) is deduced at normal incidence as363

(
p
v

)
M

=

 coshδl
jωρ

δl
sinhδl

jδl
ωρ

sinhδl coshδl

(p
v

)
M ′
. (28)

By equating the above equation with Eq. (27), the symmetric admittance is364

obtained as365

Ys =
hδl(coshδl − 1)

2jmsω sinhδl
= − hδl

2jmsω
tan

hδl
2
. (29)

Approximating the tangent function by a Taylor series expansion (up to first366

order), the symmetric admittance can be written as,367

tan
hδl
2
≈ hδl

2
=⇒ Ys ≈ Ỹs = −(hδl/2)2

jωms

=
jωh

4K
. (30)

Since the anti-symmetric motion is controlled by the transverse wavenum-368

ber of the incident wave and plate theories capture this type of motion, anti-369

symmetric admittance is computed from plate theories as given by Eq. (3).370

The minimum value of the absolute ratio between the anti-symmetric and371

symmetric admittance, denoted by Cy, is used to find the frequency limit372

of plate theories. Expressing the anti-symmetric admittance (Ya) from thin373

plate theory and the symmetric admittance (Ỹs) from Eq. (30), the frequency374

limit of plate theories is expressed as,375

∣∣∣∣Ya
Ỹs

∣∣∣∣ ≥ Cy ⇒ f ≤ fplate/solidoi =
c20

2π sin2 θ

√√√√ms

2D
±

√(ms

2D

)2
± 4K

hCyD

sin4 θ

c40
.

(31)
The above expression is valid for oblique incidence whereas in case of dif-376

fuse field excitation, the following expression may be used to compute the377

frequency limit of plate theories.378

∣∣∣∣Ya
Ỹs

∣∣∣∣ ≥ Cy ⇒ f ≤ fplate/soliddf =
c20
2π

√√√√ms

2D
±

√(ms

2D

)2
± 4K

hCyD

1

c40
. (32)
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The above frequency limits are computed by keeping the loss factor (η) to379

be zero. The subscript ‘plate/solid’ in the above equations means that the380

frequency limit is for ‘plate’ theories in general (as even higher order plate381

theories also do not account for symmetric motion) by keeping as a refer-382

ence the theory of ‘elastic solids’. Further, the sub-subscripts ‘oi’ and ‘df’383

correspond to ‘oblique incidence’ and ‘diffuse field’ respectively. It may be384

observed that the relation

∣∣∣∣Ya
Ỹs

∣∣∣∣ ≥ Cy yields four positive roots for the fre-385

quency. Out of these four roots, only the minimum of pure real roots is386

considered for fplate/solidoi and fplate/soliddf . It may also be noted that the387

expression for fplate/soliddf can be modified in two ways. First, by including388

higher order terms for the tangent function to get Ỹs. Second, by using389

the anti-symmetric mechanical admittance from thick plate theory. Though390

these two ways might improve the frequency limit, the final expression for391

fplate/soliddf would become more complex. Further, as discussed in the next392

section, the frequency limits given by Eqs. (31) and (32) are sufficient enough393

for typical single layer walls used in industry. A concrete layer of 140 mm394

is taken to illustrate the nature of the symmetric and anti-symmetric admit-395

tances of the elastic layer and presented in the Fig. 6.396

From the Fig. 6, it can be seen that the anti-symmetric admittance is397

larger compared to the symmetric admittance at low frequency range. The398

symmetric admittance is seen to become of the same order of magnitude399

or larger compared to the anti-symmetric impedance at around 2000 Hz.400

By letting the factor Cy to be 10, the frequency limit of plate theories is401

computed from Eq. (32). This means that the anti-symmetric admittance is402

one order of magnitude larger than the symmetric admittance and from this403

frequency onwards use of plate theories is not recommended to compute the404

acoustic indicators. Therefore, it is advisable to adopt the theory of elasticity405

for computations after this frequency limit.406

5. Numerical examples407

In this section, transmission loss (TL) of different material layers (with408

properties listed in Table 1) are presented to illustrate the frequency limits409

obtained in sections 3 and 4. Both, oblique plane wave incidence of 60◦ and410

diffuse fields, are used to compute TL. Since fplate/soliddf is the minimum of all411

the possible coincidence frequencies obtained from fplate/solidoi , in this section,412

fplate/soliddf is indicated as the limit of plate theory. Though elasticity theory413

is considered as reference to analyse the plate theories, additional validation414

from finite element method (FEM) is also presented in some of the TL plots415

in this section.416
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Figure 6: Admittances of a concrete layer of thickness 140 mm (properties are mentioned in
Table 1) under plane wave excitation with θ = 60o. It is observed that, from low frequencies
till the limiting frequency (fplate/soliddf

), the symmetric admittance is lesser compared
to the anti-symmetric admittance which supports the applicability of plate theories till
fplate/soliddf

.

FEM simulations are computed using Comsol Multiphysics© software.417

The acoustical variables (pressure, velocity fileds...) are computed in the cou-418

pled system (PML-air-material-air-PML) using the “Comsol Pressure Acous-419

tics” interface (Helmholtz equation) for air and “Structural Mechanics branch”420

for the material (elastic material in “Solid Mechanic”). The interface between421

air and the material is modelized using “fluid-structure interface”. The di-422

mensions of each material are 60 cm × 60 cm (the thickness is the real thick-423

ness) and periodic lateral conditions are chosen. The domain is adjusted (in424

particular the dimensions of the air domains) and meshed with respect to a425

10 elements per wavelength (of the incident plane wave excitation) criterion426

based on the maximal frequency. For example, at 125Hz, the number of427

resolved degrees of freedom is 444675, the complete mesh consists of 29889428

domain elements, 8802 boundary elements and 812 edge elements.429

In Figs. 7 and 8, TL computed from different theories (discussed in the430
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section 2) are presented for comparison along with frequency limits expressed431

in sections 3 and 4. It is observed from these plots that, for material like432

aluminium (with typical value of thickness used in industries), the thin plate433

theory would be sufficient to model the vibro-acoustic behaviours as both434

fthin/thick and fplate/soliddf are spotted near the maximum audible frequency.

Figure 7: Transmission loss for an aluminium layer of thickness 5 mm (properties men-
tioned in Table 1) under plane wave excitation with θ = 60o. It is seen that thin plate
theory is adequate to compute the vibro-acoustic indicators as both limiting frequencies
(fthin/thick & fplate/soliddf

) are in the high frequencies.

435

For the plasterboard of 12.5 mm, it is seen from the Figs. 9 and 10 that436

TL computed from thin plate theory is begining to deviate from the elasticity437

theory computation whereas thick plate theory is still in good agreement with438

the elasticity theory until the limiting frequency fplate/soliddf . This explains439

the need to include the effect of shear into the anti-symmetric motion via440

thick plate theory. Therefore, for these kind of materials, thick plate theory441

would be appropriate to compute the acoustic indicators.442

In case of a concrete layer with 140 mm thickness, it is noted from Figs. 11443

and 12 that a similar trend is observed as for the plasterboard, that is, thin444
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Figure 8: Transmission loss for an aluminium layer of thickness 5 mm (properties men-
tioned in Table 1) under diffuse field excitation. It is seen that thin plate theory is
adequate to compute the vibro-acoustic indicators as both limiting frequencies (fthin/thick
& fplate/soliddf

) are in the high frequencies.

and thick plate theories are starting to deviate from the elasticity theory445

computation at frequencies above fthin/thick and fplate/soliddf , respectively. One446

might also observe two notable points from the TL plots of concrete and plas-447

terboard. First, the coincidence frequency occurs after the limit frequency448

of thin plate (fthin/thick) in plasterboard whereas it can be spotted before449

fthin/thick in concrete. This implies that even for thicker material the thin450

plate theory might be still valid after the coincidence frequency. The sec-451

ond notable point is that the symmetric motion (or compressional motion)452

effect clearly appears in concrete. In Fig. 12, the second minima in the TL453

computed from the theory of elasticity corresponds to the compressional fre-454

quency (fcomp ≈ 15 kHz) given by Eq. (17). Therefore, it is inferred that the455

compressional mode can still be neglected for plasterboard whereas it has to456

be taken into account for the concrete layer and this is possible via employing457

the theory of elasticity. The same is observed from the TL plots (Figs. 13458
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Figure 9: Transmission loss for a plasterboard layer of thickness 12.5 mm (properties
mentioned in Table 1) under plane wave excitation with θ = 60o. Deviations of thin and
thick plate theories from the elastic solid theory (or FEM) are observed after fthin/thick
and fplate/soliddf

respectively.

& 14) of soft layer with 20 mm thickness. It can be seen that TL of soft459

layer is greatly influenced by the symmetric motion after the frequency limit460

fplate/soliddf .461

One can also observe from Eq. (20) that, for different materials of in-462

finitely extending layers with same thickness, the frequency limit fthin/thick463

would result in different values despite thicknesses being the same. Therefore,464

it can be inferred that the use of thin plate theory requires proper combina-465

tion of thickness and material properties (as given by Eq. (20)) rather than466

comparing the thickness to the lateral dimensions. Similar argument holds467

for fplate/soliddf as well. In the previous TL plots, the choice of the values of468

Ck = 4 and Cy = 10 are further confirmed by the TL variation of plate the-469

ories from the elasticity theory and the TL difference between the elasticity470

theory and plate theories are observed to be below 1 dB at the frequency471

limits. Of course, one can conveniently choose the appropriate value of Ck472
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Figure 10: Transmission loss for a plasterboard layer of thickness 12.5 mm (properties
mentioned in Table 1) under diffuse field excitation. Deviations of thin and thick plate
theories from the elastic solid theory are observed after fthin/thick and fplate/soliddf

respec-
tively.

and Cy based on the tolerance accepted for the particular acoustic design.473

5.1. Further observation474

In the case of finite sized plates, generally, the acoustic indicators com-475

puted from the infinitely extent layer theories would yield some discrepancies476

in the low to mid frequencies compared with experimental tests. Therefore,477

there are some works in the literature [5, 50] which focus on correcting the478

acoustic indicators by introducing correction factors that account for geo-479

metrical size effect. Since the radiation efficiency (which accounts for size480

correction in sound transmission problems) is reaching unity near the criti-481

cal frequency of the plate [44], the effects due to finite size is mainly visible482

at low frequencies below the critical frequency. Since the frequency limits483

(fthin/thick and fplate/soliddf ) of typical industrial materials fall near and/or af-484

ter the critical frequency, these limiting expressions obtained from infinite485
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Figure 11: Transmission loss for a concrete layer of thickness 140 mm (properties men-
tioned in Table 1) under plane wave excitation with θ = 60o. Deviations of thin and thick
plate theories from the elastic solid theory (or FEM) start to appear after fthin/thick and
fplate/soliddf

respectively.

plate theories are applicable to the finite size plate as well. For example,486

this can be observed from the transmission loss computed from the finite size487

correction model by Rhazi and Atalla [50] for the plasterboard of 12.5 mm488

thickness under diffuse field excitation in Fig 15.489

6. Concluding remarks490

The assumptions used in thin and thick plate theories limit their applica-491

bility in commonly used industrial materials after a certain frequency. Thin492

plate theory attains the limitation since it does not account for the shear493

effect in the anti-symmetric motion of the plate whereas this is considered in494

thick plate theories. Nevertheless, both types of plate theories are approxi-495

mations since they neglect symmetric motion of the panel in their theoretical496

formulation. By analysing the wavenumbers and admittances of the investi-497
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Figure 12: Transmission loss for a concrete layer of thickness 140 mm (properties men-
tioned in Table 1) under diffuse field excitation. Deviations of thin and thick plate theories
from the elastic solid theory start to appear after fthin/thick and fplate/soliddf

respectively.

gated structures, two frequency limits were presented in this manuscript: 1)498

from the wave propagation analysis of the thick plate model, based on the499

Reissner-Mindlin plate hypothesis, the analytical expression for the limiting500

frequency of the thin plate model is derived, while 2) from comparing the501

symmetric and anti-symmetric admittances, an analytical expression for the502

limiting frequency of plate theories is derived. These two simple analytical503

expressions for computing the limit of thin and thick plate theories can be504

useful to choose the appropriate model in each case. Deviations of the TL505

predictions obtained from different models are observed above these two lim-506

iting frequencies. It is also shown that, although the limiting expressions507

are derived from infinite layer theories, they can be applied to finite sized508

layers as well. Due to the omission of shear effects in thin plate theories,509

the refined coincidence and critical frequencies are derived from thick plate510

theories. Finally, it is observed that plate theories quickly fail for materials511

that are too soft in terms of longitudinal compression.512
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Figure 13: Transmission loss for a soft layer of thickness 20 mm (properties mentioned in
Table 1) under plane wave excitation with θ = 60◦. Deviations of plate theories from the
elastic solid theory (or FEM) start to appear after fplate/soliddf

.
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Figure 14: Transmission loss for a soft layer of thickness 20 mm (properties mentioned in
Table 1) under diffuse field excitation. Deviations of plate theories from the elastic solid
theory start to appear after fplate/soliddf

.
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Figure 15: Transmission loss, computed from spatial windowing method by Rhazi and
Atalla [50], across a finite size (3 m × 4 m) plasterboard of thickness 12.5 mm (properties
are mentioned in Table 1) under diffuse field excitation. It is observed that limiting fre-
quencies computed for infinite plate are still valid for the finite plates as the size correction
effects minimal near the critical frequency of the plate.
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Appendix A. The transfer matrix of an elastic isotropic solid516

The transfer matrix of an elastic isotropic layer (defined by the equa-
tion V ES(M) = [TES]4×4V

ES(M ′) where V ES = {u, v, σzz, σxz}T ) based on
elasticity theory can be written as follows:

[TES]4×4 =
1

D1 +D2kt
[TESpq ] where p, q = 1 to 4.

The matrix elements (TESpq ) are,517

T11 = T44 = D1 cos(hksz) +D2kt cos(hklz),518

T22 = T33 = D1 cos(hklz) +D2kt cos(hksz),519

T12 = T34 = −j[D2klzksz sin(hksz)−D1kt sin(hklz)]/klz,520

T21 = T43 = j[D2kszklz sin(hklz)−D1kt sin(hksz)]/ksz,521

T13 = T24 = ωkt[cos(hksz)− cos(hklz)],522

T31 = T42 =

(
D1D2

ω2kt

)
T13,523

T14 = −jω[klzksz sin(hksz) + k2t sin(hklz)]/klz,524

T23 = −jω[klzksz sin(hklz) + k2t sin(hksz)]/ksz,525

T32 = −j[D2
2klzksz sin(hksz) +D2

1 sin(hklz)]/(ωklz),526

T41 = −j[D2
2klzksz sin(hklz) +D2

1 sin(hksz)]/(ωksz),527

where D1 = µ(k2sz − k2t ) and D2 = 2µkt.528
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