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Micropolar elasticity belongs to the class of so-called multi-fields problems. The numerical solution of the associated field equations by the pure boundary element method (BEM) is available only for some 2D geometries. A judicious combination of the local point interpolation method with the pure BEM leads to a pure BEM solution procedure of 3D problems. The effectiveness of the approach is demonstrated on some examples including indentation. A first analysis of the impact of the microstructure on the macroscopic response is presented.

 [START_REF] Goddard | From Granular Matter to Generalized Continuum[END_REF]and even in the field of living tissues like bones e.g. [START_REF] Park | Cosserat micromechanics of human bone: Strain redistribution by a hydration sensitive constituent[END_REF]) [START_REF] Ramezani | Constitutive equations for micropolar hyper-elastic materials[END_REF] (Altenbach and Eremeyev, 2009).

In micropolar elasticity, the field equations associated with a given problem allow analytical solutions only for "simple" geometries and stimuli. Generally, we will look for a numerical solution. Different numerical methods have been developed to deal with solid mechanic problems. The most common is the popular and powerful finite element method (FEM) which has been applied to solve micropolar elasticity problems, mainly in the 2D context [START_REF] Li | Finite element method for linear micropolar elasticity and numerical study of some scale effects phenomena in MEMS[END_REF][START_REF] Ramezani | Non-linear finite element implementation of micropolar hypo-elastic materials[END_REF]. The development of special 3D finite element in this context has been recently been presented by Grbcic [START_REF] Grbčić | Variational formulation of micropolar elasticity using 3D hexahedral finite-element interpolation with incompatible modes[END_REF] . As it is well known, in the case of linear isotropic classical elasticity problems, the boundary element method (BEM) is an alternative to the FEM. The main advantage of this method is the reduction by one of the dimension of the problem. It has already been successful for the solution of 2D micropolar elasticity problem. Sládek brothers derived the fundamental solutions and the associated traction for 3D isotropic micropolar elasticity problems [START_REF] Sládek | Boundary integral equation method in micropolar elasticity[END_REF]. For anisotropic solids, the BEM could still be applied, but its main advantage which is the reduction of the problem dimension by one would be lost because the integral formulation will contain domain integrals. In recent years, a large number of researchers have invested in the development of the so-called meshless or meshfree methods. Among the various meshless approaches, the local point interpolation method is highly appealing on account of how simple it is to implement. This approach falls in accuracy in the presence of Neumann boundary conditions, which are almost an inevitability when solving solid mechanic problems. Liu et al. (Liu and Gu, 2001) have suggested a way to circumvent this difficulty by adopting the "weakstrong-form local point interpolation" method. Recently, Kouitat (Kouitat Njiwa, 2011a) introduced a novel numerical approach which combines the bests of the BEM and the local point interpolation method. The method called the LPI-BEM (Local Point Interpolation-Boundary Element Method) has already proven effective for the solution of various problems (e.g. [START_REF] Schwartz | A simple solution method to 3D integral nonlocal elasticity: Isotropic-BEM coupled with strong form local radial point interpolation[END_REF][START_REF] Thurieau | A simple solution procedure to 3Dpiezoelectric problems: Isotropic BEM coupled with a point collocation method[END_REF][START_REF] Thurieau | The local point interpolation-boundary element method (LPI-BEM) applied to the solution of mechanical 3D problem of a microdilatation medium[END_REF] This paper will discuss the effectiveness of the LPI-BEM method for solving 3D isotropic micropolar elasticity problems. The extension of the approach to deal with nonhomogeneous and/or anisotropic solids is straightforward. At first we will discuss the method and then we will validate this description by comparing the outputs of the specifically developed tool to literature results. Finally, the response of micropolar elastic solid to indentation load will be analyzed.

2-Governing Equations and method of solution

2-1.
Governing equations Following Eringen (Eringen, 1999a), in the theory of micropolar medium occupying the domain Ω with boundary Γ, the material point is attached to a triad of directors that can rotate. Thus, the material point possesses six degrees of freedom: three degrees for the traditional translation (displacement) vector and three degrees for the micro-rotation vector. The field equations of such a medium under quasi-static evolution without external body load are: [START_REF] Iesan | On the equilibrium theory of microstretch elastic solids[END_REF], (Eringen, 1999a;[START_REF] Park | Cosserat micromechanics of human bone: Strain redistribution by a hydration sensitive constituent[END_REF]:

, 0 (1) 
, 0

(2) In these equations, represents the stress tensor and the moment stress tensor also called coupled-stress tensor.

With as the outward normal vector on the boundary, the macro traction and the micro-torque acting at a regular point on the boundary are given respectively by: ,

In the case of homogeneous centro-symmetric linear isotropic material, the constitutive relations are well documented and read:

2 , ( 4 
) , , /2 (5) 
The fields and in these relations are expressed in terms of displacement ( )and microrotation ( ) gradients as:

, , /2 , , /2
Parameters λ and μ are the Lamé constants and α, β, γ and κ are the micropolar constants. The consideration of stability of the thermodynamic state, which in the static case requires that the strain energy is positive, has led to the following constraints on the parameters ( (Eringen, 1999a)
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2-2 Solution Method

We aim to solve the problem of the static deformation of a micropolar solid by a boundary element based method. Let us remind the reader that, in the case of linear problems with wellestablished analytical fundamental solutions, the boundary element method has proven highly efficient (see e.g. [START_REF] Balaš | Stress analysis by boundary element methods[END_REF][START_REF] Bonnet | Boundary Integral Equation Methods for Solids and Fluids[END_REF][START_REF] Brebbia | Boundary Elements: An Introductory Course[END_REF]. In the case of the field equations we are dealing with, to our knowledge, no such fundamental solution exists for the three dimensional case. Let us point out that fundamental solution and associated traction have been derived for the plane strain case (e.g. (Atroshchenko et al., 2017;[START_REF] Liang | Boundary element method for micropolar elasticity[END_REF][START_REF] Shmoylova | Boundary element analysis of stress distribution around a crack in plane micropolar elasticity[END_REF] ). The 3D-problem can still be solved by the boundary element method, which is no longer pure since the formulation involves domain integrals and the main appeal of the approach (reduction of the problem dimension by one) is tarnished. This shortcoming can be ruled out by adopting one of the strategies of conversion of domain integrals into boundary ones such as the dual reciprocity method (DRM)( [START_REF] Nardini | A new approach to free vibration analysis using boundary elements[END_REF] or radial integration method (RIM)( [START_REF] Gao | The radial integration method for evaluation of domain integrals with boundary-only discretization[END_REF]. In recent years, a large number of researchers have invested in the development of so-called meshless or meshfree methods. Among the various meshless approaches, the local point interpolation method is highly appealing of how simple it is to implement. This approach falls in accuracy in the presence of Neumann type boundary conditions, which are almost an inevitability when solving solid mechanic problems.

( LIU and GU, 2001) have suggested a way to circumvent this difficulty by adopting the "weakstrong-form local point interpolation" method. In a recent paper, (Kouitat Njiwa, 2011b) proposed a novel strategy that combines the best elements of both the conventional BEM and local point interpolation methods. This LPI-BEM approach has proved efficient in the context of anisotropic elasticity (Kouitat Njiwa, 2011b), piezoelectricity solids [START_REF] Thurieau | A simple solution procedure to 3Dpiezoelectric problems: Isotropic BEM coupled with a point collocation method[END_REF], multi-fields problems [START_REF] Thurieau | The local point interpolation-boundary element method (LPI-BEM) applied to the solution of mechanical 3D problem of a microdilatation medium[END_REF], and nonlocal elasticity [START_REF] Schwartz | A simple solution method to 3D integral nonlocal elasticity: Isotropic-BEM coupled with strong form local radial point interpolation[END_REF]. We adopted this method in our study, detailing below the principal steps followed in the context of a micropolar medium. First, let us introduce the following fictitious shear modulus and Poisson ratios.

$ ̅ & ; ( ) & 2 ; $ ̅ /2.
The field equations ( 1) and ( 2) take the forms:

$ ̅ & ,Δ 1 1 2( ) & , .
, , 0

$ ̅ * /Δ 1 1 2( ) * , 0 1 , , 2 2 2 , 0 (6) 
Let us assume that the primary kinematical fields are the sum of a complementary part and a particular term. Namely: . The complementary parts are assumed to satisfy Navier's type equations, that is:

$ ̅ & ,Δ 3 1 1 2( ) & , 3 . 0 (8) $ ̅ * /Δ 3 1 1 2( ) * , 3 0 0 (9)
and accordingly, the particular fields solve:

$ ̅ & ,Δ 5 1 1 2( ) & , 5 . , , 0 (10) 
$ ̅ * /Δ 5 1 1 2( ) * , 5 0 1 , , 2 2 2 , 0 (11) 
The Navier type equations 8 and 9 are solved by the conventional boundary element method which produces systems of equations of the following form (see e.g. [START_REF] Balaš | Stress analysis by boundary element methods[END_REF]):

67 & 89 : ; 6$ & 89 : ;, <7 * =9 : ; <$ * =9 : ;

(12) In equations ( 12), 9 : ;, 9 : ;, 9 : ;, 9 : ; represent respectively the vector of nodal displacement , the vector of nodal microrotation, the vector of nodal tractions and the vector of nodal microtorque.

The local point interpolation, applied to the strong form differential equation, is adopted for the solution of equations ( 10) and ( 11).

In this method, a field v(x) is approximated as (LIU and GU, 2001)

: > ∑ @ A B C DE ∑ F G H DE
with the following constraints:

∑ F B 0, I 1 J and N 1 O C DE .
Here @ A is the selected radial basis functions, N the number of nodes in the neighborhood (support domain) of point x, and M the number of monomial terms in the selected polynomial basis P

. Recall that A denotes the Euclidean distance between the point and the collocation center . Enforcing the approximation of > to be satisfied at all centers in the support domain, coefficients i a and j b are determined by solving a system of equations of the form:
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where W> /R X denotes the vector of nodal values of > .

It can be shown that 9G; <6P8 U 6@8 YE 6P8 = YE 6P8 U 6@8 YE W> /R X 6Z [ 8 W> /R X and 9B;
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Then, the approximation of > is now rewritten in the matrix form as > 6@ E @ ^… … . @ C 8 6Z ] 8 W> /R X 6P E P ^… … . P a 8 6Z [ 8 W> /R X or more compactly as:

> 6Φ 8 W> /R X (13) 
In the matrix form, equations ( 10) and ( 11) become: When adopting interpolation (13) for all kinematical fields, at a given collocation center, the particular fields equations ( 14) and ( 15) have become: On collocation of the above equations ( 16) and ( 17) for all the internal collocation centers, taking the assumption that the particular integrals are identically zero at all boundary points, the following forms of systems of equations is obtained:
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The tractions at a regular point on the boundary is written as:

: 5 with { 1 { 2 { 2 g e |A P and 1 , 2 (20) 
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with { 1 { { 2 g e |A P and 1 , , 2 /2 (21) Following a similar strategy, the tractions at the boundary points could be written in the following forms: 9 ; 9 3 ; 6g} E& 89 5 ; 6g} && 89 ; <g} &* =9 ;

(22) 9 ; 9 3 ; <g} E* =9 5 ; <g} *& =9 ; <g} ** =9 ;

(23) Introduce equations ( 18) and ( 19) in ( 22) and ( 23), considering the previous consideration 3 5 that we introduce in the system of equations ( 12) and after conducting some algebraic manipulations, the final coupled systems of equations is of the following forms: 67 ~&89 ; <7 &* =9 ; 6$ & 89 ;

(24) <7 ~*=9 ; <7 *& =9 ; <$ * =9 ;

(25) Particularly worthy of mention, the final equations contained similar boundary primary variables and internal kinematic unknowns to those of a pure BEM. Boundary conditions could be taken into account as in standard practice and the resulting system of equations was solved by a standard direct solver.

3-Numerical examples

In our work, we used the generalized multi-quadrics radial basis functions @ A 1A ^ • ^2€ , where A ‖ ‖ and • and ' are parameters known as shape parameters. Shape parameter • was taken proportional to the minimum distance ƒ v , defined as the maximum value among the minimum distances in the E , ^and p directions between collocation centers. The first set of numerical results presented serve as validation of the proposed numerical approach.

Case of a bar under traction load

Let us first consider the case of a bar under a uniform tension load ( pp • "). The bar with height H = 5 units has a rectangular cross section with width L =2 and thickness T = 1 units. (cf. fig 1). The bar is simply supported at its lower end and uniformly loaded at its upper face. All the remaining faces are free of traction. It is also assumed that all boundaries are free of microtorque. The boundary of the bar was subdivided into 88 nine-node quadrilaterals. The boundary nodes were supplemented by 171 internal collocation centers. This case serves as a first validation of the developed numerical approach. In this case, it can be established that, the axial strain is given in term of the applied traction by:

pp ^… †^ ‡ ˆ †‰ p… †^ ‡ ˆ †‰ ^ ‡ˆ † ‰ pp were μ a ‰ ^
is the equivalent shear modulus for micropolar media and the Lamé constant.

For our case, parameters are chosen as: 1000 JPB, a 750 JPB and 500 JPB.
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The calculated axial elongation along the central line of the sample is compared to the analytical solution in fig 2. As can be observed accurate numerical results are obtained. As expected, the calculated microrotation was identically zero. Indeed, due to the sample geometry, the loading does note generate shear stress. These results were undisturbed when the radial basis shape parameters were varied in the ranges ' ∈ 60.5; 2.58 and • ∈ 610 YŽ ƒ v ; 10 YE ƒ v 8. Case of a prismatic bar in order to further validate the developed numerical tool, let us consider the following patch tests used in [START_REF] Grbčić | Variational formulation of micropolar elasticity using 3D hexahedral finite-element interpolation with incompatible modes[END_REF]. in order to validate their finite element implementation for elastic micropolar materials. The displacement and microrotation fields in a loaded prismatic bar with height H = 0.24, width L = 0.12 and thickness T=0.06, as shown in figure 3, are known. The adopted system of Cartesian coordinates is such that 0 The stress field associated with such displacement and micro-rotation fields are given by: kk ll mm 5 kl lm lm ml km mk

• • 7 , 0 • • • ' , 0 • o • ' .

1.5

The micro-stress is identically zero. Numerical results of our calculation are collected in the table below for all the internal 8 points: As can be observed, results of our numerical tool are in excellent agreement with analytical solution. It can be concluded that our approach passed the test. The tangential displacement along a radius of the top surface and the microrotation along a cylinder generator are compared to the analytical solution in table 2 and3 In the case of tangential displacement, the maximum relative error between computed and analytical results is less than 1.5%. In the case of microrotation, the maximum relative error (7%) is obtained near the constrained end. The further we get from this area, the smaller the relative error (less than 1.5%). It can be concluded that numerical results are in good agreement with analytical solutions.

As can be observed, in this case also sour numerical results are in excellent agreement with analytical prediction.

Case of a plate with a hole

Let us consider a plate with a hole as shown in figure 5a. This could represent a bone plate pierced to receive a screw. The plate has length 300 mm, width 200 mm and thickness 5 mm. The plate is loaded uniformly in the x direction. Due to symmetry, only a quarter of the specimen is considered for calculation (fig 5b). Following, symmetry boundary conditions are applied at the left and the bottom ends of the geometry, the hole surface and the upper and lower faces of the plate are free of traction.

Microrotations are zero at the left and the bottom ends while the microtorques are zero at the remaining surfaces. This example has already been considered by Eringen [START_REF] Eringen | Microcontinuum Field Theories I. Foundations and Solids[END_REF] and Rosenberg [START_REF] Rosenberg | Microcontinuum approach in biomechanical modeling[END_REF]. They introduced a characteristic length of the material defined as

• i ‡ †‰ ‰ ^ ‡ †‰ n E/^
analyzed they results with respect to the ratio @ • ¡ where @ is the hole radius. . The macroscopic material parameters ( and ) adopted for each value of the ratio @ • ¡ are determined by considering that G i ^ ^ ‡ †‰ n E/^, γ =260 N and @ 20 .

We take G • ⁄ 0.4 and £ 0.2 2 2 ⁄ .

Results from our simulations are analyzed through the evolution of the maximum tangential stress -the stress intensity factor -generated in the hole with respect to the ratio @ • ¡ . This evolution is shown in the plot in figure 6 where it is compared to the case of a pure elastic material. The results, which agree well with those of Eringen [START_REF] Eringen | Microcontinuum Field Theories I. Foundations and Solids[END_REF] and Rosenberg [START_REF] Rosenberg | Microcontinuum approach in biomechanical modeling[END_REF] show that the stress intensity factor gently increases through the pure elastic value as the material length scale decreases. The shear stresses in this case are maximum at the edge of the hole and they induce a noticeable micro-rotations in the same place.

3.5

Localized load on a micropolar sample simulating indentation load

In this example we will simulate an indentation by a spherical punch of a cubic homogeneous and isotropic specimen. To do this we will assume that the displacement profile under the indenter is similar to the one obtained when indenting a pure elastic sample. The expression of this displacement is known and can be find in the book by [START_REF] Johnson | Contact Mechanics[END_REF]. ± * is an equivalent modulus given by: ± * « EY² ³ .

In the following, we compare the response of a pure elastic material to that of a micropolar one. Both materials are selected to have the same macroscopic material parameters collected in table 4 . O is a number that highlights the connectivity or the topology of the microtructure network, in other words it quantifies the degree of micropolarity exhibited by the material. A quadratic network microstructure should have a higher parameter than a hexagonal network microstructure and so on [START_REF] Mcgregor | On the coupling number and characteristic length of micropolar media of differing topology[END_REF] The calculated maximum contact pressure (P ª ) computed for the pure elastic material and the micropolar elastic material are compared to the pure elastic analytical solution in figure 11. It can be observed that our numerical solution is in excellent agreement with analytical one in the case of pure elastic material. Globally, the load required to achieve the same penetration depth (the same contact area) is higher in the case of micropolar material. This is in agreement with the results presented by [START_REF] Salehi | Finite element study for conical indentation of elastoplastic micropolar material[END_REF].

Let us introduce ¶ the stress tensor deviator define as ¶ E p A * \ , with the asymmetric stress tensor and the micro-stress tensor. Due to the asymmetric stress tensor (Eringen, 1999c), we can't use the usual von Mises stresses definition for an elastic classical medium. An equivalent stress of the von Mises type has been introduced by Gombos [START_REF] Gombos | Equivalent stress for micropolar solids[END_REF] and is given by:

•a µ3 ¸E Ž ¶: ¶ ¶: ¶ º E Ž : : º »
This stress is considered in the analysis of results of the specimen submitted to indentation type loading. Clearly, the higher the coupling number, the higher the values of the normal contact stress. This result indicates that, for a given normal load P applied on a spherical punch, the higher the degree of micropolarity, the smaller the radius of the contact area.

For a given radius of contact area, the contour plots of the von Mises stresses developed within the sample are shown in figure 12. The stress levels increase with the value of the coupling number. Moreover, the maximum value is obtained at the surface and in the material. For higher values of the coupling number, the maximum value is located at the surface of the sample. This is a clear difference with the case of classical elasticity 

Conclusion

A pure boundary element method for the solution of 3D micropolar elasticity problems has been presented. The approach is the so-called LPI-BEM which combines the advantages of the boundary element method (reduction of the problem dimension by one) and of the local point interpolation method (ease of implementation). The effectiveness of the approach in this context has been proved by comparing our results with those available in the literature. The case of indentation has also been considered and some first results highlighted. A forthcoming will be dedicated to the indentation of micropolar elastic materials, focusing on the role of the known characteristic length and coupling number usually adopted for this material.
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  ) Matrices e & and g * are the Voigt representation of the isotropic like elasticity tensor respectively with parameters $ ̅ & and ( ) & n the one hand and $ ̅ * and ( ) * on the other.

Figure 1 :

 1 Figure 1 : Schematic of the bar under tension load

Figure 2 :

 2 Figure 2: Axial displacement along the axial direction at the center of the beam

  The known fields are given by:

Figure 3 :

 3 Figure 3 : Representation of the distribution of the collocation center in the considering medium

Figure 4 :

 4 Figure 4 : cylinder in torsionWe now consider a cylindrical specimen subjected to torsion load as shown in figure4. With this example we check the ability of the approach to deal with curved boundaries and natural boundary conditions. Let us remind the reader that this case has been considered in a recent work by Grbčić et al in a finite element context[START_REF] Grbčić | Variational formulation of micropolar elasticity using 3D hexahedral finite-element interpolation with incompatible modes[END_REF]. They also derived the corresponding analytical solution which is used here for comparison purposes. The boundary of the cylinder with height 1 and radius 0.2 is subdivided into 96 nine-node quadrilateral elements. The boundary nodes were supplemented by 567 internal collocation centers. As shown in figure4, each radius of the upper face of the cylinder is subjected to a linearly varying tangential traction (F " 43.93 A JPB -N ˜ 0 • A • @ ) simulating torsion. Each point of this upper face is subjected to a constant microtorque around the z-axis ( m 3.64 O.YE ). The lower face of the sample is constrained against displacements and microrotation. The remaining face of the cylinder is free of traction and microtorque. As in the work of Grbčić et al. we used the following material parameters: =157 500 JPB, =8 750 JPB, =3 500 JPB, = =0 et =210 O.

Figure 5 :

 5 Figure 5 : quater of aplate with a central circular hole of radius R

Figure 6 :Figure 7 :

 67 Figure 6: Maximum tangent stress in the hole (on the x direction)

Figure 8 :

 8 Figure 8: Representation of the domain with boundary

Figure 9 :

 9 Figure 9: Representation of the indentation curves representing the penetration depth as a function of the applied load

Figure 10 :Figure 11 :

 1011 Figure 10: von Mises stress in a cross plane of the specimen (plane xy containing the symmetry axis) ; A) pure elastic material ; B) micropolar elastic material. The contour plots of the von Mises stresses in a vertical plane containing the axis of symmetry are shown in figure 10. The purely elastic case is shown for comparison purpose. It can be noted that the subsurface stresses are higher in the case of micropolar elastic material. The maximum value is located on the symmetry axis but closer to the contact compared to the pure elastic case. Higher values of equivalent stresses are obtained at the free surface in a region enclosing the contact border. Let us consider the effect of the coupling number O 3 on the distribution of the normal stress and the stress within the sample. The different values of the coupling number have been obtained by modifying the value of parameter and the Young Modulus and Poisson coefficient stay the same. The profiles of normal contact load within the contact are shown in figure 11 below.

Figure 12 :

 12 Figure 12: Representation of von Mises constraints in the xy plane passing through the center of the domain for the micropolar in function of the coupling number N

  

table 1 : Stresses and micro-stresses at various points in the sample

 1 

	, •, o 1 (0.04,0.02,0.02)	ll 4.9984	km 1.5000 3.4445E-06 1.7422E-06 kk mk
	2 (0.04,0.04,0.02)	4.9986	1.4999 2.7052E-06 1.9378E-06
	3 (0.08,0.02,0.08)	4.9943	1.4990 -1.7573E-06 -1.3079E-06
	4 (0.08,0.04,0.08)	4.9939	1.4986 -1.5173E-06 -1.2852E-06
	5 (0.16,0.02,0.08)	4.9947	1.4984 -8.3675E-08 1.0612E-06
	6 (0.16,0.04,0.08)	4.9956	1.4988 -2.3694E-07 1.0647E-06
	7 (0.18,0.02,0.03)	4.9968	1.4993 1.7310E-07 -1.8554E-06
	8 (0.18,0.04,0.03)	4.9960	1.4992 1.9306E-07 -1.6577E-06

table 2 : Data of displacements › oe along the radius • on the upper face

 2 .

	" m

table 3: Representation of microrotations ž Ÿ along z on the lateral face

table 4 : material parameter for classical and micropolar elastic medium

 4 

	below.							
	Elastic case	± $PB 85.2	( 0.36	$PB /	O /	O /	O /	O 3 /
	Micropolar case	85.2	0.36	30	-50	50	260	0.57
	In table 4 O 3 is a coupling number for macro/microstructure (for micropolar media) defined as O µ ‰ E †² « †‰ E †²

table 5 : Table summarizing the different cases according to the maximum insertion depths

 5 . A first set of numerical experiment has been performed for different values of contact area radius (see table 5 below).

	B ˜	Case 1 0.025	Case 2 0.05	Case 3 0.075	Case 4 0.1	Case 5 0.125	Case 6 0.15