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Abstract 

Porous plasticity aims to model the growth and coalescence of voids leading to ductile failure. 

The GTN model (1984), resulting from heuristic modifications to Gurson's homogenized hollow 

sphere model (1977), is used in numerous publications. The Rousselier model (1981), developed 

in the framework of continuum thermodynamics, is apparently similar. Both models are effective 

in numerical calculations, but the reasons why they perform well were not investigated in details 

in the existing literature, as regards transition to uniaxial deformation, relations between various 

modes of strain localization, finite element discretization, regularization. In the present paper, we 

propose first to revisit both models and to compare their fundamentally different mechanical 

behaviors. For stress triaxiality larger than some critical value, it is shown that theoretically the 

GTN model cannot achieve strain localization in a plane but only pointwise localization for the 

ultimate mechanical state (stress tensor equal to zero). The larger the void volume fraction (void 

growth), the smaller the stress triaxiality critical value. Fortunately, discretization transforms the 

pointwise localization into volume localization and with an appropriate Cartesian finite element 

mesh a more or less planar sheet of integration points can be obtained. The Rousselier model can 

achieve strain localization in a plane at all stress triaxialities and discretization also transforms 

this localization into volume localization with a characteristic element size. Second, multiscale 

modeling of both plasticity and ductile damage (not limited to void damage) is an essential way 

of progress for laboratory specimen calculations. The Rousselier model can be incorporated into 

polycrystalline models based on crystal plasticity, with reasonable computation times provided a 

reduced texture with a small number of crystallographic orientations is used. It can be coupled 

with a new Coulomb ductile fracture model at the slip system scale and with secondary void 
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nucleation and growth models at the grain and slip system scales, respectively. The multiscale 

model is applied to aluminum CT and KAHN specimens and to steel round notched specimens.  

Keywords:  Micromechanics; Continuum Thermodynamics; Strain Localization; Void 

Coalescence; Secondary Void Nucleation.   
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Highlights:  

1. Although apparently similar, the Gurson and Rousselier plastic potentials have different 

mechanical consequences.  

2. For both models, finite element discretization yields volume localization only, leading to 

strain localization in a plane.  

3. The Rousselier model can be incorporated into homogenized polycrystalline models.  

4.  It can be coupled with other plasticity and ductile damage models at various scales.  

5. Finite element multiscale modeling of aluminum and steel laboratory specimens enables 

predictions of slant fracture and secondary voids effects in both materials.  

1. Introduction 

Ductile failure can be defined in a very general way as a damage mechanism involving a gradual 

and significant dissipation of mechanical energy, at several scales. In metallic alloys, the most 

commonly observed (but not unique) ductile failure mechanism is nucleation, growth by plastic 

deformation and coalescence of microscopic voids. More than fifty years ago, micromechanical 

models of an isolated void in a matrix were developed by McClintock (1968) and Rice and 

Tracey (1969). An exponential dependence of void growth on stress triaxiality was obtained. 

Following Rice’s work, Gurson (1977) published constitutive equations for a porous ductile solid 

based on homogenization theory.  An approximate limit analysis of a rigid-plastic hollow sphere 

with axisymmetric boundary conditions yields a plastic potential depending on the first and 

second invariants of the stress tensor and on the void volume fraction. It shows a quadratic 

dependence on von Mises equivalent stress and a hyperbolic cosine dependence on stress 
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triaxility η = σm/σflow (σflow is a constant material parameter). The flow rules for both 

deviatoric and volumetric plastic strain rates are obtained by derivation of the plastic potential 

(normality rule). Later, another porous plasticity model was developed by Rousselier (1981) in 

the framework of continuum thermodynamics with the hypothesis of two scalar internal variables 

for plasticity and damage, respectively. Continuum thermodynamics is a powerful concept for 

the construction of models that are as simple as possible (Germain et al., 1983). The exponential 

dependence of void growth on stress triaxiality is derived from the generalized normality rule, 

i.e. normality for both plastic strain rate and internal variables rates.  

In the numerical analysis of a doubly periodic array of cylindrical voids, Tvergaard (1981) 

obtained shear band instabilities at critical strains that are twice smaller than the ones predicted 

by the Gurson model. It is the origin of Gurson’s model second heuristic modification (the first 

one is the substitution of the constant σflow by a hardening flow stress σM). With three 

additional parameters q1, q2 and q3, Tvergaard could not fit all the numerical predictions 

simultaneously, but a considerable improvement was found with q1 = 1.5, q2 = 1 and q3 = (q1)2. 

These values are very rarely revisited in the numerous publications based on Gurson’s model:  

see the summary tables in Benseddiq and Imad (2008), Yildiz and Yilmaz (2020), although the 

model is generally applied to configurations that are not shear-dominated.  

Actually in these configurations stress triaxiality is large (say 1/ >=
eqm

σση , ratio of 

hydrostatic stress to von Mises equivalent stress) and failure by void coalescence takes place in a 

plane normal to the main loading direction (at the macroscopic scale, even if a zig-zag crack may 

be observed at a smaller scale), corresponding to void coalescence models like Thomason’s 

(1985). Gurson’s model is based on the assumption that void growth is driven by some diffuse 

plastic flow in the matrix. Therefore this model is not expected to model the flow localization 

that takes place between voids. That is why Tvergaard and Needleman (1984) introduced a third 

heuristic modification to account for void coalescence, supposed to occur at a critical void 

volume fraction f = fc. The void growth rate is then discontinuously accelerated by a large factor 

K (say K = 3 or even larger), which triggers void coalescence. The accelerated void volume 

fraction f* replaces f  in the equations but the latter still is the “physical” value to be compared 

with experimental data, because the ultimate value f*U  = 1/q1 (if q3 = q12) at which the stress 

carrying capacity vanishes is unrealistically large. The experimental porosity at complete failure 
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is typically 0.2 or less, the one predicted using micromechnical studies ranges between 0.15 and 

0.30 (Benzerga and Leblond, 2010). With these various heuristic modifications of the Gurson 

model, the so-called GTN model enabled the finite element modeling of cup-cone fracture in a 

round tensile bar. In contrast, the Rousselier model without any modification enabled the finite 

element modeling of crack initiation and propagation in a single edge cracked flat tension 

specimen (Rousselier, 1981). In the last forty years, the research field of porous materials has 

been continuously investigated, e.g. recently: Monchiet et al. (2008), Besson (2009),  Seidenfuß 

et al. (2011), Guo et al. (2013), Tu et al. (2013), Malcher et al. (2014), Vincent et al. (2014), 

Ling et al. (2016), Leclerc et al. (2020), Chen et al. (2020), Fehringer and Seidenfuß (2020).  

An important advantage of the Rice-Gurson method is that it can provide numerous extended 

models. They are detailed in a recent review paper (Benzerga et al., 2016), e.g. the Gologanu-

Leblond-Devaux model for spheroidal voids, the Madou-Leblond model for ellipsoidal voids, 

models incorporating plastic anisotropy with a Hill matrix (Benzerga and Besson, 2001), etc.  

Another extension is the consideration of micro-inertia effects in the vicinity of collapsing voids 

(Sartori et al., 2015; Wilkerson, 2017; Czarnota et al., 2020). The derivation of a simple model 

with continuum thermodynamics only succeeds in the case of isotropic damage and the 

Rousselier model cannot be extended easily. Nevertheless, this model can be incorporated into 

polycrystalline models based on crystal plasticity (Rousselier and Leclercq, 2006). The analytical 

form of Gurson’s model makes it impossible to incorporate into self-consistent polycrystalline 

plasticity with a homogenized flow equation. It is a limitation if we consider that multiscale 

modeling of both plasticity and ductile damage (not limited to void damage) is an essential way 

of progress for laboratory specimen calculations, with reasonable computation times because of 

reduced texture identification (8 to 15 crystal orientations), e.g. Luo and Rousselier (2014), 

Rousselier and Luo (2014), Rousselier and Quilici (2015), Rousselier et al. (2017). It enables a 

better modeling of kinematic, anisotropic and latent hardening and also the coupling with other 

plasticity and ductile damage models at various scales. The multiscale model is applied here to 

aluminum CT and KAHN specimens and to steel round notched specimens.  

The paper is organized as follows. The constitutive equations of the GTN and Rousselier models 

are recalled in Section 2. The ability of the porous plasticity constitutive equations to localize 

plastic flow in a plane is a crucial feature for ductile fracture modeling. It has not been 

investigated from a practical point of view in existing literature. In Section 3, the necessary 
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kinematic condition of planar macroscopic localization (NKCPML) and its consequences for 

both models are presented. The evolution of the yield surfaces with increasing void volume 

fraction and localization in a finite element mesh are investigated. A general discussion of the 

macroscopic porous plasticity models concludes this Section. Section 4 is devoted to multiscale 

modeling: integration of porous plasticity into homogenized polycrystalline models, examples of 

numerical simulations of laboratory specimens.  

2. Macroscopic porous plasticity constitutive equations.  

After the earlier work of McClintock (1968), the founding model is the one of Rice and Tracey 

(1969) which gives the growth rate of an isolated spherical void of radius R (transposable to the 

volume fraction f) as a function of stress triaxiality η :  

)exp(/3/ 1 ηQDpRRff &&& == , pm σση /=  ,            p
eqp ε&& =     (von Mises) 

 (1) 

where σm is the mean hydrostatic stress and σp is the plastic flow stress, a constant in the original 

model. Rice and Tracey decomposed the velocity field into volume-changing and shape-

changing parts. They assumed that the shape-changing part does not contribute to the void 

growth at high stress triaxiality. The theoretical values of the constant parameters are Q = 1.5 and 

D1 = 0.850. Usually, the exponent is written as 3σm/2σp, the exact factor Q = 3/2 being given by 

the high stress triaxiality case, equation (37) in Rice and Tracey’s paper. The exponential 

dependence is in agreement with early void growth measurements (e.g. Marini et al., 1985; 

Rousselier, 1987) and confirmed with  X-ray microtomography (e.g. Maire et a1., 2011; Landron 

et al., 2011), with Q = 1.5 but however a larger experimental value D1 = 1.1 to 3.6 depending on 

the metallic alloy. Assuming that the shape-changing part has an effect on void growth, 

Huang (1991) obtained a corrected value D1 = 1.275 for the second parameter, closer to the 

experimental results but still too small for many alloys. With an adequate value for the parameter 

D1, Rice and Tracey’s model is a strong basis.  

The Gurson model (Gurson, 1977; Tvergaard, 1981) is a plastic flow surface obtained by 

homogenization of a hollow sphere with two kinematic fields (volume-changing and shape-

changing displacement rates).  
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3

22 =++− ησσ Qqfqfq
peq ,   )sinh(2)1/(3 21 ηε QqfDpff

p
m &&& =−=

  
(2) 

In the original model, q1 = q2 = q3 = 1. The flow stress σp(p) takes into account work hardening 

in the GTN model (Tvergaard and Needleman, 1984). The second equation (22) is given by the 

mass conservation law and the normality rule. The parameters are Q = 3/2 and D1 = 3q1q2/4. 

With the values recommended by Tvergaard (1981): q1=1.5, q2=1, q3=q12, we obtain 

D1 = 1.125, which remains too small compared to experimental data (all the more with 

sinh < exp/2).  

The void growth acceleration function is (Tvergaard and Needleman, 1984):  
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The ultimate value at which the stress carrying capacity vanishes is 33

2

11

*
/)( qqqqf U −−= . 

This ultimate state cannot be obtained for q3 > q12. For  q3 ≤ q12,  f*U decreases very rapidly 

from the maximum value  f*Umax  = 1/q1 for q3 = q12, where the slope is infinite (Fig. 1). For 

q3 = 1, f*U is not so unrealistically large than f*Umax (e.g. f*U = 0.382 for q1= 1.5 instead of 

1/q1 = 0.667). Nevertheless, q3 = 1 was never used according to the existing literature (Yildiz 

and Yilmaz, 2020).  

 

 Figure 1. Ultimate value f*U in function of q3 for a given q1 (here q1 = 1.5, range 

q3 = 0 - 2.25).  
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Like Gurson's, the Rousselier plastic potential (Rousselier, 1981, 1987, 1989; Germain et al., 

1983) is the sum of 3 terms, but the analytical form, deduced from continuum thermodynamics 

and from the generalized normality rule, is different :  

0
)1(

exp),,(
1

1

11
=









−
+−

− σ
σσ

σ
f

fDTppH
f

meq
& ,     









−
=

1
1

)1(
exp3

σ
σε

f
fDp mp

m &&            (4) 

Continuum thermodynamics is only used to obtain the analytical form of the porous plastic 

potential. It is out of the scope of the present paper to discuss the convexity and its consequences 

for dissipation and numerical implementation (Enakoutsa et al., 2007). This framework is 

effective in the simplest case of isotropic damage, i.e. the porosity is characterized by its volume 

fraction f  only. (In Rousselier (1981, 1987, 1989), the internal variable β is used in place of f  

but it does not impact the model because a functional relation exists between f and β.) The 

detailed micromechanisms are not considered explicitly (the multiscale framework is better 

suited to model these mechanisms, see Section 4). The detailed derivation of the model is given 

in Appendix B of Rousselier and Luo (2014).  

The three phases of void damage are void nucleation, growth and coalescence. Specific models 

are used for void nucleation (e.g. Chu and Needleman, 1980). In this Section, we only consider 

some initial value 0f  of the void volume fraction f . The scientific objective of porous 

plasticity is to model void growth and void coalescence. In the continuum thermodynamics 

framework, the Kirchhof stress ρστ /=  has to be used in place of the Cauchy stress σ , with 

)1/()1( 0ff −−≅ρ . Assuming 10 <<f , only )1/( f−σ  remains. This point is important for 

the coalescence stage at large void volume fraction.  

The viscoplastic flow stress is ),,( TppH
vp

&=σ , depending on strain rate p&  and on 

temperature T. As in Rice and Tracey's and Gurson’s original models and unlike the GTN model, 

the denominator in the exponential is a constant material parameter σ1.  Thermodynamics does 

not give the integration constants D1 and σ1. Generally, D1=2 was used in applications (e.g. 

Lorentz et al., 2008; Seidenfuss et al., 2011; Tu et al., 2013). By analogy with Rice and Tracey's 

model, ),,()2/3(
111

TppHQ &== σσ  is assumed, at saturated strain hardening (Voce) for a large 

parameter 1pp = . If strain hardening does not saturate (Swift), σ1 (or p1) is a parameter to be 
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calibrated (Rousselier et al., 1989; Rousselier, 2001a). σ1 parametrically depends on strain rate 

and on temperature, which enabled to model the ductility curve in the range p&  = 10-3-10+6 s-1, 

including the "adiabatic nose" at very large strain rates because of inertia at the macroscopic 

scale (Rousselier, 2001b), not to be confused with inertia at the micro-scale mentioned in the 

introduction.  

3. Consequences of the necessary kinematic condition of planar macroscopic localization 

(NKCPML).  

3.1. NKCPML.  

We consider the necessary condition for the final stage of void damage induced ductile fracture, 

first in the particular case of a band perpendicular to the larger principal strain rate direction. 

This case corresponds for example to the center of axisymmetric tensile specimens or to thick 

cracked specimens in mode I, with stress triaxiality at fracture initiation larger than 1. In Fig. 2a, 

the schematic material element expanding in direction 1 contains a band B in the final 

coalescence stage of ductile fracture. Because of large plastic softening in the band, the two right 

and left blocks A are in elastic unloading: their deformation rate is very small. Consequently, the 

band expands in direction 1 only: 0
3322

≅≅ pp εε && , 3/
11
pp

m εε && ≅   and 3/2
11
pp

eq εε && ≅ .  

 

a) b)  

 

Figure 2. Material element containing two plastically inactive blocks A and a band B of 

strain and damage localization. The material element is expanding in direction 1. a) normal band 

without shear strain, b) slant band with shear strain.  
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The configurations of Fig. 2 are the same as in Rice (1976), but with negligible elastic strain 

rates. In the case of a localization plane perpendicular to the loading direction, Thomason (1985) 

was the first to mention that, at strain localization, uniaxial tension prevails and the lateral plastic 

strain rates are close to zero. In finite element calculations of cells with a spherical void, Koplik 

and Needleman (1988) also noticed that the beginning of coalescence in a plane perpendicular to 

the main loading direction corresponds to the transition to uniaxial deformation.  

Therefore, the necessary kinematic coalescence condition is:  

2/ ≅p
m

p
eq εε &&      (5) 

In the case of a rate-independent material, the time at which this condition is met is close to the 

loss of ellipticity of the equilibrium equations which coincides with the condition det(nLn) = 0 in 

Rice (1976). In the case of a rate-dependent material, loss of ellipticity does not occur and it can 

be replaced by the stability analysis of a perturbation. Rice's localization condition corresponds 

to homogeneous fields (or to an infinite configuration), hence it slightly underestimates 

localization in a finite geometry (Besson et al., 2003). The coalescence model of Thomason 

(1985) comply with the condition of Eq. (5) in the particular case of Fig. 2a. The volumetric 

strain cannot be small: in flat ductile fracture, some amount of void damage is necessary.  

In Figure 2b, the general case of a slant band is shown. It can generate a shear strain rate 0
12

≠pε&  

and/or 0
13

≠pε& . Note that Hadamard's (1903) compatibility conditions only require that 0
33

=pε& . 

Due to the additional strain rate terms, the equivalent strain rate p
eqε&  is larger than for a 

perpendicular band. The general necessary condition is 2/p
eq

p
m εε && ≤ . Unlike Eq. (5) for the case 

of a perpendicular band, it is a loose condition, but still a necessary one. In slant and shear 

fracture, volumetric strain and void damage are not necessary, so 0=p
mε&  is possible, but they are 

not excluded, depending on the material.  

The consequences of this necessary kinematic condition of planar macroscopic localization 

(NKCPML) are important. The yield locus must have a zone complying with Eq. (5). The larger 

this zone, the better the coalescence capability of the model. The yield locus of the Gurson model 

is plotted in Fig. 3 for a fairly large value f = 0.1. On the black curve, at large stress triaxiality, 
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localization in a plane is impossible because p
mε&  cannot be larger than 2/p

eqε& . At smaller stress 

triaxiality, only a small part of the yield locus enables localization in a plane approximately 

perpendicular to the main loading direction. For a constant stress triaxiality, Eq. (5) is only 

obtained during a small transient in the history of the increasing void volume fraction f , as 

shown in Fig. 4. For larger values of f , the yield locus shrinks to a quasi-circular ellipse until the 

ultimate state in which   f = fU = fF = 0.44480, σm = σeq = 0. No particular direction stands out.  

At large stress triaxiality, the localization in the ultimate state is not planar but pointwise. The 

accelerated void growth rate of the GTN model, the pink arrow in Fig. 3, does not change this 

behavior.  

 

Figure 3. Gurson-GTN model yield locus in the ),( eqm σσ  plane for parameters: 1.0=f , 

Q=3/2, σp=1, 6245.11 =q , 12 =q , 25.23 =q . Rousselier porous plasticity model yield surface 

(blue curve) for parameters: 00 =f , 1.0=f , Q=3/2, 1=H , σ1 = H/Q =2H/3, 21 =D . 

NKCPML without and with shear strains, red arrows (slope -3/2) and blue arrows, respectively.  
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Figure 4. Gurson-GTN model, evolution of the yield locus in the ),( eqm σσ  plane with 

increasing void volume fraction for parameters: Q=3/2, σp=1, 6245.11 =q , 12 =q , 25.23 =q . 

The red line corresponds to a constant stress triaxiality equal to 2, the red discs correspond to the 

slope -3/2 (NKCPML). 

 

With the Rousselier model in Figure 3, close to the vertex at 0/ == ρστ eqeq , the normality 

rule with Eq. (4) gives Hp
m

p
eq /3/ 1σεε ≅&& . With Q = 3/2 and )()2/3(

111
pHQ == σσ , the 

coalescence condition (5) is obtained  exactly at the vertex. This is a remarkable consequence of 

the coefficient 3/2 in the exponent of Rice and Tacey’s (1969) equation (37). Fig. 5 also shows 

that, for large void volume fraction, the yield locus is flat in the ),( eqm σσ  right quarter plane 

with a constant slope, i.e. that the coalescence condition (5) is obtained in a very large zone close 

to the vertex. At the opposite of the Gurson-GTN model, the larger the void volume fraction, the 

better achieved the condition of localization in a normal plane. In this region, the yield locus is 

quasi-identical to the one of Thomason’s coalescence model, with the great difference that the 

orientation of the localization plane is predicted with the Rousselier model and not with 

Thomason’s. If the latter was to be used as a plastic potential (Benzerga and Leblond, 2010), a 

number of yield loci with random orientations would have to be used, which considerably limits 

numerical applications.  
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Figure 5. Rousselier model, evolution of the yield locus in the ),( eqm σσ  plane with increasing 

void volume fraction for parameters 00 =f , Q = 3/2, 1=H , σ1 = H/Q = 2H/3, 21 =D . Insert: 

zoom close to the axes origin.   

 

It can be noticed in the insert of Fig. 5 that for f larger than 0.75, approximately, σm is negative. 

Although ductile failure is obtained long before that value, this inconvenience can be avoided. 

Remarkably again, σm = 0 for f = 1 is obtained exactly with D1 = 3/2, as shown in Figure 6. This 

value 3/2  is close to experimental data for many metallic alloys. The two constants Q = 3/2 and 

D1 = 3/2 are given by the mechanical analysis, but D1 = 3/2 is not mandatory.   

In conclusion of this Subsection 3.1, it is highlighted that, despite apparently similar, the 

analytical forms of the Gurson-GTN and Rousselier models have fundamentally different 

mechanical consequences. These theoretical results are confronted with numerical applications in 

the next Subsection.  
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Figure 6. Rousselier model, evolution of the yield locus. Same as Fig. 5 with D1 = 3/2 in place of 

21 =D . Insert: zoom close to the axes origin.  

 

3.2. Finite element modeling in porous plasticity.  

The first finite element calculations in porous plasticity are the ones of Rousselier (1981) and 

Tvergaard and Needleman (1984). In the former, a pre-cracked three-point bent specimen is 

calculated in plane strain (2D). The mesh is made of quadrangles divided in two constant strain 

elements. In the crack plane, the quadrangle aspect ratio is 10/1 and the height of the elements is 

lc = 50 µm (Fig. 7). This large ratio is explained by the available rudimentary mesh tool and low 

computational capabilities. The results are mesh-size dependent and lc is the characteristic length 

(it is not the length of the elements as it is written in the figure). Fig. 7 shows strain localization, 

first in two elements at the crack tip and second along the straight crack path. Crack tip blunting 

is very poorly modeled by the coarse mesh.  

The constants C = 1.5 and D = 0.49 = 0.283√3 mentioned in Fig. 7 correspond to Q = 3/2 and 

D1 = D√3 = 0.85 of the original Rice and Tracey’s publication (1969). The small value of D1 is 
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compensated by the small value of σ1 = σ0/Q with the initial yield stress σ0 = 500 MPa compared 

to the saturated flow stress 2σ0 = 1000 MPa with the Voce hardening function σ0(2-exp(-20p)) 

used in the simulations.  

 

 

 

Figure 7. Pre-cracked three-point bent specimen (Rousselier, 1981), half mesh. Initial mesh 

(interrupted lines) and deformed meshes for two applied bending displacements showing strain 

localization in the initially thin elements. C (arrows) shows the crack tip.  

 

In Fig. 8, the effect of the initial void volume fraction on the load-displacement curve is 

evidenced. After the beginning of strain localization, the local stress drops very rapidly (curves I 

and II). The corresponding finite elements can be considered as “broken” (small stress carrying 

capacity). In the 1981 paper, it is written and emphasized that: (i) “the ductile fracture properties 

of the metal are defined by two parameters: lc, related to the interparticle spacing; and f0, related 

to the particle volume fraction” and (ii) “stable crack growth occurs naturally, by localization of 

deformation, resulting from the constitutive relations only, without it being necessary to define a 

critical state nor to release the nodes as in usual models”. These results were expected due to the 

possibility of strain localization in a plane with the constitutive model.  

Conversely, the pointwise strain localization properties of the Gurson and GTN models could 

make it more difficult to obtain a plane crack. Consider the particular case of a round tensile 
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specimen, initially smooth or notched. In the center of the specimen, the axisymmetric triaxial 

stress field is the same as the remote field in Rice and Tracey (1969). Theoretically, pointwise 

localization will create a very small spherical volume with zero stress, that is to say a void. This 

is exactly the configuration of Rice and Tracey’s model. Thus the void will grow with volume-

changing and shape-changing parts and elongate in the tensile direction so as to become an 

axially symmetric ellipsoid. It will not become a plane crack. 

 

 

 

 

Figure 8. Pre-cracked three-point bent specimen (Rousselier, 1981). Load-displacement curves 

for initial void volume fraction f0 = 10-2, 10-3 and 10-4. Stress component σ22 in the vertical 

direction for elements I and II at the crack tip. Note the functional expression of the damage 

variable β, with ρ = (1-f)/(1-f0).  
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However, in Tvergaard and Needleman (1984), a plane crack initiates and propagates in the 

center of a smooth tensile specimen (a small initial imperfection is introduced in the central 

section). This possible contradiction is not discussed in the 1984 paper, which is focused on the 

cup-cone transition. We have investigated the possible effect of finite element discretization. The 

axisymmetric mesh (2D) consists of quadrangles divided in four constant strain elements with a 

single central integration point in each triangle (Fig. 9, right). The initial aspect ratio is 10/1, the 

same as in Rousselier (1981).  

 

  

 

Figure 9. Central part of the smooth tensile specimen axisymmetric mesh (Tvergaard and 

Needleman, 1984). Left: deformed mesh immediately after the sharp “knee” of the load vs. axial 

strain curve, corresponding to f  =  fc = 0.15 (K = 5.2). Center: Final deformed mesh. The blue 

disc is at the center of the specimen, the loading direction is horizontal. The red disc is the 

integration point closer to the center. Right: Initial geometry of the central quadrangle.  

 

In Fig. 9, we have extracted the deformed meshes in the center of the specimen from the original 

figures of the paper. The two horizontal red lines demonstrate that the deformation is uniaxial at 

the beginning of strain localization, which is expected in a smooth tensile specimen close to the 

axis (left mesh) and also after complete strain localization (central mesh). The theoretical 

pointwise localization at the center of the specimen expected with the GTN model cannot be 
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observed because stress and strain are constant in each finite element (finite means with a volume 

that is not infinitesimal). Localization takes place first in the most deformed element (the larger 

red disc in Fig. 9, right) and pointwise localization (1D) is substituted with finite volume 

localization (3D). Next, localization will take place in a second finite element, etc. Because of 

the stress and strain fields in the central region of the tensile specimen, localization will 

propagate in a plane sheet of elements perpendicular to the main loading direction. From a 

practical point of view, the final result is not different from the one obtained with the Rousselier 

model because discretization transforms 1D (GTN) or 2D (Rousselier) localization into 3D 

localization. With quadratic finite elements, the result would be the same, each integration point 

being associated with some finite volume.  

As already noted by Tvergaard and Needleman (1984), mesh design plays an important role in 

crack initiation and growth. It also affects the direction of crack propagation (Besson et al., 2001, 

2003; Rousselier and Quilici, 2015). The problem lies in the softening models and in the 

resulting strain localization. In the case of the GTN model, the discontinuity of the derivative of 

the f* function may inhibit slant fracture. A void nucleation model can be used to promote slant 

fracture but it is not satisfactory from a physical point of view (Benzerga and Leblond, 2010). 

Regularized models aim at suppressing this detrimental effect (Enakoutsa et al., 2007; Seidenfuss 

et al., 2011). It is not in the scope of the present paper to discuss the various regularization 

models. We just mention that regularization will have the same effect on the GTN model that 

finite element discretization: it will transform pointwise localization (1D) into volume 

localization (3D) and enable a more or less planar crack in a Cartesian finite element mesh. With 

the Rousselier model, the localization plane (2D) will get a defined thickness lc (3D). For both 

models, the effect of mesh design is expected to be most reduced if not completely suppressed by 

regularization.  

3.3. Discussion of the porous plasticity macroscopic models.  

First, it can be stated that the investigation of void growth by plastic deformation with 

macroscale classical plasticity models only is an approximation. Grain size and void size are 

both at the microscale and the mechanisms of plastic deformation involved at this scale cannot 

be modeled with bulk material plasticity in the vicinity of a free surface. It is evidenced by the 

emerging slip bands observed at the inner surface of voids (Weck et al., 2008; Rousselier and 
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Quilici, 2015). The same kind of striations can be observed at the tip surface of a blunted initially 

sharp crack. Consequently, despite the simple approximate equation (22) that relates plastic strain 

and void growth rates, plasticity and void growth modeling require two distinct internal 

variables. These experimental observations also recall that theoretical and finite element analyses 

of unit cells, although very useful, are not to be confused with physical reality.  

In Figure 10, a comparative summary of the GTN and Rousselier models characteristics is 

proposed. The first heuristic extension of the Gurson model is the consideration of a hardening 

flow stress σp. As it appears in both quadratic and exponential terms of the flow function, the 

calculation of σp is implicit. It impacts the numerical integration and it prevents the integration 

of the model into homogenized polycrystalline plasticity equations (the quadratic term is also 

problematic for the latter).  

Conversely, the homogenization and limit analysis method of Rice and Gurson provides a 

unifying and powerful micromechanical framework for a large number of theoretical extensions 

(Benzerga and Leblond, 2010; Benzerga et al., 2016), which is not the case with the continuum 

thermodynamics derivation of the Rousselier model. Nevertheless, a heurisitic extension can be 

considered for this model, as proposed in Morgeneyer et al. (2009) for the GTN model: the mean 

macroscopic stress mσ  is substituted with *
mσ  to model 3D anisotropic void growth in an 

orthotropic material (principal axes of orthotropy: L, T, N). For isotropic void growth, 

3/1=== NTL ααα  and mm σσ =* :  

  NNNTTTLLLm σασασασ ++=*    with   1=++ NTL ααα .  (6) 
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Figure 10. Comparison of the Gurson-Tvergaard-Needleman (1977-1981-1984) and Rousselier 

(1981) porous plasticity models. Constant model parameters to be calibrated are in red.  
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At the hydrostatic point, the Rousselier model does not verify the analytical solutions of the 

hollow cylinder or hollow sphere under pressure, contrary to Gurson-like models. It is not a fatal 

error, it reflects a fundamental difference between the two models: void damage (without a 

defined geometric configuration of voids) for the Rousselier model, initial plasticity of a hollow 

sphere for the original Gurson model. Consequently, between the two Cartesian axes, the slope 

of the flow surface varies in a much smaller interval than with the Gurson model: from -D1f = -

1/5 to Q = -3/2 for the parameters of Fig. 3, vs. 0 to -∞, with consequences for strain localization 

at all stress triaxialities and for damage in shear-dominated loadings.  

The existence of a vertex on the σm axis has also been challenged, although in practice a pure 

hydrostatic tension is not encountered in numerical applications. Indeed, finite element limit load 

analyses of unit cells in axisymmetric loading also show a flat zone but this zone extends on both 

sides of the intersection of the yield locus with the σm axis in a (σ33 - σ11, σm) plane, showing 

no vertex (Benzergua and Leblond, 2010). But this result is limited to axisymmetric loadings for 

a given orientation of the localization plane that enables the use of σ33 - σ11 in place of σeq, it 

does not give the isotropic yield locus in function of σeq and σm. Besides, the representativeness 

of unit cell calculation vis-à-vis physical reality may also be questioned (Tekoğlu et al., 2015).  It 

is not ascertained whether or not the Rousselier model is effective for these loadings 

σ11 = σ22 > σ33. 

With the GTN model, final failure is obtained for f = f F (also written f = f U) much smaller than 1, 

which is consistent with experimental data. We recall that the “physical” f is kept distinct from 

the accelerated f* used in the equations, which is unusual in modeling. With the Rousselier 

model, the final failure is for f = 1. Nevertheless, the stress-carrying capacity drops abruptly after 

the beginning of strain localization, as evidenced in Fig. 8 of the present paper (curves I and II) 

and in Fig. 7 of Rousselier et al. (1989), so failure is achieved for a much smaller void volume 

fraction, e.g. f  ≈ 0.2 in Fig. 7 of Rousselier et al. (1989). An ultimate value fu = 0.2 or 0.3 can be 

introduced to define a “broken” state that shows the crack geometry and to avoid possible 

numerical problems, with a negligible impact on crack initiation and propagation (it is checked 

in the numerical applications of Section 4.2).  
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Void growth in the Rousselier model leads first to macroscopic strain localization in a plane and 

more or less later to the final failure. Tekoğlu et al. (2015) have calculated a doubly periodic 

array of voids within a normal or slant plane band confined between two outer blocks of the 

same material but without voids. These configurations are similar to the ones of Fig. 2. They 

obtained that macroscopic localization coincides with the onset of void coalescence for stress 

triaxiality η < 1. At triaxiality larger than 1, void coalescence requires additional plastic straining 

in the band. They conclude that the proper failure criterion to be used for failure analysis should 

be a macroscopic localization criterion based on void growth and not one based on void 

coalescence. They add that in some situations void coalescence must be modeled to account for 

all the energy dissipated in the failure process. It is in agreement with the standard use of the 

Rousselier model. Nevertheless, the work of Tekoğlu et al. (2015) questions the relation between 

strain localization and void coalescence. Additional calculations of the same configurations with 

porous plasticity models (GTN and Rousselier) would be valuable.  

The parameter fc (supposed to be the onset of void coalescence in the GTN model) can also be 

discussed. In Koplik and Needleman (1988), the values of fc that matches well the unit cell 

calculations results (load and void volume fraction vs. macroscopic effective strain) appear to 

vary with stress triaxiality η (their calculations are for η = 1, 2 and 3), so it is not a constant 

material parameter. In Tekoğlu et al. (2015), the transition to uniaxial deformation corresponds 

approximately to f = fc for η = 1 (it coincides with the onset of void coalescence) and the 

transition takes place for much smaller values f << fc for η = 2 and 3 (and void coalescence takes 

place for much larger values f >> fc). With the Rousselier model, the critical value of f is 

predicted, corresponding to the onset of strain localization, evidenced by the curves I and II of 

Fig. 8. In Fig. 8 of Rousselier (1981), it is also shown that this value is not a constant. In contrast, 

in the GTN model, fc is a given material parameter.   

Constitutive equations cannot be validated without parameter identification, a key point in 

material modeling. An identification procedure of the two parameters σ1 and lc with notched 

tensile specimens has been proposed in Rousselier (1989, 2001a) and it is still valid. The 

parameters related to void characteristics: initial void volume fraction, shape, size distribution, 

nucleation model parameters, etc., are to be considered separately and calibrated with 

experimental observations at microscales, as much as possible. It can also be the case of lc, 
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although the relation between lc and interparticle spacing is not straightforward, and of D1 if the 

recommended values 3/2 or 2 are too far apart from void growth measurements (rarely 

available). The heuristic extensions of the GTN model involve additional parameters (generally 

limited to three: q1, fc and K, Table 1, not to mention lc). There is no consensus on the choice of 

these parameters, as evidenced in the summary tables of  Benseddiq and Imad (2008) and Yildiz 

and Yilmaz (2020) already quoted above.  

The main conclusion is that both models are operational for finite element modeling of planar 

cracks initiation and propagation, but in somewhat different ways. This property is built-in in the 

Rousselier model. It results from the finite element discretization in the GTN model. For both 

models, discretization results in strain localization in finite volumes in the vicinity of integration 

points, generating a more or less flat layer with a finite thickness. Nevertheless, the response of 

the two models can be different, as mentioned in Besson et al. (2001): cup-cone fracture is more 

easily formed using the Rousselier model and it is related to the slope -3/2 at the vertex of the 

yield surface.  

It is observed that the necessary kinematic condition of planar macroscopic localization is 

achieved in a small part of the GTN yield surface, excluding large stress triaxiality, and that with 

increasing void volume fraction, this small part shifts towards smaller stress triaxiality. At the 

opposite, with the Rousselier model the necessary kinematic condition of planar macroscopic 

localization is achieved in a large part of the yield surface, including large stress triaxiality, and 

with increasing void volume fraction, this part includes all positive stress triaxiality. In a certain 

way, Rice and Tracey’s and Thomason’s models for void growth and void coalescence, 

respectively, are merged into the Rousselier model.  

The next section is devoted to multiscale modeling. It was mentioned in the introduction that the 

analytical form of Gurson’s model makes it impossible to incorporate into self-consistent 

polycrystalline plasticity with a homogenized version of Eq. (2). It is also worth mentioning that 

extensions of the GTN-type yield surface using crystal plasticity have been developed via mean-

field micromechanics schemes (e.g. Han et al., 2013; Ling et al., 2016). In these works, porous 

single crystals are considered. Eq. (21) is modified to apply at the slip system scale; it is an 

implicit equation for the resolved shear stress of each slip system. This model could be used 

within the so-called crystal plasticity finite element method (CPFEM) discussed at the beginning 
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of Section 4.1. It implies that the voids are small enough (i.e. submicrometric) to be considered 

as immersed in each crystal. In Section 4, Eq. (4) of the Rousselier model is homogenized in the 

case of a polycrystalline matrix and the micrometric voids are supposed to be large enough to be 

considered as immersed in the matrix material (submicrometric voids are modeled separately at 

the slip system scale).  

4. Porous plasticity multiscale modeling.  

4.1. Polycrystalline framework and ductile fracture.  

Plasticity and ductile fracture are closely related because the latter results from the former. 

Therefore, a good modeling of ductile fracture first requires a good modeling of plasticity. 

Starting from Tresca and von Mises, macroscopic plasticity models have been dramatically 

improved (e.g. Hill, 1948; Hosford, 1985; Barlat and Lian, 1989; Bron and Besson, 2004; Kim et 

al., 2018; Lee et al., 2019). Another way of improvement is based on crystal plasticity modeling. 

The framework of physically based polycrystalline metal plasticity has intrinsic advantages in 

describing the anisotropy and distortion of the yield surface, as well as realistic anisotropic 

hardening. It enables the prediction of complex behaviors in multi-axial and multi-path loadings. 

(When damage and/or fracture are modeled, local loading paths are highly non-linear, even if the 

structure is in proportional loading.) Crystal plasticity is also used directly at the integration 

point scale in finite element modeling of polycrystalline aggregates, the so-called crystal 

plasticity finite element method (CPFEM). CPFEM has had a considerable development in 

recent years (e.g. Barbe et al., 2001a, 2001b; Gérard et al., 2013; Khadyko et al., 2016; Coudon 

et al., 2019; Farooq et al., 2020). But our objective is the numerical calculation of macroscopic 

laboratory specimens, which is not tractable with CPFEM. Polycrystalline plasticity requires 

strong modeling hypotheses that make it less “physical” than CPFEM, but the computation time 

can be limited to a few days, depending on the complexity of the model and on the size of the 

specimen mesh, provided a “reduced texture methodology” (RTM) is used to drastically limit the 

number of crystallographic orientations (Raabe and Roters, 2004; Rousselier et al., 2012). The 

Rousselier porous plasticity model can be embedded into the polycrystalline framework that also 

enables to introduce various plasticity and damage models at the slip system scale, e.g. a 

dynamic strain aging model (Rousselier and Quilici, 2015; Rousselier et al., 2017), the new 
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Coulomb ductile fracture model (Rousselier and Luo, 2014), nucleation and growth models of a 

second population of very small voids at the slip band scale (in the present paper).  

In the classical polycrystalline framework, each of the N  “grains” of the model represents a set 

of physical grains with close crystallographic orientations (also called "phase" in the literature). 

In the self-consistent models, each "grain" is considered as an inclusion in the homogeneous 

equivalent material: the "blue grain" in Fig 11a. Unlike in CPFEM, grain geometry, grain 

boundaries and intragranular heterogeneities are not captured in this framework. In the grains 

1=g  to N , with volume fraction gf  and homogeneous stress tensor gσ  and plastic strain 

tensor p
gε , 1=s  to M slip systems are considered (e.g. for the FCC crystallographic structure, 

12=M  octahedral slip systems {111}(100), for the BCC crystallographic structure, 24=M  

slip systems).  

A particular self-consistent polycrystalline model (Méric et al., 1991) was enhanced to model 

with accuracy the anisotropic plastic behavior at large strain (Rousselier et al., 2009, 2010; Luo 

and Rousselier, 2014). All equations are not recalled in the present paper, in particular the ones 

giving gσ  in function of an auxiliary strain tensor 
g

β  , the so-called "β  model" (Cailletaud 

and Pilvin, 1994). The macroscopic plastic strain rate is the consequence of the slip rates sγ&  of 

all the slip systems s in all grains g. The polycrystalline model was extended to porous plasticity 

in Rousselier and Leclercq (2006) and Rousselier and Luo (2014): the matrix material contains 

voids with a variable volume fraction f , as shown in Fig. 11b. The volume fractions of the 

matrix grains 1=g  to N  are gff )1( − .  

We can also consider a second population of very small voids that nucleate and grow in shear 

bands. These voids can contribute to void coalescence of the larger voids with the so-called 

"void sheet mechanism" (Fig. 11c). The transgranular crack can propagate in the neighboring 

grains. These geometrical features are not captured in the polycrystalline framework.  In the 

model, a submicrometric void volume fraction  sf  is attributed to the M slip systems of the 

grains 1=g  to N  (like for sγ& , the index g is omitted in the variable sf  to simplify some 

figures and equations, not to be mistaken with the constant volume fractions of the grains gf ).  
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a) 

             

b) 

 
c) 

 

Figure 11. a) Classical self-consistent polycrystalline framework. HEM: homogenized equivalent 

material, INCL.: inclusion. Physical mechanism on the left, model on the right. b) HEMV: 

homogenized equivalent material with voids. c) With submicrometric voids in shear bands, in 

particular between large voids (void sheet or zig-zag fracture).  
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The following plastic potential is used to derive the volumetric plastic strain rate: 
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It has the same form as the macroscopic potential Eq. (4), except the second term which is the 

matrix flow stress, in place of the hardening curve R(p) of the macroscopic model. For 0
1

=D , 

Eq. (7) corresponds to ∑−=
gg

ff σσ )1( . For 0=f , it is the classical homogenization 

equation ∑=
gg

f σσ . The resulting plastic strain rate is (the equivalent strain rate p
eqε&  is first 

calculated with the first deviatoric term only): 
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sgm  is the orientation tensor of each slip system. *
mσ  is defined in Eq. (6).  

A phenomenological Norton-like viscoplastic model can be used for the constitutive equations of 

each slip system, depending on the resolved shear stress sggs m:στ = : 
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For each slip system, two scalar internal variables are introduced: ),( tsss vvrr =  for isotropic 

hardening, depending on the cumulated slips dt
t

cum

tt ∫== γγν &  of the t = 1 to M  slip systems, 

and sα  for kinematic hardening. Equation (12) defines a nonlinear kinematic hardening model 
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with two parameters c  and d . For large strain, experienced in particular in ductile fracture, it is 

necessary to combine at least two analytical curves in the isotropic hardening function 
sr . Luo 

and Rousselier (2014) combined two saturated terms (Voce); it does not seem necessary to use a 

non-saturated function (Swift) to obtain a non-saturated flow stress:  
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The parameters (R, Q1, b1, Q2, b2) and (K, n) define work hardening and viscosity, respectively. 

In this paper, the initial critical resolved shear stress R  is the same for all slip systems. The two 

constant hardening matrices H1 and H2 define the self-hardening of the slip systems (diagonal 

terms equal to 1) and the "latent" hardening (non diagonal terms) of all slip systems by already 

activated systems, which enables to model non proportional loadings. The use of two (constant) 

matrices makes it possible to model the evolution of latent hardening with large deformation, 

depending on the material parameters b1 and b2. (Another way to model large deformations 

would be to use a single variable hardening matrix.) Latent hardening has a key role in non-

proportional loading. Moreover, texture evolution at very large deformation can be taken into 

account (Rousselier et al., 2009), but it is not as significant in ductile fracture as in metal forming 

and the computation time is multiplied by a factor in the order of 2; it is not used in this paper.  

For the submicrometric voids, the contribution of all grains is added to the softening term of 

Eq. (7):  
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In Eq. (8), the volumetric strain rate is modified in the same way as in Eq. (14). 

The void volume fraction rate is the sum of a first term for void growth and a second term for 

void nucleation:   
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An exponential dependence on stress is chosen for the void growth term, similar to the one for 

the large voids. This equation is the most questionable one of the submicrometric voids model. 

Nevertheless, the relevant variables are present in this equation and it enables the first finite 

element calculations of laboratory specimens with secondary voids at the shear band scale. Voids 

in shear bands have been modeled in several papers, e.g. the nice parametric numerical analyses 

of Nielsen and Tvergaard (2011) who consider primary and secondary voids. But no simple 

analytical model is available. In the same framework, Eq. (15) can be changed when 

micromechanics studies deliver improved models. Moreover, void nucleation and void rotation 

are probably more significant than void growth for submicrometric voids modeling in shear 

bands.  

The resolved shear stress 
sτ  can be positive or negative, but reverse loading is not specifically 

accounted for in nucleation models. Similar to 1D  and 1σ , 12D  and 12τ  are material parameters 

in which the subscript 2 is for the second population of voids. The ratio 2/1  accounts for 

p
ss εγ && 2= (slip rate = 2*shear strain rate) for the best oriented system in simple tension, 

corresponding to the largest values of 
sτ  and void damage; the plastic dissipation rate is ssγτ &  

at the slip system scale vs. 
pεσ &:  at the macroscopic scale. For the same simple tension state, 

12τ  is expected to be close to 2/1σ . The parameter 12D  can be chosen equal to 1D . 

In Eq. (15), the factor 2A  is the same Gaussian function as in the void nucleation model of Chu 

and Needleman (1980). The cumulated equivalent plastic strain in the grain p
eqg ][ε  substitutes 

the macroscopic one p
eqε , because the submicrometric voids mainly nucleate within the most 

deformed grains. Specific material parameters 2Nf , 2Nσ  and 2Nε  are used: 
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Although this paper is devoted to porous plasticity, it cannot be overlooked that transgranular 

shear fracture without voids is observed in some metals, in particular in aluminum alloys (Chen, 

2011; Luo et al., 2012; Buljac et al., 2018). A large amount of plastic deformation is necessary 
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prior to shear localization and fracture. In order to model this phenomenon, two distinct slip rates 

for each slip  system are considered: the classical slip rate sγ&  of Eq. (9) and an additional slip 

rate C
sγ&  activated at large strains. The total slip rate is

C

ss

tot

s
γγγ &&& += . In Eqs (8) and (15), sγ& is 

substituted with 
tot

s
γ& .  

At the slip system scale, the only two stress components are the resolved shear stress sτ  and the 

normal stress nsσ . The Coulomb (1773) brittle fracture model is a simple linear function of the 

two scalar variables. The new Coulomb ductile fracture model is a generalization at the 

microscopic scale of the Coulomb brittle fracture model at the macroscopic scale (Rousselier and 

Luo, 2014). For 00 Rc nss ≥+ στ , the Coulomb slip C
sγ  and cumulated Coulomb slip 

C
ss

C
cum v=)(γ  are given by the viscoplastic rate equations:   
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The novel feature (Rousselier and Luo, 2014) is a slow decrease (small parameter 0b ) of the 

critical stress with C
cumγ , resulting in progressive stress softening with a significant dissipation 

of mechanical energy and eventually in strain localization. Parameters 0Q  and 0b  can have 

arbitrary values (negative for 0Q ). When 0b  goes to infinity, Coulomb's brittle fracture model 

without dissipation is recovered. It can be assumed that 00 RQ −=  for a total softening; in that 

case, the only "physical" parameters to be calibrated are 0c  and RR >>0  
. It can be assumed 

that 0
KK

s
=  and 

0
nn

s
=  are the same for the plastic Eq. (10) and Coulomb Eq. (18) slip rates. 

The fracture model can be anisotropic because of the polycrystalline model framework (in 
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particular anisotropic hardening). It is non-associated (when 00 ≠c ) because the normal stress 

nsσ  does not generate a normal strain rate. 

4.2. Application to numerical simulation of laboratory specimens.  

4.2.1. Ductile fracture of a thin Kahn specimen.  

The material is 2198-T8R aluminum alloy. The 2.0 mm thick aluminum sheet was provided by 

Constellium in the recrystallized state and after an artificial ageing treatment (T8) generating 

submicrometric hardening precipitates. The composition is 2.9-3.5 Cu, 0.8-1.1 Li, 0.25-0.8 Mg, 0.1-0.5 

Ag, 0.04-0.18 Zr  (in wt.%), balance Al. The intermetallic particles volume fraction is ~0.3-0.4%, their 

size is 2-3 µm. Almost no initial porosity was found (<0.03 vol%). The grains are elongated to ~200-

300 µm in the longitudinal L direction and to ~60 µm in the transverse T direction. The typical grain 

size in the short transverse S direction is ~25-30 µm. Three tensile tests were performed in the 

longitudinal, transverse and diagonal (45°) directions of the sheet plane (Chen, 2011; Chen et al., 

2011). The yield strength is ~440 MPa and the ultimate tensile strength is ~500 MPa, showing 

relatively low work hardening. The material has moderate texture and tensile stress anisotropy 

measured in the sheet plane, but the Lankford ratios Lk ≈ 0.5 are much smaller than 1, showing a 

significant mechanical anisotropy.  

In Rousselier et al. (2017), dynamic strain aging (DSA) of this material was considered in the 

numerical simulations. It is not the case in the present work and the polycrystalline model parameters 

had to be calibrated again. An optimization software was used with the Levenberg-Marquardt 

algorithm (Levenberg, 1944). The reduced texture has three orthotropic texture components (N = 12). 

It is remarkable that the numerous plasticity parameters (including the reduced texture parameters) can 

be determined with three in-plane tensile tests only. The out-of-plane behavior is expected to be 

approximately predicted because all slip systems are activated with the in-plane tensile tests. 

Nevertheless, because no tension-compression test was available, the kinematic hardening parameters 

c and d of Eq. (12) are calibrated like a third isotropic hardening term at large strain (small exponent 

coefficient d). These two parameters are not representative of the real kinematic hardening of the 

material. Elasticity parameters are E = 74,000 MPa and v = 0.3. Viscosity parameters n = 25 et 

K = 20 MPa.s1/n are chosen to give a very small viscoplastic stress 
nK /1γ&  for a large range of shear 

rates γ&. 
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The results are given in Figs 12 and 13. In Fig. 12a, the model red poles match with the concentrations 

of the experimental EBSD poles (stereographic projection). The dispersed EBSD poles are represented 

by the model purple and green poles. The “free of poles” zones are the same for the EBSD and model 

pole figures. There is no apparent contradiction between the model and real textures, although the 

former does not aim at representing exactly the latter, but only the resulting mechanical behavior. In 

Fig. 13, an excellent agreement is observed between the experimental and model tensile curves and 

thickness reduction curves.  

 

a)  

b)  

Figure 12. a) Reduced texture of the 2198-T8R aluminum sheet, Euler angles, frac = volumic 

fraction of the N = 12 model crystallographic orientations, 3 orthotropic components with 4 
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orientations each. Small black discs: EBSD measurements. b) Polycrystalline model parameters. 

Hardening parameters of Eqs (12) and (13): r0 = R , Q = 1
Q , Q2  = 2

Q  and c are in MPa. C (MPa) 

and grd are the anisotropic "β  model" parameters (Sai et al., 2006), h and k are the hardening 

matrices parameters (non-diagonal terms), H = H1 and K = H2 (Luo and Rousselier, 2014).  
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Figure 13. Engineering tensile curves and thickness reduction curves in the longitudinal (00), 

diagonal (45) and transverse (90) directions of the 2198-T8R aluminum sheet. Experimental 

points and calibrated model curves. The maximum elongation DL/L0 is applied in 100 s.  

 

In Rousselier et al. (2017), a 1 mm-thick CT specimen of the same material was modeled, loaded 

at room temperature in the T-L direction. It was investigated with in situ X-ray laminography at 

the European Synchrotron Radiation Facility (Morgeneyer et al., 2014). Experimental data 

enabled to calibrate the ductile damage fracture parameters: porous plasticity and Coulomb 

ductile fracture models. But the experimental load was not measured. In this paper, we consider a 

KAHN specimen loaded in the T-L direction (Chen, 2011; Chen et al., 2011) and we investigate 

the effect of submicrometric voids on the load-displacement curve (crack initiation and 

propagation). The mesh is shown in Fig. 14, with a Cartesian mesh at the notch tip identical to 

the one of the CT specimen, in order to avoid mesh effects on ductile fracture.  
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Figure 14. Finite element mesh of the KAHN specimen, thickness 2 mm. C3D15R and C3D20R 

reduced integration elements. Cartesian mesh at the notch tip (notch radius 60 µm), elements 

initial size: crack direction x=L 0.25 mm, loading direction y=T 0.20 mm,  thickness 0.25 mm.  

The fracture parameters are given in Table 1. They are the same as the ones used for the CT 

specimen, except 00
QR −=  for the Coulomb model and the additional submicrometric voids 

parameters given later. The rather flat tensile curve enables to define a saturated stress flow
σ  and 

the porous plasticity parameter 3/2
1 flow

σσ = = 350 MPa. The measured initial porosity and 

intermetallic particles volume fraction give 0f  for the micrometric voids and Nf  (parameter of 

the Chu and Needleman void nucleation model). Because of the very small initial porosity 

volume fraction, the mean nucleation strain 1.0=Nε  is the decisive parameter; this value is 

representative of the intermetallic particles and it matches well the experimental crack growth of 
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the CT specimen. Without experimental data for anisotropic void growth, 3/1=== NTL ααα  

is retained.  

 

Table 1. Porous plasticity and Coulomb fracture model parameters. 

 

1D  1σ [MPa] 0f  Nf  Nε  Nσ  

2. 350. 0.0001 0.0034 0.1 0.02 

0c  0R [MPa] 0b  Lα  Tα  Nα  

0. 285 2. 0.3333 0.3333 0.3333 

 

In this paper, we only use the Coulomb model with 00 =c , because the computational cost is 

increased with a non associated model (the Coulomb model with 00 ≠c  is non associated) and 

mainly because the mechanical experiments do not enable to calibrate this parameter (in 

Rousselier and Luo (2014), the drastically different mechanical fields of the smooth notched 

tensile specimen and of the shear specimen made it possible to determine both parameters 

c0 = 0.05 and 00
QR −=  = 105 MPa for a thin-walled 6260-T6 aluminum extrusion). 

00
QR −=  = 260 MPa used for the CT specimen was found to small to match the KAHN load-

displacement curve (it was not possible to measure the load in the CT in-situ testing, and in the 

CT simulations the interaction of DSA and shear facture may also impact this parameter). For the 

KAHN specimen, 00
QR −=  = 285 MPa gives an excellent agreement between the experimental 

red curve and the “NO secondary voids” curve D1 of Fig. 15.  
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Figure 15. Load – CMOD curves of the 2198-T8R aluminum KAHN specimen. CMOD = crack 

mouth opening displacement, S0 = 25x2 = 50 mm2. Small red points: experimental curve (cross 

head speed 0.1 mm/min). Numerical curves E-D-A-C-B correspond to increasing damage. 

Curves A-C-B are with submicrometric voids for various nucleation parameters.  

 

The parameters of Eq. (33) are 12D = 1D  = 2 and 12τ  = 2/1σ  = 175 MPa. Fracture in Al-Cu-Li-

based aluminum alloys has been reported to involve transgranular linkage in void sheets 

nucleated at matrix dispersoids (particle size in the range 10 nm-1 µm), which coalesce within 

shear bands (Tsivoulas and Prangnell, 2014). The dispersoids volume fraction is in the range 

0.012-0.018% (Chen, 2011) and the nucleation strain is very large. In order to investigate the 

impact of dispersoids on ductile fracture, we have chosen two values 0.01 and 0.02 for the 

parameter 2Nf  of Eq. (34), and two values 0.5 and 1 for the parameter 2Nε  (1 is probably closer 

to the real values), corresponding to the curves A1, C1 and B1 of Fig. 15. The standard deviation  
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2Nσ  is 0.10 for curve A1 and 0.15 for curves C1 and B1. Provided Eqs (15) and (16) are an 

acceptable modeling, it can be concluded that dispersoids may have a significant effect on 

ductile fracture.  

At the notch of the KAHN specimen, the experimental crack initiated at mid-thickness is flat in a 

small triangle approximately 1.5 mm large along the notch tip and 1.5 mm long in the notch 

plane (Chen, 2011). Two shear lips appear at the notch tip on the two free surfaces of the 

specimen, one in the upper part y>0 and one in the lower part y<0. The two shear lips join after 

approximately 1.5 mm crack propagation and form a slant crack. This experimental geometry is 

well modeled in the numerical simulation as evidenced by the “broken” integration points in 

Fig. 16, upper left. Fig. 16 corresponds to the black disc on curve C1 of Fig. 15. At this 

displacement (CMOD = 0.7045 mm, F/S0 = 155.11 MPa), the crack length is 2 mm. After this 

point, the mesh is no longer cartesian and the simulation is impacted by the mesh effect. For the 

flat crack, a single layer of broken points is obtained, located in the lower half of the specimen, 

i.e. the symmetric points in the upper half are not broken. The symmetry in the loading direction 

is lost for the flat crack, the shear lips and (of course) the slant crack. In the thickness direction, it 

is lost for the shear lips and the slant crack.  
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0.0  maximum 

Figure 16. Damage variables at the KAHN specimen notch tip (located on the right of each 

figure), lower half of the specimen y≤0, deformed mesh. Clockwise from the upper left: 1) 

broken integration points showing the flat crack in the y = 0 plane and the shear lip on the front 

free surface z = 1 of the specimen, 2) void volume fraction f (maximum value in the specimen: 

0.210, the colors correspond to the bar under the figure), 3) cumulated value of the 

submicrometric void volume fractions, Eq. (14) (maximum value in the specimen: 0.157), 4) 

largest value of C
ss

C
cum v=)(γ  (maximum value in the specimen:  2.48).  

 

Note that integration points are considered as “broken” when the non linear damage cumulative 

rule 1)/)(max()/( 22 =+ C

u

C

cumutot
ff γγ  is obtained. In this equation, tot

f  is the total volume 

fraction of Eq. (32). It enables to visualize the crack. The material behavior is then substituted 

with an elastic behavior with a very low stiffness (Young's modulus E = 1 MPa). The ultimate 
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values are u
f = 0.25 and 

C

u
γ = 3. We emphasize that these ultimate values are not material 

parameters to be calibrated, contrary to fc in the GTN model. They just have to be large enough 

so that the load carrying capacity of the material is negligible. The simulation results depend 

little on these parameters: a second calculation of curve D1 of Fig 15 with u
f = 0.15 and 

C

u
γ = 2 gives F/S0 = 169.258 MPa at CMOD = 0.8 mm, compared to F/S0 = 170.270 in Fig. 15; 

the difference is 0.6%. In Fig. 11 of Rousselier and Luo (2014), it was shown that displacements 

at failure of flat notched tensile specimens also depend little (less than 1%) on these parameters 

in the same value ranges 0.15-0.25 and 2-3.   

In Fig. 16, the contributions of the three damage models are compared. At mid-thickness and in 

the whole flat crack, stress triaxiality is larger and fracture is mainly due to micrometric void 

growth. In shear fracture, the contribution of submicrometric voids is significant but the 

Coulomb fracture model is predominant. It is in agreement with the nanometric dimples 

observed with MEB in the slant crack of the CT specimen (Morgeneyer et al., 2014) and with 

microtomography measurements on small pieces cut in KAHN specimens (Chen, 2011) that 

showed transgranular fracture in the slant crack without micrometric voids, see also Buljac et al. 

(2018). In the simulation, the submicrometric voids also contribute to the coalescence of the 

large voids in the flat crack (modeled by strain localization). These simulation results are also in 

agreement with what is obtained in similar materials (Tsivoulas and Prangnell, 2014).  A more 

quantitative comparative analysis would need a comprehensive experimental study, for both 

parameter identification and validation of simulation results at various scales.  

4.2.2. Effect of sulfur and carbon contents on ductile fracture of a low-alloyed steel.  

In Tanguy (2001), ductile fracture mechanisms in notched tensile specimens were investigated. 

The material is A508 (16MND5) steel (0.16 C, 0.004 S, 1.33 Mn, 0.76 Ni, 0.22 Cr, 0.51 Mo, 

in wt %) which is used in the French pressurized water nuclear reactors. This material contains 

small round MnS inclusions at which micrometric voids are initiated at the very beginning of 

plastic deformation, so that it can be considered that 0f =1.75 10-4 is equal to the MnS volume 

fraction. At large deformation, nucleation of submicrometric voids was also observed with high 

magnification SEM at carbides of average size 0.1 µm (the approximate size range of all 
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carbides is 0.01-1 µm). The total volume fraction of carbides calculated from the chemical 

composition is fN2 = 0.024, but at fracture in the center of round notched tensile specimens the 

volume fraction of the carbides having initiated a void is only 0.006 (25%). The two other 

parameters of the nucleation statistical distribution were estimated: average initiation strain εN2 = 

0.8, standard deviation σN2 = 0.17. Actually, εN2 was obtained with the macroscopic strain of 

finite element simulations at the carbides locations in the specimen. It was observed that 

submicrometric voids only initiate in some grains (probably the most deformed ones), but the 

local deformations were not measured. As the model of Eq. (16) is based on the mean plastic 

strain of the grain, it is expected that the calibration of the nucleation model could be revisited.  

The first task is to determine a reduced texture for this isotropic material. It takes several 

hundred random orientations to obtain a relatively isotropic behavior. In Rousselier at al. (2010), 

a texture reduced to only N = 14 orientations has been calibrated on a mechanical test basis 

computed with isotropic behavior: single and biaxial tension in many directions of a plane, 

various tests with shear, tension-shear orthogonal path. In this paper, with the tensile curve from 

Lorentz et al. (2008), the uniformity of the orientation density (Fig. 17a) on the 3D unitary 

hyper-sphere (in the 4D space) has been slightly improved with N = 15 orientations calibrated on 

the same test basis, which seems to be close to the optimum possible with this method: an 

attempt with N = 18 was not successful. The "isotropic" texture of Fig. 17a is symmetric with 

respect to the so-called RD and TD axes. It makes it possible to mesh only the 1/4 of a specimen 

which has the same symmetries, in particular the axisymmetric notched tensile specimens used in 

Tanguy (2001).  

With this isotropic "universal" texture (actually slightly anisotropic), it only remains to calibrate 

the hardening parameters with the tensile curve of the steel (at room temperature). Because no 

tension-compression test was available, the kinematic hardening parameters c and d of Eq. (12) 

are calibrated like a third isotropic hardening term at large strain (small exponent coefficient d). 

The coefficients of the hardening matrices could not be identified: for the centered cubic 

crystallographic structure of steel, M = 24 and the structure of the 24x24 hardening matrices is 

not well known. It is assumed that the non-diagonal terms of each matrix all have the same value 

(one parameter per matrix). The value h = k = 0.1 was chosen for the two matrices. Elasticity 

parameters are E = 198,000 MPa and v = 0.3. Viscosity parameters n = 25 et K = 20 MPa.s1/n are 
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chosen to give a very small viscoplastic stress 
n

K
/1γ&  for a large range of shear rates γ&  (the 

strain rate in the minimum section of the notched tensile specimens is in the order of 10-3 s-1). 

With the calibrated parameters, the hardening curve is well modeled. The RD=TD and ND 

model curves are very close; it validates the reduced texture.  

a)  

b)     
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Figure 17. a) Isotropic reduced texture with N = 15 orientations, equal-area projection, 

orientation density (left) and {100} pole figure (right), the 3 poles of each orientation have the 

same color. True tensile curve representative of A508 steel at room temperature (red stars) and 

simulated curves in the x = RD (identical to z = TD) and y = ND directions (blue and green 

curves), with the reduced texture and the calibrated parameters. b) Euler angles and hardening 

parameters of Eqs (12) and (13). C and grd are the anisotropic "β  model" parameters (Sai et al., 

2006), h and k are the hardening matrices parameters (non-diagonal terms), H = H1 and K = H2.  

 

Fig. 18a shows the mesh (1/4) of the central part of the round tensile specimen AE4 with a 

circular notch of radius 4 mm; the diameter of the minimum section is 10 mm. The load is 

applied in the vertical direction y = ND; the minimum section of the specimen is in the x-z = 

RD-TD plane of Fig. 17a. (Because of the slightly anisotropic reduced texture, the directions 

RD-TD-ND have to be specified.) The crack initiates in the center and propagates circularly over 

a single layer of integration points in the minimum section. The crack growth rate depends on 

the height of the elements, here 1/3 mm. Despite the symmetry, a 1/8 mesh (Fig. 18b) is not to be 

used, it would generate a crack on two layers of integration points and therefore a double 

dissipation. 

 

a) b)  

Figure 18. a) Mesh of the notch zone of AE4 round tensile specimen, center in red. C3D15R and 

C3D20R reduced integration elements. b) Half mesh y<0. 
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In order to investigate the combined effects of sulfur content (MnS inclusions) and carbon 

content (carbides), calculations were made for two values of the initial void volume fraction: f0 = 

0.0001 and 0.0015, corresponding to small and large values of the sulfur content, without and 

with submicrometric voids (4 calculations, Table 2). The Chu and Needleman nucleation model 

of Eq. (16) is used. With fN2 = 0.024, εN2 = 0.8 and σN2 = 0.1732, the calculated volume fraction 

of the carbides having initiated a void in the center of the specimen only is in the order of 10% of 

fN2, much smaller than the measured value of 25%. In Tanguy (2001), the green model of Fig. 19 

was used, based on a measured critical strain at nucleation around εc = 0.5. The corrected values  

fN2 = 0.024, εN2 = 0.7 and σN2 = 0.15 provide a much better agreement. These values are used in 

all the subsequent calculations. The other parameters are 
1

D = 
12

D = 2, 
1

σ = 445 MPa, the same 

values as for A508 steel in Rousselier et al. (1989), 2/
112

στ = .  

 

Table 2. AE4 specimen numerical simulations. Maximum load and diametral contraction ∆Φc at crack 

initiation (first broken integration point).  

 

1 

 
0f = 0.0015 fN2 = 0.0 y = ND h = k = 0.1 69.62 kN ∆Φc = 1.086 mm 

2 

 
0f = 0.0015 fN2 = 0.024 y = ND h = k = 0.1 69.62 kN ∆Φc = 1.068 mm 

3 

 
0f = 0.0001 fN2 = 0.0 y = ND h = k = 0.1 70.52 kN ∆Φc = 1.680 mm 

4 

 
0f = 0.0001 fN2 = 0.024 y = ND h = k = 0.1 70.52 kN ∆Φc = 1.418 mm 

1.0 

 
0f = 0.0015 fN2 = 0.0 y = ND h = k = 0 70.40 kN ∆Φc = 1.147 mm 

1.3 

 
0f = 0.0015 fN2 = 0.0 y = ND h = k = 0.3 69.79 kN ∆Φc = 1.086 mm 

1.010 

 
0f = 0.0015 fN2 = 0.0 y = TD h = k = 0.1 69.04 kN ∆Φc = 1.077 mm 

1.111 

 
0f = 0.0015 fN2 = 0.0 y ={111} h = k = 0.1 68.30 kN ∆Φc = 1.064 mm 
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Figure 19. Statistical distributions of carbide nucleation with strain. Red (Gaussian) and green 

(constant with a critical strain εc = 0.5) for fN2 = 0.024, εN2 = 0.8 and σN2 = 0.1732. Blue: 

corrected Gaussian with  fN2 = 0.024, εN2 = 0.7 and σN2 = 0.15; the vertical blue line at 0.5988 

corresponds to 25% of the total volume fraction.  

Fig. 20a shows the circular crack in the minimum section of the specimen (single layer of broken 

integration points, y<0) for 0f = 0.0015, without submicrometric voids. A point is broken when 

the ultimate value u
f = 0.2 is obtained. The layer of broken integration points is strongly 

stretched in the vertical loading direction, it corresponds to crack opening. In Fig. 20b, void 

growth is concentrated at the crack tip.   

 

a)  b)  

0.0015 0.2 

Figure 20. 0f = 0.0015, without submicrometric voids: a) broken integration points, b) void 

volume fraction.  
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The very large heterogeneity of plastic deformation is evidenced in Fig. 21a, b, c. At crack 

initiation in the specimen center, it ranges from 0.4 to 1.2 between the less and the most 

deformed grains, according to the crystallographic orientation. It highlights the leading role of 

nucleation depending on plastic strain in the grains and the requirement of multiscale modeling 

to simulate the effect of submicrometric voids in ductile fracture.  

 

a)  b)  

c)  d)  

0.0   a) b) c) = 1.2, d) = 0.012 

Figure 21. 0f = 0.0001, with submicrometric voids: a) b) c) clockwise from upper left, equivalent 

plastic strain heterogeneity, maximum-mean-minimum values at crack initiation. d) total volume 

fraction of carbides carb
f

 
having initiated a submicrometric void at complete failure (0.006 in 

the specimen center, 0.012 in the notch, 25% and 50% of fN2 = 0.024, respectively).  

 

Eq. (16) is integrated in each grain. The weighted sum per fg gives the calculated total volume 

fraction of carbides carb
f  having initiated a submicrometric void:  
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The integration stops when utot
ff = . In Fig. 21d, the values in the center of the specimen are 

close to 0.006, i.e. 25% of the volume fraction of all carbides, in agreement with the measured 

value in the same location. It validates the correction of the nucleation distribution (blue curve of 

Fig. 19), although in the real material 0f =1.75 10-4 is somewhat larger than in the simulation. It 

can also be observed that the nucleated fraction is larger in the part of the crack close to the 

notch (red zones in Fig. 21d) because the strains are larger there from the beginning of the 

loading (notch effect). In the notch area, it can be seen on the left and right sections of the 

specimen (x = 0 and z = 0 planes) that the nucleation model at large strain may contribute to the 

final shear failure (red zones corresponding to the cone of cup-cone fracture). The mesh design 

in the notch region with small triangles may facilitate shear failure, contrary to the mesh design 

of the KAHN specimen (Fig. 14) with triangles of increasing size at the right of the Cartesian 

mesh. At complete failure, the layer of broken integration points is strongly stretched in the 

vertical loading direction y, it corresponds to crack opening.  

In Fig. 22, the elbows of the load-displacement curves correspond to crack initiation. 

Experimental curves are not shown because in this semi-parametric study the two values chosen 

for 0f  do not correspond to real materials but to minimum and maximum sulfur contents. It is 

known that notched tensile specimens are well modeled with porous plasticity, e.g. Rousselier et 

al. (1989) for A508 steel. In Tanguy (2001), 0f =1.75 10-4 and the experimental tensile curve is 

slightly different from the one used for the parameter calibration of Fig. 17, nevertheless the AE4 

specimen experimental maximum load is 68.30 kN (corrected from the minimum section 

diameter 6 mm to 10 mm), very close to the values of Table 2. The experimental and numerical 

fracture behaviors cannot be compared because the parameter 1σ  and the element size in the 

loading direction (
c
l = 1/3 mm) have not been calibrated. The final shear fracture in the notch area 

causes a sudden load drop (left red curve, f0 = 0.0015).  

When the sulfur content is large (left curves), the coalescence of the voids formed on the 

manganese sulfides occurs at small strains and only a small fraction of the carbides is nucleated 
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and contributes to strain localization. Therefore, submicrometric voids have little effect on the 

fracture resistance of the steel: the blue curve (with carbides) is close to the red curve (without 

carbides) for f0 = 0.0015. The crack propagation rate (which determines the slope of the post-

initiation curve) is a little larger with submicrometric voids than without. The effects of large 

contents of sulfur and carbon do not cumulate and the linear cumulative model used in safety 

rules seems much pessimistic. Conversely, at small sulfur content, the fracture strains are larger 

and the voids nucleated on carbides greatly reduce the ductility (right curves).  

 

Figure 22. Load-displacement curves of the AE4 notched tensile specimen. Effect of sulfur and 

carbon contents in the MnNiMo low alloyed steel (voids nucleated on manganese sulfides and 

carbides, respectively). 

 

In the notched tensile specimens, the loading paths at each point are not proportional because the 

plastic zone initiates in the notch and then propagates towards the axis. Damage in the center, 

crack initiation and propagation also induce non-proportional paths. The above calculations were 

performed with latent hardening parameters h = k = 0.1 for both hardening matrices. Two other 

calculations were performed with h = k = 0.0 and 0.3. The other hardening parameters have been 
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identified again in each case: an increase in h and k causes a sharp decrease in Q1 and Q2, 

R being little modified. The overall effect in plasticity is rather small since the load maximums 

are 70.40-69.62-69.79 kN for h = k = 0.0-0.1-0.3 (Table 2); the difference of 1% between 0.0 and 

0.1 is nevertheless significant. Conversely, the deformation at crack initiation is markedly 

increased for h = k = 0.0 (blue interrupted curve in the insert of Fig. 23). It shows that 

macroscopic plasticity models, that have no latent hardening, introduce some bias in ductile 

fracture modeling. The absence of latent hardening is not realistic: a more complete study based 

on experimental tests and parameter calibration in plasticity and fracture would be necessary. 

The deviation from isotropy (Fig. 17) is tested again in Fig. 23 for y = ND = {001}, y = TD = 

{010} and y = {111} loading directions. The 1/4 mesh is used for the {010} and {111} 

directions, although the symmetry of the reduced texture in the xz plane is then imperfect. The 

direction y = RD = {100} gives results identical to TD (symmetry of the reduced texture). The 

load maximums are 69.62-69.04-68.30 kN (Table 2), the scatter is less than ± 1%. This 

significant but acceptable value is the price to be paid for the polycrystalline plasticity simulation 

of an isotropic material at a reasonable numerical cost with a reduced texture. For an anisotropic 

material with a reduced texture, it is likely that the difference in results with the complete texture 

is of the same order of magnitude. 
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Figure 23. Load-displacement curves of the AE4 notched tensile specimen (f0 = 0.0015). Latent 

hardening effect (ND tensile direction), tensile direction effect (for h = k = 0.1). All curves 

without secondary voids (fN2 = 0). 

5. Conclusions.  

The main objective of porous plasticity modeling is the finite element simulation of laboratory 

specimens. Forty years after the first finite element calculations (Rousselier, 1981; Tvergaard 

and Needleman, 1984), these models are not much used in structural calculations for automotive, 

aeronautic, pipeline, metal forming or nuclear industries. Reasons are parameter identification, 

computational cost and mesh dependence (related to strain localization). Regularization models 

that can solve the last issue are not considered in the present paper, partly because they increase 

the already large computational cost. Not one calculation but a large number is required in 

laboratory studies, e.g. the eight ones of Table 2 are only a very small part of the ones that were 

performed for this work. If we limit our goals to laboratory specimens, experimental-simulation 

and simulation-simulation comparisons are made with identical meshes. If a Cartesian mesh is 

embedded in the specimen mesh, the results should not be much impacted, including for shear 

fracture that may depend on the mesh orientation.  

With this limited objective, the GTN and Rousselier models have been presented and discussed. 

Despite apparently similar, the analytical forms of these two models have fundamentally 

different mechanical consequences. The necessary kinematic condition of planar macroscopic 

localization (NKCPML) is more or less “built-in” in the Rousselier model but it is less and less 

fulfilled with the GTN model at increasing stress triaxiality and void volume fraction. We have 

shown that this issue is overcome by finite element discretization that transforms pointwise and 

planar localization into volume localization. It can now be understood why both models are 

operational for laboratory specimen calculations. These new results are illustrated by Figs 3 to 6 

and by the local analysis of Fig. 9.  

Because of its analytical form, only the Rousselier model can be integrated into the multiscale 

framework of self-consistent polycrystalline plasticity with a homogenized flow equation. Real 

textures are usually modeled by hundreds or more crystallographic orientations. Again the 

computational cost is prohibitive to perform numerous calculations. Not to mention CPFEM for 
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which macroscopic specimen calculations are not even an option, looking for example at the 

mesh of the KAHN specimen (Fig. 14), moreover limited to a very small crack growth (2 mm). 

A methodology that generates “reduced textures” (8 to 15 crystallographic orientations), 

calibrated with mechanical tests, brings a solution with a small loss of accuracy.  

For macroscopic laboratory specimens calculations, the polycrystalline framework makes it 

possible to model at the slip system scale other mechanisms of plasticity: dynamic strain aging, 

and ductile fracture: transgranular crystallographic fracture, observed in particular in thin 

aluminum sheets, and for the first time in this framework the effect of a second population of 

submicrometric voids in aluminum alloys and in steels (nucleated on dispersoids and on 

carbides, respectively). These two latter applications are presented in the second part of the 

paper. Examples of specimen numerical simulations are given for these two classes of materials. 

For the submicrometric voids, the important effect of nucleation depending on plastic strain in 

the grains has been highlighted. The polycrystalline framework provides results that are not 

accessible with macroscopic models and that can be compared with experimental data 

(mechanisms, quantitative observations at various scales). In the applications to aluminum alloys 

and steel, only limited experimental data at the submicroscale were available. The contribution 

of synchrotron nanotomography (e.g. Nizery et al., 2015) could be decisive, for example with 

observations of small pieces cut in tested specimens, but at a high cost.  
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Figure captions  

Figure 1.  Ultimate value f*U in function of q3 for a given q1 (here q1=1.5, range q3 = 0 - 2.25).  

Figure 2.  Material element containing two plastically inactive blocks A and a band B of strain 

and damage localization. The material element is expanding in direction 1. a. without shear strain, 

b. with shear strain. 

Figure 3. Gurson-GTN model yield locus in the ),( eqm σσ  plane for parameters: 1.0=f , 

Q = 3/2, σp = 1, 6245.11 =q , 12 =q , 25.23 =q . Rousselier porous plasticity model yield 

surface (blue curve) for parameters: 00 =f , 1.0=f , Q=3/2, 1=H , σ1 = H/Q =2H/3, 21 =D . 

NKCPML without and with shear strains, red arrows (slope -3/2) and blue arrows, respectively.  

Figure 4.  Gurson-GTN model, evolution of the yield locus in the ),( eqm σσ  plane with 

increasing void volume fraction for parameters: Q = 3/2, σp = 1, 6245.11 =q , 12 =q , 

25.23 =q . The red line corresponds to a constant stress triaxiality equal to 2, the red discs 

correspond to the slope -3/2 (NKCPML) 
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Figure 5.  Rousselier model, evolution of the yield locus in the ),( eqm σσ  plane with increasing 

void volume fraction for parameters 00 =f , Q = 3/2, 1=H , σ1 = H/Q = 2H/3, 21 =D . Insert: 

zoom close to the axes origin. 

Figure 6.   Rousselier model, evolution of the yield locus. Same as Fig. 5 with D1 = 3/2 in place 

of 21 =D . Insert: zoom close to the axes origin. 

Figure 7.  Pre-cracked three-point bent specimen (Rousselier, 1981), half mesh. Initial mesh 

(interrupted lines) and deformed meshes for two applied bending displacements showing strain 

localization in the initially thin elements. C (arrows) shows the crack tip.  

Figure 8.  Pre-cracked three-point bent specimen (Rousselier, 1981). Load-displacement curves 

for initial void volume fraction f0 = 10-2, 10-3 and 10-4. Stress component σ22 in the vertical 

direction for elements I and II at the crack tip. Note the functional expression of the damage 

variable β,  with ρ = (1-f)/(1-f0). 

Figure 9.  Central part of the smooth tensile specimen axisymmetric mesh (Tvergaard and 

Needleman, 1984). Left: deformed mesh immediately after the sharp “knee” of the load vs. axial 

strain curve, corresponding to f = fc = 0.15, K = 5.2. Center: Final deformed mesh. The blue disc 

is at the center of the specimen, the loading direction is horizontal. The red disc is the integration 

point closer to the center. Right: Initial geometry of the central quadrangle.  

Figure 10. Comparison of the Gurson-Tvergaard-Needleman (1977-1981-1984) and Rousselier 

(1981) porous plasticity models. Constant model parameters to be calibrated are in red.  

Figure 11. a) Classical self-consistent polycrystalline framework. HEM: homogenized equivalent 

material, INCL.: inclusion. Physical mechanism on the left, model on the right. b) HEMV: 

homogenized equivalent material with voids. c) With submicrometric voids in shear bands, in 

particular between large voids (void sheet or zig-zag fracture).  

Figure 12. a) Reduced texture of the 2198-T8R aluminum sheet, Euler angles, frac = volumic 

fraction of the N = 12 model crystallographic orientations, 3 orthotropic components with 4 

orientations each. Small black discs: EBSD measurements. b) Polycrystalline model parameters. 

Hardening parameters of Eqs (12) and (13): r0 = R , 1
QQ= , 2

Q  and c are in MPa. C (MPa) and 
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grd are the anisotropic "β  model" parameters (Sai et al., 2006), h and k are the hardening 

matrices parameters (non-diagonal terms), H=H1 and K=H2 (Luo and Rousselier, 2014).  

Figure 13. Engineering tensile curves and thickness reduction curves in the longitudinal (00), 

diagonal (45) and transverse (90) directions of the 2198-T8R aluminum sheet. Experimental 

points and calibrated model curves. The maximum elongation DL/L0 is applied in 100 s.  

Figure 14. Finite element mesh of the KAHN specimen, thickness 2 mm. C3D15R and C3D20R 

reduced integration elements. Cartesian mesh at the notch tip (notch radius 60 µm), elements 

initial size: crack direction x=L 0.25 mm, loading direction y=T 0.20 mm,  thickness 0.25 mm.  

Figure 15. Load – CMOD curves of the 2198-T8R aluminum KAHN specimen. CMOD = crack 

mouth opening displacement, S0 = 25x2 = 50 mm2. Small red points: experimental curve (cross 

head speed 0.1 mm/min). Numerical curves E-D-A-C-B correspond to increasing damage. 

Curves A-C-B are with submicrometric voids for various nucleation parameters.  

Figure 16. Damage variables at the KAHN specimen notch tip (located on the right of each 

figure), lower half of the specimen y≤0, deformed mesh. Clockwise from the upper left: 1) 

broken integration points showing the flat crack in the y = 0 plane and the shear lip on the front 

free surface z = 1 of the specimen, 2) void volume fraction f (maximum value in the specimen: 

0.210, the colors correspond to the bar under the figure), 3) cumulated value of the 

submicrometric void volume fractions, Eq. (14) (maximum value in the specimen: 0.157), 4) 

largest value of C
ss

C
cum v=)(γ  (maximum value in the specimen:  2.48).  

Figure 17. a) Isotropic reduced texture with N = 15 orientations, equal-area projection,  

orientation density (left) and pole figure (right), the 3 poles of each orientation have the same 

color. True tensile curve representative of A508 steel at room temperature (red stars) and 

simulated curves in the x = RD (identical to z = TD) and y = ND directions (blue and green 

curves), with the reduced texture and calibrated parameters. b) Euler angles and hardening 

parameters of Eqs (12) and (13). C and grd are the anisotropic "β  model" parameters (Sai et al., 

2006), h and k are the hardening matrices H=H1 and K=H2 non diagonal parameters.  

Figure 18. a) Mesh of the notch zone of AE4 round tensile specimen, center in red. C3D15R and 

C3D20R reduced integration elements. b) Half mesh y<0. 
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Figure 19. Statistical distributions of carbide nucleation with strain. Red (Gaussian) and green 

(constant with a critical strain εc = 0.5) for fN2 = 0.024, εN2 = 0.8 and σN2 = 0.1732. Blue: 

corrected Gaussian with  fN2 = 0.024, εN2 = 0.7 and σN2 = 0.15; the vertical blue line at 0.5988 

corresponds to 25% of the total volume fraction.  

Figure 20. 0f = 0.0015, without submicrometric voids: a) broken integration points, b) void 

volume fraction.  

Figure 21. 0f = 0.0001, with submicrometric voids: a) b) c) clockwise from upper left, equivalent 

plastic strain heterogeneity, maximum-mean-minimum values at crack initiation. d) total volume 

fraction of carbides having initiated a submicrometric void at complete failure (0.006 in the 

specimen center, 0.012 in the notch, 25% and 50% of fN2 = 0.024, respectively).  

Figure 22. Load-displacement curves of the AE4 notched tensile specimen. Effect of sulfur and 

carbon contents in the MnNiMo low alloyed steel (voids nucleated on manganese sulfides and 

carbides, respectively). 

Figure 23. Load-displacement curves of the AE4 notched tensile specimen (f0 = 0.0015). Latent 

hardening effect (ND tensile direction), tensile direction effect (for h = k = 0.1). All curves 

without secondary voids (fN2 = 0). 

Table headings  

Table 1. Porous plasticity and Coulomb fracture model parameters. 

Table 2. AE4 specimen numerical simulations. Maximum load and diametral contraction ∆Φc at crack 

initiation (first broken integration point).  




