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Porous plasticity aims to model the growth and coalescence of voids leading to ductile failure.

The GTN model (1984), resulting from heuristic modifications to Gurson's homogenized hollow sphere model (1977), is used in numerous publications. The Rousselier model (1981), developed in the framework of continuum thermodynamics, is apparently similar. Both models are effective in numerical calculations, but the reasons why they perform well were not investigated in details in the existing literature, as regards transition to uniaxial deformation, relations between various modes of strain localization, finite element discretization, regularization. In the present paper, we propose first to revisit both models and to compare their fundamentally different mechanical behaviors. For stress triaxiality larger than some critical value, it is shown that theoretically the GTN model cannot achieve strain localization in a plane but only pointwise localization for the ultimate mechanical state (stress tensor equal to zero). The larger the void volume fraction (void growth), the smaller the stress triaxiality critical value. Fortunately, discretization transforms the pointwise localization into volume localization and with an appropriate Cartesian finite element mesh a more or less planar sheet of integration points can be obtained. The Rousselier model can achieve strain localization in a plane at all stress triaxialities and discretization also transforms this localization into volume localization with a characteristic element size. Second, multiscale modeling of both plasticity and ductile damage (not limited to void damage) is an essential way of progress for laboratory specimen calculations. The Rousselier model can be incorporated into polycrystalline models based on crystal plasticity, with reasonable computation times provided a reduced texture with a small number of crystallographic orientations is used. It can be coupled with a new Coulomb ductile fracture model at the slip system scale and with secondary void

Introduction

Ductile failure can be defined in a very general way as a damage mechanism involving a gradual and significant dissipation of mechanical energy, at several scales. In metallic alloys, the most commonly observed (but not unique) ductile failure mechanism is nucleation, growth by plastic deformation and coalescence of microscopic voids. More than fifty years ago, micromechanical models of an isolated void in a matrix were developed by [START_REF] Mcclintock | A criterion of ductile fracture by the growth of holes[END_REF] and [START_REF] Rice | On the ductile enlargement of voids in triaxial stress fields[END_REF]. An exponential dependence of void growth on stress triaxiality was obtained. Following Rice's work, Gurson (1977) published constitutive equations for a porous ductile solid based on homogenization theory. An approximate limit analysis of a rigid-plastic hollow sphere with axisymmetric boundary conditions yields a plastic potential depending on the first and second invariants of the stress tensor and on the void volume fraction. It shows a quadratic dependence on von Mises equivalent stress and a hyperbolic cosine dependence on stress triaxility η = σm/σflow (σflow is a constant material parameter). The flow rules for both deviatoric and volumetric plastic strain rates are obtained by derivation of the plastic potential (normality rule). Later, another porous plasticity model was developed by [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF] in the framework of continuum thermodynamics with the hypothesis of two scalar internal variables for plasticity and damage, respectively. Continuum thermodynamics is a powerful concept for the construction of models that are as simple as possible [START_REF] Germain | Continuum thermodynamics[END_REF]. The exponential dependence of void growth on stress triaxiality is derived from the generalized normality rule, i.e. normality for both plastic strain rate and internal variables rates.

In the numerical analysis of a doubly periodic array of cylindrical voids, [START_REF] Tvergaard | Influence of voids on shear band instabilities under plane strain conditions[END_REF] obtained shear band instabilities at critical strains that are twice smaller than the ones predicted by the Gurson model. It is the origin of Gurson's model second heuristic modification (the first one is the substitution of the constant σflow by a hardening flow stress σM). With three additional parameters q1, q2 and q3, Tvergaard could not fit all the numerical predictions simultaneously, but a considerable improvement was found with q1 = 1.5, q2 = 1 and q3 = (q1) 2 . These values are very rarely revisited in the numerous publications based on Gurson's model: see the summary tables in [START_REF] Benseddiq | A ductile fracture analysis using a local damage model[END_REF], [START_REF] Yildiz | Experimental investigation of GTN model parameters of 6061 Al alloy[END_REF], although the model is generally applied to configurations that are not shear-dominated.

Actually in these configurations stress triaxiality is large (say 1 / > = eq m σ σ η , ratio of hydrostatic stress to von Mises equivalent stress) and failure by void coalescence takes place in a plane normal to the main loading direction (at the macroscopic scale, even if a zig-zag crack may be observed at a smaller scale), corresponding to void coalescence models like [START_REF] Thomason | Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids[END_REF]. Gurson's model is based on the assumption that void growth is driven by some diffuse plastic flow in the matrix. Therefore this model is not expected to model the flow localization that takes place between voids. That is why [START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF] introduced a third heuristic modification to account for void coalescence, supposed to occur at a critical void volume fraction f = fc. The void growth rate is then discontinuously accelerated by a large factor K (say K = 3 or even larger), which triggers void coalescence. The accelerated void volume fraction f* replaces f in the equations but the latter still is the "physical" value to be compared with experimental data, because the ultimate value f*U = 1/q1 (if q3 = q1 2 ) at which the stress carrying capacity vanishes is unrealistically large. The experimental porosity at complete failure is typically 0.2 or less, the one predicted using micromechnical studies ranges between 0.15 and 0.30 [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF]. With these various heuristic modifications of the Gurson model, the so-called GTN model enabled the finite element modeling of cup-cone fracture in a round tensile bar. In contrast, the Rousselier model without any modification enabled the finite element modeling of crack initiation and propagation in a single edge cracked flat tension specimen [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF]. In the last forty years, the research field of porous materials has been continuously investigated, e.g. recently: [START_REF] Monchiet | Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids[END_REF], [START_REF] Besson | Damage of ductile materials under multiple plastic or viscoplastic mechanisms[END_REF], [START_REF] Seidenfuß | On critical assessment of the use of local and nonlocal damage models for prediction of ductile crack growth and crack path in various loading and boundary conditions[END_REF], [START_REF] Guo | Experimental and numerical investigation for ductile fracture of Al-alloy 5052 using modified Rousselier model[END_REF], [START_REF] Tu | Simulation of the damage behavior of electron beam welded joints with the Rousselier model[END_REF], [START_REF] Malcher | An extended GTN model for ductile fracture under high and low stress triaxiality[END_REF], [START_REF] Vincent | Effective flow surface of porous materials with two populations of voids under internal pressure: I. A GTN model[END_REF], [START_REF] Ling | An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations[END_REF], [START_REF] Leclerc | A micromechanics-based non-local damage to crack transition framework for porous elastoplastic solids[END_REF], [START_REF] Chen | Crack initiation and propagation in small-scale yielding using a nonlocal GTN model[END_REF], [START_REF] Fehringer | Experimental and numerical investigations on limit strains using an enhanced Rousselier model[END_REF].

An important advantage of the Rice-Gurson method is that it can provide numerous extended models. They are detailed in a recent review paper [START_REF] Benzerga | Ductile failure modeling[END_REF], e.g. the Gologanu-Leblond-Devaux model for spheroidal voids, the Madou-Leblond model for ellipsoidal voids, models incorporating plastic anisotropy with a Hill matrix [START_REF] Benzerga | Plastic potentials for anisotropic porous solids[END_REF], etc.

Another extension is the consideration of micro-inertia effects in the vicinity of collapsing voids [START_REF] Sartori | Constitutive behavior of porous ductile materials accounting for micro-inertia and void shape[END_REF][START_REF] Wilkerson | On the micromechanics of void dynamics at extreme rates[END_REF]Czarnota et al., 2020). The derivation of a simple model with continuum thermodynamics only succeeds in the case of isotropic damage and the Rousselier model cannot be extended easily. Nevertheless, this model can be incorporated into polycrystalline models based on crystal plasticity [START_REF] Rousselier | A simplified "polycrystalline" model for viscoplastic and damage finite element analyses[END_REF]. The analytical form of Gurson's model makes it impossible to incorporate into self-consistent polycrystalline plasticity with a homogenized flow equation. It is a limitation if we consider that multiscale modeling of both plasticity and ductile damage (not limited to void damage) is an essential way of progress for laboratory specimen calculations, with reasonable computation times because of reduced texture identification (8 to 15 crystal orientations), e.g. [START_REF] Luo | Modeling of large strain multiaxial deformation of anisotropic metal sheets with strength-differential effect using a Reduced Texture Methodology[END_REF], [START_REF] Rousselier | A fully coupled void damage and Mohr-Coulomb based ductile fracture model in the framework of a Reduced Texture Methodology[END_REF], [START_REF] Rousselier | Combining porous plasticity with Coulomb and Portevin-Le Chatelier models for ductile fracture analyses[END_REF], [START_REF] Rousselier | Interaction of the Portevin-Le Chatelier phenomenon with ductile fracture of a thin aluminum specimen: experiments and simulations[END_REF]. It enables a better modeling of kinematic, anisotropic and latent hardening and also the coupling with other plasticity and ductile damage models at various scales. The multiscale model is applied here to aluminum CT and KAHN specimens and to steel round notched specimens.

The paper is organized as follows. The constitutive equations of the GTN and Rousselier models are recalled in Section 2. The ability of the porous plasticity constitutive equations to localize plastic flow in a plane is a crucial feature for ductile fracture modeling. It has not been investigated from a practical point of view in existing literature. In Section 3, the necessary kinematic condition of planar macroscopic localization (NKCPML) and its consequences for both models are presented. The evolution of the yield surfaces with increasing void volume fraction and localization in a finite element mesh are investigated. A general discussion of the macroscopic porous plasticity models concludes this Section. Section 4 is devoted to multiscale modeling: integration of porous plasticity into homogenized polycrystalline models, examples of numerical simulations of laboratory specimens.

Macroscopic porous plasticity constitutive equations.

After the earlier work of [START_REF] Mcclintock | A criterion of ductile fracture by the growth of holes[END_REF], the founding model is the one of [START_REF] Rice | On the ductile enlargement of voids in triaxial stress fields[END_REF] which gives the growth rate of an isolated spherical void of radius R (transposable to the volume fraction f) as a function of stress triaxiality η :
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where σm is the mean hydrostatic stress and σp is the plastic flow stress, a constant in the original model. Rice and Tracey decomposed the velocity field into volume-changing and shapechanging parts. They assumed that the shape-changing part does not contribute to the void growth at high stress triaxiality. The theoretical values of the constant parameters are Q = 1.5 and D1 = 0.850. Usually, the exponent is written as 3σm/2σp, the exact factor Q = 3/2 being given by the high stress triaxiality case, equation (37) in Rice and Tracey's paper. The exponential dependence is in agreement with early void growth measurements (e.g. [START_REF] Marini | Experimental study of cavity growth in ductile rupture[END_REF][START_REF] Rousselier | Ductile fracture models and their potential in local approach of fracture[END_REF] and confirmed with X-ray microtomography (e.g. Maire et a1., 2011;[START_REF] Landron | Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels[END_REF], with Q = 1.5 but however a larger experimental value D1 = 1.1 to 3.6 depending on the metallic alloy. Assuming that the shape-changing part has an effect on void growth, [START_REF] Huang | Accurate dilatation rates for spherical voids in triaxial stress fields[END_REF] obtained a corrected value D1 = 1.275 for the second parameter, closer to the experimental results but still too small for many alloys. With an adequate value for the parameter D1, Rice and Tracey's model is a strong basis.

The Gurson model [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: part Iyield criteria and flow rules for porous ductile media[END_REF][START_REF] Tvergaard | Influence of voids on shear band instabilities under plane strain conditions[END_REF] is a plastic flow surface obtained by homogenization of a hollow sphere with two kinematic fields (volume-changing and shape-
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In the original model, q1 = q2 = q3 = 1. The flow stress σp(p) takes into account work hardening in the GTN model [START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF]. The second equation ( 22) is given by the mass conservation law and the normality rule. The parameters are Q = 3/2 and D1 = 3q1q2/4.

With the values recommended by [START_REF] Tvergaard | Influence of voids on shear band instabilities under plane strain conditions[END_REF]: q1=1.5, q2=1, q3=q1 2 , we obtain D1 = 1.125, which remains too small compared to experimental data (all the more with sinh < exp/2).

The void growth acceleration function is [START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF]:
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The ultimate value at which the stress carrying capacity vanishes is
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This ultimate state cannot be obtained for q3 > q1 2 . For q3 ≤ q1 2 , f*U decreases very rapidly from the maximum value f*Umax = 1/q1 for q3 = q1 2 , where the slope is infinite (Fig. 1). For q3 = 1, f*U is not so unrealistically large than f*Umax (e.g. f*U = 0.382 for q1= 1.5 instead of 1/q1 = 0.667). Nevertheless, q3 = 1 was never used according to the existing literature [START_REF] Yildiz | Experimental investigation of GTN model parameters of 6061 Al alloy[END_REF]. Like Gurson's, the Rousselier plastic potential [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF][START_REF] Rousselier | Ductile fracture models and their potential in local approach of fracture[END_REF][START_REF] Rousselier | A methodology for ductile fracture analysis based on damage mechanics: an illustration of a local approach to fracture[END_REF][START_REF] Germain | Continuum thermodynamics[END_REF] is the sum of 3 terms, but the analytical form, deduced from continuum thermodynamics and from the generalized normality rule, is different :
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Continuum thermodynamics is only used to obtain the analytical form of the porous plastic potential. It is out of the scope of the present paper to discuss the convexity and its consequences for dissipation and numerical implementation [START_REF] Enakoutsa | Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture[END_REF]. This framework is effective in the simplest case of isotropic damage, i.e. the porosity is characterized by its volume fraction f only. (In Rousselier (1981, 1987, 1989), the internal variable β is used in place of f but it does not impact the model because a functional relation exists between f and β.) The detailed micromechanisms are not considered explicitly (the multiscale framework is better suited to model these mechanisms, see Section 4). The detailed derivation of the model is given in Appendix B of [START_REF] Rousselier | A fully coupled void damage and Mohr-Coulomb based ductile fracture model in the framework of a Reduced Texture Methodology[END_REF].

The three phases of void damage are void nucleation, growth and coalescence. Specific models are used for void nucleation (e.g. [START_REF] Chu | Void nucleation effects in bi axially stretched sheets[END_REF]. In this Section, we only consider some initial value 0 f of the void volume fraction f . The scientific objective of porous plasticity is to model void growth and void coalescence. In the continuum thermodynamics framework, the Kirchhof stress
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has to be used in place of the Cauchy stress σ , with
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remains. This point is important for the coalescence stage at large void volume fraction.

The viscoplastic flow stress is
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, depending on strain rate p & and on temperature T. As in Rice and Tracey's and Gurson's original models and unlike the GTN model, the denominator in the exponential is a constant material parameter σ1. Thermodynamics does not give the integration constants D1 and σ1. Generally, D1=2 was used in applications (e.g. [START_REF] Lorentz | Numerical simulation of ductile fracture with the Rousselier constitutive law[END_REF]Seidenfuss et al., 2011;[START_REF] Tu | Simulation of the damage behavior of electron beam welded joints with the Rousselier model[END_REF]. By analogy with Rice and Tracey's model,
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is assumed, at saturated strain hardening (Voce) for a large parameter 1 p p = . If strain hardening does not saturate (Swift), σ1 (or p1) is a parameter to be calibrated [START_REF] Rousselier | A methodology for ductile fracture analysis based on damage mechanics: an illustration of a local approach to fracture[END_REF]Rousselier, 2001a). σ1 parametrically depends on strain rate and on temperature, which enabled to model the ductility curve in the range p & = 10 -3 -10 +6 s -1 , including the "adiabatic nose" at very large strain rates because of inertia at the macroscopic scale (Rousselier, 2001b), not to be confused with inertia at the micro-scale mentioned in the introduction.

Consequences of the necessary kinematic condition of planar macroscopic localization (NKCPML).

NKCPML.

We consider the necessary condition for the final stage of void damage induced ductile fracture, first in the particular case of a band perpendicular to the larger principal strain rate direction. This case corresponds for example to the center of axisymmetric tensile specimens or to thick cracked specimens in mode I, with stress triaxiality at fracture initiation larger than 1. In Fig. 2a The configurations of Fig. 2 are the same as in [START_REF] Rice | The Localization of Plastic Deformation[END_REF], but with negligible elastic strain rates. In the case of a localization plane perpendicular to the loading direction, [START_REF] Thomason | Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids[END_REF] was the first to mention that, at strain localization, uniaxial tension prevails and the lateral plastic strain rates are close to zero. In finite element calculations of cells with a spherical void, [START_REF] Koplik | Void growth and coalescence in porous plastic solids[END_REF] also noticed that the beginning of coalescence in a plane perpendicular to the main loading direction corresponds to the transition to uniaxial deformation.

Therefore, the necessary kinematic coalescence condition is:
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In the case of a rate-independent material, the time at which this condition is met is close to the loss of ellipticity of the equilibrium equations which coincides with the condition det(nLn) = 0 in [START_REF] Rice | The Localization of Plastic Deformation[END_REF]. In the case of a rate-dependent material, loss of ellipticity does not occur and it can be replaced by the stability analysis of a perturbation. Rice's localization condition corresponds to homogeneous fields (or to an infinite configuration), hence it slightly underestimates localization in a finite geometry [START_REF] Besson | Modeling of plane strain ductile rupture[END_REF]. The coalescence model of [START_REF] Thomason | Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids[END_REF] comply with the condition of Eq. ( 5) in the particular case of Fig. 2a. The volumetric strain cannot be small: in flat ductile fracture, some amount of void damage is necessary.

In Figure 2b . Unlike Eq. ( 5) for the case of a perpendicular band, it is a loose condition, but still a necessary one. In slant and shear fracture, volumetric strain and void damage are not necessary, so 0 = plane for parameters:
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. Rousselier porous plasticity model yield surface (blue curve) for parameters: , the normality rule with Eq. ( 4) gives
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, the coalescence condition (5) is obtained exactly at the vertex. This is a remarkable consequence of the coefficient 3/2 in the exponent of Rice and Tacey's (1969) equation (37) right quarter plane with a constant slope, i.e. that the coalescence condition ( 5) is obtained in a very large zone close to the vertex. At the opposite of the Gurson-GTN model, the larger the void volume fraction, the better achieved the condition of localization in a normal plane. In this region, the yield locus is quasi-identical to the one of Thomason's coalescence model, with the great difference that the orientation of the localization plane is predicted with the Rousselier model and not with Thomason's. If the latter was to be used as a plastic potential [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF], a number of yield loci with random orientations would have to be used, which considerably limits numerical applications. 

0 0 = f , Q = 3/2, 1 = H , σ1 = H/Q = 2H/3, 2 1 = D
. Insert: zoom close to the axes origin.

It can be noticed in the insert of Fig. 5 that for f larger than 0.75, approximately, σm is negative.

Although ductile failure is obtained long before that value, this inconvenience can be avoided.

Remarkably again, σm = 0 for f = 1 is obtained exactly with D1 = 3/2, as shown in Figure 6. This value 3/2 is close to experimental data for many metallic alloys. The two constants Q = 3/2 and D1 = 3/2 are given by the mechanical analysis, but D1 = 3/2 is not mandatory.

In conclusion of this Subsection 3.1, it is highlighted that, despite apparently similar, the analytical forms of the Gurson-GTN and Rousselier models have fundamentally different mechanical consequences. These theoretical results are confronted with numerical applications in the next Subsection. . Insert: zoom close to the axes origin.

Finite element modeling in porous plasticity.

The first finite element calculations in porous plasticity are the ones of [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF] and [START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF]. In the former, a pre-cracked three-point bent specimen is calculated in plane strain (2D). The mesh is made of quadrangles divided in two constant strain elements. In the crack plane, the quadrangle aspect ratio is 10/1 and the height of the elements is lc = 50 µm (Fig. 7). This large ratio is explained by the available rudimentary mesh tool and low computational capabilities. The results are mesh-size dependent and lc is the characteristic length (it is not the length of the elements as it is written in the figure). Fig. 7 shows strain localization, first in two elements at the crack tip and second along the straight crack path. Crack tip blunting is very poorly modeled by the coarse mesh.

The constants C = 1.5 and D = 0.49 = 0.283√3 mentioned in Fig. 7 correspond to Q = 3/2 and D1 = D√3 = 0.85 of the original Rice and Tracey's publication (1969). The small value of D1 is compensated by the small value of σ1 = σ0/Q with the initial yield stress σ0 = 500 MPa compared to the saturated flow stress 2σ0 = 1000 MPa with the Voce hardening function σ0(2-exp(-20p)) used in the simulations.

Figure 7. Pre-cracked three-point bent specimen [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF], half mesh. Initial mesh (interrupted lines) and deformed meshes for two applied bending displacements showing strain localization in the initially thin elements. C (arrows) shows the crack tip.

In Fig. 8, the effect of the initial void volume fraction on the load-displacement curve is evidenced. After the beginning of strain localization, the local stress drops very rapidly (curves I and II). The corresponding finite elements can be considered as "broken" (small stress carrying capacity). In the 1981 paper, it is written and emphasized that: (i) "the ductile fracture properties of the metal are defined by two parameters: lc, related to the interparticle spacing; and f0, related to the particle volume fraction" and (ii) "stable crack growth occurs naturally, by localization of deformation, resulting from the constitutive relations only, without it being necessary to define a critical state nor to release the nodes as in usual models". These results were expected due to the possibility of strain localization in a plane with the constitutive model.

Conversely, the pointwise strain localization properties of the Gurson and GTN models could make it more difficult to obtain a plane crack. Consider the particular case of a round tensile specimen, initially smooth or notched. In the center of the specimen, the axisymmetric triaxial stress field is the same as the remote field in [START_REF] Rice | On the ductile enlargement of voids in triaxial stress fields[END_REF]. Theoretically, pointwise localization will create a very small spherical volume with zero stress, that is to say a void. This is exactly the configuration of Rice and Tracey's model. Thus the void will grow with volumechanging and shape-changing parts and elongate in the tensile direction so as to become an axially symmetric ellipsoid. It will not become a plane crack.

Figure 8. Pre-cracked three-point bent specimen [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF]. Load-displacement curves for initial void volume fraction f0 = 10 -2, 10 -3 and 10 -4 . Stress component σ22 in the vertical direction for elements I and II at the crack tip. Note the functional expression of the damage variable β, with ρ = (1-f)/(1-f0).

However, in [START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF], a plane crack initiates and propagates in the center of a smooth tensile specimen (a small initial imperfection is introduced in the central section). This possible contradiction is not discussed in the 1984 paper, which is focused on the cup-cone transition. We have investigated the possible effect of finite element discretization. The axisymmetric mesh (2D) consists of quadrangles divided in four constant strain elements with a single central integration point in each triangle (Fig. 9, right). The initial aspect ratio is 10/1, the same as in [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF].

Figure 9. Central part of the smooth tensile specimen axisymmetric mesh [START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF]. Left: deformed mesh immediately after the sharp "knee" of the load vs. axial strain curve, corresponding to f = fc = 0.15 (K = 5.2). Center: Final deformed mesh. The blue disc is at the center of the specimen, the loading direction is horizontal. The red disc is the integration point closer to the center. Right: Initial geometry of the central quadrangle.

In Fig. 9, we have extracted the deformed meshes in the center of the specimen from the original figures of the paper. The two horizontal red lines demonstrate that the deformation is uniaxial at the beginning of strain localization, which is expected in a smooth tensile specimen close to the axis (left mesh) and also after complete strain localization (central mesh). The theoretical pointwise localization at the center of the specimen expected with the GTN model cannot be observed because stress and strain are constant in each finite element (finite means with a volume that is not infinitesimal). Localization takes place first in the most deformed element (the larger red disc in Fig. 9, right) and pointwise localization (1D) is substituted with finite volume localization (3D). Next, localization will take place in a second finite element, etc. Because of the stress and strain fields in the central region of the tensile specimen, localization will propagate in a plane sheet of elements perpendicular to the main loading direction. From a practical point of view, the final result is not different from the one obtained with the Rousselier model because discretization transforms 1D (GTN) or 2D (Rousselier) localization into 3D localization. With quadratic finite elements, the result would be the same, each integration point being associated with some finite volume.

As already noted by [START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF], mesh design plays an important role in crack initiation and growth. It also affects the direction of crack propagation [START_REF] Besson | Modeling of crack growth in round bars and plane strain specimens[END_REF][START_REF] Besson | Modeling of plane strain ductile rupture[END_REF][START_REF] Rousselier | Combining porous plasticity with Coulomb and Portevin-Le Chatelier models for ductile fracture analyses[END_REF]. The problem lies in the softening models and in the resulting strain localization. In the case of the GTN model, the discontinuity of the derivative of the f* function may inhibit slant fracture. A void nucleation model can be used to promote slant fracture but it is not satisfactory from a physical point of view [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF].

Regularized models aim at suppressing this detrimental effect [START_REF] Enakoutsa | Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture[END_REF]Seidenfuss et al., 2011). It is not in the scope of the present paper to discuss the various regularization models. We just mention that regularization will have the same effect on the GTN model that finite element discretization: it will transform pointwise localization (1D) into volume localization (3D) and enable a more or less planar crack in a Cartesian finite element mesh. With the Rousselier model, the localization plane (2D) will get a defined thickness lc (3D). For both models, the effect of mesh design is expected to be most reduced if not completely suppressed by regularization.

Discussion of the porous plasticity macroscopic models.

First, it can be stated that the investigation of void growth by plastic deformation with macroscale classical plasticity models only is an approximation. Grain size and void size are both at the microscale and the mechanisms of plastic deformation involved at this scale cannot be modeled with bulk material plasticity in the vicinity of a free surface. It is evidenced by the emerging slip bands observed at the inner surface of voids [START_REF] Weck | Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials[END_REF][START_REF] Rousselier | Combining porous plasticity with Coulomb and Portevin-Le Chatelier models for ductile fracture analyses[END_REF]. The same kind of striations can be observed at the tip surface of a blunted initially sharp crack. Consequently, despite the simple approximate equation ( 22) that relates plastic strain and void growth rates, plasticity and void growth modeling require two distinct internal variables. These experimental observations also recall that theoretical and finite element analyses of unit cells, although very useful, are not to be confused with physical reality.

In Figure 10, a comparative summary of the GTN and Rousselier models characteristics is proposed. The first heuristic extension of the Gurson model is the consideration of a hardening flow stress σp. As it appears in both quadratic and exponential terms of the flow function, the calculation of σp is implicit. It impacts the numerical integration and it prevents the integration of the model into homogenized polycrystalline plasticity equations (the quadratic term is also problematic for the latter). Conversely, the homogenization and limit analysis method of Rice and Gurson provides a unifying and powerful micromechanical framework for a large number of theoretical extensions [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF][START_REF] Benzerga | Ductile failure modeling[END_REF], which is not the case with the continuum thermodynamics derivation of the Rousselier model. Nevertheless, a heurisitic extension can be considered for this model, as proposed in [START_REF] Morgeneyer | Experimental and numerical analysis of toughness anisotropy in AA2139 Al-alloy sheet[END_REF] for the GTN model: the mean macroscopic stress m σ is substituted with * m σ to model 3D anisotropic void growth in an orthotropic material (principal axes of orthotropy: L, T, N). For isotropic void growth,
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Figure 10. Comparison of the Gurson-Tvergaard-Needleman (1977-1981[START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF] and [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF] porous plasticity models. Constant model parameters to be calibrated are in red.

At the hydrostatic point, the Rousselier model does not verify the analytical solutions of the hollow cylinder or hollow sphere under pressure, contrary to Gurson-like models. It is not a fatal error, it reflects a fundamental difference between the two models: void damage (without a defined geometric configuration of voids) for the Rousselier model, initial plasticity of a hollow sphere for the original Gurson model. Consequently, between the two Cartesian axes, the slope of the flow surface varies in a much smaller interval than with the Gurson model: from -D1f = -1/5 to Q = -3/2 for the parameters of Fig. 3, vs. 0 to -∞, with consequences for strain localization at all stress triaxialities and for damage in shear-dominated loadings.

The existence of a vertex on the σm axis has also been challenged, although in practice a pure hydrostatic tension is not encountered in numerical applications. Indeed, finite element limit load analyses of unit cells in axisymmetric loading also show a flat zone but this zone extends on both sides of the intersection of the yield locus with the σm axis in a (σ33 -σ11, σm) plane, showing no vertex (Benzergua and Leblond, 2010). But this result is limited to axisymmetric loadings for a given orientation of the localization plane that enables the use of σ33 -σ11 in place of σeq, it does not give the isotropic yield locus in function of σeq and σm. Besides, the representativeness of unit cell calculation vis-à-vis physical reality may also be questioned [START_REF] Tekoğlu | On localization and void coalescence as a precursor to ductile fracture[END_REF]. It is not ascertained whether or not the Rousselier model is effective for these loadings

σ11 = σ22 > σ33.
With the GTN model, final failure is obtained for f = f F (also written f = f U) much smaller than 1, which is consistent with experimental data. We recall that the "physical" f is kept distinct from the accelerated f* used in the equations, which is unusual in modeling. With the Rousselier model, the final failure is for f = 1. Nevertheless, the stress-carrying capacity drops abruptly after the beginning of strain localization, as evidenced in Fig. 8 of the present paper (curves I and II) and in Fig. 7 of [START_REF] Rousselier | A methodology for ductile fracture analysis based on damage mechanics: an illustration of a local approach to fracture[END_REF], so failure is achieved for a much smaller void volume fraction, e.g. f ≈ 0.2 in Fig. 7 of [START_REF] Rousselier | A methodology for ductile fracture analysis based on damage mechanics: an illustration of a local approach to fracture[END_REF]. An ultimate value fu = 0.2 or 0.3 can be introduced to define a "broken" state that shows the crack geometry and to avoid possible numerical problems, with a negligible impact on crack initiation and propagation (it is checked in the numerical applications of Section 4.2).

Void growth in the Rousselier model leads first to macroscopic strain localization in a plane and more or less later to the final failure. [START_REF] Tekoğlu | On localization and void coalescence as a precursor to ductile fracture[END_REF] have calculated a doubly periodic array of voids within a normal or slant plane band confined between two outer blocks of the same material but without voids. These configurations are similar to the ones of Fig. 2. They obtained that macroscopic localization coincides with the onset of void coalescence for stress triaxiality η < 1. At triaxiality larger than 1, void coalescence requires additional plastic straining in the band. They conclude that the proper failure criterion to be used for failure analysis should be a macroscopic localization criterion based on void growth and not one based on void coalescence. They add that in some situations void coalescence must be modeled to account for all the energy dissipated in the failure process. It is in agreement with the standard use of the Rousselier model. Nevertheless, the work of [START_REF] Tekoğlu | On localization and void coalescence as a precursor to ductile fracture[END_REF] questions the relation between strain localization and void coalescence. Additional calculations of the same configurations with porous plasticity models (GTN and Rousselier) would be valuable.

The parameter fc (supposed to be the onset of void coalescence in the GTN model) can also be discussed. In [START_REF] Koplik | Void growth and coalescence in porous plastic solids[END_REF], the values of fc that matches well the unit cell calculations results (load and void volume fraction vs. macroscopic effective strain) appear to vary with stress triaxiality η (their calculations are for η = 1, 2 and 3), so it is not a constant material parameter. In [START_REF] Tekoğlu | On localization and void coalescence as a precursor to ductile fracture[END_REF], the transition to uniaxial deformation corresponds approximately to f = fc for η = 1 (it coincides with the onset of void coalescence) and the transition takes place for much smaller values f << fc for η = 2 and 3 (and void coalescence takes place for much larger values f >> fc). With the Rousselier model, the critical value of f is predicted, corresponding to the onset of strain localization, evidenced by the curves I and II of Fig. 8. In Fig. 8 of [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF], it is also shown that this value is not a constant. In contrast, in the GTN model, fc is a given material parameter.

Constitutive equations cannot be validated without parameter identification, a key point in material modeling. An identification procedure of the two parameters σ1 and lc with notched tensile specimens has been proposed in [START_REF] Rousselier | A methodology for ductile fracture analysis based on damage mechanics: an illustration of a local approach to fracture[END_REF]Rousselier ( , 2001a) ) and it is still valid. The parameters related to void characteristics: initial void volume fraction, shape, size distribution, nucleation model parameters, etc., are to be considered separately and calibrated with experimental observations at microscales, as much as possible. It can also be the case of lc, although the relation between lc and interparticle spacing is not straightforward, and of D1 if the recommended values 3/2 or 2 are too far apart from void growth measurements (rarely available). The heuristic extensions of the GTN model involve additional parameters (generally limited to three: q1, fc and K, Table 1, not to mention lc). There is no consensus on the choice of these parameters, as evidenced in the summary tables of [START_REF] Benseddiq | A ductile fracture analysis using a local damage model[END_REF] and Yildiz and Yilmaz (2020) already quoted above.

The main conclusion is that both models are operational for finite element modeling of planar cracks initiation and propagation, but in somewhat different ways. This property is built-in in the 2). It is also worth mentioning that extensions of the GTN-type yield surface using crystal plasticity have been developed via meanfield micromechanics schemes (e.g. [START_REF] Han | A yield function for single crystals containing voids[END_REF][START_REF] Ling | An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations[END_REF]. In these works, porous single crystals are considered. Eq. ( 21) is modified to apply at the slip system scale; it is an implicit equation for the resolved shear stress of each slip system. This model could be used within the so-called crystal plasticity finite element method (CPFEM) discussed at the beginning of Section 4.1. It implies that the voids are small enough (i.e. submicrometric) to be considered as immersed in each crystal. In Section 4, Eq. ( 4) of the Rousselier model is homogenized in the case of a polycrystalline matrix and the micrometric voids are supposed to be large enough to be considered as immersed in the matrix material (submicrometric voids are modeled separately at the slip system scale).

Porous plasticity multiscale modeling.

4.1. Polycrystalline framework and ductile fracture.

Plasticity and ductile fracture are closely related because the latter results from the former.

Therefore, a good modeling of ductile fracture first requires a good modeling of plasticity.

Starting from Tresca and von Mises, macroscopic plasticity models have been dramatically

improved (e.g. [START_REF] Hill | A theory of the yielding and plastic flow of anisotropic metals[END_REF][START_REF] Hosford | Comments on anisotropic yield criteria[END_REF][START_REF] Barlat | Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions[END_REF][START_REF] Bron | A yield function for anisotropic materials. Application to aluminum alloys[END_REF][START_REF] Kim | A crystal plasticity model for describing the anisotropic hardening behavior of steel sheets during strain-path changes[END_REF][START_REF] Lee | Combined anisotropic and distortion hardening to describe directional response with Bauschinger effect[END_REF]. Another way of improvement is based on crystal plasticity modeling.

The framework of physically based polycrystalline metal plasticity has intrinsic advantages in describing the anisotropy and distortion of the yield surface, as well as realistic anisotropic hardening. It enables the prediction of complex behaviors in multi-axial and multi-path loadings.

(When damage and/or fracture are modeled, local loading paths are highly non-linear, even if the structure is in proportional loading.) Crystal plasticity is also used directly at the integration point scale in finite element modeling of polycrystalline aggregates, the so-called crystal plasticity finite element method (CPFEM). CPFEM has had a considerable development in recent years (e.g. Barbe et al., 2001aBarbe et al., , 2001b;;[START_REF] Gérard | Modeling of latent hardening produced by complex loading paths in FCC alloys[END_REF][START_REF] Khadyko | Latent hardening and plastic anisotropy evolution in AA6060 aluminum alloy[END_REF][START_REF] Coudon | A multiscale model for nickel-based directionally solidified materials[END_REF][START_REF] Farooq | Crystal plasticity modeling of the cyclic behavior of polycrystalline aggregates under non-symmetric uniaxial loading: Global and local analyses[END_REF]. But our objective is the numerical calculation of macroscopic laboratory specimens, which is not tractable with CPFEM. Polycrystalline plasticity requires strong modeling hypotheses that make it less "physical" than CPFEM, but the computation time can be limited to a few days, depending on the complexity of the model and on the size of the specimen mesh, provided a "reduced texture methodology" (RTM) is used to drastically limit the number of crystallographic orientations [START_REF] Raabe | Using texture components in crystal plasticity finite element simulations[END_REF][START_REF] Rousselier | Macroscopic plasticity modeling of anisotropic aluminum extrusions using a reduced texture methodology[END_REF]. The Rousselier porous plasticity model can be embedded into the polycrystalline framework that also enables to introduce various plasticity and damage models at the slip system scale, e.g. a dynamic strain aging model [START_REF] Rousselier | Combining porous plasticity with Coulomb and Portevin-Le Chatelier models for ductile fracture analyses[END_REF][START_REF] Rousselier | Interaction of the Portevin-Le Chatelier phenomenon with ductile fracture of a thin aluminum specimen: experiments and simulations[END_REF], the new Coulomb ductile fracture model [START_REF] Rousselier | A fully coupled void damage and Mohr-Coulomb based ductile fracture model in the framework of a Reduced Texture Methodology[END_REF], nucleation and growth models of a second population of very small voids at the slip band scale (in the present paper).

In the classical polycrystalline framework, each of the N "grains" of the model represents a set of physical grains with close crystallographic orientations (also called "phase" in the literature).

In the self-consistent models, each "grain" is considered as an inclusion in the homogeneous A particular self-consistent polycrystalline model [START_REF] Méric | Single crystal modeling for structural calculations -Part I: model presentation[END_REF] was enhanced to model with accuracy the anisotropic plastic behavior at large strain [START_REF] Rousselier | A novel approach for anisotropic hardening modeling -Part I: Theory and its application to finite element analysis of deep drawing[END_REF][START_REF] Rousselier | A novel approach for anisotropic hardening modeling -Part II: Anisotropic hardening in proportional and non-proportional loadings, application to initially isotropic material[END_REF][START_REF] Luo | Modeling of large strain multiaxial deformation of anisotropic metal sheets with strength-differential effect using a Reduced Texture Methodology[END_REF]. All equations are not recalled in the present paper, in particular the ones giving g σ in function of an auxiliary strain tensor g β , the so-called "β model" (Cailletaud and Pilvin, 1994). The macroscopic plastic strain rate is the consequence of the slip rates s γ& of all the slip systems s in all grains g. The polycrystalline model was extended to porous plasticity in [START_REF] Rousselier | A simplified "polycrystalline" model for viscoplastic and damage finite element analyses[END_REF] and [START_REF] Rousselier | A fully coupled void damage and Mohr-Coulomb based ductile fracture model in the framework of a Reduced Texture Methodology[END_REF]: the matrix material contains voids with a variable volume fraction f , as shown in Fig. 11b. The volume fractions of the matrix grains

1 = g to N are g f f ) 1 ( - .
We can also consider a second population of very small voids that nucleate and grow in shear bands. These voids can contribute to void coalescence of the larger voids with the so-called "void sheet mechanism" (Fig. 11c). The transgranular crack can propagate in the neighboring grains. These geometrical features are not captured in the polycrystalline framework. In the model, a submicrometric void volume fraction s f is attributed to the M slip systems of the grains 1 = g to N (like for s γ& , the index g is omitted in the variable s f to simplify some figures and equations, not to be mistaken with the constant volume fractions of the grains g f ). The following plastic potential is used to derive the volumetric plastic strain rate:

0 ) 1 ( exp 1 1 ) ( 1 * 1 1 1 =         - +         - - =         - ≅ ∑ = σ σ σ σ σ σ τ f f D f f f F F m eq N g g g eq (7)
It has the same form as the macroscopic potential Eq. ( 4), except the second term which is the matrix flow stress, in place of the hardening curve R(p) of the macroscopic model. For

0 1 = D , Eq. (7) corresponds to ∑ - = g g f f σ σ ) 1 ( . For 0 = f , it is the classical homogenization equation ∑ = g g f σ σ
. The resulting plastic strain rate is (the equivalent strain rate p eq ε& is first calculated with the first deviatoric term only):
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sg m is the orientation tensor of each slip system. * m σ is defined in Eq. (6).

A phenomenological Norton-like viscoplastic model can be used for the constitutive equations of each slip system, depending on the resolved shear stress sg g s m :
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For each slip system, two scalar internal variables are introduced: 
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The parameters (R, Q1, b1, Q2, b2) and (K, n) define work hardening and viscosity, respectively.

In this paper, the initial critical resolved shear stress R is the same for all slip systems. The two constant hardening matrices H1 and H2 define the self-hardening of the slip systems (diagonal terms equal to 1) and the "latent" hardening (non diagonal terms) of all slip systems by already activated systems, which enables to model non proportional loadings. The use of two (constant) matrices makes it possible to model the evolution of latent hardening with large deformation, depending on the material parameters b1 and b2. (Another way to model large deformations would be to use a single variable hardening matrix.) Latent hardening has a key role in nonproportional loading. Moreover, texture evolution at very large deformation can be taken into account [START_REF] Rousselier | A novel approach for anisotropic hardening modeling -Part I: Theory and its application to finite element analysis of deep drawing[END_REF], but it is not as significant in ductile fracture as in metal forming and the computation time is multiplied by a factor in the order of 2; it is not used in this paper.

For the submicrometric voids, the contribution of all grains is added to the softening term of Eq. ( 7):
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In Eq. ( 8), the volumetric strain rate is modified in the same way as in Eq. ( 14).

The void volume fraction rate is the sum of a first term for void growth and a second term for void nucleation:
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Rousselier 2020 29 An exponential dependence on stress is chosen for the void growth term, similar to the one for the large voids. This equation is the most questionable one of the submicrometric voids model. Nevertheless, the relevant variables are present in this equation and it enables the first finite element calculations of laboratory specimens with secondary voids at the shear band scale. Voids in shear bands have been modeled in several papers, e.g. the nice parametric numerical analyses of [START_REF] Nielsen | Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing[END_REF] who consider primary and secondary voids. But no simple analytical model is available. In the same framework, Eq. ( 15) can be changed when micromechanics studies deliver improved models. Moreover, void nucleation and void rotation are probably more significant than void growth for submicrometric voids modeling in shear bands.

The resolved shear stress s τ can be positive or negative, but reverse loading is not specifically accounted for in nucleation models. D can be chosen equal to 1 D .

In Eq. ( 15), the factor 2

A is the same Gaussian function as in the void nucleation model of [START_REF] Chu | Void nucleation effects in bi axially stretched sheets[END_REF]. The cumulated equivalent plastic strain in the grain 
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Although this paper is devoted to porous plasticity, it cannot be overlooked that transgranular shear fracture without voids is observed in some metals, in particular in aluminum alloys [START_REF] Chen | Ductile tearing of AA2198 aluminum-lithium sheets for aeronautic applications[END_REF][START_REF] Luo | Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading -part II: ductile fracture[END_REF][START_REF] Buljac | On deformation and damage micromechanisms in strong work hardening 2198 T3 aluminum alloy[END_REF]. A large amount of plastic deformation is necessary prior to shear localization and fracture. In order to model this phenomenon, two distinct slip rates for each slip system are considered: the classical slip rate s γ& of Eq. ( 9) and an additional slip rate C s γ& activated at large strains. The total slip rate is 
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are given by the viscoplastic rate equations:
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The novel feature [START_REF] Rousselier | A fully coupled void damage and Mohr-Coulomb based ductile fracture model in the framework of a Reduced Texture Methodology[END_REF] The material is 2198-T8R aluminum alloy. The 2.0 mm thick aluminum sheet was provided by Constellium in the recrystallized state and after an artificial ageing treatment (T8) generating submicrometric hardening precipitates. The composition is 2.9-3.5 Cu, 0.8-1.1 Li, 0.25-0.8 Mg, 0.1-0.5 Ag, 0.04-0.18 Zr (in wt.%), balance Al. The intermetallic particles volume fraction is ~0.3-0.4%, their size is 2-3 µm. Almost no initial porosity was found (<0.03 vol%). The grains are elongated to ~200-300 µm in the longitudinal L direction and to ~60 µm in the transverse T direction. The typical grain size in the short transverse S direction is ~25-30 µm. Three tensile tests were performed in the longitudinal, transverse and diagonal (45°) directions of the sheet plane [START_REF] Chen | Ductile tearing of AA2198 aluminum-lithium sheets for aeronautic applications[END_REF][START_REF] Chen | Plastic flow and ductile rupture of a 2198 Al-Cu-Li aluminum alloy[END_REF]. The yield strength is ~440 MPa and the ultimate tensile strength is ~500 MPa, showing relatively low work hardening. The material has moderate texture and tensile stress anisotropy measured in the sheet plane, but the Lankford ratios Lk ≈ 0.5 are much smaller than 1, showing a significant mechanical anisotropy.

In [START_REF] Rousselier | Interaction of the Portevin-Le Chatelier phenomenon with ductile fracture of a thin aluminum specimen: experiments and simulations[END_REF], dynamic strain aging (DSA) of this material was considered in the numerical simulations. It is not the case in the present work and the polycrystalline model parameters had to be calibrated again. An optimization software was used with the Levenberg-Marquardt algorithm [START_REF] Levenberg | A method for the solution of certain non-linear problems in least squares[END_REF]. The reduced texture has three orthotropic texture components (N = 12).

It is remarkable that the numerous plasticity parameters (including the reduced texture parameters) can be determined with three in-plane tensile tests only. The out-of-plane behavior is expected to be approximately predicted because all slip systems are activated with the in-plane tensile tests.

Nevertheless, because no tension-compression test was available, the kinematic hardening parameters c and d of Eq. ( 12) are calibrated like a third isotropic hardening term at large strain (small exponent coefficient d). These two parameters are not representative of the real kinematic hardening of the Hardening parameters of Eqs ( 12) and ( 13

): r0 = R , Q = 1 Q , Q2 = 2
Q and c are in MPa. C (MPa) and grd are the anisotropic "β parameters [START_REF] Sai | Micro-mechanical modeling of the inelastic behavior of directionally solidified materials[END_REF], h and k are the hardening matrices parameters (non-diagonal terms), H = H1 and K = H2 [START_REF] Luo | Modeling of large strain multiaxial deformation of anisotropic metal sheets with strength-differential effect using a Reduced Texture Methodology[END_REF].

Figure 13. Engineering tensile curves and thickness reduction curves in the longitudinal (00), diagonal (45) and transverse (90) directions of the 2198-T8R aluminum sheet. Experimental points and calibrated model curves. The maximum elongation DL/L0 is applied in 100 s.

In [START_REF] Rousselier | Interaction of the Portevin-Le Chatelier phenomenon with ductile fracture of a thin aluminum specimen: experiments and simulations[END_REF], a 1 mm-thick CT specimen of the same material was modeled, loaded at room temperature in the T-L direction. It was investigated with in situ X-ray laminography at the European Synchrotron Radiation Facility [START_REF] Morgeneyer | In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet[END_REF]. Experimental data enabled to calibrate the ductile damage fracture parameters: porous plasticity and Coulomb ductile fracture models. But the experimental load was not measured. In this paper, we consider a KAHN specimen loaded in the T-L direction [START_REF] Chen | Ductile tearing of AA2198 aluminum-lithium sheets for aeronautic applications[END_REF][START_REF] Chen | Plastic flow and ductile rupture of a 2198 Al-Cu-Li aluminum alloy[END_REF] and we investigate the effect of submicrometric voids on the load-displacement curve (crack initiation and propagation). The mesh is shown in Fig. 14, with a Cartesian mesh at the notch tip identical to the one of the CT specimen, in order to avoid mesh effects on ductile fracture. based aluminum alloys has been reported to involve transgranular linkage in void sheets nucleated at matrix dispersoids (particle size in the range 10 nm-1 µm), which coalesce within shear bands [START_REF] Tsivoulas | Comparison and effect of individual and combined Zr and Mn additions on the fracture behavior of Al-Cu-Li alloy AA2198 rolled sheet[END_REF]. The dispersoids volume fraction is in the range 0.012-0.018% [START_REF] Chen | Ductile tearing of AA2198 aluminum-lithium sheets for aeronautic applications[END_REF] and the nucleation strain is very large. In order to investigate the impact of dispersoids on ductile fracture, we have chosen two values 0.01 and 0.02 for the parameter 2 N f of Eq. ( 34), and two values 0.5 and 1 for the parameter 2 N ε (1 is probably closer to the real values), corresponding to the curves A1, C1 and B1 of Fig. 15. The standard deviation 2 N σ is 0.10 for curve A1 and 0.15 for curves C1 and B1. Provided Eqs ( 15) and ( 16) are an acceptable modeling, it can be concluded that dispersoids may have a significant effect on ductile fracture.

At the notch of the KAHN specimen, the experimental crack initiated at mid-thickness is flat in a small triangle approximately 1.5 mm large along the notch tip and 1.5 mm long in the notch plane [START_REF] Chen | Ductile tearing of AA2198 aluminum-lithium sheets for aeronautic applications[END_REF]. Two shear lips appear at the notch tip on the two free surfaces of the specimen, one in the upper part y>0 and one in the lower part y<0. The two shear lips join after approximately 1.5 mm crack propagation and form a slant crack. This experimental geometry is well modeled in the numerical simulation as evidenced by the "broken" integration points in Fig. 16, upper left. Fig. 16 corresponds to the black disc on curve C1 of Fig. 15. At this displacement (CMOD = 0.7045 mm, F/S0 = 155.11 MPa), the crack length is 2 mm. After this point, the mesh is no longer cartesian and the simulation is impacted by the mesh effect. For the flat crack, a single layer of broken points is obtained, located in the lower half of the specimen, i.e. the symmetric points in the upper half are not broken. The symmetry in the loading direction is lost for the flat crack, the shear lips and (of course) the slant crack. In the thickness direction, it is lost for the shear lips and the slant crack. 14) (maximum value in the specimen: 0.157), 4)
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(maximum value in the specimen: 2.48).

Note that integration points are considered as "broken" when the non linear damage cumulative the difference is 0.6%. In Fig. 11 of [START_REF] Rousselier | A fully coupled void damage and Mohr-Coulomb based ductile fracture model in the framework of a Reduced Texture Methodology[END_REF], it was shown that displacements at failure of flat notched tensile specimens also depend little (less than 1%) on these parameters in the same value ranges 0.15-0.25 and 2-3.

In Fig. 16, the contributions of the three damage models are compared. At mid-thickness and in the whole flat crack, stress triaxiality is larger and fracture is mainly due to micrometric void growth. In shear fracture, the contribution of submicrometric voids is significant but the Coulomb fracture model is predominant. It is in agreement with the nanometric dimples observed with MEB in the slant crack of the CT specimen [START_REF] Morgeneyer | In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet[END_REF] and with microtomography measurements on small pieces cut in KAHN specimens [START_REF] Chen | Ductile tearing of AA2198 aluminum-lithium sheets for aeronautic applications[END_REF]) that showed transgranular fracture in the slant crack without micrometric voids, see also [START_REF] Buljac | On deformation and damage micromechanisms in strong work hardening 2198 T3 aluminum alloy[END_REF]. In the simulation, the submicrometric voids also contribute to the coalescence of the large voids in the flat crack (modeled by strain localization). These simulation results are also in agreement with what is obtained in similar materials [START_REF] Tsivoulas | Comparison and effect of individual and combined Zr and Mn additions on the fracture behavior of Al-Cu-Li alloy AA2198 rolled sheet[END_REF]. A more quantitative comparative analysis would need a comprehensive experimental study, for both parameter identification and validation of simulation results at various scales.

Effect of sulfur and carbon contents on ductile fracture of a low-alloyed steel.

In [START_REF] Tanguy | Modélisation de l'essai Charpy par l'approche locale de la rupture, application au cas de l'acier 16MND5 dans le domaine de transition[END_REF], ductile fracture mechanisms in notched tensile specimens were investigated.

The material is A508 (16MND5) steel (0.16 C, 0.004 S, 1.33 Mn, 0.76 Ni, 0.22 Cr, 0.51 Mo, in wt %) which is used in the French pressurized water nuclear reactors. This material contains small round MnS inclusions at which micrometric voids are initiated at the very beginning of plastic deformation, so that it can be considered that 0 f =1.75 10 -4 is equal to the MnS volume fraction. At large deformation, nucleation of submicrometric voids was also observed with high magnification SEM at carbides of average size 0.1 µm (the approximate size range of all carbides is 0.01-1 µm). The total volume fraction of carbides calculated from the chemical composition is fN2 = 0.024, but at fracture in the center of round notched tensile specimens the volume fraction of the carbides having initiated a void is only 0.006 (25%). The two other parameters of the nucleation statistical distribution were estimated: average initiation strain εN2 = 0.8, standard deviation σN2 = 0.17. Actually, εN2 was obtained with the macroscopic strain of finite element simulations at the carbides locations in the specimen. It was observed that submicrometric voids only initiate in some grains (probably the most deformed ones), but the local deformations were not measured. As the model of Eq. ( 16) is based on the mean plastic strain of the grain, it is expected that the calibration of the nucleation model could be revisited.

The first task is to determine a reduced texture for this isotropic material. It takes several hundred random orientations to obtain a relatively isotropic behavior. In [START_REF] Rousselier | A novel approach for anisotropic hardening modeling -Part II: Anisotropic hardening in proportional and non-proportional loadings, application to initially isotropic material[END_REF], a texture reduced to only N = 14 orientations has been calibrated on a mechanical test basis computed with isotropic behavior: single and biaxial tension in many directions of a plane, various tests with shear, tension-shear orthogonal path. In this paper, with the tensile curve from [START_REF] Lorentz | Numerical simulation of ductile fracture with the Rousselier constitutive law[END_REF], the uniformity of the orientation density (Fig. 17a) on the 3D unitary hyper-sphere (in the 4D space) has been slightly improved with N = 15 orientations calibrated on the same test basis, which seems to be close to the optimum possible with this method: an attempt with N = 18 was not successful. The "isotropic" texture of Fig. 17a is symmetric with respect to the so-called RD and TD axes. It makes it possible to mesh only the 1/4 of a specimen which has the same symmetries, in particular the axisymmetric notched tensile specimens used in [START_REF] Tanguy | Modélisation de l'essai Charpy par l'approche locale de la rupture, application au cas de l'acier 16MND5 dans le domaine de transition[END_REF]. With this isotropic "universal" texture (actually slightly anisotropic), it only remains to calibrate the hardening parameters with the tensile curve of the steel (at room temperature). Because no tension-compression test was available, the kinematic hardening parameters c and d of Eq. ( 12) are calibrated like a third isotropic hardening term at large strain (small exponent coefficient

The coefficients of the hardening matrices could not be identified: for the centered cubic crystallographic structure of steel, M = 24 and the structure of the 24x24 hardening matrices is not well known. It is assumed that the non-diagonal terms of each matrix all have the same value 12) and ( 13). C and grd are the anisotropic "β model" parameters [START_REF] Sai | Micro-mechanical modeling of the inelastic behavior of directionally solidified materials[END_REF], h and k are the hardening matrices parameters (non-diagonal terms), H = H1 and K = H2. Fig. 18a shows the mesh (1/4) of the central part of the round tensile specimen AE4 with a circular notch of radius 4 mm; the diameter of the minimum section is 10 mm. The load is applied in the vertical direction y = ND; the minimum section of the specimen is in the x-z = RD-TD plane of Fig. 17a. (Because of the slightly anisotropic reduced texture, the directions RD-TD-ND have to be specified.) The crack initiates in the center and propagates circularly over a single layer of integration points in the minimum section. The crack growth rate depends on the height of the elements, here 1/3 mm. Despite the symmetry, a 1/8 mesh (Fig. 18b) is not to be used, it would generate a crack on two layers of integration points and therefore a double dissipation. In order to investigate the combined effects of sulfur content (MnS inclusions) and carbon content (carbides), calculations were made for two values of the initial void volume fraction: f0 = 0.0001 and 0.0015, corresponding to small and large values of the sulfur content, without and with submicrometric voids (4 calculations, Table 2). The Chu and Needleman nucleation model of Eq. ( 16) is used. With fN2 = 0.024, εN2 = 0.8 and σN2 = 0.1732, the calculated volume fraction of the carbides having initiated a void in the center of the specimen only is in the order of 10% of fN2, much smaller than the measured value of 25%. In [START_REF] Tanguy | Modélisation de l'essai Charpy par l'approche locale de la rupture, application au cas de l'acier 16MND5 dans le domaine de transition[END_REF], the green model of (constant with a critical strain εc = 0.5) for fN2 = 0.024, εN2 = 0.8 and σN2 = 0.1732. Blue:

corrected Gaussian with fN2 = 0.024, εN2 = 0.7 and σN2 = 0.15; the vertical blue line at 0.5988 corresponds to 25% of the total volume fraction. Eq. ( 16) is integrated in each grain. The weighted sum per fg gives the calculated total volume fraction of carbides carb f having initiated a submicrometric void:

p eq g N N p eq g N N carb g d f f ] [ 2 ] [ exp 2 2 2 2 2 2 ε σ ε ε π σ                - - = ∫ , ∑ = carb g g carb f f f (20)
The integration stops when u tot f f = . In Fig. 21d, the values in the center of the specimen are close to 0.006, i.e. 25% of the volume fraction of all carbides, in agreement with the measured value in the same location. It validates the correction of the nucleation distribution (blue curve of Fig. 19), although in the real material 0 f =1.75 10 -4 is somewhat larger than in the simulation. It can also be observed that the nucleated fraction is larger in the part of the crack close to the notch (red zones in Fig. 21d) because the strains are larger there from the beginning of the loading (notch effect). In the notch area, it can be seen on the left and right sections of the specimen (x = 0 and z = 0 planes) that the nucleation model at large strain may contribute to the final shear failure (red zones corresponding to the cone of cup-cone fracture). The mesh design in the notch region with small triangles may facilitate shear failure, contrary to the mesh design of the KAHN specimen (Fig. 14) with triangles of increasing size at the right of the Cartesian mesh. At complete failure, the layer of broken integration points is strongly stretched in the vertical loading direction y, it corresponds to crack opening.

In Fig. 22, the elbows of the load-displacement curves correspond to crack initiation.

Experimental curves are not shown because in this semi-parametric study the two values chosen for 0 f do not correspond to real materials but to minimum and maximum sulfur contents. It is known that notched tensile specimens are well modeled with porous plasticity, e.g. [START_REF] Rousselier | A methodology for ductile fracture analysis based on damage mechanics: an illustration of a local approach to fracture[END_REF] for A508 steel. In [START_REF] Tanguy | Modélisation de l'essai Charpy par l'approche locale de la rupture, application au cas de l'acier 16MND5 dans le domaine de transition[END_REF], 0 f =1.75 10 -4 the experimental tensile curve is slightly different from the one used for the parameter calibration of Fig. 17 2); the difference of 1% between 0.0 and 0.1 is nevertheless significant. Conversely, the deformation at crack initiation is markedly increased for h = k = 0.0 (blue interrupted curve in the insert of Fig. 23). It shows that macroscopic plasticity models, that have no latent hardening, introduce some bias in ductile fracture modeling. The absence of latent hardening is not realistic: a more complete study based on experimental tests and parameter calibration in plasticity and fracture would be necessary.

The deviation from isotropy (Fig. 17) is tested again in Fig. 23 2), the scatter is less than ± 1%. This significant but acceptable value is the price to be paid for the polycrystalline plasticity simulation of an isotropic material at a reasonable numerical cost with a reduced texture. For an anisotropic material with a reduced texture, it is likely that the difference in results with the complete texture is of the same order of magnitude.

Figure 23. Load-displacement curves of the AE4 notched tensile specimen (f0 = 0.0015). Latent hardening effect (ND tensile direction), tensile direction effect (for h = k = 0.1). All curves without secondary voids (fN2 = 0).

Conclusions.

The main objective of porous plasticity modeling is the finite element simulation of laboratory specimens. Forty years after the first finite element calculations [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF][START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF], these models are not much used in structural calculations for automotive, aeronautic, pipeline, metal forming or nuclear industries. Reasons are parameter identification, computational cost and mesh dependence (related to strain localization). Regularization models that can solve the last issue are not considered in the present paper, partly because they increase the already large computational cost. Not one calculation but a large number is required in laboratory studies, e.g. the eight ones of Table 2 are only a very small part of the ones that were performed for this work. If we limit our goals to laboratory specimens, experimental-simulation and simulation-simulation comparisons are made with identical meshes. If a Cartesian mesh is embedded in the specimen mesh, the results should not be much impacted, including for shear fracture that may depend on the mesh orientation.

With this limited objective, the GTN and Rousselier models have been presented and discussed.

Despite apparently similar, the analytical forms of these two models have fundamentally which macroscopic specimen calculations are not even an option, looking for example at the mesh of the KAHN specimen (Fig. 14), moreover limited to a very small crack growth (2 mm).

A methodology that generates "reduced textures" (8 to 15 crystallographic orientations), calibrated with mechanical tests, brings a solution with a small loss of accuracy.

For macroscopic laboratory specimens calculations, the polycrystalline framework makes it possible to model at the slip system scale other mechanisms of plasticity: dynamic strain aging, and ductile fracture: transgranular crystallographic fracture, observed in particular in thin aluminum sheets, and for the first time in this framework the effect of a second population of submicrometric voids in aluminum alloys and in steels (nucleated on dispersoids and on carbides, respectively). These two latter applications are presented in the second part of the paper. Examples of specimen numerical simulations are given for these two classes of materials.

For the submicrometric voids, the important effect of nucleation depending on plastic strain in the grains has been highlighted. The polycrystalline framework provides results that are not accessible with macroscopic models and that can be compared with experimental data (mechanisms, quantitative observations at various scales). In the applications to aluminum alloys and steel, only limited experimental data at the submicroscale were available. The contribution of synchrotron nanotomography (e.g. [START_REF] Nizery | Threedimensional characterization of fatigue-relevant intermetallic particles in high-strength aluminium alloys using synchrotron X-ray nanotomography[END_REF] could be decisive, for example with observations of small pieces cut in tested specimens, but at a high cost. . Insert: zoom close to the axes origin.

Figure 7. Pre-cracked three-point bent specimen [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF], half mesh. Initial mesh (interrupted lines) and deformed meshes for two applied bending displacements showing strain localization in the initially thin elements. C (arrows) shows the crack tip.

Figure 8. Pre-cracked three-point bent specimen [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF]. Load-displacement curves for initial void volume fraction f0 = 10 -2, 10 -3 and 10 -4 . Stress component σ22 the vertical direction for elements I and II at the crack tip. Note the functional expression of the damage variable β, with ρ = (1-f)/(1-f0).

Figure 9. Central part of the smooth tensile specimen axisymmetric mesh [START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF]. Left: deformed mesh immediately after the sharp "knee" of the load vs. axial strain curve, corresponding to f = fc = 0.15, K = 5.2. Center: Final deformed mesh. The blue disc is at the center of the specimen, the loading direction is horizontal. The red disc is the integration point closer to the center. Right: Initial geometry of the central quadrangle.

Figure 10. Comparison of the Gurson-Tvergaard-Needleman (1977-1981[START_REF] Tvergaard | Analysis of cup-cone fracture in a round tensile bar[END_REF] and [START_REF] Rousselier | Finite deformation constitutive relations including ductile fracture damage[END_REF] porous plasticity models. Constant model parameters to be calibrated are in red. Hardening parameters of Eqs ( 12) and ( 13):

r0 = R , 1 Q Q= , 2
Q and c are in MPa. C (MPa) and grd are the anisotropic "β model" parameters [START_REF] Sai | Micro-mechanical modeling of the inelastic behavior of directionally solidified materials[END_REF], h and k are the hardening matrices parameters (non-diagonal terms), H=H1 and K=H2 [START_REF] Luo | Modeling of large strain multiaxial deformation of anisotropic metal sheets with strength-differential effect using a Reduced Texture Methodology[END_REF]. 12) and ( 13). C and grd are the anisotropic "β model" parameters [START_REF] Sai | Micro-mechanical modeling of the inelastic behavior of directionally solidified materials[END_REF], h and k are the hardening matrices H=H1 and K=H2 non diagonal parameters. 

Figure 1 .

 1 Figure 1. Ultimate value f*U in function of q3 for a given q1 (here q1 = 1.5, range q3 = 0 -2.25).

Figure 2 .

 2 Figure 2. Material element containing two plastically inactive blocks A and a band B of strain and damage localization. The material element is expanding in direction 1. a) normal band without shear strain, b) slant band with shear strain.

  depending on the material.The consequences of this necessary kinematic condition of planar macroscopic localization (NKCPML) are important. The yield locus must have a zone complying with Eq. (5). The larger this zone, the better the coalescence capability of the model. The yield locus of the Gurson model is plotted in Fig.3for a fairly large value f = 0.1. On the black curve, at large stress triaxiality, localization in a plane is impossible because p m a small part of the yield locus enables localization in a plane approximately perpendicular to the main loading direction. For a constant stress triaxiality, Eq. (5) is only obtained during a small transient in the history of the increasing void volume fraction f , as shown in Fig.4. For larger values of f , the yield locus shrinks to a quasi-circular ellipse until the ultimate state in which f = fU = fF = 0.44480, σm = σeq = 0. No particular direction stands out.At large stress triaxiality, the localization in the ultimate state is not planar but pointwise. The accelerated void growth rate of the GTN model, the pink arrow in Fig.3, does not change this behavior.

Figure

  Figure 3. Gurson-GTN model yield locus in the ) , ( eq m σ σ

  with shear strains, red arrows (slope -3/2) and blue arrows, respectively.

Figure 4 .

 4 Figure 4. Gurson-GTN model, evolution of the yield locus in the ) , ( eq m σ σ

.

  The red line corresponds to a constant stress triaxiality equal to 2, the red discs correspond to the slope -3/2 (NKCPML).With the Rousselier model in Figure3, close to the vertex

  Fig. 5 also shows that, for large void volume fraction, the yield locus is flat in the
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 5 Figure 5. Rousselier model, evolution of the yield locus in the ) , ( eq m σ σ
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Figure 6 .

 6 Figure 6. Rousselier model, evolution of the yield locus. Same as Fig. 5 with D1 = 3/2 in place of 2 1 = D

  Rousselier model. It results from the finite element discretization in the GTN model. For both models, discretization results in strain localization in finite volumes in the vicinity of integration points, generating a more or less flat layer with a finite thickness. Nevertheless, the response of the two models can be different, as mentioned in[START_REF] Besson | Modeling of crack growth in round bars and plane strain specimens[END_REF]: cup-cone fracture is more easily formed using the Rousselier model and it is related to the slope -3/2 at the vertex of the yield surface.It is observed that the necessary kinematic condition of planar macroscopic localization is achieved in a small part of the GTN yield surface, excluding large stress triaxiality, and that with increasing void volume fraction, this small part shifts towards smaller stress triaxiality. At the opposite, with the Rousselier model the necessary kinematic condition of planar macroscopic localization is achieved in a large part of the yield surface, including large stress triaxiality, and with increasing void volume fraction, this part includes all positive stress triaxiality. In a certain way, Rice and Tracey's and Thomason's models for void growth and void coalescence, respectively, are merged into the Rousselier model.The next section is devoted to multiscale modeling. It was mentioned in the introduction that the analytical form of Gurson's model makes it impossible to incorporate into self-consistent polycrystalline plasticity with a homogenized version of Eq. (

  equivalent material: the "blue grain" in Fig 11a. Unlike in CPFEM, grain geometry, grain boundaries and intragranular heterogeneities are not captured in this framework. In the grains 1 = g to N , with volume fraction g f and homogeneous stress tensor g to M slip systems are considered (e.g. for the FCC crystallographic structure, 12 = M octahedral slip systems {111}(100), for the BCC crystallographic structure, 24 = M slip systems).

  Figure 11. a) Classical self-consistent polycrystalline framework. HEM: homogenized equivalent material, INCL.: inclusion. Physical mechanism on the left, model on the right. b) HEMV: homogenized equivalent material with voids. c) With submicrometric voids in shear bands, in particular between large voids (void sheet or zig-zag fracture).

&

  of the t = 1 to M slip systems, and s α for kinematic hardening. Equation (12) defines a nonlinear kinematic hardening model with two parameters c and d . For large strain, experienced in particular in ductile fracture, it is necessary to combine at least two analytical curves in the isotropic hardening function s r . Luo and Rousselier (2014) combined two saturated terms (Voce); it does not seem necessary to use a non-saturated function (Swift) to obtain a non-saturated flow stress:

  system scale, the only two stress components are the resolved shear stress s τ and the normal stress ns σ . The Coulomb (1773) brittle fracture model is a simple linear function of the two scalar variables. The new Coulomb ductile fracture model is a generalization at the microscopic scale of the Coulomb brittle fracture model at the macroscopic scale (

  is a slow decrease (small parameter b ) of the critical stress with C cum γ, resulting in progressive stress softening with a significant dissipation of mechanical energy and eventually in strain localization. Parameters 0 for the plastic Eq. (10) and Coulomb Eq. (18) slip rates.The fracture model can be anisotropic because of the polycrystalline model framework (in particular anisotropic hardening). It is non-associated (when 0 0 ≠ c ) because the normal stress ns σ does not generate a normal strain rate.

4. 2 .

 2 Application to numerical simulation of laboratory specimens. 4.2.1. Ductile fracture of a thin Kahn specimen.

  Fig. 13, an excellent agreement is observed between the experimental and model tensile curves and thickness reduction curves.

Figure 14 .

 14 Figure 14. Finite element mesh of the KAHN specimen, thickness 2 mm. C3D15R and C3D20R reduced integration elements. Cartesian mesh at the notch tip (notch radius 60 µm), elements initial size: crack direction x=L 0.25 mm, loading direction y=T 0.20 mm, thickness 0.25 mm.

Figure 15 .

 15 Figure 15. Load -CMOD curves of the 2198-T8R aluminum KAHN specimen. CMOD = crack mouth opening displacement, S0 = 25x2 = 50 mm 2 . Small red points: experimental curve (cross head speed 0.1 mm/min). Numerical curves E-D-A-C-B correspond to increasing damage. Curves A-C-B are with submicrometric voids for various nucleation parameters.

Figure 16 .

 16 Figure 16. Damage variables at the KAHN specimen notch tip (located on the right of each figure), lower half of the specimen y≤0, deformed mesh. Clockwise from the upper left: 1) broken integration points showing the flat crack in the y = 0 plane and the shear lip on the front free surface z = 1 of the specimen, 2) void volume fraction f (maximum value the specimen: 0.210, the colors correspond to the bar under the figure), 3) cumulated value of the submicrometric void volume fractions, Eq. (14) (maximum value in the specimen: 0.157), 4)

  In this equation, tot f is the total volume fraction of Eq. (32). It enables to visualize the crack. The material behavior is then substituted with an elastic behavior with a very low stiffness (Young's modulus E = 1 MPa). The ultimate 40 values are u f = 0.25 and C u γ = 3. We emphasize that these ultimate values are not material parameters to be calibrated, contrary to f c in the GTN model. They just have to be large enough so that the load carrying capacity of the material is negligible. The simulation results depend little on these parameters: a second calculation of curve D1 of Fig 15 with u f = 0.15 and C u γ = 2 gives F/S0 = 169.258 MPa at CMOD = 0.8 mm, compared to F/S0 = 170.270 in Fig. 15;

(

  Figure 17. a) Isotropic reduced texture with N = 15 orientations, equal-area projection, orientation density (left) and {100} pole figure (right), the 3 poles of each orientation have the same color. True tensile curve representative of A508 steel at room temperature (red stars) and simulated curves in the x = RD (identical to z = TD) and y = ND directions (blue and green curves), with the reduced texture and the calibrated parameters. b) Euler angles and hardening parameters of Eqs (12) and (13). C and grd are the anisotropic "β model" parameters(Sai et al., 

  Figure 18. a) Mesh of the notch zone of AE4 round tensile specimen, center in red. C3D15R and C3D20R reduced integration elements. b) Half mesh y<0.

  Figure 19. Statistical distributions of carbide nucleation with strain. Red (Gaussian) and green

Fig. 20a shows

  Fig.20ashows the circular crack in the minimum section of the specimen (single layer of broken integration points, y<0) for 0 f = 0.0015, without submicrometric voids. A point is broken when

  , nevertheless the AE4 specimen experimental maximum load is 68.30 kN (corrected from the minimum section diameter 6 mm to 10 mm), very close to the values of Table 2. The experimental and numerical fracture behaviors cannot be compared because the parameter 1 σ and the element size in the loading direction ( c l = 1/3 mm) have not been calibrated. The final shear fracture in the notch area causes a sudden load drop (left red curve, f0 = 0.0015).When the sulfur content is large (left curves), the coalescence of the voids formed on the manganese sulfides occurs at small strains and only a small fraction of the carbides is nucleated and contributes to strain localization. Therefore, submicrometric voids have little effect on the fracture resistance of the steel: the blue curve (with carbides) is close to the red curve (without carbides) for f0 = 0.0015. The propagation rate (which determines the slope of the postinitiation curve) is a little larger with submicrometric voids than without. The effects of large contents of sulfur and carbon do not cumulate and the linear cumulative model used in safety rules seems much pessimistic. Conversely, at small sulfur content, the fracture strains are larger and the voids nucleated on carbides greatly reduce the ductility (right curves).

Figure 22 .

 22 Figure 22. Load-displacement curves of the AE4 notched tensile specimen. Effect of sulfur and carbon contents in the MnNiMo low alloyed steel (voids nucleated on manganese sulfides and carbides, respectively).

  for y = ND = {001}, y = TD = {010} and y = {111} loading directions. The 1/4 mesh is used for the {010} and {111} directions, although the symmetry of the reduced texture in the xz plane is then imperfect. The direction y = RD = {100} gives results identical to TD (symmetry of the reduced texture). The load maximums are 69.62-69.04-68.30 kN (Table

  different mechanical consequences. The necessary kinematic condition of planar macroscopic localization (NKCPML) is more or less "built-in" in the Rousselier model but it is less and less fulfilled with the GTN model at increasing stress triaxiality and void volume fraction. We have shown that this issue is overcome by finite element discretization that transforms pointwise and planar localization into volume localization. It can now be understood why both models are operational for laboratory specimen calculations. These new results are illustrated by Figs 3 to 6 and by the local analysis of Fig. 9. Because of its analytical form, only the Rousselier model can be integrated into the multiscale framework of self-consistent polycrystalline plasticity with a homogenized flow equation. Real textures are usually modeled by hundreds or more crystallographic orientations. Again the computational cost is prohibitive to perform numerous calculations. Not to mention CPFEM for
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 5 Figure 5. Rousselier model, evolution of the yield locus in the ) , ( eq m σ σ

Figure 6 .

 6 Figure 6. Rousselier model, evolution of the yield locus. Same as Fig. 5 with D1 = 3/2 in place of 2 1 = D

Figure 11

 11 Figure 11. a) Classical self-consistent polycrystalline framework. HEM: homogenized equivalent material, INCL.: inclusion. Physical mechanism on the left, model on the right. b) HEMV: homogenized equivalent material with voids. c) With submicrometric voids in shear bands, in particular between large voids (void sheet or zig-zag fracture).

Figure 12

 12 Figure 12. a) Reduced texture of the 2198-T8R aluminum sheet, Euler angles, frac = volumic fraction of the N = 12 model crystallographic orientations, 3 orthotropic components with 4 orientations each. Small black discs: EBSD measurements. b) Polycrystalline model parameters.

Figure 13 .

 13 Figure 13. Engineering tensile curves and thickness reduction curves in the longitudinal (00), diagonal (45) and transverse (90) directions of the 2198-T8R aluminum sheet. Experimental points and calibrated model curves. maximum elongation DL/L0 is applied in 100 s.

Figure 14 .

 14 Figure 14. Finite element mesh of the KAHN specimen, thickness 2 mm. C3D15R and C3D20R reduced integration elements. Cartesian mesh at the notch tip (notch radius 60 µm), elements initial size: crack direction x=L 0.25 mm, loading direction y=T 0.20 mm, thickness 0.25 mm.

Figure 15 .

 15 Figure 15. Load -CMOD curves of the 2198-T8R aluminum KAHN specimen. CMOD = crack mouth opening displacement, S0 = 25x2 = 50 mm 2 . Small red points: experimental curve (cross head speed 0.1 mm/min). Numerical curves E-D-A-C-B correspond to increasing damage. Curves A-C-B are with submicrometric voids for various nucleation parameters.

Figure 16 .

 16 Figure 16. Damage variables at the KAHN specimen notch tip (located on the right of each figure), lower half of the specimen y≤0, deformed mesh. Clockwise from the upper left: 1) broken integration points showing the flat crack in the y = 0 plane and the shear lip on the front free surface z = 1 of the specimen, 2) void volume fraction f (maximum value in the specimen: 0.210, the colors correspond to the bar under the figure), 3) cumulated value of the submicrometric void volume fractions, Eq. (14) (maximum value in the specimen: 0.157), 4) largest value of

Figure 17

 17 Figure 17. a) Isotropic reduced texture with N = 15 orientations, equal-area projection, orientation density (left) and pole figure (right), the 3 poles of each orientation have the same color. True tensile curve representative of A508 steel at room temperature (red stars) and simulated curves in the x = RD (identical to z = TD) and y = ND directions (blue and green curves), with the reduced texture and calibrated parameters. b) Euler angles and hardening parameters of Eqs (12) and (13). C and grd are the anisotropic "β model" parameters(Sai et al., 

Figure 18

 18 Figure 18. a) Mesh of the notch zone of AE4 round tensile specimen, center in red. C3D15R and C3D20R reduced integration elements. b) Half mesh y<0.

Figure 19 .

 19 Figure19. Statistical distributions of carbide nucleation with strain. Red (Gaussian) and green (constant with a critical strain εc = 0.5) for fN2 = 0.024, εN2 = 0.8 and σN2 = 0.1732. Blue: corrected Gaussian with fN2 = 0.024, εN2 = 0.7 and σN2 = 0.15; the vertical blue line at 0.5988 corresponds to 25% of the total volume fraction.

Figure 20. 0 f

 0 Figure 20. 0 f = 0.0015, without submicrometric voids: a) broken integration points, b) void volume fraction.

Figure 21. 0 f

 0 Figure 21. 0 f = 0.0001, with submicrometric voids: a) b) c) clockwise from upper left, equivalent plastic strain heterogeneity, maximum-mean-minimum values at crack initiation. d) total volume fraction of carbides having initiated a submicrometric void at complete failure (0.006 in the specimen center, 0.012 in the notch, 25% and 50% of fN2 = 0.024, respectively).

Figure 22 .

 22 Figure 22. Load-displacement curves of the AE4 notched tensile specimen. Effect of sulfur and carbon contents in the MnNiMo low alloyed steel (voids nucleated on manganese sulfides and carbides, respectively).

Figure 23 .

 23 Figure 23. Load-displacement curves of the AE4 notched tensile specimen (f0 = 0.0015). Latent hardening effect (ND tensile direction), tensile direction effect (for h = k = 0.1). All curves without secondary voids (fN2 = 0).

  

  

  , the general case of a slant band is shown. It can generate a shear strain rate

									12 ≠ p ε&	0
	and/or	13 ≠ p ε&	0	. Note that Hadamard's (1903) compatibility conditions only require that	33 p ε&	=	0	.
	Due to the additional strain rate terms, the equivalent strain rate p eq ε&	is larger than for a
	perpendicular band. The general necessary condition is	p eq m ε p ε & & ≤	/	2	

Table headings Table 1 .

 headings1 Porous plasticity and Coulomb fracture model parameters.

Table 2 .

 2 AE4 specimen numerical simulations. Maximum load and diametral contraction ∆Φc at crack initiation (first broken integration point).

& & &

Acknowledgments

The author would like to thank Prof. Yazid Madi from MINES ParisTech for valuable discussions and for experimental data and Prof. Romain Quey from Ecole Nationale Supérieure des Mines de Saint-Etienne for valuable discussions and for the density equal-area projection of Fig. 17

.

Figure captions

plane for parameters:

. Rousselier porous plasticity model yield surface (blue curve) for parameters:

NKCPML without and with shear strains, red arrows (slope -3/2) and blue arrows, respectively. 

. The red line corresponds to a constant stress triaxiality equal to 2, the red discs correspond to the slope -3/2 (NKCPML)