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Abstract   

 

The first phase of insulin secretion is altered during the early stages of diabetes and is 

followed by progressive loss of the ability of glucose to stimulate insulin secretion. The 

primary causes of insulin-secretory defects are still unknown. Better understanding of the 

signaling pathways linked to the activation of G-protein coupled receptors (GPCRs), and their 

mutual interactions in the β-cells remains crucial. This represents a prerequisite for any 

strategy to develop therapeutic tools that aim to modulate the insulin-secretory function 

and/or mass of β-cells. This review summarizes knowledge over the last two years on GPCRs 

functionally expressed in β-cells, which present key features for the development of therapy 

for type 2 diabetes. 
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Introduction 

 

Type 2 diabetes (T2D) is a serious health problem that affects million people worldwide [1]. 

The pathophysiology of T2D is characterized by insulin resistance and progressive 

impairment of β-cell function. The insulin resistance of T2D, although important for its 

pathophysiology, is not sufficient to establish the disease unless major deficiency of β-cell 

function co-exists [2]. Reduced β-cell mass has also been proposed to be associated with T2D 

[3]. Therefore, innovative therapeutic strategies aiming at preserving β-cell function and 

survival are of great interest to slow the progression or even to prevent T2D [4, 5].  β-cell 

dysfunction and death are caused by multiple stressors including chronic hyperglycemia 

(glucotoxicity), lipotoxicity, oxidative stress, endoplasmic reticulum (ER) stress, the 

formation of amyloid deposits, and proinflammatory cytokines [6]. Unfortunately, none of the 

currently and widely prescribed antidiabetic drugs favor the maintenance of endogenous 

functional β-cell mass, revealing an unmet medical need.  

In vivo, the insulin secretion is triggered by the circulating nutrients, mainly by the 

glucose [7, 8]. Glucose triggers insulin secretion when it is taken up into the β-cell through 

the glucose transporter 2 (GLUT2). When glucose is metabolized, the ATP/ADP ratio is 

increased. This results in the closure of the ATP-sensitive potassium channels and membrane 

depolarization which favors the opening of the voltage-gated calcium channels increasing the 

calcium influx within the β-cell. Elevation of the calcium concentration in the cytosol triggers 

insulin secretion (Figure 1) [8]. The glucose-induced insulin secretion is radically modulated 

in terms of amplitude by many factors such as hormones, growth factors, or neurotransmitters, 

the majority of which acts by activation or inhibition of intracellular signaling pathways 

engaged by seven membrane-spanning G-protein coupled receptors (GPCRs) or tyrosine 

kinase receptors. Activation of GPCRs results in different β-cell signaling, involving the 

cAMP/protein kinase A (PKA)/Epac, and the inositol triphosphate (IP3)/diacylglycerol (DAG) 

pathways, as well as changes in protein phosphorylation and protein acylation. The 

cAMP/PKA and the IP3/DAG pathways engaged during the activation of GPCRs are among 

the most important signaling pathways for the β-cell biology (Figure 1). Gαs mediates 

increases in intracellular cAMP associated with increased insulin secretion, while Gαi 

mediates decreases in intracellular cAMP and inhibition of insulin secretion. Gαq mediates 

increases in IP3 and DAG production through the activation of phospholipase C (PLC) 

associated with increased release of calcium (Ca2+) for the ER and enhanced insulin secretion 

[9, 10]. GPCRs control the dynamics of the exocytosis of insulin granules, to maintain the 

state of differentiation, and to regulate the β-cell survival programs [9]. Table 1 presents the 

GPCRs expressed in β-cells (in bold the GPCRs covered in this review). 

 

GLP-1 receptor 

 

Specific glucagon like peptide-1 (GLP-1) receptors (GLP-1R) are coupled to Gαs with 

subsequent activation of adenylate cyclase and elevation of cAMP levels in β-cells. When 

activated, GLP-1R potentiates glucose-induced insulin secretion through cAMP production.  

GLP-1R is a key target for T2D treatment [11].   
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Beyond Gαs coupling to cAMP production, GLP-1R undergoes agonist-mediated 

endocytosis. Over the last two years, the consequences of modulating GLP-1R endocytic 

trafficking were investigated. Using a targeted RNAi screen strategy, Buenaventura and 

colleagues identified key modulators of GLP-1R endocytic trafficking and signaling that may 

provide novel targets to increase insulin secretion in T2D [12]. Clathrin, dynamin1, AP2, 

sorting nexins (SNX) were found to increase while huntingtin-interacting protein 1 (HIP1), 

HIP14, GASP-1, and Nedd4 were shown to decrease insulin secretion in response to the GLP-

1 analog exendin-4. HIP1 couples the cell surface GLP-1R activation with clathrin-dependent 

endocytosis. SNX proteins control the balance between GLP-1R recycling and lysosomal 

degradation regulating the β-cell responses to GLP-1 [12]. A series of biased GLP-1R 

agonists with variable propensities for GLP-1R internalization and recycling were tested. 

Compounds that prompt less GLP-1R internalization and retain the receptor at the plasma 

membrane were reported to favor greater and long-term glucose-induced insulin secretion. 

These compounds elicited glycemic benefits in mice [13]. Translocation of active GLP-1Rs 

into liquid-ordered plasma membrane nanodomains were also found to be essential for 

optimal coordination of clathrin-mediated endocytosis and intracellular signaling. Biased 

GLP-1R agonists and small molecule allosteric modulators were described to both influence 

GLP-1R nanodomain internalization and signaling. These molecular processes may be 

relevant to GLP-1R actions in β-cells and might be therapeutically targetable [14, 15].  

 

Glucagon and somatostatin receptors 

 

The islet hormones glucagon and somatostatin affect β-cell function through paracrine effects 

within the islets: glucagon released from α-cells stimulates insulin secretion and somatostatin 

released from δ-cells inhibits insulin secretion. Somatostatin from δ-cells acts on SSTR2 

receptor coupled to Gi/Go proteins, which results in the inhibition of adenylate cyclase 

activity and a decrease in cAMP production. δ-cells and the paracrine interaction between the 

δ-cells and β-cells were shown to be essential for neonatal survival, normal islet function and 

glucose homeostasis [16]. Glucagon receptors (Gcgr) are also expressed on β-cells, and 

glucagon stimulates insulin secretion. Binding of glucagon results in the activation of Gαs, 

adenylate cyclase activity and in an increase in cAMP production. Rodriguez Diaz and 

colleagues confirmed that glucagon secreted by α-cells plays a major role in regulating the 

neighboring β-cell through paracrine interactions [17].  

 

Lipid-binding GPCRs 

 

Activation of GPR40 is known to potentiate glucose-induced insulin secretion from β-cells 

and enhances incretin hormone release from enteroendocrine cells of the small intestine. 

When activated by long-chain free fatty acids such as palmitate and oleic acid, GPR40 

stimulates PLC through Gαq coupling. The IP3 pathway was found to play an important role 

in GPR40-mediated potentiation of glucose-induced insulin release in β-cells [18]. Full 

agonist and synthetic small-molecule superagonists of GPR40 enhancing insulin secretion in a 

glucose-dependent manner in vitro and in vivo were recently described [19-21]. A light-
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controllable GPR40 agonist (FAAzo-10) was reported to be a useful tool to investigate the 

effects of fatty acids-derivatives in mouse β-cell function [22]. 

Activation of the G-protein coupled receptor 119 (GPR119) expressed in β-cells and intestinal 

L cells both stimulates insulin secretion and GLP-1 release. Activation of GPR119 in β-cells 

by lysophosphatidylcholine and oleoylethanolamide increases cAMP and insulin secretion. 

Investigations in GPR119 drug discovery were conducted, and novel structural diverse small 

molecules modulators of GPR119 were recently found [23, 24]. 

Free Fatty Acide Receptor 4 (FFAR4) also called GPR120 is also expressed in β-cells. 

Activation of GPR120 stimulates Akt/ERK1/2 and PLC/Ca2+ signaling pathways and 

regulates insulin secretion, suggesting GPR120 as a valuable therapeutic target for T2D [25]. 

The adhesion G-protein coupled receptor 56 (GPR56) is the most abundant islet-expressed 

GPCR, indicating a potential role in pancreatic islet function. Olaniru and colleagues reported 

that this GPCR can be activated by its endogenous ligand extracellular matrix collagen III, 

and when activated increases insulin secretion [26]. 

The role of free fatty acid receptor 2 (FFAR2)/G-protein coupled receptor 43 in mediating the 

effects of the short chain fatty acids sodium acetate (SA) and sodium propionate (SP) on islet 

function was recently investigated. This GPCR was shown to mediate both the stimulatory 

effects of SA and SP on insulin secretion and their protective effects against apoptosis [27].  

 

Neurotransmitter receptor 

 

Activation of the parasympathetic nerves stimulates insulin secretion. The major 

parasympathetic neurotransmitters are acetylcholine (Ach), vasoactive intestinal polypeptide 

(VIP), pituitary, adenylate cyclase activating polypeptide (PACAP) and gastrin releasing 

peptide (GRP) [28]. M3 muscarinic ACh receptors (M3Rs) are functionally expressed in β-

cells and enhance insulin secretion via coupling to Gαq activating PLC. A positive allosteric 

modulator (PAMs) of M3R function was found to improve glucose homeostasis in mice by 

promoting insulin secretion, suggesting that M3R PAMs may become clinically useful as 

novel antidiabetic agents [29]. 

 

Novel GPCRs expressed in β-cells 

 

GPR55 is a cannabinoid receptor coupled to Gαq signaling. GPR55 activation was shown to 

increase glucose-induced insulin secretion, to decrease ER stress-mediated apoptosis, to up-

regulate anti-apoptotic genes such as Bcl-2 and Bcl-xL, and to induce the 

phosphorylation/activation of the transcription factor cAMP Response Element Binding 

protein (CREB) crucial for β-cell survival [30, 31].  

A class A of GPCR family, GPR142, has been recently reported to be highly expressed in β-

cells, and to play a role for the maintenance of β-cell function and the potentiation of glucose-

stimulated insulin secretion [32-34]. 

The Trace amine-associated receptor 1 (TAAR1) is a GPCR expressed in β-cells. Following 

activation, TAAR1 was shown to be coupled to Gαs-signaling pathways enhancing 
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PKA/Epac-dependent insulin secretion, mitogen-activated protein kinase (MAPK), CREB 

signaling and β-cell proliferation [35]. 

The olfactory receptor chemo-sensing machinery was reported to be functional in β-cells and 

to regulate the insulin secretion. Olfactory receptor isoforms were found to be expressed in 

pancreatic islets and in a β-cell line (i.e. MIN6) including OLFR15 and OLFR821. A 

medium-chain fatty acid contained in food, octanoic acid, which interacts with OLFR15, 

potentiates glucose-stimulated insulin secretion, and improves glucose tolerance in vivo [36]. 

 

New technologies to investigate GPCR expression and signaling 

 

A microfluidic system allowing the registration of intracellular signaling dynamics and 

hormone secretion within the pancreatic islets was developed and confirmed differences in 

GPCR signaling pathways between human β- and α-cells [37]. 

Using quantification of mRNAs encoding all peptide ligands of GPCRs in isolated human and 

mouse pancreatic islets, Atanes and coworkers proposed detailed islet GPCR peptide ligand 

atlases favoring the identification of GPCR/peptide signaling pathways relevant for human 

islet physiology [38]. 

Quantitative markers to investigate and to evaluate the β-cell mass in human pancreas are still 

lacking. GPR44 was recently proposed as a putative marker for β-cells, and potential target 

for visualization of β-cell mass. Development of ligands in clinical testing is now needed to 

further investigate the role of GPR44 as a surrogate marker for β-cell mass in humans [39]. 

 

Toward the development of new therapy for T2D: Dual agonist and triagonist strategy to 

activate GPCRs 

 

Current pharmacological therapies that target single GPCR were reported to exert limited 

efficacy for T2D treatment. It is important to note that novel approaches with hybrid peptides 

designed that activate more than one GPCR at once in order to generate beneficial effects 

through synergistic actions have shown great promising results for T2D treatment. 

Unimolecular dual and tri-agonists, mainly associated with GPCRs like GLP-1/Glucagon/GIP 

receptors, have shown great efficacy in preclinical models to preserve insulin secretion. 

Theses unimolecular dual and tri-agonists are currently being evaluated in clinical trials to 

study their safety and beneficial effects in humans and T2D patients [40-45]. 

 

Signaling crosstalks between GPCRs, tyrosine kinase and sulfonylurea receptors 

We and others reported signaling crosstalks between GPCRs and tyrosine kinase receptors 

controlling β-cell function and survival. Regulation of FFAR4 (GPR120) by activation of 

receptor tyrosine kinases was recently reported. Insulin, insulin-like growth factor-1, 

epidermal growth factor, and to a lesser extent, platelet-derived growth factor, were found to 

induce GPR120 internalization. Whether this new evidenced signaling crosstalk between 

FFAR4/GPR120 and tyrosine kinase receptors is functional and plays a role in β-cell function 

remain to be studied [46].  
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Recently, Hart and colleagues demonstrated that multivalent activation of different type of 

receptors such as GLP-1R and sulfonylurea receptors modulated β-cell cAMP and calcium 

second messengers and increased glucose-stimulated insulin secretion in a dose-dependent 

manner [42]. β-Arrestin 1 and β-Arrestin 2 are well described as intracellular scaffold and 

signaling molecules regulating key functions of GPCRs, such as desensitization and 

internalization. Recently, Barella and colleagues reported that β-Arrestin 1 enhanced 

sulfonylurea stimulated insulin secretion by promoting sulfonylurea-mediated activation of 

Epac2. β-Arrestin 1 was found to directly interact with Epac2. Sulfonylurea such as 

glibenclamide promoted β-Arrestin 1/Epac2 complex formation, triggering enhanced Rap1 

signaling and insulin secretion. Strategies aimed at promoting β-Arrestin 1 signaling in β-cells 

may prove useful for the development of efficacious antidiabetic drugs targeting not only 

GPCRs but also sulfonylurea receptor [47]. 

Conclusion 

 

GPCRs expressed in β-cells receive considerable attention because of their potential as targets 

in drug development for T2D treatment. Over the next few years, the complex 

interdependencies between the different messengers and signaling pathways engaged by the 

activation of GPCRs in β-cells that regulate and shape the insulin secretory response have to 

be considered. In addition, GPCRs with known ligands need to be further studied in terms of 

ligand specificity, intracellular signaling, endocytic trafficking and recycling.  
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Figure Legend 

 

Figure 1. Insulin secretion induced by glucose and modulated by GPCRs. After its entry 

in β-cells, glucose is metabolized by glycolysis leading to production of pyruvate. Pyruvate 

enters Krebs cycle in mitochondria increasing ATP/ADP ratio. This favors the closure of 

ATP-sensitive potassium (KATP) channels, membrane depolarization triggering calcium 

entry through the opening of voltage-gated calcium channels (VGCC) leading to insulin 

secretion. G-protein coupled receptors (GPCRs) coupled to Gαq and Gαs proteins act on 

phospholipase C (PLC) and adenylate cyclase (AC) respectively. Inositol triphosphate (IP3), 

diacylglycerol (DAG) stimulate protein kinase C (PKC) while cAMP production activates 

protein kinase A (PKA) and Epac which potentiate the glucose-induced insulin secretion. Gαi 

coupling leads the inhibition of AC, reducing cAMP production and decreasing insulin 

secretion. 
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Table 1 

 

   

 

Receptor 

 

Ligand 

 

G protein 

signaling 

Effect on  

  Insulin  

Secretion 

 

B2 

Gcgr 

GIPR 

GLP-1R 
GPR30 

GPR39 

GPR56 

GPR119 

GPR120 

TGR5 

TAAR1 

PAC1 

P2Y 

VPAC2 

 

A2 

CB1R 

GHS-R 

GPR44 
NPYR 

SSTR2 

Y1 

 

AT1 

CCK1 

FZD 

GPR39 

GPR40 

GPR43 

GPR54 

GPR55 

GPR142 

IL-6R 

M3R 

OLFR15 

HTR2B 

V1B 

 

Noradrenaline 

Glucagon 

GIP 

GLP-1RA 

Estogen 

Obestatin/Zn2+ 

Collagen III 

Fatty Acid 

Fatty Acid 

Oleanic Acid 

Trace Amine 

PACAP 

ATP/ADP 

VIP/PACAP 

 

Noradrenaline 

Cannabinoids 

Ghrelin 

Prostaglandin D2 

Peptide YY 

Somatostatin 

Neuropeptide Y 

 

Angiotensin II 

CCK 

Carbamazepine 

Obestatin/Zn2+ 

Fatty Acid 

Fatty Acid 

Kisspeptin 

Cannabinoids 

Rhodopsin 

IL-6 

Acetylcholine 

Octanoic Acid 

Serotonin 

Vasopressin 

Gαs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gαi 

 

 

 

 

 

 

 

Gαq 

Stimulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inhibition 
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