
HAL Id: hal-03493157
https://hal.science/hal-03493157v1

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Applications of predictive modeling techniques to fungal
growth in foods

Philippe Dantigny

To cite this version:
Philippe Dantigny. Applications of predictive modeling techniques to fungal growth in foods. Current
Opinion in Food Science, 2021, 38, pp.86 - 90. �10.1016/j.cofs.2020.10.028�. �hal-03493157�

https://hal.science/hal-03493157v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Applications of predictive modeling techniques to fungal growth in foods 

 

Philippe Dantigny 

 

Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, 

France 

Corresponding author: Dantigny, Philippe (philippe.dantigny@univ-brest.fr) 

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2214799320301181
Manuscript_6f78e5f08ae7bbdde61e4aa38c18de25

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2214799320301181
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2214799320301181


 

 

1. Introduction 

 

The objective of this mini-review is to guide microbiologists through the selection and 

implementation of suitable predictive models for specific mold growth applications. Most food 

microbiologists including mycologists are not familiar with modelling techniques while people 

involved in modelling are unaware of mold specificities. As compared to bacteria, the development 

of mold is characterized by distinct features, such as the ability to form mycelium and to produce 

asexual conidia and sexual spores for some species [1●●]. Several fundamental laws that have been 

developed in the process control field [2], can be extended to process modelling as, i/ the simplest 

model that described the data satisfactorily is the best, ii/ you must understand the process before 

you can model it. A model cannot describe all complexities of a system. Therefore, it is necessary to 

determine the relevant biological responses and select the most significant factors that impact these 

responses, in addition to attaining proven predictive capacity. 

 

2. Biological responses 

In a recent paper [3], the major fungal responses were listed, inactivation, growth, germination, and 

production of metabolites, mycotoxins mainly. Modeling the effect of environmental factors on 

mycotoxins concentration was addressed recently [4●●,5●●]. The biological responses and the model 

parameters that should be determined with respect to the studied phenomenon are reported Table 

1. Primary models are kinetic and describe how biological responses vary with time, secondary 

models describe how primary model parameters depend on environmental and biological factors. 

  

3. Model characteristics and requirements 

3.1. Primary models 

Simplicity is the first quality. A simple linear model with breakthrough is widely used by mycologists 

to determine the fungal growth rate, µ (mm/h).  

 for t > λ        Eq (1) 

where r (mm) the radius of the colony, r0 (mm) the radius of the inoculation suspension droplet or 

agar plug, λ (h) the lag time for growth and t (h) the time. In more than 9 cases out of 10, the linear 



model described the kinetics satisfactorily with r2 greater than 0.995. Bacteriologists are using the 

Baranyi’s model, which has been developed to describe the decrease in the growth rate in liquid 

medium due to substrate limitation. In one case out of 10, a decrease in the fungal growth rate is 

noticed, especially for long incubation duration. In such a case, the Baranyi’s model can be used. 

with        Eq (2) 

     Eq (3) 

It appears that this model is rather complex, the significance of the parameters can be found 

elsewhere [6]. By omitting the logarithmic terms in Eq (2-3), the Baranyi’s model leads to the linear 

one [7]. Applying the first law reported in the introduction, the linear model is simple and should be 

preferred to the Baranyi’s one.  

Model accuracy is the second quality. Accuracy is evaluated by the goodness of fit and the 

quality of the parameter estimates by means of the (root) mean square error, (R)MSE, and the 95% 

confidence intervals, respectively. Usually accuracy is the only criterion to choose a model. This is not 

a good approach because the “best” model can depend on the studied organism. 

 Versatility is the third quality of a model. Although the shape of the curves obtained by 

plotting biological responses versus time are different, the same model should be used to compare 

the same parameters. Depending of the experimental conditions such as a water stress, germination 

curves can be either asymmetric or symmetrical. For this reason, a versatile model capable to fit both 

shape of curves was proposed recently [8].  

          Eq (4) 

where P(%) the percentage of germinated spores, Pmax (%) the maximum percentage of viable spores, 

τ (h) the germination time, d(-) a shape parameter. 

The model described Eq (4) is asymmetric but tends to be symmetrical as the shape parameter d 

increases.  

The Weibull model, Eq (5) was used for describing the effect of ethanol vapour on the inactivation of 

three Penicillium species [9], Figure 1: 

          Eq (5) 



Depending of the value of the shape parameter β (-), the inactivation curve can be upward concave 

(β>1) or downward concave (β<1). Therefore, the Weibull model allows the comparison between 

different kinetics by means of the same parameters. 

 Fitness is the fourth model quality. The model should fit the experimental data with a correct 

shape. The effect of pH on the growth rate of chalk yeasts [10], illustrates this concept. pH has 

almost no effect on the growth rate in a wide range, pH 3-7, Figure 2. The cardinal model with 

inflection, CMI, is based on the cardinal values, pHmin, pHmax, minimum and maximum pH at which no 

growth occurred, respectively, and pHopt, pH at which growth is the greatest.  

   Eq (6) 

A plateau can be observed, therefore there is no precise pHopt value. For this reason, a specific model 

to describe plateau based on pH-1/2 and pH+1/2, acid and alkaline pH at which µ=µopt/2, was 

developed. 

      Eq (7) 

where d (-) a design parameter. 

The lack of fitness of the CMI leads to an overestimation of the optimal growth rate, Fig. 2. The 

estimated µopt value was 1.25 mm/day by the CMI, whereas the “true” value was around 1.00. 

 

3.2. Secondary models 

Previous sections of this paper were concerned with primary models. All parameters listed in Table 1 

depend on many factors such as environmental conditions, i.e., pH, water activity, gas composition, 

inhibitors concentration according to secondary models. The great majority of these models aimed at 

modelling the effect of these factors on the radial growth rate. 

3.2.1. Environmental factors 

Polynomial models were widely used to describe the effect of environmental factors on the radial 

growth rate [11●]. These polynomial models are very versatile but their parameters are not 

comparable in biological or physical terms. Therefore, their changes are not intuitive for mycologists. 

In contrast to polynomial models, secondary models, based on cardinal limits for growth or minimal 

inhibitory concentrations, MIC, were developed for fungi. 



A cardinal model with inflection [12] was proposed to describe the effect of temperature on bacterial 

growth rate based on three cardinal parameters (Tmin, Topt and Tmax). At Topt the growth rate (µopt) is 

optimum. The min and max sub-indices correspond to values below and above no growth occurs. 

This model extended its use to describe the effect of water activity on the fungal growth rate [13]. 

Eventually, it was suggested to set the maximum water activity to 1 (pure water) [14●]. The final 

model consisted of only three parameters, i.e., awmin, awopt and µopt.  

 

   Eq (8) 

In its normalized form, the ratio µ/µopt varies between zero to one, and the right hand-side of 

Equation (8) is named γ (aw).  

 

3.2.2. Inhibitory molecules 

Ethanol is used in the bakery industry at low concentrations to inhibit mold growth in food products. 

The inhibitory effect of ethanol [15] was described by a model, Eq (8) capable to fit either upward or 

downward concave shape curves, by means of a design parameter, K (%). The right hand side of Eq 

(9), γ(E), is a gamma function for ethanol. 

         Eq (9) 

E(%) was the ethanol concentration, and Emax (%) represented the MIC value for ethanol. The studied 

species exhibited MIC values in the range 2.14-6.43%.  

Fungicides prepared from copper sulfate are used in vineyards against downy mildew (Plasmora 

viticola) and Botrytis cinerea. In contrast to ethanol, the inhibitory effect of copper sulfate 

concentration on the radial growth rate of B. cinerea and Penicillium expansum [16] exhibited a S-

shaped curve, Fig. 3, and accordingly was described by another model, Eq (10). 

         Eq (10) 

Cu (mM) was the fungicide concentration, Cu50 (mM) the concentration at which µ=µopt/2, and d (-) a 

design parameter. The right hand side of Eq (10), γ(Cu), is a gamma function for copper sulfate 

concentration. These models are potentially useful to combine the effect of inhibitors and 

environmental factors because they are compatible with the gamma concept. 



 

3.3. Gamma concept 

The gamma concept [17●] was introduced to describe the combined effect of various environmental 

factors on the relative growth rate, µ/µopt. For example, the combined effect of water activity and 

temperature could be expressed as: 

        Eq (11) 

By using the gamma concept, the effect of each factor could be assessed independently from the 

others. Usually the gamma functions are based on parameters that are independent from the 

medium such as cardinal values. In a first step, these parameters can be estimated on synthetic or 

semi-synthetic medium. Then in a second step, the only parameter, µopt, that depends on the 

medium or the food product can be calculated. This approach demonstrated its suitability for 

predicting the growth of B. cinerea and P. expansum on grape berries as a function of T and aw [18●], 

and the growth of chalk yeasts on bread as a function of T, aw and pH [19]. 

 

4. Mould-free shelf-life of food products 

Fungal growth rate is not the major biological response to be considered [3] for determining the 

mould free shelf-life of food products. In this case, the time for visible growth, tv (d), is more relevant 

because a food product is considered to be spoiled when the mould colony is visible, say 2-3 mm. 

Food products are usually contaminated by a low number of conidia after processing. The mould-free 

shelf life of food products is usually assessed by adding a known number of spores at the same spot. 

In contrast to the fungal growth rate, the time to visible growth depends greatly on the inoculum size 

[20]. The model parameters can be estimated for inoculum size in the range 102-105 spores/spot, 

then tv can be determined with the model for 1 spore/spot by extrapolation [21]. However, it does 

not make sense to determine tv for a single spore. Due to biological variability within a population of 

spores, different statistical distributions (Exponential, Normal, Lognormal, Weibull, Logistic or Pareto) 

of tv can be applied. It was reported that at 53° Brix, 0.883 aw, the 95th percentile tv was four fold the 

5th percentile for Byssochlamys fulva [22●●]. 

 

5. Conclusion 

Last, but not least, the physiological state is the neglected factor. In the laboratory, fungal spores are 

produced under optimal conditions, then partially re-hydrated for obtaining standardized spore 

suspensions [23●]. In contrast to lab spores, spores present in the air that are a major source of 



contamination of dairy [24] and bakery [25] products are un-hydrated. It was shown that hydration 

modify greatly and rapidly the physiological state of fungal spores [26], thus affecting the distribution 

of the germination time among a population of spores. Because germination time can represent up 

to one fourth of the time to visible growth [21], the time to visible growth should be estimated by 

inoculating airborne conidia at the surface of dairy and bakery products [27]. It can be concluded that 

many of existing data reported in the literature may be biased because no sufficient attention has 

been paid to the impact of the physiological state on biological responses. 
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Fig. 1: Survival curves of dry-harvested conidia of Penicillium chrysogenum exposed to 

ethanol vapour, (�) 0.7 kPa, (�) 1.5 kPa, (�) 2.8 kPa, (�) 4.6 kPa, (�) 7.5 kPa. (Dao et al., 

J. Appl. Microbiol, 109, 408-414, 2010) 

 



 

 
 

 

 

 

 

 

 

 

 

 

Fig 2 : Influence of pH on the growth of Hyphopichia burtonii. Broken line: cardinal model 

with inflection. Solid line: plateau model. Adapted from Dantigny et al., 2014 [19]. 

 

 

 

 

 



 

 
Fig. 3: Effect of copper concentration on the radial growth rate of Botrytis cinerea (Adapted 

from Judet-Correia et al., Lett. Appl. Microbiol, 53, 558-564, 2011) 



Table 1: Structure of primary models used in predictive mycology. 

Phenomenon Biological response Model structure Biological parameters 

Inactivation Number of survivors :  

N (spores/ml) 

Log (N) = f(t) Inactivation rate:  

k (min-1) 

Growth Radius of the colony : r (mm) r = f(t) Radial growth rate: 

µ (mm/d) 

Germination Percentage of germinated spores: 

P (%) 

P = f(t) Germination time: τ (h) 

Viability: Pmax (%) 
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