
HAL Id: hal-03493141
https://hal.science/hal-03493141

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

FEMS – A Mechanics-oriented Finite Element Modeling
Software

Modesar Shakoor

To cite this version:
Modesar Shakoor. FEMS – A Mechanics-oriented Finite Element Modeling Software. Computer
Physics Communications, 2021, 260, pp.107729 -. �10.1016/j.cpc.2020.107729�. �hal-03493141�

https://hal.science/hal-03493141
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

FEMS – A Mechanics-oriented Finite Element Modeling Software

Modesar Shakoora,b,∗

aIMT Lille Douai, Institut Mines-Télécom, 941 rue Charles Bourseul, CS 10838, F-59508 Douai, France
bUniversité de Lille, F-59000 Lille, France

Abstract

This paper is a presentation of a Finite Element Modeling Software named FEMS that integrates
mesh generation and adaption features in order to alleviate significantly the difficulty of designing
a Finite Element (FE) mesh for a particular problem. FEMS is targeted at engineers and scien-
tists addressing localization problems in mechanics, although it should be suited to many other
applications.
FEMS is particularly relevant for problems with internal interfaces, both in solid and fluid me-
chanics, as it has both explicit and implicit interface representation. The former can be generated
from signed distance functions using body-fitted meshing capabilities implemented in FEMS, while
the latter relies on the level-set method. The choice between the one or the other can be made by
the user depending on the severity of deformations in the neighborhood of an interface.
During the simulation, FEMS adapts the FE mesh automatically to achieve the best accuracy
for a prescribed number of nodes. This is possible for both linear and quadratic interpolation.
Additionally, in an updated Lagrangian setting, FEMS triggers mesh adaption automatically to
avoid element flipping during node motion.
The capabilities of FEMS are demonstrated in this paper for fluid and solid mechanics problems
featuring turbulence, multiphase flow, large deformations and plasticity. This wide range of prob-
lems that can be handled by FEMS should prove its great interest for the computational mechanics
commmunity.

Keywords: finite elements, computational mechanics, mesh adaption, level-sets

PROGRAM SUMMARY
Program Title: FEMS
Licensing provisions: GNU General Public License version 3 (GPLv3)
Programming language: C/C++

Nature of problem(approx. 50-250 words): Partial differential equations in one, two or three di-
mensions of space related to computational mechanics and used to model large deformations, nonlinear
material behavior, incompressibility, heat transfer, turbulent and/or multiphase flow with surface tension
Solution method(approx. 50-250 words): Finite element method, higher-order elements, mixed and varia-
tional multiscale formulations, level-set method, error estimators, isotropic and anisotropic unstructured
mesh adaption, image meshing (from microscopy or tomography sources)
Additional comments including Restrictions and Unusual features (approx. 50-250 words): Shared-memory

∗Corresponding author.
E-mail address: modesar.shakoor@imt-lille-douai.fr

Preprint submitted to Computer Physics Communications August 26, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0010465520303593
Manuscript_43334c21c9f07b4649b1539dd3bc5e6c

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0010465520303593
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0010465520303593

(OpenMP) parallelism, GPU-accelerated, unstructured mesh adaption to the finite element solution, the
software is compatible with many element types but its mesh adaption feature is restricted to trian-
gles/tetrahedra

1. Introduction

The Finite Element (FE) method is a numerical method that has been developed since the
middle of the 20th century to address civil and mechanical engineering problems under the as-
sumptions of continuum mechanics. Prolific scientific research has demonstrated that this method
will play a key role in addressing current and future challenges in computational mechanics:

• A wide range of mechanisms have been modeled using the FE method (e.g., laminar and
turbulent flow [1], small and large deformation of structures [2, 3], multiphase flow with
surface tension [4], nonlinear material behavior [5], fracture [6, 3]).

• The FE method can be used to model advanced materials of increasing complexity, with
material laws that can even be computed on-the-fly using computational homogenization
thanks to promising developments such as the FE2 approach [5].

• With a proper mesh generation tool, it can be used to model domains with very complex
geometry and morphology, even in the presence of internal interfaces [7].

• It can be applied at the macroscale as well as at the microscale or at any scale where
continuum mechanics assumptions apply. Internal interfaces may be explicitly represented
using a body-fitted FE mesh or implicitly represented using for instance Level-Set (LS)
functions [6, 3].

• It is compatible with parallel computing on shared- and distributed-memory architectures, as
well as on Graphical Processing Units (GPUs) [8]. As the number of cores in supercomputers
keeps increasing, this is of major importance for a numerical method.

Although the FE method is quite simple to implement, the design of an FE code is often
elaborated carefully so that the code can be modified and improved by mechanical engineers that
do not necessarily have a scientific computing background. For instance, most commercial FE
codes allow the user to add material laws quite easily through so-called user material subroutines
without requiring a thorough understanding of the underlying FE code.

In this paper, a Finite Element Modeling Software named FEMS (pronounced fems, as a single
word) that has been designed with a similar ambition in mind is presented. This ambition is to
alleviate significantly the difficulty of designing an FE mesh for a particular problem, which is often
the most time consuming part of an FE analysis [9]. FEMS is targeted at engineers and scientists
addressing localization problems (e.g., turbulence and boundary layers in fluid dynamics, shear
bands and fracture in solid mechanics).
The technology used to alleviate the mesh design difficulty is adaptive mesh generation and adap-
tion. The method implemented in FEMS is described in Sec. 2, while details on the software itself
are given in Sec. 3. Illustrative examples are assessed in Sec. 4.

2

2. Method

In computational mechanics, numerical methods are required to provide a discretization of the
geometry of the domain, which may include internal interfaces, and a discretization of various
mechanical variables including displacements, velocities, stresses, and pressures. Additionally,
equations featuring these variables and their partial derivatives must be solved.

2.1. Geometry approximation

For a domain Ω ⊂ Rd, d = 1, 2, or 3 being the space dimension, the discretization in the FE
method as considered in this paper consists in an FE mesh, which is a set of line segments in 1D,
triangles or quadrangles in 2D, and tetrahedra or hexahedra in 3D. These different elements carry
a number of nodes, which at least include their vertices. Nodes may also be placed at the middles
of an element’s edges (P2 and Q2 interpolation), or even inside it (higher-order interpolation).
In the following, the set of all nodes of a given FE mesh is denoted N . A unique global number
n ∈ N identifies each node, while the coordinates of this node are given by An ∈ Ω. The set of
all elements is denoted T , and an element K is defined by its nodes set N (K). A local number
nK ∈ N (K) identifies each of an element’s nodes. The connectivity operator ΠK is defined to
associate each local identifier to a global one, for instance n = ΠK(nK) is the global identifier of
the node with local identifier nK in element K.

In a body-fitted FE mesh, the geometry’s boundary as well as all internal interfaces are explicitly
represented by the faces of some elements. Note that the word faces herein means vertices in 1D,
edges in 2D, and actual faces in 3D. For some large deformation problems in mechanics, the
deformation is computed in different steps, nodes coordinates (An)n∈N being updated at each step
t→ t+ ∆t so that to follow the mechanical deformation of the geometry, namely

∀n ∈ N ,An(t+ ∆t) = An(t) + ∆un(t), (1)

with ∆un the incremental displacement vector at node n. This so-called updated Lagrangian set-
ting, or in short Lagrangian mesh, is difficult to implement when deformations become too large
and too complex as is often the case in fluid mechanics.
An Eulerian mesh is usually preferred in fluid mechanics, which means that nodes coordinates re-
main constant throughout the simulation. If there are internal interfaces, they must be represented
and convected by other means to follow the deformation of the geometry. This can be achieved
by the LS method [10], where any internal interface is implicitly represented by the zero iso-level
of a so-called LS function, which is a signed distance function. For instance, if at an instant t the
domain Ω(t) is split into two parts Ω1(t) and Ω2(t) separated by an interface Γ1,2(t), LS function
φ is defined by

φ(x, t) =


+dist(x,Γ1,2(t)), x ∈ Ω1(t),
−dist(x,Γ1,2(t)), x ∈ Ω2(t),
0, x ∈ Γ1,2(t),

(2)

and is advected at each step by solving the advection equation

∂φ

∂t
+ v.∇φ = 0, (3)

3

with v the velocity vector field. This equation must be coupled to an LS reinitialization method
in order to ensure that φ remains as close as possible to a signed distance function as per Eq.
(2). This is achieved in FEMS using geometric reinitialization. Examples of explicit and implicit
interface representations are shown in Fig. 1.

(a) (b)

Figure 1: Comparison of the same geometry with internal interfaces: (a) explicitly represented in a body-fitted FE
mesh, (b) implicitly represented as the zero iso-level (in red) of an LS function.

2.2. FE solvers

The discretization of known and unknown variables is defined by their values at nodes of the
FE mesh. A partial differential equation can be solved through numerical integration of its weak
form and the solution of the resulting linear or nonlinear algebraic problem. The reader is referred
to FE textbooks for more details on the FE method, its implementation, and its applications
[11, 12, 13].
For instance, solid mechanics problems solved in Subsec. 4.3 using a Lagrangian mesh involve the
incremental displacement vector field ∆u, and also the pressure field p in the incompressible case.
Fluid mechanics problems solved in Subsec. 4.2 using an Eulerian mesh involve the velocity vector
field v, the pressure field p, and also an LS function φ for two-phase flow cases.

FEMS integrates FE solvers for diffusion, reaction, convection equations and any combinations
of those, as well as solvers for the Stokes equations, the Navier-Stokes equations for Newtonian
incompressible flow, and static balance equations for linear elasticity, von Mises elasto-plasticity,
and hyperelasticity. Those solvers are fully compatible with P1, P2 and higher-order elements, as
well as Q1 elements (i.e., quadrangles in 2D and hexahedra in 3D).
Time discretization in FEMS is always operated with the backward Euler method. This method
has been shown to be inaccurate when using large time steps [4]. Higher-order methods shall be
integrated in FEMS in the future. In addition, time discretization is more complex for coupled
problems and this is hence clarified in the sequel. Linear algebra solvers used to solve the associated
linear problems are presented in Par. 3.2.2.

4

2.2.1. Incompressibility

A difficulty arises in both computational solid and fluid mechanics due to incompressibility. It
is dealt with using a mixed formulation where instead of solving only for displacements (solids)
or velocities (fluids), a fully coupled displacement-pressure or velocity-pressure problem has to be
solved.
Mixed formulations are well-known to require stable discretization pairs in order to avoid pressure
locking [14]. FEMS has implementations of the Taylor-Hood P2/P1 pair and the P1+/P1 MINI
element for small strain and finite strain solid mechanics problems with incompressible materials.
The Taylor-Hood P2/P1 pair is also implemented for Navier-Stokes equations. For the latter,
equal-order P1/P1 or P2/P2 pairs may be used in conjunction with Residual-Based Variational
MultiScale (RBVMS) stabilization, which embeds stabilization for the incompressibility constraint.
All these mixed formulations are solved as fully coupled problems where the two variables are
solved simultaneously. Except for the MINI element and the RBVMS stabilization, these mixed
formulations lead to a saddle point problem which can be solved using a direct solver or an
iterative solver with suitable preconditioning (e.g., Schur complement). Alternatively, the MINI
element or the RBVMS stabilization lead to linear problems that can be solved iteratively using
any preconditioning (e.g., incomplete LU factorization) and any linear solver (e.g., GMRES).

2.2.2. Convection

Convection terms such as v.∇φ in Eq. (3) are known to lead to instabilities if they are im-
plemented with a standard FE approach. Both Stream Upwind Petrov Galerkin [15] (SUPG) and
RBVMS [16] stabilization is implemented in FEMS. SUPG stabilization terms are explicit in time,
while RBVMS stabilization terms are always implicit in time.
This is also true for the Navier-Stokes equations, which are solved using a Newton-Raphson scheme
to deal with the nonlinearity of the v.∇v term and of the implicit RBVMS stabilization terms, if
those are enabled.
For multiphase flow problems with surface tension, Eq. (3) is coupled to multiphase Navier-Stokes
equations with a surface tension term. This coupled problem is solved with a fully implicit back-
ward Euler scheme with RBVMS stabilization [17, 4].

As can be seen in this subsection, standard FEs are not enough to deal with computational
mechanics problems. As a mechanics-oriented FE code, FEMS integrates advanced FE formula-
tions for incompressible materials or flows and convection-dominated problems. This is necessary
for instance to address elasto-plastic material behavior and turbulent flows. Mesh adaption is
particularly relevant for such problems.

2.3. Mesh adaption

For each of the problems discussed in Subsec. 2.2, a sensor variable s can be defined as the
vector of all relevant unknowns. For instance, for solid mechanics s = ∆u and for incompressible
flows s = v.

For a given FE approximation sh on a current mesh, two alternative objectives can be ad-
dressed using unstructured mesh adaption. The current mesh can be modified to obtain a mesh
either satisfying a prescribed approximation error tolerance with a complexity as low as possible,
or reducing the approximation error as much as possible for a prescribed complexity. Here the

5

complexity is considered directly proportional to the numbers of nodes and elements in the FE
mesh.
Modifications may include removing, adding and moving nodes, as well as removing and adding
elements. The criteria for determining which modifications to perform on the current mesh are
defined through error estimators and then metric tensor fields, while the modifications are operated
through a remeshing algorithm. Modifications are not easy to implement for all element types, and
mesh adaption is thus restricted in this paper to simplexes i.e., linear triangles in two dimensions
(2D) and linear tetrahedra in three dimensions (3D).

2.3.1. Error estimators and metric tensor fields

Mesh adaption is a multi-objective optimization process targeting element qualities and edge
lengths. In isotropic mesh adaption, a scalar mesh size field has to be defined on the FE mesh
to determine the length prescribed locally for each edge. An optimal simplex has a volume as
large as possible with the lengths of its edges as close as possible to this local mesh size. This
contradiction between the two objectives requires to define a compromise. This will be addressed
by the remeshing algorithm in the sequel.
For anisotropic mesh adaption, a metric tensor field M has to be defined on the FE mesh. This
second order tensor defines locally d orthogonal directions and d independent scalar metrics in
these directions [18]. The optimization remains identical to that of isotropic mesh adaption, but
this distortion of the Euclidean metric is embedded in the definitions of element volume ∀K ∈ T ,

|K|M =

∫
K

√
det (M(x))dx, (4)

and edge length ∀mK , nK ∈ N (K),mK 6= nK ,m = ΠK(mK), n = ΠK(nK),

||AmAn||M =

∫
AmAn

√
M(x). (Am −An) . (Am −An)dx. (5)

As can be seen in Eqs. (4) and (5), a valid metric tensor M(x),x ∈ Ω is a symmetric positive
definite matrix. It can hence be expressed in diagonal form, for instance for d = 3 as

M(x) = R(x)


1

h21(x)
0 0

0 1
h22(x)

0

0 0 1
h23(x)

R(x)T (6)

where each column i = 1 . . . d of matrix R(x) is a direction vector along which mesh size h2
i (x) is

prescribed. As shown in Fig. 2, the metric tensor gives direct control over element shape. Various
error estimators to construct metric tensor fields are implemented in FEMS. Two of them, that
are illustrated in Sec. 4, are presented in the sequel.

First, metric-driven mesh adaption can be used to naturally adapt the mesh to a geometry and
obtain meshes refined close to internal interfaces, and in particular in regions with large maximum
principal curvature. This is relevant for an internal interface Γ1,2 defined through an LS function
φ as per Eq. (2), as can be done in FEMS for simple geometric entities and even geometries
segmented from 2D pictures and 3D tomography images. The sensor variable can then be defined

6

h1

h2=h1

h1

h2=2h1

Figure 2: Influence of the metric field on the final shape of a triangle with the isotropic case on the left, and the
anisotropic case on the right, assuming the first direction vector is vertical and the second one is horizontal.

as s = φ.
Although anisotropic curvature-based mesh adaption could be implemented quite easily in FEMS
based on the literature [19, 20], an isotropic criterion [21] is preferred as this adaption process may
be used as a first step for mesh generation as done in Subsec. 2.4. Matrix R(x),x ∈ Ω is thus the
identity matrix, while

∀i = 1 . . . d, hi(x) = max
(
hmin,min

(
hmax, h̃(x)

))
, (7)

h̃(x) =
hc

λs(x)
+

(
hmax −

hc
λs(x)

)
min

(
|s(x)|
hmax

, 1

)
, (8)

where λs(x) is the maximum eigenvalue of the Hessian matrix ∇∇s(x) of s = φ at point x. As the
eigenvalues of this Hessian matrix include the principal curvatures of Γ1,2, it can be seen that at the
interface, where φ(x) ≈ 0, mesh size is prescribed to be inversely proportional to the curvature, hc
being a control parameter. It is hence prescribed to be very small for singularities of the interface
(λs(x) → ∞), and very large for flat regions of the interface (λs(x) → 0). At a distance larger
than hmax from Γ1,2, mesh size is prescribed to be equal to hmax, with a linear transition from
φ(x) ≈ 0 to φ(x) ≈ hmax. Overall, the prescribed mesh size is bounded between parameters hmin
and hmax.
Note that the metric tensor field is to be defined at mesh nodes in order to be interpolated at
quadrature points to evaluate Eqs. (4) and (5). In Eq. (7), sensor variable s can be replaced by its
approximation sh = φh which is defined at mesh nodes, but not λs, which depends on the second
derivatives of s. The latter are not available at mesh nodes for Lagrange FEs, and are recovered in
FEMS using an operation called Superconvergent Patch Recovery (SPR). SPR consists in recover-
ing a higher-order and higher-regularity approximation of s around each mesh node [22]. In order
to recover a regular Hessian matrix, this approximation is elevated to the third order in FEMS, as
suggested in the literature [23]. This recovered approximation is fitted in a least-squares sense to
the values of s at neighboring mesh nodes, this neighborhood being called the patch.

Second, for adaption to a sensor variable that may evolve to a very heterogeneous field during
the simulation, it is preferable to use the complexity as control parameter. Indeed, this would
prevent the computational cost from blowing up during the simulation, for instance due to complex
topological events or very localized phenomena. The goal is hence to estimate the approximation

7

error on s, and prescribe a metric tensor field to distribute this error uniformly on the domain, for
a given complexity. The simulation is expected to capture only a certain level of detail that can
be afforded with this prescribed complexity.
The continuous mesh framework for metric-driven mesh adaption can be used to achieve this goal
for simplex-type Lagrange FEs of any order [24, 25, 26, 4]. The definition of the metric tensor field
is done in two steps. A geometric averaging operation is first used to define a single directional
error tensor field Q for all components of s. For linear (P1) FEs, this operation is defined ∀x ∈ Ω
as

Q(x) =

exp

 1

dim (s)

dim (s)∑
i=1

log
(

(∇∇si(x))−
1
2

)−2

. (9)

Details on this geometric averaging operation can be found in the literature [18, 27]. The extension
of this operation for quadratic (P2) Lagrange FEs is given by [4]

Q(x) =

exp

 1

dim (s)d

dim (s)∑
i=1

d∑
j=1

log

((
∇∇ ∂si

∂xj
(x)

)− 1
2

)−2

. (10)

This first step includes a post-processing operation to control the element stretching and mesh size
variations that will be induced by the error tensor field Q. This is done by computing the median
eigenvalue Qmed of Q over the whole mesh, and then bounding all its eigenvalues so that none of
them are higher than Qmedhmax, or lower than Qmed/hmax , where hmax is the prescribed ratio.
The second step is to convert Q into a metric tensor field M minimizing the total error while
uniformly distributing local errors and controlling the complexity. The solution of this constrained
minimization problem can be expressed as [28]

M(x) = N
2
d
c

(∫
Ω

(det(Q(x))
k+1

2(k+1)+d dx

)− 2
d

(det(Q(x)))−
1

2(k+1)+d Q(x), (11)

where Nc is the prescribed number of P1 nodes (in the P2 case, this excludes nodes at edges
middles), and k is the order of the FE method (1 for P1, and 2 for P2).
Note again that Eq. (9) requires to recover the second derivatives of s in the P1 case, and Eq.
(10) in the P2 case its third derivatives. The SPR operation can be used in both cases [28, 29, 4].

2.3.2. Remeshing algorithm

Once the metric tensor field M is defined and computed at mesh nodes using any of the error
estimators implemented in FEMS, mesh modifications can be operated to satisfy the mesh size and
orientations prescribed by this field. As mentioned previously, this requires to define a compromise
between maximizing elements volumes as per Eq. (4) and bringing edge lengths as close as possible
to 1 as per Eq. (5). Two strategies are available in FEMS to combine these objective.

In the first strategy [30], the edge length criterion is first applied by looping over all edges,
splitting those that have a length larger than

√
2, and collapsing those that have a length smaller

than
√

2
−1

. This is done using a Delaunay kernel to ensure the FE mesh remains valid. Second,
an element quality criterion is applied by looping over all elements and performing local mesh

8

modifications such as edge flips and node re-positioning when they improve element quality. More
complex local mesh modifications are involved in 3D, as illustrated in Fig. 3 of Ref. [31]. Element
quality is defined as

QM(K) = αd
hM(K)

|K|M
, (12)

hM(K) =

 ∑
mK ,nK∈N (K),mK<nK

||AΠK(mK)AΠK(nK)||2M

d

, (13)

where αd is a normalization factor so that QM(K) = 1 for a regular simplex. Element quality
QM(K) must be minimized with this definition. With the edge length criterion based on

√
2, the

authors of Ref. [30] mention that the edge sizing and element improving steps can be performed
again and again until no mesh improvement is found by the algorithm, with no risk of infinite loop.
However, for efficiency purposes, they recommend to limit the overall number of iterations.

In the second strategy [32, 33], a single element quality measure combining both the element
quality criterion and the edge length one is defined for each element as

QM(K) = min

(
d!√
d+ 1

2
d
2
|K|M
hM(K)

, hM(K),
1

hM(K)

)
, (14)

hM(K) =

 2

d(d+ 1)

∑
mK ,nK∈N (K),mK<nK

||AΠK(mK)AΠK(nK)||2M

 d
2

, (15)

so that QM(K) = 0 for a degenerated simplex, and 1 for a regular simplex. Element quality
QM(K) must be maximized with this definition. This single element quality criterion is applied
by looping over patches of elements neighboring all nodes and edges of the mesh, and applying
local mesh modifications such as edge flips, node re-positioning, node removal, and node addition
when they improve element quality. Examples of mesh modifications are shown in Fig. 3. This is
only a subset, in fact a wider range of local mesh modifications is explored with this strategy as
compared to the first strategy, even in 2D. This is illustrated in Figs. 1 and 2 of Ref. [33]. This
is performed again and again until no mesh improvement can be found by the algorithm. It is
reported in Ref. [33] that this algorithm always converges in practice.

Due to their very general nature, the mesh modification operations used by both algorithms
result in an unstructured simplex mesh, even if the initial mesh is structured. Additionally, both
algorithms are restricted to linear simplex meshes both in 2D and 3D, and are fully compatible
with either isotropic or anisotropic metric tensor fields.
Once the mesh adaption algorithm terminates, mechanical variables including the sensor variable
must be transferred from the old mesh to the new (adapted) mesh. First, a space partitioning
technique is used to locate efficiently the element of the old mesh containing each node of the new
mesh. Variables values are then computed at each node of the new mesh using FE interpolation
from the containing element of the old mesh.
For P2 FE meshes, since mesh adaption algorithms are restricted to linear simplexes, nodes at

9

(a) (b) (c)

Figure 3: Example of mesh modifications in 2D: (a) initial patch of elements, (b) node re-positioning, (c) edge flip.

edge middles must be removed and then added back after the mesh has been optimized. This
preserves the advantage of P2 FE interpolation during variables transfer from old to new mesh,
both being P2 FE meshes, but forbids the use of isoparametric elements which could be interesting
for body-fitted meshing of curved interfaces.
For variables defined at quadrature points, the space partitioning technique locates the element of
the old mesh containing each quadrature point of the new mesh. Variables values are then directly
copied from the closest quadrature point within that element of the old mesh to the quadrature
point of the new mesh with no interpolation or smoothing.

As a conclusion, it can be seen that mesh adaption is not an easy task as it requires different
mathematical theories to be understood and implemented. An error estimator is necessary to
define a local mesh size criterion at each point of the domain, which in the case of FEMS can be
an anisotropic metric tensor field. Then, this metric tensor field is used as input to a remeshing
algorithm that will operate local modifications on the topology of the mesh and the position of
its nodes to optimize a metric-based quality criterion. Finally, a variables transfer algorithm is
necessary to transfer any variable defined on the old mesh to the new (adapted) mesh.
An interesting feature in FEMS is that the sensor variable can be defined as an LS function
in order to adapt the mesh to an implicitly represented geometry. This representation can also
automatically be made explicit, as presented in the sequel.

2.4. Mesh generation from signed distance functions

The idea of generating body-fitted FE meshes for geometries implicitly represented through
signed distance functions (LS functions) has been proposed by various authors [31, 29]. This
is relevant for simple geometric entities such as circles, cylinders, ellipsoids, planes, squares and
combinations (unions, intersections, complements) of those for which Eq. (2) can be analytically
computed. This is even more relevant for geometries segmented from 2D or 3D images which may
be acquired using optical or electronic microscopy, or tomography [34, 35].
Following Ref. [35], the methodology implemented in FEMS requires an LS function as input. It
may be defined analytically, for instance from a sphere’s center coordinates and radius, or voxel-
wise on a background image. Note that an LS function can be computed directly on a segmented
2D or 3D image in linear complexity with respect to the number of voxels [36], while such perfor-
mance cannot be achieved on unstructured simplex meshes [37, 38, 34].

10

This input LS function is used as sensor variable for mesh adaption using the isotropic curvature-
based metric tensor field defined in Eqs. (6) and (7). Depending on the initial mesh, which may
be any mesh of the domain independently of the LS function, this mesh adaption process will
generally have to be done in several iterations. Indeed, the LS function and hence the error esti-
mator may not be well represented on the initial mesh, and the adaption process will improve this
discretization up to convergence (usually in 5-7 iterations [35]).
At convergence, if the simulation requires a body-fitted FE mesh, a discretization of the LS func-
tion’s zero iso-level can be reconstructed as a surface mesh using either a triangle and tetrahedron
marching strategy [31] or a purely topological internal fitting strategy [29]. The former browses
each triangle or tetrahedron of the mesh and splits it depending on how it is intersected with the
zero iso-level. The latter browses each edge of the mesh and splits it if it has LS function values of
opposing signs at its ends by inserting a new node at its intersection with the zero iso-level. Both
strategies have a linear complexity with respect to the number of nodes, but the latter is simpler
to implement as it only computes intersections at edges.
Once a body-fitted FE mesh has been constructed, the LS function is no longer required, except for
a last mesh adaption step. Indeed, mesh quality as defined in Eqs. (14) or (12) is likely to be de-
teriorated during the reconstruction of the zero iso-level’s discretization. It must be restored using
mesh adaption again, which must rely on a remeshing algorithm preserving the body-fitted mesh at
internal interfaces, which is the case for both algorithms presented in Par. 2.3.2 (see Refs. [31, 33]).

Using the methods presented in this section, any geometry with internal interfaces can be
represented using LS functions. Through those LS functions, body-fitted FE meshes can be au-
tomatically generated for some interfaces that may be modeled using a Lagrangian mesh. For
remaining interfaces, the LS method and an Eulerian mesh can be used. The flexibility of FEMS
enables to combine both approaches and solve complex mechanics problems using advanced FE
formulations such as mixed formulations or the RBVMS formulation.

3. Software description

FEMS integrates unique features compared to existing open source adaptive FE codes. This is
explained in the sequel, as well as the parallel implementation of FE solvers and the technologies
used for inputs and outputs.
FEMS is mostly implemented in C, as defined by the 1999 ISO C standard [39]. Some C++,
as defined by the 2011 ISO C++ standard [40], is used for code blocks that interact with C++
libraries. Some remeshing and mesh adaption operations are also implemented in C++.
Apart from those exceptions, object-oriented C++ programming has been voluntarily avoided
in FEMS as it has a well-known computational overhead due to encapsulation and repetitive cre-
ation/destruction of objects. This is compensated in C++ through templates and other techniques
optimizing the code during its compilation.
As a consequence, writing a good scientific computing code in C++ requires a high level of ex-
pertise in scientific computing, which is generally not the case of people working in the field of
computational mechanics. The latter often have some scientific computing notions and a high level
of expertise in some area of mechanics (e.g., metallurgy, turbulence, ductile fracture). This has
led developers of the FreeFem solver [41] and the FEnICS computing platform [42] to hide the
underlying C++ implementations from their users by creating simplified abstract languages.

11

In order to open all the FEMS code to computational mechanics researchers, C++ has hence be
avoided as much as possible. Only a fundamental knowledge of C is required to understand the
FEMS code and extend it with new functionalities.

3.1. Mesh adaption

Among mesh adaption libraries, the libMesh library [43] relies on element sub-division, which
consists in locally sub-dividing some elements (triangles, quadrangles, tetrahedra, hexahedra, etc.)
of an initially uniform mesh to refine the mesh in some regions of the simulation domain depending
on some error measure. The library embeds an FE solver and error estimators to compute FE
solutions and define this error measure. Note that element sub-division cannot be used to stretch
and orient elements, for instance in boundary layers.
The MAdLib library [44] relies on unstructured mesh adaption restricted to tetrahedra. It can
handle large deformations with internal interfaces thanks to a mesh motion algorithm that auto-
matically triggers mesh adaption while moving FE nodes to follow a given mechanical displace-
ment in order to avoid element flipping. This library is used by FEnICS [42], which embeds an
FE solver and an error estimator to drive the mesh adaption process [2]. Although MAdLib can
perform anisotropic mesh adaption, there is no error estimator to do so in FEnICS.
The Mmg platform [30, 31] is another solution for unstructured mesh adaption restricted to sim-
plexes. This platform implemented in C also includes a mesh motion algorithm and is used by
FreeFem [41] which embeds an anisotropic error estimator so that elements may be refined in some
regions and also oriented to capture all features of the FE solution.
The first remeshing algorithm described in Par. 2.3.2 is provided by the Mmg platform. The
latter also integrates the triangle and tetrahedron marching method described in Subsec. 2.4 in
order to both adapt and generate a body-fitted FE mesh for a geometry with internal boundaries,
which has to be defined only through LS functions and can hence be imported from pictures or
tomography scans.
The second remeshing algorithm described in Par. 2.3.2 and the purely topological mesh gener-
ation strategy described in Subsec. 2.4 are implemented as an independent C++ module within
FEMS.
These different remeshing algorithms are integrated in FEMS in order to not be restricted by
the limitations of the Mmg platform. In particular, there is ongoing research work on a GPU-
accelerated remeshing algorithm, and on mesh generation strategies that are compatible with more
than one LS function.

FEMS can be seen as a state-of-the-art FE code embedding remeshing and mesh generation
algorithms in a global solution. LS functions definitions, error estimators and metric tensor fields
required by those algorithms are all implemented in FEMS for P1 and P2 interpolation. As de-
scribed in Par. 2.3.2, FEMS integrates a wrapper function enabling unstructured mesh adaption
for P2 interpolation, whose improved convergence rates and conservation properties can hence be
accessed.
FEMS is flexible enough to combine an adaptive Eulerian method for some regions of the domain
which may undergo large distortions and complex topological changes during the simulation with
an adaptive Lagrangian method for remaining regions which may not undergo such drastic defor-
mations.
To the extent of the author’s knowledge, there is no open source code that integrates all these

12

functionalities. There is ongoing work to improve FEMS with parallel implementations of the
remeshing algorithm. Nevertheless, FEMS already relies on shared-memory parallelism for most
computationally expensive tasks.

3.2. Parallel computing

The goal of keeping things simple prevented the use of distributed-memory parallelism, which,
like C++, requires a high level of expertise in scientific computing. Indeed, new functionalities
implemented in a distributed-memory parallel code must also be parallel, or at least implement
some communications. This is hidden from the user using abstraction in most distributed-memory
FE codes [45, 41, 42].
Shared-memory parallelism has been used in FEMS to avoid this complexity. It is implemented
using OpenMP directives [46]. The main advantage is that a new functionality can be implemented
with no parallelism and still be fully compatible with the rest of the code. In most cases, the new
code can be optimized using simple parallel computing directives that can be added later once the
sequential code has been tested and validated.
The drawback is that FEMS can only run on a single node and will hence be more efficient on
high performance computing facilities with a high number of CPU cores and RAM space per
computing node. FEMS also performs well on workstations and laptops, for which distributed-
memory parallelism is not necessary. Additionally, some critical operations are GPU-accelerated.

3.2.1. Inherently parallel unitary and patch operations

In parallel computing, operations may be difficult to implement depending on what information
is required as input and computed at output. In an FE code, information means variables of any
dimensions which can be global scalars, vectors or tensors, and can also be scalar, vector or tensor
fields stored entity-wise. An entity can be a node, an element, an element’s quadrature point, a
face or a face’s quadrature point.
There are obvious associations, called adjacencies in FEMS, between these entities. An element
has faces, nodes and quadrature points. A face has nodes and quadrature points. Additionally, an
internal face appears twice in the FE mesh data structure, the two instances having two different
orientations and being defined as adjacent to each other. All adjacencies go both ways, meaning
for instance that as an element has nodes, a node is adjacent to all elements it belongs to. An
entity is also always at least adjacent to itself.
These adjacencies are relevant for core FE operations such as quadrature, which requires interpo-
lating a FE field from an element’s nodes to its quadrature points. Quadrature plays a key role in
the FE assembly and solution of partial differential equations [22, 11, 12].

A unitary operation in FEMS is an operation where all input and output variables have the
same type, and which can be conducted at an entity indifferently to its type and independently
from inputs and outputs at other entities. For instance, the operation in Eq. (1) is a node-wise
addition of two variables defined at nodes. The addition on a given node does not depend on values
from other nodes. This is also true for the metric computation operations in Eqs. (7), (9) and
(10), but not for the operation in Eq. (11), which includes an integral over the whole simulation
domain.
A unitary operation is called in FEMS through a function pointer and variables defined on the
same mesh and for the same entity type. A parallel loop with an OpenMP directive will call the

13

given function at each entity with all input and output variables as parameters. The user can thus
easily implement new unitary operations and have them executed in parallel with no need to write
OpenMP directives.

A patch operation in FEMS is an operation where all output variables have the same master
entity type. Entity type node’s master entity type is node, element’s and element quadrature
point’s is element, face’s and face quadrature point’s is face. Input variables for a patch operation
can be global variables or fields associated to any entity type.
A patch operation is called in FEMS through a function pointer and variables. Input variables
can be of any type, and may even be defined on different FE meshes. However, the number of
master entities for these meshes must be equal. This is true also for output variables, which must
additionally have the same master type. A parallel loop with an OpenMP directive will call the
given function at each master entity with all input and output variables as parameters, as well as
the FE mesh data structure. The user can thus easily implement new patch operations and have
them executed in parallel with no need to write OpenMP directives.
As opposed to unitary operations, the user can program code inside a patch operation which
accesses information from other entities to that for which the output is being computed. For in-
stance, the patch operation for quadrature interpolates a node-wise field of any dimension to all
quadrature points inside an element (here element is the master entity type). Among other things,
this requires access to information on the FE, its nodes and basis functions.

This distinction between unitary and patch operations is inspired from distributed-memory
FE codes [45], where the difficulty resides in hiding communications between processes from the
user implementing the patch operation. These unitary and patch operations are very relevant for
computational mechanics researchers, who may implement material laws, modify FE solvers by
adding new terms, and implement all sorts of local entity-wise operations with no need to think
about parallelism.
Note that the fact that an operation is easy to implement as a unitary or patch operation does
not necessarily mean that it should. For instance, the node-wise summation in Eq. (1) has a too
low computational cost in terms of floating point operations. It would probably be more time
consuming to create and manage threads to do it in parallel instead of just implementing it in
sequential.

3.2.2. Other operations

Some operations cannot be implemented efficiently as unitary or patch operations. Those are
systematically implemented in sequential in FEMS, unless their computational cost is not negligi-
ble.

The node-wise metric tensor field M defined in Eq. (11) depends on a node-wise input tensor
field Q and an integral over the whole simulation domain. The input tensor field can be computed
in parallel using a unitary operation as per Eqs. (9) or (10), while the integral can be computed
using a quadrature and integration patch operation and then sequential summation.

Geometry reinitialization of LS functions requires to reconstruct a surface mesh of the interface
represented by the zero iso-level of the FE mesh. Then, each node of the FE mesh must be pro-

14

jected to the closest face of this surface mesh. This brute-force search of quadratic computational
complexity can be done efficiently using a space partitioning technique [38], which is the same as
that used to transfer FE variables after mesh adaption.
The space partitioning technique implemented in FEMS relies on a tree data structure that is
optimized for finding the closest entity to a point, as well as the entity containing a point. Tree
construction is implemented in sequential, but searches are done in a parallel loop using an OpenMP
directive.
Alternatively, the brute-force search approach can be run on the GPU using an implementation in
NVIDIA’s CUDA programming language, which may be faster than the CPU version using space
partitioning [4]. This is due to the fact that GPUs give access to a very large number of cores on
a single node, as compared to CPUs.
CUDA code is integrated into FEMS thanks to the CMake tools suite, which enables users who
do not have access to GPUs, or may not have a CUDA installation, to still compile and run FEMS
on CPUs.

CMake is also used to flexibly manage the different third-party libraries that FEMS can be
coupled to. These include the general purpose library GLib that is used for its data structures,
and a quite significant number of scientific computing libraries. Entity-wise linear algebra op-
erations such as matrix inversion or diagonalization are performed using either Netlib’s CBLAS
and LAPACKE, or Eigen3. Entity-wise nonlinear systems such as those arising during numerical
integration of nonlinear material laws are solved using GSL [47].
Additionally, the solution of partial differential equations with the FE method leads to large sparse
nonlinear and/or linear systems. Nonlinear systems are solved within FEMS using a Newton-
Raphson procedure, while linear systems may be solved using a FEMS implementation of the
generalized minimal residual method, or third-party linear algebra libraries.
FEMS already has wrappers for sequential linear algebra libraries PETSc [48] and UMFPACK
[49]. Shared-memory parallelism is accessible using Lis [50] or SuperLU [51]. GPU-accelerated
solvers are also accessible using either AmgX [52], PARALUTION or ViennaCL [53]. Thanks to
CMake, FEMS can still be compiled and used even if none of these third-party libraries can be
found.

With CMake as well as simple C programming with OpenMP directives, it is possible for the
user to change inputs and setup new problems to be solved with an adaptive FE method quite
easily. However, it is still relevant to have the possibility to change some inputs without having to
modify and recompile the code.

3.3. Inputs and outputs

All FEMS functionalities are used in C test files which are validated using the CTest tool of the
CMake suite. A FEMS test always takes at least an FE mesh as input, for which the MSH format
is used. Files with this format can be created with the Gmsh meshing software [7], which can also
be used to create body-fitted meshes of CAD geometries or other explicitly defined geometries for
FEMS. These meshes do not necessarily have to be body-fitted if there are internal interfaces, as
this can be done within FEMS using the procedure explained in Subsec. 2.4.
The path to the mesh file must be indicated in an Extensible Markup Language (XML) input
file which also contains all input parameters for a simulation. The format for XML input files is

15

specified in the FEMS XML Schema Definition (XSD). The FEMS package includes C test files
for CTest as well as XML input files for these tests that satisfy the FEMS XSD.
New input parameters can easily be added in the C code and then to the FEMS XSD. XML input
files are systematically validated against the FEMS XSD and loaded using the libxml2 library. It
is hence possible for a developer to add new functionalities to FEMS and have users that have
no programming experience to run simulations with varying geometrical, physical and numerical
inputs.

The XML input file must also specify what inputs are desired and in which format. The only
output format implemented in the current FEMS version is the VTU format, which is the un-
structured grid VTK format that can be read using the ParaView visualization software [54]. The
choice of FE variables to be written in the output VTU file depends on the problem being solved
and is directly defined in the C test files.

As a summary, FEMS is accessible to different categories of users and developers.
The most popular use of FEMS is simply that of a student, engineer or researcher who wishes
to run existing FEMS binaries with different geometrical, physical or numerical parameters. This
includes usage of FEMS to generate body-fitted FE meshes with the method presented in Subsec.
2.4. This is possible simply by modifying XML input files.
The second and more technical use of FEMS is that of a user and developer who wishes to add new
functionalities and test them with varying parameters. This requires C programming of unitary or
patch operations to access parallel computing capabilities with no difficulty, or standard sequential
C programming. Additionally, new parameters must be added to the FEMS XSD.
Finally, the third and last category of users will be experts in scientific computing who wish to
add new functionalities that have a significant computational cost and cannot be implemented effi-
ciently in parallel using the unitary/patch operations paradigm. Those functionalities will require
some advanced OpenMP design and might also be GPU-accelerated using CUDA programming.

4. Results

The powerful capabilities of FEMS’s isotropic and anisotropic unstructured mesh adaption are
demonstrated in this section for various problems of computational mechanics. Input files for
all simulation results shown in this section are provided in the examples directory of the FEMS
package. Unless otherwise mentioned, initial meshes are structured FE meshes of the unit 1 × 1
mm2 square (2D) or the 1×1×0.1 mm3 box (3D), and internal interfaces are introduced using LS
functions. Those initial structured meshes are modified automatically before and/or during the
simulation.
All simulations were run on a workstation with a 28-core Intel Xeon W-2175 2.50GHz CPU and a
1024-core NVIDIA Quadro P2000 GPU. Unless otherwise mentioned, sparse linear problems result-
ing from FE discretizations are solved using the direct solver UMFPACK, which operates an LU de-
composition, and local entity-wise algebra operations are done using Netlib’s CBLAS/LAPACKE.
For nonlinear problems, the tolerance for the residual of nonlinear solves using the Newton-Raphson
scheme is always 10−6.

16

4.1. Mesh generation from signed distance functions

This first set of simulations aims at showing the capabilities of the FEMS regarding the genera-
tion of body-fitted FE meshes for geometries with internal interfaces initially represented through
LS functions, as presented in Subsec. 2.4. The geometry for these simulations is based on the 2D
FEMS image shown in Fig. 4(a). The LS function to the surface of the letters is computed using
the Fiji software [55] and is shown in Fig. 4(b,c).
As described in Subsec. 2.4, the metric tensor field used for mesh generation is that of Eqs. (6)
and (7), with three metric parameters hc, hmin and hmax to prescribe. In the sequel, body-fitted
FE meshes are generated both in 2D and 3D by projecting the image-based LS function shown
in Fig. 4(b,c) to the initial FE mesh of the 2D or 3D domain. Parameters hmin and hmax are set
respectively to 4 µm and 32 µm both in 2D and 3D, while control parameter hc is varied in order
to show its influence.
The remeshing algorithm of the first strategy described in Par. 2.3.2 is used for these mesh gen-
eration simulations. To generate the body-fitted FE mesh, the strategy based on triangle and
tetrahedron marching [31] is used.

4.1.1. 2D

As described in Subsec. 2.4, the image-based LS function shown in Fig. 4(b,c) is first interpo-
lated to a structured FE mesh of the domain. The result is shown in Fig. 5(a,b). Once the LS
function is available at nodes of this FE mesh, the metric tensor field can be computed and mesh
adaption can be performed. The result is shown in Fig. 5(c,d) for hc = 0.128.
The LS function is then re-interpolated as it should be better captured and represented using the
new adapted mesh, and the metric tensor is re-computed in order to re-adapt the mesh. The result
after 8 cycles is shown in Fig. 6(a,b). These figures show how the mesh is automatically refined
in regions with large local maximum principal curvature, which are mainly the regions of sharp
angles in the letters.
Finally, this adapted mesh is modified through triangle marching and re-adapted in order to pro-
duce the mesh shown in Fig. 6(c,d). This final body-fitted mesh accurately captures all features
of the geometry, especially the M letter which has three regions with very sharp angles.

The accuracy is obviously guided by the choice of parameters hmin and hmax, which determine
bounds on the prescribed mesh size. However, metric parameter hc has a major influence on how
the local maximum principal curvature influences mesh size. This is shown in Fig. 7(a,b) where
hc = 0.256 has been used, and Fig. 7(c,d) where hc = 0.512 has been used.
On the one hand, if hc is too large, the local principal curvatures do not have any influence
and a uniform mesh size of hmax is prescribed everywhere. On the other hand, if hc is too low,
hmin is prescribed everywhere. It is thus necessary to choose an intermediary value so that fine
features with large local maximum principal curvature are well described but a coarser mesh size
is prescribed in regions with low local maximum principal curvature.

4.1.2. 3D

The initial structured FE mesh has 21× 21× 3 nodes, and is then adapted iteratively until the
body-fitted FE mesh is generated, as done in the 2D case.
Resulting meshes are shown in Fig. 8 using different values of control parameter hc. Clearly, this
parameter has no effect away from the letters, where the mesh size is set to hmax. Close to the

17

(a)

(b)

(c)

Figure 4: FEMS image used for mesh generation simulations: (a) image of 1999 × 679 pixels, (b) LS function
computed on the image with signed distances in pixels, (c) zoom on the LS function.

18

(a)

(b)

(c)

(d)

Figure 5: First steps of 2D mesh generation for the FEMS image using hc = 0.128: (a,b) interpolation of the LS
function from the image to the structured mesh, (c,d) mesh adapted once using the isotropic curvature-based metric
tensor field.

19

(a)

(b)

(c)

(d)

Figure 6: Last steps of 2D mesh generation for the FEMS image using hc = 0.128: (a,b) mesh adapted 8 times using
the isotropic curvature-based metric tensor field, (c,d) mesh after internal fitting and body-fitted mesh adaption.

20

(a)

(b)

(c)

(d)

Figure 7: Final 2D meshes for the FEMS image using: (a,b) hc = 0.256, (c,d) hc = 0.512.

21

letters, of which only the external surface is shown in the figure, the mesh is refined with lower hc,
as was observed in the 2D case.
To inspect more closely whether fine features are well represented, a zoomed view is shown in
Fig. 9. With hc = 0.512, some corners of the E letter are lost. These might not be relevant for
linear mechanics, for instance to estimate linear elastic properties. However, for other applications
such as fatigue life prediction, stress concentration is very important and thus hc should be chosen
carefully.
For these 3D simulations, mesh generation entails a significant computation time and thus has been
measured. The initial structured FE mesh has about 5,000 elements. The mesh with hc = 0.512,
which has about 240,000 elements, is generated in about 100 s. The mesh with hc = 0.128 has
about 690,000 elements and is generated in about 500 s. This computation time is spent on mesh
modification operations, all other operations having a negligible cost (LS function interpolation,
metric computation). This justifies ongoing research work on parallel remeshing strategies.

As a conclusion, both in 2D and 3D, internal interfaces can be introduced in an FE mesh
in FEMS using an LS function. The body-fitted FE mesh that is produced by FEMS can be
controlled in terms of accuracy and how well fine and sharp features are captured. This control
is achieved through the metric parameters, and especially the control parameter hc, for which the
value must be chosen carefully.

4.2. Localization and interface tracking problems in fluid mechanics

This second set of simulations shows the capabilities of FEMS for computational fluid dynamics.
Simulations are conducted in the transient regime and the mesh is adapted several times during
simulations to track and capture new flow features that appear and evolve.

4.2.1. Transient incompressible flow

This first problem is that of the well-known lid-driven cavity in 2D [1], which requires the
solution of Navier-Stokes equations for Newtonian incompressible flow. This solution is performed
using an Eulerian mesh and the mixed formulation with the Taylor-Hood P2/P1 pair and SUPG
stabilization presented in Subsec. 2.2. The fluid mass density is fixed to 1 g mm3, gravity is ne-
glected and the fluid dynamic viscosity is fixed to 0.2 kPa ms so that the Reynolds number is equal
to 5, 000. Boundary conditions are given in Fig. 10.
The time step for this transient simulation is 1 ms, and the simulation is stopped when, over a time
increment, the relative change in L2(Ω) norm of the velocity field is below 10−6. The whole FE
mesh is automatically adapted at the beginning of a time increment when the quality of at least
one element as defined by Eq. (14) is found to be below 1/3. The metric tensor field is that of Eqs.
(10) and (11), with s = v and two metric parameters hmax and Nc to prescribe. The remeshing
algorithm is that of the first strategy described in Par. 2.3.2.
Note that as a result of this scheme there is no significant change of the solution in the last time
increments. Consequently, the metric tensor field does not vary significantly either, and no mesh
adaption is triggered in those increments. Convergence is thus achieved both regarding the solu-
tion and the mesh.

Two potential uses of unstructured anisotropic mesh adaption are investigated. The first one
consists in trying to obtain a more accurate solution with a similar number of degrees of freedom.

22

(a) (b)

(c)

Figure 8: Inside view of final 3D meshes for the FEMS image using: (a) hc = 0.128, (b) hc = 0.256, (c) hc = 0.512.

23

(a) (b)

(c)

Figure 9: Inside zoomed view of final 3D meshes for the FEMS image using: (a) hc = 0.128, (b) hc = 0.256, (c)
hc = 0.512.

24

1

1

vx=vy=0

vx=1,vy=0

v
x
=

v
y
=

0

v
x
=

v
y
=

0

Figure 10: Boundary conditions for the 2D lid-driven cavity problem. Lengths are in millimeters and velocities in
millimeters per millisecond.

The second one consists in trying to obtain a higher convergence rate when increasing the number
of degrees of freedom, as compared to uniform mesh refinement.
Velocity fields using a fixed complexity are shown in Figs. 13(a,b) and 14(a,b) and compared with
a reference result computed using a uniform grid mesh of 601× 601 in Ref. [56]. Obviously, local
mesh refinement is of great interest for this case and it can clearly be seen when comparing the
curves for hmax = 1 and hmax = 4.
A higher ratio of element size and stretching is also interesting, especially in regions where the
flow is nearly unidirectional, as shown in Fig. 11. Elements get progressively stretched along the
horizontal direction at the top of the cavity with increasing hmax. Refined but isotropic elements
are automatically placed in the two upper corners where the velocity field is singular. Because P2
interpolation is used for the velocity, excessive mesh refinement is not needed in the lower corners
of the cavity in order to capture the secondary vortexes.
Velocity fields using uniform isotropic mesh refinement with hmax = 1 are shown in Figs. 13(c,d)
and 14(c,d) and can be compared with results using local anisotropic mesh refinement with
hmax = 1000 shown in Figs. 13(e,f) and 14(e,f). Asymptotic convergence does not seem to be
reached using uniform isotropic mesh refinement for vy in Fig. 14(d), while it seems clearly ob-
tained for both components of the velocity field using local anisotropic mesh refinement. As shown
in Fig. 12, this is due to the improvement of the discretization in the upper corners of the cavity
using local anisotropic mesh refinement, while edge length in some regions like the center of the
cavity remains constant.

Computation times vary mainly depending on the number of degrees of freedom and the num-
ber of time increments needed to reach convergence. Additionally, there is an approximation error
on the complexity constraint in Eq. (11), which means the final number of P1 nodes generally does
not match exactly Nc. This error on the complexity constraint is known to be more significant
with higher anisotropy but to decrease with mesh refinement [25].
Computation times are given in Tab. 1. For mesh adaption, they include metric computation,

25

(a) (b)

(c) (d)

Figure 11: Final adapted meshes for the lid-driven cavity computed using Nc = 512 and: (a) hmax = 1, (b)
hmax = 4, (c) hmax = 16, (d) hmax = 1000.

26

(a) (b)

(c) (d)

Figure 12: Final adapted meshes for the lid-driven cavity computed using: (a) Nc = 1024 and hmax = 1, (b)
Nc = 2048 and hmax = 1, (c) Nc = 1024 and hmax = 1000, (d) Nc = 2048 and hmax = 1000.

27

(a) (b)

(c) (d)

(e) (f)

Figure 13: Final velocity component vx along a vertical line passing through the geometric center of the lid-driven
cavity computed using: (a,b) Nc = 512 and different values of hmax, (c,d) hmax = 1 and different values of Nc,
(e,f) hmax = 1000 and different values of Nc. Reference results are from Ref. [56].

28

(a) (b)

(c) (d)

(e) (f)

Figure 14: Final velocity component vy along a horizontal line passing through the geometric center of the lid-driven
cavity computed using: (a,b) Nc = 512 and different values of hmax, (c,d) hmax = 1 and different values of Nc,
(e,f) hmax = 1000 and different values of Nc. Reference results are from Ref. [56].

29

mesh modification operations and variables transfer.

Nc hmax # P1 nodes # Time increments # Mesh adaption Mesh adaption Solution
512 1 663 799 1 8 s 244 s
512 4 668 681 2 8 s 172 s
512 16 817 651 11 11 s 179 s
512 1000 928 658 13 11 s 194 s

1024 1 1275 710 2 13 s 334 s
2048 1 2438 697 2 25 s 743 s
1024 1000 1573 664 19 20 s 353 s
2048 1000 2788 678 36 51 s 775 s

Table 1: Final number of P1 nodes, total number of time increments, total number of mesh adaptions, total mesh
adaption time and total Navier-Stokes equations FE solution time for lid-driven simulations.

There is clearly an increase of the error between the prescribed and the obtained number of
P1 nodes with higher anisotropy. This error is reduced when increasing Nc, as it is of 81% using
Nc = 512, 54% using Nc = 1024, and 36% using Nc = 2048.
The total computation time spent on mesh adaption varies mainly due to the variation of the
number of P1 nodes and the fact that there are more mesh adaptions for some simulations. Clearly
from Tab. 1, more mesh adaptions are needed to converge when using local anisotropic mesh
refinement. This clearly leads to a computation time overhead when using anisotropic elements.
For instance for Nc = 2048 it is doubled.
However, the ratio between the computation time spent on mesh adaption and that spent on FE
solution of Navier-Stokes equations is below 7%. The computational overhead of mesh adaption
and in particular anisotropic mesh adaption is hence clearly affordable given the gain in accuracy
that it provides.

4.2.2. Transient incompressible two-phase flow with surface tension and obstacles

The numerical framework for modeling two-phase flow problems with surface tension using
FEMS is presented in Ref. [4]. In the following, a 2D problem with a third phase is addressed. A
circular droplet is initially placed in the higher half of the domain. This liquid is of mass density
1 kg mm3 and dynamic viscosity 10 MPa ms. The surface tension coefficient is 1.96 g ms−2. Rigid
solid obstacles composed of the FEMS letters as shown in Fig. 16(a) are placed in the lower part
of the domain. The rest of the domain is occupied by a gas of mass density 1 g mm3 and dynamic
viscosity 0.1 MPa ms.
No-slip boundary conditions are applied at all domain boundaries, including that of the solid phase.
Due to gravity, which is equal to 0.98 mm ms−2, the liquid is expected to fall and flow along the
solid, while the gas is expected to elevate, unless it is trapped due to the solid phase.

As described in Subsec. 2.2, the Navier-Stokes equations for Newtonian incompressible two-
phase flow with the surface tension term are solved using a P2/P2/P2 RBVMS formulation where
the velocity v, the pressure p and the liquid phase LS function φ are fully coupled. The transition of
fluid properties between liquid and gas is smoothed over a thickness ε = 8 µm using the regularized

30

Heaviside function Hε defined by

Hε(φ) =


1, φ > ε,
1
2

(
1 + φ

ε
+ 1

π
sin
(
πφ
ε

))
, |φ| ≤ ε

0, φ < −ε.
(16)

The time step for this transient simulation is initially 0.1 ms but it is automatically decreased when
the Newton-Raphson solution of the RBVMS formulation fails to converge. GPU-accelerated LS
reinitialization is performed at the beginning of each time increment to maintain the distance
property of the LS function.

The remeshing algorithm of the second strategy described in Par. 2.3.2 is used to perform
different kinds of mesh adaption in this multiphase flow simulation.
There is a first pre-processing step in order to generate a body-fitted FE mesh of the obstacles as
done in Subsec. 4.1. Parameters hmin and hmax are set respectively to 8 µm and 32 µm, while con-
trol parameter hc is set to 0.128. The number of mesh adaption cycles is 8. The mesh generation
strategy based on purely topological internal fitting is used [29]. The generated mesh is shown in
Fig. 16(b). The triangles within the obstacles are then fixed and cannot change in later remeshing
operations.
Then, in a second pre-processing step, the mesh is adapted in order to be locally refined close to the
liquid interface. This is done using the metric tensor field of Eqs. (10) and (11), with s = Hε(φ

0),
where φ0 is the discrete LS function at the start of the simulation. Anisotropy control parameter
hmax is set to 1000, and the complexity Nc is set to 4096. Similarly to the first pre-processing step,
multiple mesh adaption cycles, here 5, are needed. The resulting mesh is shown in Fig. 16(c). A
close-up in 16(d) shows how the mesh is body-fitted for solid obstacles but not for the liquid phase.
The metric tensor field of Eqs. (10) and (11) is used during the simulation without changing the
parameters. However, the sensor variable is modified to s = (Hε(φ

n), Hε(2φ
n − φn−1)), where φn

is the discrete LS function at the start of a time increment (before Newton-Raphson solution),
and 2φn − φn−1 is an extrapolation of φn+1. The whole FE mesh is automatically adapted at the
beginning of a time increment when the quality of at least one element as defined by Eq. (14) is
found to be below 1/3.

The simulation reaches the final time T = 10 ms in 750 time increments, among which 454
included mesh adaption due to the quality drop criterion. The liquid interface as well as adapted
FE meshes are shown in Fig. 15 at different time increments. The droplet enters in contact with
the obstacles in the center in Fig. 15(a). It then spreads widely due to inertia in Fig. 15(b), and
starts pouring down until the final state shown in Fig. 15(c).
Because the solid obstacles are explicitly meshed and are not modified during the simulation, there
is exact conservation of the solid volume. This is interesting compared to methods where solid
obstacles are represented implicitly [20]. An interesting error measure is gas volume, which should
not change due to incompressibility and boundary conditions. The relative error on gas volume
can be computed using

Vgas(t) =

∫
Ω

Hε(−φ(x, t))dx,

31

1

1

vx=vy=0

vx=vy=0

v
x
=

v
y
=

0

v
x
=

v
y
=

0

Fluid 2

(gas)Fluid 1

(liquid)

g

R=0.2

(a)

(b)

(c) (d)

Figure 15: (a) Boundary conditions for the two-phase flow problem with obstacles. Lengths are in millimeters and
velocities in millimeters per millisecond. (b) Generated body-fitted FE mesh of the obstacles. (c) Adapted FE mesh
combining body-fitted meshing of obstacles and local anisotropic mesh adaption to the liquid phase LS function.
(d) Zoom on the adapted mesh.

32

Error(Vgas) =

√√√√∫ T0 (Vgas(t)− Vgas(0))2dt∫ T
0

(Vgas(0))2dt
.

An error of 2.23% is obtained at the end of the simulation, which clearly shows the relevance of
anisotropic mesh adaption using a P2 interpolation for the LS function. A more thorough analysis
in Ref. [4] shows that mesh adaption induces a minor mass loss that is negligible as overall mass
conservation is improved using an adaptive P2 interpolation. For the present case with obstacles,
mass conservation errors due to time integration, mesh adaption and LS reinitialization are clearly
acceptable.
The close-up in Fig. 15(d) must be compared with that in Fig. 16(d). The challenge is that liquid
volume does not change, but there is much more liquid interface to cover with a fixed complexity.
This is achieved automatically by stretching the elements, as can be seen in Fig. 16(d).

Overall computation time is nearly 7 h, with 81% of that time spent on Newton-Raphson
solution, and 14% on mesh adaption. The latter is more significant compared to the lid-driven
cavity simulation. Every time the interface moves, the mesh must be adapted in order to keep fine
elements in the region where fluid properties transition, which is also the region where the surface
tension term is active. Thus, there are more mesh adaptions and the associated computation time
increases. Future work on parallel computing applied to mesh adaption should be very relevant in
that regard.
Looking at the very small size of the elements in the direction orthogonal to the interface in Fig.
16(d), it is easy to imagine the huge number of elements that would be necessary to get the same
accuracy with a fixed mesh. Indeed, the mesh would then have to be refined in every part of the
domain reached by the liquid phase. The 14% of computation time spent on mesh adaption can
hence be considered as quite affordable.

4.3. Large deformation and localization problems in solid mechanics

This third and last set of simulations addresses computational solid mechanics and in partic-
ular loading conditions leading to large and/or localized strains. Although static conditions are
assumed, the load is applied progressively and the Lagrangian mesh is automatically adapted sev-
eral times during the simulations in order to maintain element quality and avoid element flipping.
A load increment consists in solving balance equations in order to obtain the incremental displace-
ment vector field ∆u, the Cauchy stress tensor field σ and state variables q for that increment.
Then, ∆u is used to update mesh nodes coordinates, as per Eq. (1) which is standard for an
updated Lagrangian formulation. The use of Eq. (1) might generate elements of negative volume,
which cannot be accepted neither by the FE method nor the remeshing algorithms available in
FEMS. Thus, if such elements are generated, the mesh motion algorithm rolls back and tries an
update with 0.5∆u instead of the full displacement increment. If this fails again, 0.25∆u is used,
etc. Once an acceptable displacement increment is found, mesh adaption is triggered to improve
element quality, and an attempt is made to apply the remaining displacement increment (0.5∆u,
0.75∆u or more depending on the current state). This mesh motion algorithm was used in Ref.
[33] and systematically succeeds in applying the full displacement increment without any element
flipping. After mesh motion, mesh adaption can be triggered if element quality decreased signif-
icantly, then the solution is output on the deformed mesh and the simulation continues with the
next load increment.

33

(a) (b)

(c) (d)

Figure 16: Results of the two-phase flow simulation with obstacles at: (a) t = 0.5 ms, (b) t = 1 ms, (c) 10 ms. (d)
Zoom on the adapted mesh at t = 10 ms.

34

For all solid mechanics simulations, the domain is the 3D box decomposed as a heterogeneous
material with a matrix and two reinforcements as shown in Fig. 17(a). A body-fitted FE mesh
is generated using the remeshing and mesh generation algorithms of the first strategy in 8 mesh
adaption cycles with parameters hmin and hmax set respectively to 16 µm and 64 µm, and control
parameter hc set to 0.256. This initial mesh is shown in Fig. 17(b) and loaded horizontally as
shown in Fig. 17(a), with an applied displacement U that is defined in the sequel.
The remeshing algorithm of the first strategy is also used during the simulations. It is coupled to
the metric tensor field of Eqs. (9) and (11), with s = ∆u. Anisotropy control parameter is set to
10 as excessively stretched elements are not well-suited to a Lagrangian mesh, and the complexity
Nc is varied using values 512, 1024 and 2048. Because this metric tensor field is not identical to
the one used when generating the initial mesh, mesh adaption is always triggered at the end of
the first load increment. It is then triggered again when there is element flipping during mesh
motion and when after mesh motion the quality of at least one element has dropped more than
twice since the last time the mesh was adapted. Simulation results for different material behaviors
are presented in the sequel.

1

1

Δuy=0

Δ
u

x
=

Δ
u

y
=

0

Δ
u

x
=

U
,Δ

u
y
=

0

Reinforcements

Matrix

R=0.1

R=0.1

(a)

(b)

Figure 17: (a) Boundary conditions for solid mechanics problems. Lengths are in millimeters and the thickness
in the third direction (not shown in this figure) is 0.1 mm. (b) Initial body-fitted FE mesh of the heterogeneous
material for all solid mechanics simulations.

4.3.1. Hyperelasticity

As a first test, material behavior in both the matrix and the reinforcements is defined as
hyperelastic, with a Saint Venant-Kirchhoff model, which means that the Cauchy stress tensor σ
at any point is given by the relations

σ =
1

J
FSFT , J = det(F),

35

S = 2µelE + λeltr(E)I2,E =
1

2
(C− I2),C = FTF,

where F = F(∆u) is the deformation gradient tensor, C the right Cauchy-Green deformation
tensor, E the Green-Lagrange strain tensor, S the second Piola-Kirchhoff stress tensor and I2 the
identity tensor. Lamé parameters µel and λel depend on the Young’s modulus, which is set to
200 MPa for the matrix and 400 MPa for the reinforcements, and the Poisson’s coefficient which is
set to 0.3 for the matrix and 0.2 for the reinforcements.
The finite strain updated Lagrangian weak form is discretized using standard P1 FEs and a
Newton-Raphson algorithm as the relation between the Cauchy stress tensor and the displace-
ment increment is nonlinear (see e.g., the finite strain chapter in Ref. [12]). The sparse linear
problem at each Newton-Raphson increment is solved using the GMRES linear solver with ILUT
preconditioning of Lis [50]. The loading consists in 25 increments with U set to 0.04 mm, and then
25 increments with U set to -0.04 mm.

(a)
(b)

Figure 18: Results of the solid mechanics simulation with hyperelastic material behavior and Nc = 2048 after: (a)
25 load increments, (b) 50 load increments.

Results are shown in Fig. 18. Even though Nc is varied with values 512, 1024 and 2048, mesh
adaption is always triggered twice in the three simulations: the first time at the end of the 1st
load increment, and the second time around the 23rd load increment. The mesh motion algorithm
always succeeds in applying the displacement increment in a single trial in all these simulations.
Indeed, except from the regions close to the reinforcements, the purely elastic strain field is not
significantly localized. Therefore, the large deformations are diffused and shared by all elements.
The only reason mesh adaption is triggered twice is the excessive stretching which leads to a
deteriorated element quality.
Mesh adaption results to some diffusion of the strain energy, which has the consequence that the
final result in Fig. 18(b) is not identical to the 3D box shown in Fig. 17(b). If strain energy
conservation is of interest, the user might choose to avoid mesh adaption as much as possible in

36

these simulations. FEMS would still be of interest for such computational approach as it could be
used to prepare the initial mesh.

4.3.2. Elasto-plasticity

In this second application, material behavior in the reinforcements is linear elastic but the
matrix is defined as elasto-plastic with a von Mises yield criterion and linear isotropic hardening.
The Cauchy stress tensor σ at any point of the reinforcements is given by Hooke’s law for isotropic
linear elasticity with a Young’s modulus of 400 MPa and a Poisson’s coefficient of 0.2. In the
matrix, the following nonlinear equations must be solved at each integration point:

σ = σdev − pI2, p = −1

3
tr(σ),

σ̇dev = 2µel
(
ε̇el − 1

3
tr(ε̇el)I2

)
,− 1

χel
ṗ− tr(ε̇el) = 0, ε̇el = ε̇− ε̇pl, tr(ε̇pl) = 0,

f =

√
3

2
σdev : σdev, εpl =

∫ t

0

ε̇
pl

(τ)dτ, ε̇
pl

=

√
2

3
ε̇pl : ε̇pl, σ = 500 + 1000εpl,∣∣∣∣∣ ε̇

pl
= 0, ε̇pl = 0, f < σ,

ε̇pl = 3
2
ε̇
pl σdev

f
, ε̇
pl
> 0, f = σ.

These equations involve the deviatoric part σdev of the Cauchy stress tensor and the hydrostatic
pressure p. There is an additive decomposition of the strain rate tensor ε̇ into an elastic part ε̇el

and a plastic part ε̇pl, the plastic part being incompressible. The equivalent stress f is defined
using the von Mises yield criterion, and the yield stress σ using a linear isotropic hardening law
which is a function of the only state variable, namely the equivalent plastic strain εpl.
The last system of equations defines the conditions for plastic flow. This system is solved using a
standard predictor-corrector scheme with return mapping [3, 29], where the only unknown is the

equivalent plastic strain rate ε̇
pl

. A Young’s modulus of 200 MPa and a Poisson’s coefficient of 0.3
are defined for the matrix in order to compute the Lamé parameter µel and the bulk modulus χel.
The small strain updated Lagrangian weak form is discretized using a P1+/P1 MINI element to
deal with the incompressibility of plastic strains. This weak form is solved using a Newton-Raphson
algorithm in addition to the local Newton-Raphson procedure that has already been mentioned
for the return mapping at each integration point. The loading consists in 25 increments with U
set to 0.04 mm.

The result for the simulation with the finest mesh is shown in Fig. 19. For these simulations
with localized plastic strains, there is one mesh adaption for the simulation with Nc = 512, two
adaptions for Nc = 1024, and three adaptions for Nc = 2048. Although none of them has been
triggered by the mesh motion procedure, element flipping is very likely in these simulations and
maintaining a good element quality is very important. In addition, it is clear in Fig. 19 that the
mesh has been automatically refined in the region with large plastic strain.

Finally, for all solid mechanics simulations, the computation time spent solving balance equa-
tions is always around 20 times the time spent on mesh adaption. Given that some of these
simulations, especially those with plasticity, could not be conducted without mesh adaption, it is
relevant to apply FEMS to solid mechanics as well as fluid mechanics.

37

Figure 19: Results of the solid mechanics simulation with elasto-plastic material behavior for the matrix, linear
elastic behavior for the reinforcements, and Nc = 2048 after 25 load increments.

38

5. Conclusions and perspectives

A state-of-the-art Finite Element Modeling Software (FEMS) has been presented in this paper.
FEMS is targeted at engineers and scientists addressing localization problems. Those include a
wide range of computational fluid dynamics problems involving turbulence and boundary layers,
or multiphase flows, but also computational solid mechanics problems such as plastic localization
bands. Examples of such problems are addressed in this paper to show the capabilities of FEMS.
A transient incompressible flow problem with a high Reynolds number has been solved using
the higher-order mesh adaption capabilities of FEMS. A mesh composed of triangles has been
automatically adapted to the features of the solution, with triangles refined, stretched and oriented
according to the fluid velocity field. Control parameters allowing to keep a fixed number of nodes
during the simulation and to fix element stretching have been varied, showing that anisotropic
mesh adaption provides a gain in accuracy with no significant computation time overhead.
Simulations in a heterogeneous domain have also been solved using FEMS. Two different modeling
approaches have been proposed: the one relying on a body-fitted FE mesh with explicit meshing
of internal interfaces, and the other relying on the Level-Set (LS) method to represent interfaces
implicitly in the FE mesh. The first approach has been demonstrated to be robust for solid
mechanics problems in an updated Lagrangian setting as FEMS can adapt the mesh automatically
during the simulation to avoid element flipping. The second approach has been shown to be
efficient for multiphase flow problems. For the latter, FEMS’ higher-order interpolation of the LS
function improves further the accuracy of the solution.
In addition, body-fitted FE meshes can be generated within FEMS, simply from signed distance
functions. Those can be easily computed for most geometrical entities, and even from gray scale
two-dimensional and three-dimensional images. This feature has been demonstrated in the paper
with varying control parameters allowing to automatically vary the mesh size depending on the
local maximum principal curvature of internal interfaces.
All in all, FEMS proves to be a powerful tool for modeling nonlinear phenomena in computational
mechanics, and give access to cutting-edge adaptive finite elements for the first time in an open
source software.

References

[1] R. Codina, Stabilized finite element approximation of transient incompressible flows using
orthogonal subscales, Computer Methods in Applied Mechanics and Engineering 191 (39-40)
(2002) 4295–4321. doi:10.1016/S0045-7825(02)00337-7.

[2] G. Compère, J.-F. Remacle, J. Jansson, J. Hoffman, A mesh adaptation framework for dealing
with large deforming meshes, International Journal for Numerical Methods in Engineering 82
(2010) 843–867. doi:10.1002/nme.2788.

[3] E. Roux, M. Shakoor, M. Bernacki, P.-O. Bouchard, A new finite element approach for mod-
elling ductile damage void nucleation and growth—analysis of loading path effect on damage
mechanisms, Modelling and Simulation in Materials Science and Engineering 22 (7) (2014)
075001. doi:10.1088/0965-0393/22/7/075001.

[4] M. Shakoor, C. H. Park, A higher-order finite element method with unstructured anisotropic
mesh adaption for two phase flows with surface tension, Computers & Fluids (Submitted).

39

[5] F. Feyel, Multiscale FE2 elastoviscoplastic analysis of composite structures, Computational
Materials Science 16 (1-4) (1999) 344–354. doi:10.1016/S0927-0256(99)00077-4.

[6] N. Sukumar, D. Chopp, N. Moës, T. Belytschko, Modeling holes and inclusions by level
sets in the extended finite-element method, Computer Methods in Applied Mechanics and
Engineering 190 (46-47) (2001) 6183–6200. doi:10.1016/S0045-7825(01)00215-8.

[7] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-
and post-processing facilities, International Journal for Numerical Methods in Engineering
79 (11) (2009) 1309–1331. doi:10.1002/nme.2579.

[8] C. Cecka, A. J. Lew, E. Darve, Assembly of finite element methods on graphics proces-
sors, International Journal for Numerical Methods in Engineering 85 (5) (2011) 640–669.
doi:10.1002/nme.2989.

[9] T. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, ex-
act geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering
194 (39-41) (2005) 4135–4195. doi:10.1016/j.cma.2004.10.008.

[10] S. Osher, J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms
based on Hamilton-Jacobi formulations, Journal of Computational Physics 79 (1) (1988) 12–
49. doi:10.1016/0021-9991(88)90002-2.

[11] A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements, Vol. 159 of Applied Math-
ematical Sciences, Springer New York, 2004. doi:10.1007/978-1-4757-4355-5.

[12] A. Fortin, A. Garon, Les éléments finis : de la théorie à la pratique (2011).

[13] O. Zienkiewicz, R. Taylor, J. Zhu, The Finite Element Method: Its Basis and Fundamentals,
Elsevier, 2013. doi:10.1016/B978-1-85617-633-0.00019-8.

[14] D. Boffi, F. Brezzi, L. F. Demkowicz, R. G. Durán, R. S. Falk, M. Fortin, Mixed Finite
Elements, Compatibility Conditions, and Applications, Vol. 1939 of Lecture Notes in Mathe-
matics, Springer, Berlin, Heidelberg, 2008. doi:10.1007/978-3-540-78319-0.

[15] A. N. Brooks, T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convec-
tion dominated flows with particular emphasis on the incompressible Navier-Stokes equa-
tions, Computer Methods in Applied Mechanics and Engineering 32 (1-3) (1982) 199–259.
doi:10.1016/0045-7825(82)90071-8.

[16] Y. Bazilevs, V. Calo, J. Cottrell, T. Hughes, A. Reali, G. Scovazzi, Variational multi-
scale residual-based turbulence modeling for large eddy simulation of incompressible flows,
Computer Methods in Applied Mechanics and Engineering 197 (1-4) (2007) 173–201.
doi:10.1016/j.cma.2007.07.016.

[17] J. Yan, S. Lin, Y. Bazilevs, G. Wagner, Isogeometric analysis of multi-phase flows with surface
tension and with application to dynamics of rising bubbles, Computers & Fluids 179 (2019)
777–789. doi:10.1016/j.compfluid.2018.04.017.

40

[18] V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Log-Euclidean metrics for fast and sim-
ple calculus on diffusion tensors, Magnetic Resonance in Medicine 56 (2) (2006) 411–421.
doi:10.1002/mrm.20965.

[19] R. Abgrall, H. Beaugendre, C. Dobrzynski, An immersed boundary method using unstructured
anisotropic mesh adaptation combined with level-sets and penalization techniques, Journal of
Computational Physics 257 (2014) 83–101. doi:10.1016/j.jcp.2013.08.052.

[20] D.-L. Quan, T. Toulorge, E. Marchandise, J.-F. Remacle, G. Bricteux, Anisotropic
mesh adaptation with optimal convergence for finite elements using embedded geome-
tries, Computer Methods in Applied Mechanics and Engineering 268 (2014) 65–81.
doi:10.1016/j.cma.2013.09.007.

[21] M. Shakoor, M. Bernacki, P.-O. Bouchard, Ductile fracture of a metal matrix composite
studied using 3D numerical modeling of void nucleation and coalescence, Engineering Fracture
Mechanics 189 (2018) 110–132. doi:10.1016/j.engfracmech.2017.10.027.

[22] O. C. Zienkiewicz, J. Z. Zhu, A simple error estimator and adaptive procedure for practical
engineerng analysis, International Journal for Numerical Methods in Engineering 24 (2) (1987)
337–357. doi:10.1002/nme.1620240206.

[23] Z. Zhang, A. Naga, A New Finite Element Gradient Recovery Method: Supercon-
vergence Property, SIAM Journal on Scientific Computing 26 (4) (2005) 1192–1213.
doi:10.1137/S1064827503402837.

[24] A. Loseille, F. Alauzet, Continuous Mesh Framework Part I: Well-Posed Continuous Interpo-
lation Error, SIAM J. Numer. Anal. 49 (1) (2011) 38–60. doi:10.1137/090754078.

[25] A. Loseille, F. Alauzet, Continuous Mesh Framework Part II: Validations and Applications,
SIAM Journal on Numerical Analysis 49 (1) (2011) 61–86. doi:10.1137/10078654X.

[26] O. Coulaud, A. Loseille, Very High Order Anisotropic Metric-Based Mesh Adaptation in 3D,
Procedia Engineering 163 (2016) 353–365. doi:10.1016/j.proeng.2016.11.071.

[27] P. Laug, H. Borouchaki, Construction d’un champ continu de métriques, Comptes Rendus
Mathematique 351 (15-16) (2013) 639–644. doi:10.1016/j.crma.2013.07.009.

[28] W. Huang, Metric tensors for anisotropic mesh generation, Journal of Computational Physics
204 (2) (2005) 633–665. doi:10.1016/j.jcp.2004.10.024.

[29] M. Shakoor, M. Bernacki, P.-O. Bouchard, A new body-fitted immersed volume method
for the modeling of ductile fracture at the microscale: Analysis of void clusters and
stress state effects on coalescence, Engineering Fracture Mechanics 147 (2015) 398–417.
doi:10.1016/j.engfracmech.2015.06.057.

[30] C. Dobrzynski, P. Frey, Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations, in:
R. V. Garimella (Ed.), Proceedings of the 17th International Meshing Roundtable, Springer,
Berlin, Heidelberg, 2008, pp. 177–194. doi:10.1007/978-3-540-87921-3.

41

[31] C. Dapogny, C. Dobrzynski, P. Frey, Three-dimensional adaptive domain remeshing, implicit
domain meshing, and applications to free and moving boundary problems, Journal of Com-
putational Physics 262 (2014) 358–378. doi:10.1016/j.jcp.2014.01.005.

[32] C. Gruau, T. Coupez, 3D tetrahedral, unstructured and anisotropic mesh generation with
adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics
and Engineering 194 (48-49) (2005) 4951–4976. doi:10.1016/j.cma.2004.11.020.

[33] M. Shakoor, P.-O. Bouchard, M. Bernacki, An adaptive level-set method with enhanced vol-
ume conservation for simulations in multiphase domains, International Journal for Numerical
Methods in Engineering 109 (4) (2017) 555–576. doi:10.1002/nme.5297.

[34] J. X. Zhao, T. Coupez, E. Decencière, D. Jeulin, D. Cárdenas-Peña, L. Silva, Direct multi-
phase mesh generation from 3D images using anisotropic mesh adaptation and a redistancing
equation, Computer Methods in Applied Mechanics and Engineering 309 (2016) 288–306.
doi:10.1016/j.cma.2016.06.009.

[35] M. Shakoor, A. Buljac, J. Neggers, F. Hild, T. F. Morgeneyer, L. Helfen, M. Bernacki,
P.-O. Bouchard, On the choice of boundary conditions for micromechanical simulations
based on 3D imaging, International Journal of Solids and Structures 112 (2017) 83–96.
doi:10.1016/j.ijsolstr.2017.02.018.

[36] C. Maurer, Rensheng Qi, V. Raghavan, A linear time algorithm for computing exact Euclidean
distance transforms of binary images in arbitrary dimensions, IEEE Transactions on Pattern
Analysis and Machine Intelligence 25 (2) (2003) 265–270. doi:10.1109/TPAMI.2003.1177156.

[37] J. A. Sethian, A. Vladimirsky, Fast methods for the Eikonal and related Hamilton- Jacobi
equations on unstructured meshes., Proceedings of the National Academy of Sciences of the
United States of America 97 (11) (2000) 5699–703. doi:10.1073/pnas.090060097.

[38] M. Shakoor, B. Scholtes, P.-O. Bouchard, M. Bernacki, An efficient and parallel level set reini-
tialization method – Application to micromechanics and microstructural evolutions, Applied
Mathematical Modelling 39 (23-24) (2015) 7291–7302. doi:10.1016/j.apm.2015.03.014.

[39] ISO/IEC 9899:1999, Tech. rep., International Organization for Standardization (1999).

[40] ISO/IEC 14882:2011, Tech. rep., International Organization for Standardization (2011).

[41] F. Hecht, New development in freefem++, Journal of Numerical Mathematics 20 (3-4) (2012)
251–265.

[42] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring,
M. E. Rognes, G. N. Wells, The fenics project version 1.5, Archive of Numerical Software
3 (100). doi:10.11588/ans.2015.100.20553.

[43] B. S. Kirk, J. W. Peterson, R. H. Stogner, G. F. Carey, libMesh : a C++ library for par-
allel adaptive mesh refinement/coarsening simulations, Engineering with Computers 22 (3-4)
(2006) 237–254. doi:10.1007/s00366-006-0049-3.

42

[44] G. Compère, E. Marchandise, J.-F. Remacle, Transient adaptivity applied to two-
phase incompressible flows, Journal of Computational Physics 227 (3) (2008) 1923–1942.
doi:10.1016/j.jcp.2007.10.002.

[45] H. Digonnet, L. Silva, T. Coupez, Cimlib: A Fully Parallel Application For Numerical Sim-
ulations Based On Components Assembly, in: AIP Conference Proceedings, Vol. 908, AIP,
2007, pp. 269–274. doi:10.1063/1.2740823.

[46] OpenMP Application Program Interface Version 4.5, Tech. rep., OpenMP Architecture Review
Board (2015).

[47] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, GNU
Scientific Library Reference Manual - Third Edition, Network Theory Ltd., 2009.

[48] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Ei-
jkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith,
S. Zampini, H. Zhang, H. Zhang, {PETS}c {W}eb page (2016).
URL http://www.mcs.anl.gov/petsc

[49] T. A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multi-
frontal method, ACM Transactions on Mathematical Software 30 (2) (2004) 196–199.
doi:10.1145/992200.992206.

[50] A. Nishida, Experience in Developing an Open Source Scalable Software Infrastructure in
Japan, in: D. Taniar, O. Gervasi, B. Murgante, E. Pardede, B. Apduhan (Eds.), Computa-
tional Science and Its Applications – ICCSA 2010, Vol. 6017 of Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 2010, pp. 448–462. doi:10.1007/978-3-642-12165-4 36.

[51] J. W. Demmel, J. R. Gilbert, X. S. Li, An asynchronous parallel supernodal algorithm for
sparse gaussian elimination, SIAM J. Matrix Analysis and Applications 20 (4) (1999) 915–952.

[52] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton, S. Layton,
N. Markovskiy, I. Reguly, N. Sakharnykh, V. Sellappan, R. Strzodka, AmgX: A Library for
GPU Accelerated Algebraic Multigrid and Preconditioned Iterative Methods, SIAM Journal
on Scientific Computing 37 (5) (2015) S602–S626. doi:10.1137/140980260.

[53] K. Rupp, P. Tillet, F. Rudolf, J. Weinbub, A. Morhammer, T. Grasser, A. Jüngel, S. Sel-
berherr, ViennaCL—Linear Algebra Library for Multi- and Many-Core Architectures, SIAM
Journal on Scientific Computing 38 (5) (2016) S412–S439. doi:10.1137/15M1026419.

[54] U. Ayachit, The ParaView Guide: A Parallel Visualization Application, Kitware, 2015.

[55] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch,
C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri,
P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis, Nature
Methods 9 (7) (2012) 676–682. doi:10.1038/nmeth.2019.

[56] E. Erturk, T. C. Corke, C. Gökçöl, Numerical solutions of 2-D steady incompressible driven
cavity flow at high Reynolds numbers, International Journal for Numerical Methods in Fluids
48 (7) (2005) 747–774. doi:10.1002/fld.953.

43

