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Cell therapy for prenatal repair of myelomeningocele: a systematic 1 

review 2 

 3 

 4 

 5 

Summary 6 

Myelomeningocele (MMC) is a spinal cord congenital defect that leads to paraplegia, 7 

bladder incontinence and bowel dysfunction. A randomized human trial demonstrated that in 8 

utero surgical repair of the MMC defect improves lower limb motor function. However, 9 

functional recovery remains incomplete. Stem cell therapy has recently generated great 10 

interest in the field of prenatal repair of MMC. In this systematic review we attempt to provide 11 

an overview of the current application of stem cells in different animal models of MMC. 12 

Publications were retrieved from PubMed and Cochrane Library databases. This process 13 

yielded twenty-two studies for inclusion in this review, experimenting five different types of 14 

stem cells:  human embryonic stem cells, neural stem cells, induced pluripotent stem cells, 15 

human amniotic fluid stem cells, and mesenchymal stem cells (MSCs). Rodents and ovine 16 

were the two major species used for animal model studies. The source, the aims, and the 17 

main results were analyzed. Stem cell therapy appears to be a promising candidate for 18 

prenatal repair of MMC, especially MSCs. Further explorations in ovine and rodent models, 19 

reporting clinical and functional results, are necessary before an application in humans. 20 
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Introduction 31 

Myelomeningocele (MMC) is one of the most frequent congenital defects diagnosed 32 

by prenatal ultrasound and is characterized by the protrusion of the spinal cord through a 33 

vertebral defect [1]. This non-lethal congenital defect generates paraplegia, sphincter 34 

disorders and neurological bladder. This open dysraphism is almost always associated with 35 

Chiari II malformation, and sometimes with hydrocephalus that may be responsible of 36 

cognitive disabilities [2]. 37 

Since 1990, it is admitted that MMC results from disarrangement during the 38 

development of the posterior neuropore, at the fourth week of gestation, and spinal cord 39 

injuries are worsened during gestation. This mechanism called “the two-hit hypothesis” was 40 

confirmed by the efficiency of prenatal repair of MMC [3]. The american randomized 41 

multicentered study “Management Of Myelomeningocele Study” (MOMS), comparing the 42 

prenatal and postnatal surgery of MMC, showed that the prenatal surgical repair of MMC 43 

allows improving motor functions and cerebral benefit, with reduction by half of the need for 44 

ventriculo-peritoneal shunt after birth.  45 

In spite of these encouraging neonatal outcomes, the results are not totally 46 

satisfactory, since 55% of prenatally treated children were unable to walk independently at 47 

30 months of age [3,4]. New treatments thus have to be developed in order to improve 48 

clinical outcomes. The field of stem cell therapy appears as a promising approach, as cell 49 

engineering is known to provide a benefit in repair of tissue injury, such as their use in large 50 

skin burns and in cornea repair [5,6]. 51 

Despite many reviews on surgical fetal repair of MMC, to our knowledge, no study 52 

has systematically reported the current evidence on the effectiveness of stem cell on this 53 

topic. The purpose of this study was a systematical review about the use of stem cell therapy 54 

for prenatal MMC repair.  55 

 56 

Materials and Methods 57 

Search strategy  58 

We performed this systematic review following the Preferred Reporting Items for 59 

Systematic reviews and Meta-Analysis (PRISMA) protocol [7]. Two independent reviewers 60 

(A.D. and L.G.) conducted the systematic search for relevant studies using the electronic 61 

PubMed and Cochrane Library databases with the following terms: (myelomeningocele OR 62 
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spinal OR spina bifida) AND (prenatal OR in utero OR fetal OR embryo) AND (stem cell(s) 63 

OR stromal cell(s) OR cell therapy) NOT (spinal cord injury). Publications from the earliest 64 

record of the databases to March 30, 2020, were selected (figure 1).  65 

Inclusion and exclusion criteria  66 

We included studies which met the following criteria: (a) designed as interventional 67 

studies; (b) studying animals who received stem cell therapy; (c) reports on clinical, 68 

histological, and/or immunohistochemical results. We excluded letters, editorials, replies from 69 

author, case reports, not systematical reviews and articles not published in English language. 70 

Data extraction  71 

Data were extracted on first author, year of publication, number of cases, animal model, 72 

source of stem cell, way of administration and main results in the stem cell group (table 1). 73 

The same two reviewers excluded papers that were not appropriate for this review after 74 

screening based on the study title and/or on full-text studies.  75 

 76 

Results  77 

 78 

A total of 22 studies were found in the databases (table 1). Five different types of 79 

stem cells were used.  80 

Human embryonic stem cells (hESCs) 81 

A cell-based therapy strategy for the treatment of MMC was first developed by Lee et 82 

al. [8,9]. They studied the closure capacity of a MMC-like defect by intra-amniotic injection of 83 

human embryonic stem cells (hESCs) in a surgical chick embryo model of MMC. The hESCs 84 

used for the repair were collected from frozen human blastocysts and injected as 85 

undifferentiated cells in the amniotic cavity, with a glucose phosphate-buffered saline vehicle. 86 

The authors showed that the lengths of the MMC defect were significantly shortened in the 87 

hESCs group as compared to the controls. They suggested that the hESCs mechanisms to 88 

improve MMC closure were the cell’s paracrine activity and the mechanical bridging effect, 89 

but there were no experimentations to support this hypothesis. 90 

Neural stem cells (NSCs) 91 

 Fauza et al. introduced the use of neural stem cells (NSCs) engrafted in an ovine 92 

model [10]. A L1 to L5 defect was surgically created as previously described, with the aim to 93 
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evaluate the NSCs directly injected into the spinal cord, associated to its coverage with an 94 

acellular human dermal patch (AlloDerm) [11]. The 25 fetal lambs included were divided into 95 

three groups: NSCs injection and coverage with AlloDerm (n= 9), coverage with AlloDerm 96 

only (n=7) or no repair of the defect (n=9). NSCs were obtained from murine cerebellum and 97 

the repair was performed 20 days after the creation of MMC. After spontaneous vaginal 98 

delivery, the surviving lambs had a functional evaluation. No significant reduction of lamb 99 

paraparesis was observed in the group treated with NSCs and AlloDerm. 100 

Immunohistochemistry study demonstrated that NSCs were engrafted in the spinal cord. 101 

However, immunostaining of the spinal cords for immature neural stem markers and 102 

neuronal differentiation markers showed that these NSCs remained undifferentiated. 103 

Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF) and brain-104 

derived neurotrophic factor (BDNF) were found both in the cytoplasm of the grafted cells and 105 

in the extracellular matrix surrounding the host cells, suggesting that both NSCs and host 106 

cells produced these factors.  107 

The same team experimented rat’s NSCs in a MMC rodent model [12]. The MMC was 108 

chemically induced by a single intragastric retinoic acid administration on embryonic day 10 109 

(E10). NSCs were obtained from dams amniotic fluid. They performed NSCs intra-amniotic 110 

injections on E17. At E21, they observed that NSCs were located on the neural placode, 111 

retaining an undifferentiated morphology, and predominantly located on exposed neural 112 

surfaces. Thus, they confirmed the feasibility of intra-amniotic injection of stem cells to repair 113 

MMC, in another model. 114 

Induced pluripotent stem cells (iPSCs) 115 

Saadai et al. studied neural crest stem cells (NCSCs) derived from human induced 116 

pluripotent stem cells (iPSCs), in the fetal lamb model of MMC, within a biocompatible 117 

surgical scaffold [13]. The MMC defect was surgically created at 75 days of gestation, and 118 

repaired 25 days later in two lambs, with no control group. After sacrifice, 10 days prior to 119 

term, an immunohistochemistry analysis was performed on the lamb’s spinal cords, showing 120 

the survival and the integration of the NCSCs in the spinal cord at the level of the MMC 121 

lesion. 122 

In the retinoic acid-induced rat model, Kajiwara et al. experimented a three-123 

dimensional (3D)-skin using iPSCs, derived from human amniotic fluid [14]. The 3D-skin was 124 

correctly transplanted on the MMC defect in the 20 fetal rats operated. The rationale of these 125 

authors was that the coverage of the MMC lesion using a 3D-skin enables less invasive and 126 
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earlier fetal intervention. Their results showed only 20% of complete coverage at birth, two-127 

days after the 3D-skin graft. 128 

Human amniotic fluid stem cells 129 

 Abe et al. experimented intra-amniotic injections of xenologous human amniotic fluid 130 

CD117-positive stem cells (hAFSCs), in the retinoic acid-induced rat model at E17 [15]. Their 131 

results showed that hAFSCs-treatment promotes skin coverage of the cutaneous defect. The 132 

authors also observed significant increased tubulin ß-III areas in the spinal cords of hAFSCs 133 

group which could correspond to an induced neurogenesis in the MMC lesion.  134 

Mesenchymal stem cells  135 

Lee et al. experimented human bone marrow-derived mesenchymal stem cells (BM-136 

MSCs) in the surgical chick embryo model of MMC [16]. Four groups were compared in their 137 

study: intraamniotic injection of human BM-MSCs, or human NSCs, or human foreskin 138 

fibroblasts (HFF), and an untreated control group. Their results showed a better reclosure of 139 

the MMC lesion in the BM-MSCs group.  140 

Li et al. also experimented BM-MSCs in four studies, in the acid retinoic rodent model, 141 

previously described [17-20]. BM-MSCs were dam allogenic bone-marrow derived and 142 

injected directly into the defective region of the spinal cord.  143 

In their first study, Real Time PCR (RT-PCR) analysis in spinal cords revealed that 144 

BDNF and Neural Gross Factor (NGF) expressions were significantly higher in the MSC-145 

treated group compared to the control group [17]. Immuno-reactivity of BDNF and NGF was 146 

localized to both the GFP-labeled cells and in the adjacent host spinal cells, consistent with 147 

the study on NSC previously described [10]. A significant reduction of the expression of 148 

Caspase-3 and Bcl-2 in the BM-MSCs group was interpreted by the authors as a reduction of 149 

apoptosis after BM-MSCs transplantation.  150 

In another study, they found an increased expression of Epidermal Growth Factor 151 

(EGF) and Fibroblast Growth Factor (FGF) by RT-PCR after transplantation of BM-MSCs 152 

[18]. EGF was not detected by immunofluorescence in the cultured cells but in the 153 

transplanted cells, suggesting an intrinsic response increasing growth factor expression.  154 

In a third study, they observed an increased expression of the transcription factors 155 

Brn3a and Runx1 in the spinal cord, which could potentially promote the differentiation of the 156 

transplanted MSCs and the surrounding cells into sensory neurons in the spinal cord [19].  157 
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The same BM-MSCs were then engrafted in a chitosan-gelatin scaffold and surgically 158 

seeded on the MMC-like defect, and compared to a control unrepaired group, in the 159 

previously described MMC chemical rat model [20]. The authors concluded that their scaffold 160 

allowed the survival and the migration of the GFP-labelled BM-MSCs in the defective region 161 

of MMC. They also concluded that the co-localization of Nestin and Tubulin with GFP-BM-162 

MSCs in the spinal cord was related to the differentiation of BM-MSCs into neural stem cells 163 

and into neurons. 164 

Fauza et al. experimented fetal MSCs of rats in the rodent acid retinoic induced-165 

model [21-25]. In their five studies, they experimented stem cell using intra-amniotic 166 

injections, described as Trans-amniotic Stem Cell Therapy (TRASCET) technique.  167 

The first study experimented amniotic fluid MSCs (afMSCs) of normal rat dams [21]. 168 

The fetuses were divided into three groups: intra-amniotic injection of afMSCs, intra-amniotic 169 

injection of saline solution (PBS), or no injection. All the injections were performed on E17 170 

and the analysis at E21. At birth, MMC was present in 46% of the afMSC group, 68% of the 171 

PBS group and 80% of the untreated group (p=0.03). They also observed that the MMC 172 

defect coverage was thicker in the afMSC-group, as compared to the two other groups. GFP-173 

labelled stem cells were found more frequently engrafted in bone structures and rarely in 174 

neural tissue.  A second study with the same protocol showed a brainstem displacement 175 

significantly smaller in the afMSC group than the untreated group on Magnetic Resonnance 176 

Imaging (MRI) examination [22]. In this study, no statistical difference was found on the 177 

cerebellar displacement. The same team compared placenta-derived mesenchymal stem 178 

cells (pMSCs) to afMSCs, in the same rat model [23]. No difference was found on the 179 

histological examination of the MMC defect coverage between the two groups. The kinetic of 180 

afMSCs, labeled with a luciferase reporter gene, was analyzed by luminometry in a fourth 181 

study [24]. Luminometry was positive exclusively in the placenta, umbilical cord, spleen, bone 182 

marrow, hip bones, defect, and brain, result interpreted by the authors as a potential a 183 

hematogenous path for homing. TRASCET was then applied to the surgical rabbit model 184 

using GFP-labeled afMSCs obtained from normal rabbit [25]. Three groups were compared: 185 

intra-amniotic injection of afMSCs suspension, intra-amniotic injection of saline solution, or 186 

no injection. Histological examination of the defect showed coverage by a neoskin, 187 

significantly thicker in the afMSCs group. No stem cells were found in the neoskin but some 188 

were observed in the bone marrow. 189 

Farmer et al. experimented xenogenous human placental-derived mesenchymal 190 

stromal cells (pMSCs), collected from human early gestation placenta tissue, in the surgical 191 

ovine model of MMC [26-30]. 192 
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First, they compared GFP-labeled pMSCs seeded into a hydrogel delivery vehicle to 193 

repair MMC-like defect in six lambs, with six control lambs, repaired with a vehicle-only [26]. 194 

In both groups, an extracellular matrix patch was secured over the defect before skin closure. 195 

After spontaneous delivery, the lambs were evaluated by a validated scale, i.e. the Sheep 196 

Locomotor Rating scale (SLR) [31]. The lambs in the pMSC-treated group had a significantly 197 

higher SLR score at birth, with 4/6 lambs able to walk independently, against 0/6 in the 198 

untreated group. Immunocytochemical analysis revealed that pMSCs had a paracrine activity 199 

in vitro, with secretion of factors implicated in angiogenesis, chemotaxis, extracellular matrix 200 

remodeling, and the innate immune response. The histological analysis demonstrated an 201 

increase in “large neuron density” in pMSC-treated lambs at the lesion epicenter, but no 202 

GFP-labeled pMSC was found into the spinal cord or surrounding tissue.    203 

The same pMSCs were then experimented using a FDA-approved vehicle: a porcine 204 

small intestine submucosa derived extracellular matrix (SIS-ECM) [27]. Fetal MMC defects 205 

were repaired at 93 days of gestation, 25 days following the creation, either by SIS-ECM 206 

seeded with pMSCs (n=8), or by SIS-ECM with no added cells (n=6). The authors observed 207 

no statistical difference on the SLR score, but concluded to a clinically significant 208 

improvement of motor function in the treated group with 5/8 lambs able to walk over obstacle, 209 

compared to 1/6 in the control group (p=0.04). In this study, pMSCs were transduced with 210 

GFP, but no cell tracking was reported. 211 

In order to establish a cost-effective study, they used the same protocol on the 212 

chemically induced rodent model [28]. The fetal rodents were either repaired with different 213 

seeding densities of pMSCs onto the SIS-ECM, or using SIS-ECM only. The authors 214 

concluded that the pMSCs-treated group had a significantly smaller degree of spinal cord 215 

compression, whatever the pMSCs density. Their results also suggested that pMSCs 216 

improve the coverage of the MMC defect, by reducing the density of apoptotic cells in the 217 

spinal cord. 218 

Farmer’s team pursued their work by studying the effects of different seeding 219 

densities of human pMSCs, compared to the use of SIS-ECM only, in the ovine model [29]. 220 

Their results showed that the pMSC-groups had a significantly higher median SLR score and 221 

a higher neuron density than the SIS-ECM-only, whatever the pMSCs density group. In their 222 

last study, they compared the effectiveness of three different lines of pMSC and they 223 

identified a way to facilitate the selection of the optimal pMSC lines, using an in vitro 224 

neuroprotection assay [30]. 225 

 226 
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Discussion 227 

Through this systematic review, stem cell therapy appears to be a promising option to 228 

improve prenatal repair of MMC. The challenge in humans is to provide an efficient and safe 229 

therapy which may improve the results of the prenatal surgical repair. We thus have to 230 

determine which are the most effective cells and the most suitable mode of administration. 231 

Stem cells types 232 

Despite their attractive pluripotency and their high capacity of proliferation, hESCs 233 

have an obvious legal restricted use and their use is ethically controversial. Moreover, 234 

undifferentiated hESCs are known to induce teratoma and thus will never been used in 235 

humans without preliminary differentiation [32]. NSCs could be pertinent in this application 236 

because they are a source of glial scar astrocytes with beneficial functions, including 237 

preserving tissue integrity and supplying neurotrophic support for surviving neurons [33]. 238 

However, these cells prepared from neural tissue are difficult to obtain, which also raises 239 

ethical issues together with potentially infectious risk concerns. iPSC-NSCSc imply fastidious 240 

methods of production with uncertain efficiency in cell replacement therapy [34]. In addition, 241 

iPSCs are not entirely safe for human application because they are randomly epigenetic-242 

transformed after reprograming and can accumulate mutations after transplantation [35,36]. 243 

MSCs appear to be the best candidate for cell therapy in MMC prenatal repair. They 244 

are easily obtained, in large quantities. They have the ability to facilitate recovery from spinal 245 

cord injury, and are capable of producing trophic factors [37-42]. Moreover, MSCs are the 246 

only type of cells to have demonstrated an improvement in motor function in the experiments 247 

of Farmer et al. [26-30]. Despite the use of xenogenic graft, no graft versus host reaction 248 

were observed in their experiments. This result is likely explained because of the 249 

immunomodulatory properties of MSCs and because the fetal immune system can induce a 250 

donor-specific immune tolerance, with a process of self-education [43,44].  251 

This hypothesis is corroborated by the results of stem cell therapy in humans spinal 252 

cord injury (SCI). Clinical trials demonstrated that the use of MSCs in SCI improve motor 253 

function and quality of life for at least one year [45]. Moreover, these cells are known to 254 

promote repair and functional repair by enhancing neuroprotection, immunomodulation, axon 255 

regeneration and sprouting [46]. However, further investigations are necessary to resolve 256 

issues such as ideal source and type of stem cell, way of delivery and safety associated to 257 

stem cell-based therapy before being ranked as a gold standard in humans.    258 

Ways of administration 259 
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Different ways of administration have been proposed so far: delivery directly into the 260 

spinal cord, intra-amniotic injection, or via a vehicle, surgically seeded. Injections into the 261 

spinal cord could be considered too invasive with additional injuries that cannot be excluded. 262 

However, if the safety of this way of administration was demonstrated, it would be a relevant 263 

option, authorizing early and repeated ultrasound-guided procedures, which is relevant 264 

regarding the fact that MMC worsens from the first trimester of pregnancy [2]. Intra-amniotic 265 

injections would present similar interests and are easier to perform with no risk of secondary 266 

injuries. However, Fauza et al. observed that after intra-amniotic injection, MSCs were found 267 

in the umbilical cord, placenta, spleen and brain, a result which is difficult to understand 268 

knowing the physiology of fetal circulation, thus requiring further investigations [24]. Stem 269 

cells can also be engrafted on a patch and surgically seeded on the MMC-like defect. This 270 

surgical technique has already been experimented in human fetal surgery for simple 271 

coverage and have the advantage to control stem cell homing and engraftment directly on 272 

the defect.  273 

Animal models and endpoints to study stem cell therapy in the prenatal treatment 274 

of MMC 275 

Through this systematic review, four different animal models have been studied. The 276 

chick model is interesting because of its cost effectiveness but the defect is difficult to create 277 

and to compare to humans. The rodent model obtained with retinoic acid is also inexpensive, 278 

and the multiple fetuses gestations make studies statistically more powerful. However, 279 

authors reported up to 15.6% of pups with no macroscopically visible defect [47]. Thus, it 280 

seems inappropriate to choose the MMC closure at birth as endpoint with this model. 281 

Furthermore, retinoic acid is a teratogenic agent with a potential impact on all organs. The 282 

short time of gestation implying a short duration between treatment and birth could induce a 283 

bias in the treatment’s evaluation. The surgical rabbit model causes the same issue because 284 

the MMC defect is created late in gestation [25]. Farmer et al. worked in the ovine model, 285 

which represents the more widely used model for fetal surgery because of the similarities to 286 

the human MMC malformation [11,26,27,29,30,48]. Moreover, the neurological examination 287 

of lambs is now standardized with the SLR, a validated score in the MMC ovine model [31]. 288 

The aim of stem cell therapy on prenatal repair of MMC is to improve the spinal cord repair 289 

during fetal surgery, in order to enhance the functional improvement of the prenatally treated 290 

children. The clinical evaluation of animals at birth is therefore the most relevant approach. 291 

Other parameters, such as immunohistochemical assays, cells survival, their integration and 292 

paracrine activities, in particular secretion of growth factors, can be used to study the 293 
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mechanisms of spinal cord repair. In our opinion, the induced cutaneous closure of the defect 294 

and the correction of the Chiari II malformation are not satisfactory endpoints for stem cell 295 

therapy studies because they are currently obtained in humans by simple coverage of the 296 

defect [3,4,11,48].  297 

 298 

Efficiency of stem cell therapy 299 

These studies show that stem cells, and particularly MSCs, could have a beneficial effect 300 

for the antenatal treatment of MMC, both on the healing of the MMC defect and on the motor 301 

function. Unfortunately, Farmer’s team is the only one to have shown a functional benefit of 302 

stem cell therapy in prenatal myelomeningocele surgery [26-30]. This could be explained by 303 

the fact that the other teams did not choose functional assessment endpoints. It may be 304 

related to the high cost and complex organization involved in keeping animals alive and 305 

studying them for at least 24 hours. It seems therefore necessary to focus all research efforts 306 

on the study of MSCs in order to show the reproducibility of the results of Farmer et al. and to 307 

consider an application in humans. 308 

The various results obtained are in favor of a benefit related to a paracrine activity, with 309 

secretion of growth and neuroprotective factors such as BDNF, NGF, EGF, FGF. At present, 310 

the pathophysiology of MMC, and in particular the mechanisms of destruction of the spinal 311 

cord, remain poorly understood. It is therefore probably premature to say that the paracrine 312 

effect of stem cells could halt the mechanism of the spinal cord destruction and that cell 313 

therapy alone might be sufficient as an antenatal treatment for this malformation. On the 314 

other hand, it is certain that the fetal repair of MMC brings a benefit, but also obligatory 315 

secondary surgical lesions, related to the dissection of the spinal cord. Because of their 316 

paracrine properties, stem cells could limit these side effects of surgery. Thus, their effect 317 

seems of great interest, as an adjunctive treatment to the fetal surgery. 318 

If the benefits of stem cell therapy in the prenatal MMC surgery are confirmed, we could 319 

also imagine an application to the postnatal treatment of MMC, both for immediate post 320 

surgical effect, but also to prevent a secondary Tethered Cord Syndrome (TCS). TCS is a 321 

common complication after post-natal MMC surgery that affects 10 to 30% of children and 322 

can induce lower-limb motor deficits, sensory deficits, bladder dysfunction, and 323 

musculoskeletal deformities [49]. It has recently been shown that pro-inflammatory and pro-324 

apoptotic mediators are involved in the physiopathology of this syndrome [49]. The use of 325 

stem cell therapy in this indication seems therefore particularly relevant. 326 
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Figure 1 – The PRISMA flow diagram of the study selection process.  467 
PRISMA: Preferred Reporting Items for Systematic reviews and Meta-Analysis protocol 468 
 469 

 470 

 471 

472 
  473 



 

 

15

First author Number of 
cases (n) 

Animal model Type of stem 
cell 

Source of the stem 
cells 

Way of administration Main results in the stem cell group 

Lee8,9 15 / 63 Chick  hESCs Xenologous – 
 human blastocysts 

Intra-amniotic injection Lengths of the MMC defect were significantly shorter in the hES 
group 

Fauza10 9 Ovine  NSCs Xenologous –  
murine cerebellum 

Injection into the defective 
region spinal cord 

No significant reduction of lamb paraparesis with NSCs 
NSCs and endogenous host cells produced GDNF and BDNF 

Turner12 15 Rodent NSCs Allogenic –  
rodent AF 

Intra-amniotic injection NSCs located on the neural placode, predominantly located on 
exposed neural surfaces 

Saadai 13 2 Ovine  
 

NCSCs - 
iPSCs 

Xenologous –  
human fibroblasts 

Surgically seeded, within a 
biocompatible scaffold 

Survival and integration of NCSCs-iPSC in the spinal cord  

Kajiwara14 20 Rodent Keratinocytes - 
iPSCs 

Xenologous – 
human AF 

Surgically seeded 20% of complete coverage at birth 

Abe15 116 Rodent hAFSCs  
CD117-
positive cells 

Xenologous –  
human AF 

Intra-amniotic injection Promote skin coverage of the MMC lesion 
Induced neurogenesis 

Lee 16 30 Chick  MSCs and 
NSCs 

Xenologous – MSCs: 
human BM 
NSCs: human 

Intra-amniotic injection Better reclosure indice  

Li 17-19 136 
 

11 
10 

Rodent  MSCs Allogenic –  
rodent BM 

Injection into the defective 
region spinal cord 

Higher expression of BDNF and NGF and reduction of expression 
of Caspase-3 and Bcl-2 
Increased expression of EGF and FGF by RT-PCR   
Increased number of Brn3a+ neurons in total neurons  

Li 20 134 Rodent  MSCs Allogenic –  
rodent BM 

Surgically seeded, within a 
chitosan-gelatin scaffold 

Co-localization of Nestin and Tubulin with GFP-BM-MSCs 
BM-MSCs found in the scaffold and in MMC defect 

Dionigi 21 87 Rodent  MSCs Allogenic –  
rodent AF 

Intra-amniotic injection Thicker defect coverage, with a paucity of adnexa 

Dionigi 22 28 Rodent MSCs Allogenic –  
rodent AF 

Intra-amniotic injection Smaller brainstem displacement 

Feng 23 115 (P) & 
73 (AF) 

Rodent MSCs Allogenic –  
rodent AF and P 

Intra-amniotic injection Thicker defect coverage in the two groups with stem cells, without 
any difference between them 

Shieh 24 78 Rodent MSCs Allogenic –  
rodent AF 

Intra-amniotic injection Luminescence significantly higher in the defect and in the BM 
compared with all the other sites  

Shieh 25 35 Rabbit MSCs Allogenic – 
rabbit AF 

Intra-amniotic injection Thicker defect coverage 

Wang 26 6 Ovine MSCs Xenologous –  
human placenta 

Surgically seeded, within a 
vehicle-only (hydrogel) 

Significantly higher SLR score at birth, with 67% of them able to 
walk independently; MSCs had a paracrine activity in vivo 

Table 1- Types of animal models, stem cells, and main results of the studies included. 
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 474 

Kabagambe 27 8 Ovine MSCs Xenologous – 
human placenta 

Surgically seeded, within a SIS-
ECM 

No statistical difference on the SLR score, a clinically significant 
improvement of motor function with ability to walk over an 
obstacle 

Chen 28 78 Rodent MSCs Xenologous –  
human placenta 

Surgically seeded, within a SIS-
ECM 

Significantly smaller degree of spinal cord compression and 
reduction of density of apoptotic cells in the spinal cords  

Vanover 29 23 Ovine MSCs Xenologous –  
human placenta 

Surgically seeded, within a SIS-
ECM 

Significantly higher median SLR score and a higher neuron 
density, whatever the pMSCs’ density 

Galganski 30 18 Ovine MSCs Xenologous –  
human placenta 

Surgically seeded, within a SIS-
ECM 

An in vitro neuroprotection assay using a neuronal apoptosis 
model can be useful in selecting the most effective cell lines  

EGF: Epidermal Growth Factor ; FGF: Fibroblast Growth Factor ;  

NGF: neural gross factor 

MSCs: mesenchymal stem cells 

SIS-ECM: porcine small intestine submucosa derived extracellular matrix 

BM: bone marrow  

AF: amniotic fluid ; P: placental 

hESCs : human embryonic stem cells 

NSCs : neural stem cells  

GDNF : glial cell line-derived neurotrophic factor  

BDNF: brain-derived neurotrophic factor  

NCSCs-iPSCs: neural crest stem cells derived from human induced pluripotent stem cells 

hAFSCs: human amniotic fluid stem cells 




