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Introduction

Brain tumor is one of the most aggressive cancers in the world [START_REF] Işın | Review of mri-based brain tumor image segmentation using deep learning methods[END_REF][START_REF] Menze | The multimodal brain tumor image segmentation benchmark (brats)[END_REF]. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess brain tumor, it is a non-invasive and good soft tissue contrast imaging modality, which provides invaluable information about shape, size, and localization of brain tumors without exposing the patient to a high ionization radiation [START_REF] Liang | Principles of magnetic resonance imaging: a signal processing perspective[END_REF][START_REF] Bauer | A survey of mri-based medical image analysis for brain tumor studies[END_REF][START_REF] Drevelegas | Imaging of brain tumors with histological correlations[END_REF].

The commonly used modalities are T1-weighted, contrast enhanced T1-weighted (T1c), T2-weighted and Fluid Attenuation Inversion Recovery (FLAIR) images.

Different modalities can provide complementary information to analyze different subregions of gliomas. For example, T2 and FLAIR highlight the tumor with peritumoral edema, designated whole tumor. T1 and T1c highlight the tumor without peritumoral edema, designated tumor core. An enhancing region of the tumor core with hyper-intensity can also be observed in T1c, designated enhancing tumor core. Therefore applying multi-modal images can reduce the information uncertainty and improve clinical diagnosis and segmentation accuracy.

A wide range of approaches for brain tumor segmentation, such as probability theory [START_REF] Lapuyade-Lahorgue | Segmenting multi-source images using hidden markov fields with copula-based multivariate statistical distributions[END_REF], kernel feature selection [START_REF] Zhang | Kernel feature selection to fuse multi-spectral mri images for brain tumor segmentation[END_REF], belief function [START_REF] Lian | Joint tumor segmentation in pet-ct images using co-clustering and fusion based on belief functions[END_REF], random forests [START_REF] Zikic | Decision forests for tissuespecific segmentation of high-grade gliomas in multi-channel mr[END_REF], conditional random fields [START_REF] Yu | Semi-automatic lymphoma detection and segmentation using fully conditional random fields[END_REF], support vector machines [START_REF] Bauer | Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization[END_REF] and random walk [START_REF] Onoma | Segmentation of heterogeneous or small fdg pet positive tissue based on a 3d-locally adaptive random walk algorithm[END_REF] have been developed with success. However, brain tumor segmentation is still a challenging task due to three reasons: [START_REF] Işın | Review of mri-based brain tumor image segmentation using deep learning methods[END_REF] The brain anatomy structure varies from patients to patients. [START_REF] Menze | The multimodal brain tumor image segmentation benchmark (brats)[END_REF] The variability across size, shape, and texture of gliomas. [START_REF] Liang | Principles of magnetic resonance imaging: a signal processing perspective[END_REF] The variability in intensity range and low contrast in qualitative MR imaging modalities. This is particularly true for brain tumor segmentation, where the tumor contour is fuzzy due to low contrast Figure 1.

Recently, with a strong feature learning ability, deep learning-based approaches have become more prominent for brain tumor segmentation. Cui et al. [START_REF] Cui | Automatic semantic segmentation of brain gliomas from mri images using a deep cascaded neural network[END_REF] proposed a cascaded deep learning convolutional neural network consisting of two sub-networks. The first network is to define the tumor region from a MRI slice and the second network is used to label the defined tumor region into multiple sub-regions. Mlynarski et al. [START_REF] Mlynarski | 3d convolutional neural networks for tumor segmentation using long-range 2d context[END_REF] introduced a CNN-based model to efficiently combine the advantages of the short-range 3D context and the longrange 2D context for brain tumor segmentation. Wang et al. [START_REF] Wang | Multimodal brain tumor image segmentation using wrn-ppnet[END_REF] proposed a novel 2D fully convolution segmentation network WRN-PPNet based on the pyramid pooling module. Zhao et al. [START_REF] Zhao | A deep learning model integrating fcnns and crfs for brain tumor segmentation[END_REF] integrated fully convolutional neural networks (FCNNs) [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF] and conditional random fields to segment brain tumor.

Havaei et al. [START_REF] Havaei | Brain tumor segmentation with deep neural networks[END_REF] implemented a two-pathway architecture that learns about the local details of the brain tumor as well as the larger context feature. Wang et al. [START_REF] Wang | Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks[END_REF] proposed to decompose the multi-class segmentation problem into a sequence of three binary segmentation problems according to the sub-region hierarchy. Kamnitsas et al. [START_REF] Kamnitsas | Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation[END_REF] proposed an efficient fully connected multi-scale CNN architecture named deepmedic, which reassembles a high resolution and a low resolution pathway to obtain the segmentation results. Furthermore, they used a 3D fully connected conditional random field to effectively remove false positives. Isensee et al. [START_REF] Isensee | Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge[END_REF] modified the U-Net to brain tumor segmentation and use data augmentation to prevent the over-fitting. Kamnitsas et al. [START_REF] Kamnitsas | Ensembles of multiple models and architectures for robust brain tumour segmentation[END_REF] introduced EMMA, an ensemble of multiple models and architectures including DeepMedic, FCNs and U-Net, and won the first position in BraTS 2017 competition.

However, the previous methods only directly apply the four MRI modalities to achieve segmentation. For multi-modal medical image segmentation task, the fusion strategy takes an important role to achieve an accurate segmentation result. In general, we can category the network architectures into single-encoder-based method and multi-encoder-based method, as presented in [START_REF] Zhou | A review: Deep learning for medical image segmentation using multi-modality fusion[END_REF]. The single-encoder-based method [START_REF] Isensee | Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge[END_REF][START_REF] Kamnitsas | Ensembles of multiple models and architectures for robust brain tumour segmentation[END_REF] directly integrates the different multi-modality images channel-wise in the input space, while the correlations between different modalities are not well exploited. However, the multi-encoderbased method [START_REF] Tseng | Joint sequence learning and cross-modality convolution for 3d biomedical segmentation[END_REF], allows to separately extract individual feature information by applying multiple modality-specific encoders, and to fuse them with specific fusion strategy to emphasize the useful information for the segmentation task. According to [START_REF] Valada | Deep multispectral semantic scene understanding of forested environments using multimodal fusion[END_REF], multi-encoder-based method has better performance than single-encoder-based method, which can learn more complementary and cross-modal interdependent features. However, not all features extracted from the encoder are useful for segmentation. Therefore, it is necessary to find an effective way to fuse features, we focus on the extraction of the most informative features for segmentation.

To this end, we propose to use the attention mechanism, which can be viewed as a tool being capable to take into account the most informative feature representation. Channel attention module and spatial attention module are the commonly used attention mechanisms. The former one uses attention mechanism to select meaningful features at channel axis. For example, Hu et al. [START_REF] Hu | Squeeze-and-excitation networks[END_REF] introduced the Squeeze and Excitation (SE) block to perform dynamic channelwise feature recalibration to improve the representational power of a network.

Li et al. [? ]

proposed to combine attention mechanism and spatial pyramid to extract precise dense features for pixel labeling in semantic segmentation.

Oktay et al. [START_REF] Oktay | Attention u-net: Learning where to look for the pancreas[END_REF] proposed an attention U-net, which uses a channel attention mechanism to fuse the high-level and low-level features for CT abdominal segmentation. The latter one, spatial attention modules, calculate the feature representation in each position by weighted sum the features of all other positions. For example, Roy et al. [START_REF] Roy | Concurrent spatial and channel 'squeeze & excitation'in fully convolutional networks[END_REF] proposed to use both spatial and channel SE blocks (scSE) and demonstrated that scSE blocks can yield an improvement on three different FCNN architectures. Recently, Roy et al. [? ] incorporated scSE blocks to the few-shot segmentation task to solve the absence of pre-trained networks and the volumetric nature of medical scans problem. Fu et al. [START_REF] Fu | Dual attention network for scene segmentation[END_REF] presented a dual attention network using the channel and spatial attention mechanisms to adaptively integrate local semantic features with global dependencies for scene segmentation. However, the methods mentioned above evaluated the attention mechanism only on the single-modal image dataset and didn't consider the fusion issue on the multi-modal medical images. Inspired by the attention mechanism, in this paper, we propose a three-stage multi-modality fusion network based on attention mechanism and additional constrain information for brain tumor seg-mentation. The preliminary results of this work have already presented at [START_REF] Zhou | A multi-modal fusion network based on attention mechanism for brain tumor segmentation[END_REF] and [START_REF] Zhou | Deep learning model integrating dilated convolution and deep supervision for brain tumor segmentation in multi-parametric mri[END_REF]. This journal version is a substantial extension. The main contributions of our method are four fold: 1) A novel three-stage-network is presented for multi-modal brain tumor segmentation to reduce the memory requirement and accelerate the training process.

2) An additional constrain information is introduced and integrated to the multi-encoder based network architecture to allow the network to use fewer parameters and to enhance the segmentation accuracy.

3) A new loss function is proposed to solve the multiple class segmentation problem.

4) The attention mechanism is used to fuse different modalities to achieve the most important feature representation.

The paper is organized as follows. We introduce the proposed method in Section 2, the experimental setup, results and analysis in Section 3. We discussed the method and draw the conclusions in Section 4. 

Method

In this section, we first introduce the general framework of our network, and then present the detail of each stage. Finally we describe the loss function used in our network.

The three-stage segmentation network

Our network is a three-stage segmentation network, the graphical concept of our method is illustrated in Figure 2. In the first stage, our previous work, the 3D U-Net architecture [START_REF] Zhou | Deep learning model integrating dilated convolution and deep supervision for brain tumor segmentation in multi-parametric mri[END_REF] is used as the initial segmentation network to get the rough prediction results, then the binarization and erosion operations are applied to each initial prediction result to get the context constrain for the following multi-encoder based fusion network. Here, the context constrain is defines as the contour of all other tumor regions except the target tumor region, which can provide some boundary information to guide the target tumor segmentation. In the second stage, to learn complementary features and cross-modal interdependencies from multi-modality MRIs, we applied the multiencoder based framework for each label. It takes four MRI modalities and the context constrain as input in each encoder, respectively. Each encoder can produce a latent representations for the input data, and then these modality-specific features and constrain-specific feature are concatenated to the fusion block at each level. With the assistance of the attention mechanism, the feature representations will be separated along channel-wise and space-wise, and the most informative feature is obtained as the shared latent representation, and finally it is projected by decoder to the label space to obtain the segmentation result for each label. In the third stage, a two-encoder based 3D U-Net segmentation network is applied to combine and refine the three single prediction results.

Initial segmentation network (stage 1)

The initial segmentation network is a 3D U-Net architecture, which has the same architecture but half initial convolutional filters than our previous work [START_REF] Zhou | Deep learning model integrating dilated convolution and deep supervision for brain tumor segmentation in multi-parametric mri[END_REF], which reduces the burden on graphic memory and accelerate the training process. The network architectures is described in Figure 3. Since standard U-Net can't get enough semantic features due to the limited receptive field, inspired by dilated convolution [START_REF] Yu | Multi-scale context aggregation by dilated convolutions[END_REF], we use residual block with dilated convolutions, denoted as res dil, on both encoder part and decoder part to obtain features at multiple scales, which can obtain more extensive local information to help retain . information and fill details during training process. The encoder is used to get the latent feature representation of four modalities, which includes convolutional block, res dil block and followed by skip connection. The decoder is used to recover the image details, which begins with up-sampling layer followed by a 3 × 3 × 3 convolution to reduce the number of features by a factor of 2, then the upsampled features are combined with the features from the corresponding level of the encoder part using concatenation. After the concatenation, the res dil block is used to increase the receptive field. In addition, deep supervision [START_REF] Isensee | Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge[END_REF] is used to combine segmentation results at different layers to achieve the final segmentation.

Fusion network (stage 2)

Multi-modality fusion network can capture more specific and effective information for different modalities than the single-encoder based network [START_REF] Zhou | A multi-modal fusion network based on attention mechanism for brain tumor segmentation[END_REF].

So three five-encoder based networks are used to compose the fusion network, where each network is used to segment a single tumor region. The architecture of the fusion network is presented in Figure 4. To learn complementary features and cross-modal inter-dependencies from multi-modality MRIs, we applied the attention mechanism to the fusion block, the details are described in subsection 2.4. Since the three tumor regions are close to each other, which can lead to produce more falsely predicted pixels in the neighbor regions, so the context constrain can provide more boundary information to benefit the segmentation.

We set L the label set, L = {l 1 , l 2 , ..., l M }. For example, when segmenting label l i , i ∈ M , all other initial prediction labels l j , j ∈ M , j = i, are processed as make the network more efficient, during training, the three single label segmentation networks are running in parallel.

Fusion block based on the attention mechanism

The purpose of fusion block is to stand out the most important features from different modalities to highlight regions that are greatly relevant to brain tumor segmentation. One simple way to fuse the independent latent representations is to average over them, while it could lose some valuable information in the latent representation. To this end, we propose a fusion block, described in Figure 5.

The individual latent representations (z1, z2, z3, z4) are first concatenated to obtain the input feature map Z = [z 1 , z 2 , z 3 , z 4 ], z k ∈ R H×W . Note that, in the lowest level of the network, there are 4 modality-specific features (z1, z2, z3, z4) for the fusion block, in the other levels, the result of the previous level is also concatenated with the modality-specific features to obtain the input feature map Z = [z 1 , z 2 , z 3 , z 4 , z 5 ], z k ∈ R H×W , in the following, we describe the fusion block with the 4 modality-specific features. In the channel attention module, a global average pooling is first performed to produce a tensor g ∈ R 1×1×4 , which represents the global spatial information of the feature map, with its k th element

g k = 1 H × W H i W j z k (i, j) (1) 
Then two fully-connected layers are applied to encode the channel-wise depen-

dencies, ĝ = W 1 (δ(W 2 g)), with W 1 ∈ R 4×2 , W 2 ∈ R 2×4
, being weights of two fully-connected layers and the ReLU operator δ(•). ĝ is then passed through the sigmoid layer to obtain the channel-wise weights, which will be applied to the input map Z through multiplication to achieve the channel-wise features Z c , the σ( ĝk ) indicates the importance of the i channel of the feature map.

Z c = [σ( ĝ1 )z 1 , σ( ĝ2 )z 2 , σ( ĝ3 )z 3 , σ( ĝ4 )z 4 , ] (2) 
In the spatial attention module, the feature map can be considered as Z =

[z 1,1 , z 1,2 , ..., z i,j , ..., z H,W ], z i,j ∈ R 1×1×4 , i ∈ 1, 2, ..., H, j ∈ 1, 2, ..., W , and then a convolution operation q = W s Z, q ∈ R H×W with weight W s ∈ R 1×1×4×1 , is used to squeeze the spatial domain, and to produce a projection tensor, which represents the linearly combined representation for all channels for a spatial location. The tensor is finally passed through a sigmoid layer to obtain the space-wise weights and recalibrate Z spatially, σ(q i,j ) indicates the importance of the spatial information (i, j) of the feature map.

Z s = [σ(q 1,1 )z 1,1 , ..., σ(q i,j )z i,j , ..., σ(q

H,W )z H,W ] (3) 
The fused feature representation is obtained by adding the channel-wise feature and space-wise feature.

Z f = Z c + Z s (4) 

Final segmentation network (stage 3)

To combine the three single segmentation results and form the final segmentation result, a two-encoder based 3D U-Net segmentation network is applied.

The architectures of the encoder and decoder are the same with the fusion network. One encoder takes the concatenation of the three predicted probability maps in the second stage, and another encoder's input is the concatenation of the four original modalities. To this end, the final segmentation network can not only combine the three single segmentation results but also take advantage of them to refine the final segmentation performance.

Loss function

Dice loss function (shown in Equation 5) is commonly used for medical image segmentation problem. However, for multi-class segmentation problem, the location relationship of multiple classes should be considered. We introduce a new loss function to the multi-encoder based segmentation network (stage 2).

As in Equation 6, to avoid other labels to be falsely predicted into the target label region, we take the dice score of all other labels into the loss function to constrain the target label, and enhance the segmentation accuracy.

L dice = 1 -2 l∈L i∈N y (l) i ŷ(l) i + l∈L i∈N (y (l) i + ŷ(l) i ) + (5) 
L new dice (l j ) =1 -2 i∈N y (lj ) i ŷ(lj) i + i∈N (y (lj ) i + ŷ(lj) i ) + -α l k ∈L,j =k i∈N y (l k ) i ŷ(lj) i + i∈N (y (l k ) i + ŷ(lj) i ) + ( 6 
)
where N is the set of all samples, L is the set of all labels, in our task, there are three labels: net&ncr (label 1), edema (label 2) and enhancing tumor (label 3).

y (l)

i is the one-hot encoding for sample and label, ŷ(l) i is the predicted probability for the same sample and label pair, is a small constant to avoid dividing by 0. We use L dice as the loss function of the initial segmentation network and final segmentation network, and L new dice for the multi-encoder based fusion network.

Experiments

Data and preprocessing

The datasets used in the experiments come from BraTS 2017 dataset [START_REF] Bakas | Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features[END_REF].

The training set includes 210 HGG patients and 75 LGG patients. Each patient has four image modalities including T1-weighted, contrast enhanced T1weighted (T1c), T2-weighted and Fluid Attenuation Inversion Recovery (FLAIR) images. All data used in the experiments have been pre-processed with a standard procedure. The N4ITK [START_REF] Avants | Advanced normalization tools (ants)[END_REF] The enhancing tumor region (ET).

Evaluation metrics

To evaluate the proposed method, two evaluation metrics: dice and hausdorff distance are used to obtain quantitative measurements of the segmentation accuracy.

1) Dice : It is designed to evaluate the overlap rate of prediction results and ground truth. Dice ranges from 0 to 1, and the better predict results will have a larger Dice value.

Dice = 2T P 2T P + F P + F N ( 7 
)
where T P represents the number of true positive voxels, F P represents the number of false positive voxels, and F N represents the number of false negative voxels.

2) Hausdorff distance (HD): It is computed between boundaries of the prediction results and ground-truth, it is an indicator of the largest segmentation error.

The better predict results will have a smaller HD value.

HD = max{sup r∈∂R d m (s, r), sup s∈∂S d m (r, s)} (8) 
where ∂S and ∂R are the sets of tumor border voxels for the predicted and the real annotations, and d m (v, v) is the minimum of the Euclidean distances between a voxel v and voxels in a set v.

Implementation details

We implement our method based on Keras with a single Nvidia GPU Quadro P5000 (16G). We trained the network using our proposed new dice loss function, and it is optimized using the Adam optimizer (initial learning rate = 5e-4) with a decreasing learning rate factor 0.5 with patience of 10 epochs for 50 epochs.

Experiment results

In this section, we conduct extensive comparative experiments to demonstrate the effectiveness of our proposed method. Since annotations are not publicly available for Brats 2017 Learderboard, and the evaluation online platform closed. We randomly split 20% (57) of the training sets (285) as the local validation to prove the effectiveness of our proposed method.

Quantitative results

Evaluation of our method. We first evaluate the proposed fusion network. The network applied context constrain and a new loss function to guide the network to obtain the three tumor sub-regions: non-enhancing and necrotic, edema and enhancing tumor, respectively. To see the impact of the elements of the fusion network, including context constrain and loss function. We refer to the network without context constrain and new loss function as backbone. From Table 1, we can observe the original backbone method achieves Dice scores of 64.58, 68.58, 58.31 for enhancing, edema and net&ncr tumor, respectively. When the dice loss function is replaced by our proposed new loss function, we can see an increase of dice score across all tumor regions, the new loss function can help to constrain the target label not to be falsely predicted to the neighbor tumor regions. To choose the optimal coefficient in the new loss function, we did a grid search and found the best coefficient is 0.1. Table 2 reports the performance of the coefficient α in the new loss function. In addition, when the context constrain is integrated to one of the encoder of the fusion network, the segmentation results of all the tumor regions are improved. We can conclude that the context constrain can definitely boost the segmentation results. To evaluate the effectiveness of each stages in our method, we compare their results in Table 3. Compared to the results of stage 1, except the enhancing tumor, which decreases 1.0% of the dice score, all the tumor regions have a large improvement in dice score in stage 2. The main reason for the decrease of the dice score on enhanced tumor is that, the enhancing tumor usually locates between the edema and net&ncr regions, the contours are usually diffused and there are no clear cut with the other two regions. However, with assistance of the fusion network (stage 3), which can help to refine the three single label segmentations, the enhancing tumor region increases 6.26% of the dice score compared to stage Comparison results with our other related methods. To demonstrate the performance of our method, we compare our segmentation results with other related four algorithms in the MICCAI 2017 challenge. In BRATS 2017, the top performing method used an ensemble of FCN. In principle, building an ensemble network will certainly lead to better results. Since we evaluate the effect of our proposed network, so we compare our method with other approaches in single model. The best result in single model in Brats 2017 is from [START_REF] Isensee | Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge[END_REF], which achieves 89.5, 82.8 and 70.7 on the dice score on whole tumor, tumor and enhancing tumor regions, respectively. However, it uses 16 initial convolution filters, which is time-consuming (training time is about five days) and has a high requirement for graphic memory. The other four compared algorithms are given as follows:

(1) Ronneberger et al. [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] proposed U-Net, the widely used and effective approach to segment the medical image.

(2) Pereira et al. [START_REF] Pereira | Adaptive feature recombination and recalibration for semantic segmentation: application to brain tumor segmentation in mri[END_REF] proposed segmentation SE (SegSE) block to create more complex features for feature recalibration, which collects contextual information as well as maintains the spatial meaning.

(3) Jesson et al. [START_REF] Jesson | Brain tumor segmentation using a 3d fcn with multiscale loss[END_REF] employed a multi-scale loss function to combine higher resolution features with the lower level segmentation results, and trained the model using a curriculum on sample weights to address class imbalance. The compared results are summarized in Table 4. We can observe our proposed method has a superior result on dice score. Specially, compared to the best approach in single model [START_REF] Isensee | Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge[END_REF], we achieved almost the same dice score on whole tumor (decreased by 0.1) and slightly decrease on tumor core (decreased by 1.2), but we achieve the best score on enhancing tumor, the most difficult tumor region. We explain that the method [START_REF] Isensee | Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge[END_REF] achieved the best dice scores on whole tumor and tumor core, because it uses twice number of the initial filters, and it's definitely clear that using more convolution of kernels can learn more complex feature representation and achieve more accurate segmentation results.

However, our method yields the best hausdorff distance on both whole tumor and tumor regions, which indicates that our method has a minimum segmentation error on the two regions. Therefore, the proposed method can not only achieve the competitive results, but also can be easily implemented due to the less parameters.

Qualitative results

In order to evaluate the effectiveness of our model, we randomly select several examples on BraTS 2017 dataset and visualize the results in Figure 6 -Figure 8.

Since the quantitative results of U-Net is not good, so we'll not compare our results with it. Except the best method in single model [START_REF] Isensee | Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge[END_REF], the other related works didn't provide the available code, so we can't do the related comparison. Evaluation of our method. Figure 6 shows the comparison results between different methods in stage 2: backbone, backbone with new loss, backbone with new loss and context constrain. We can observe the backbone network generates many false predictions, for example, it detects some false pixels in the three tumor sub-regions. However, the false predictions are corrected when the new loss is applied, but there are still some false pixels, like in the enhancing tumor and edema regions, some isolated pixels are failed to be detected. However, when the context constrain is applied to the network, it provides some boundary information for target tumor segmentation, the results are further refined which achieves the best results. Figure 7 shows the comparison results in the three stages of our method on several examples. Firstly, the initial segmentation network can obtain a rough segmentation in stage 1, but with some falsely predicted pixels.

While in stage 2, the context constrain can provide more boundary information and help to refine each tumor region. Finally, in stage 3, the fusion network combines the three single regions to the form the final segmentation result. We can observe that by using the three-stage segmentation network, we can achieve the best segmentation results in multi-modal brain tumor segmentation task.

Comparison results with other related methods. We compare our results with the best method in single model in Brats 2017, which uses twice more convolution filters than us, the comparison results are shown in Figure 8. For the first example, the method of [START_REF] Isensee | Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge[END_REF] predicted many false isolated edema regions and failed to detect all the net&ncr regions. In the second example, the method of [START_REF] Isensee | Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge[END_REF] failed to detect a edema region on the left top. And in the third example, it not only failed to detect the small enhancing tumor on the boundary but also produced many false isolated predictions on edema region. However, our three-stage segmentation network can gradually refine the results from previous stage, and finally achieve the superior results on all examples. The future improvements of this work has two aspects. First, the proposed method is only evaluated on the brain tumor segmentation dataset, in the future, we intend to validate our method on various segmentation tasks with other types of modalities. Second, our network consists of two stages, we plan to reduce the number of training stages and integrate them to an end-to-end training fashion.

Figure 1 :

 1 Figure 1: Example of data from a training subject. The first four images from left to right show the MRI modalities: Fluid Attenuation Inversion Recovery (FLAIR), contrast enhanced T1-weighted (T1c), T1-weighted (T1), T2-weighted (T2) images, and the fifth image is the ground truth labels, Net&Ncr is shown in red, edema is shown in orange and enhancing tumor is shown in white, Net refers non-enhancing tumor and Ncr refers necrotic tumor.

Figure 2 :

 2 Figure2: The graphical concept of our proposed method, to simplify the presentation, we ignore the deep supervision part of the initial segmentation network and fusion network, the details are shown in[START_REF] Zhou | Deep learning model integrating dilated convolution and deep supervision for brain tumor segmentation in multi-parametric mri[END_REF] 

Figure 3 :

 3 Figure 3: Top: The architecture scheme of initial segmentation network. The four modalities are concatenated channel by channel in input space and the output is the segmentation predictions of the three tumor sub-regions. Bottom: The architecture scheme of our proposed res dil block (left) and deep supervision (right). IN refers instance normalization, Dil conv refers the dilated convolution (rate = 2, 4, respectively), we refer to the vertical depth as level, with higher levels being higher spatial resolution. In the deep supervision part, Input n refers the output of res dil block of the n th level in the decoder, Output n refers the segmentation result of the n th level in the decoder.

  165 the context constrain to guide the segmentation of target tumor (label l i ) and refine the segmentation result. In addition, considering the location relationship among the three tumor regions, a new multi-class loss function is proposed to provide more constrain information to boost the segmentation results. And to

Figure 4 :

 4 Figure 4: The architecture scheme of fusion network. Each imaging modality (Flair, T1, T1c, T2) is encoded by a single encoder to obtain the individual latent representations (z1, z2, z3, z4), and the context constrain can provide boundary information to refine the segmentation result, and then the five encoders are fused into the shared representation space with the fusion block, finally the fused latent representation Z f is decoded by the decoder to obtain the segmentation result. Here we present the segmentation network architecture of enhancing tumor, it is same for other tumor regions.

Figure 5 :

 5 Figure 5: The architecture scheme of fusion block. The individual latent representations (z1, z2, z3, z4) are first concatenated as the input of the attention mechanism Z, and then they are recalibrated along channel attention module and spatial attention module to achieve the Zs and Zc, final they are added to obtain the fused latent representation Z f .

  method is first used to correct the distortion of MRI data, and intensity normalization is applied to normalize each modality of each patient. To exploit the spatial contextual information of the image, we use the 3D image and clip and resize the image from 155 × 240 × 240 to 128 × 128 × 128. Following the challenge, four intra-tumor structures have been grouped into three mutually inclusive tumor regions: (a) The whole tumor region(WT), consisting of all tumor tissues. (b) The tumor core region (TC), consisting of the enhancing tumor, necrotic and non-enhancing tumor core. (c)

Figure 6 :

 6 Figure 6: Qualitative comparison among different strategies of our method in stage 2 on several examples. We denote the dice score on each result. Net&Ncr is shown in red, edema is shown in orange and enhacing tumor is shown in white.

Figure 7 :

 7 Figure 7: Qualitative experiment results in the three stages of our method on several examples. We denote the dice score on each result in stage 1 and stage 3. Label 1 (red): net&ncr, Label 2 (orange): edema, Label 3 (white): enhancing tumor. The green bounding box emphasizes the differences of segmentation results among different methods.

Figure 8 :

 8 Figure 8: Qualitative experiment results between our method (8 initial filters) and [21] (16 initial filters) on several examples. We denote the dice score on each result. Net&Ncr is shown in red, edema is shown in orange and enhacing tumor is shown in white.

20 4 .

 4 Discussion and ConclusionIn this paper, we propose a novel three-stage network based on context constrain and attention mechanism for multi-modal brain tumor segmentation. To decrease the influence of the fuzzy contour in the brain tumors, we first used a initial segmentation network to produce a context constrain for each tumor region, and then under the constrain information, we applied a multi-encoder based network to achieve three single tumor region segmentations. Specifically, the attention mechanism is introduced to achieve the fusion of different modalities. In addition, considering the location relationship of the tumor regions, a new loss function is proposed to cope with the multiple class segmentation problem. Finally, a two-encoder based 3D U-Net segmentation network is presented to combine and refine three single prediction results to form the final segmentation result. Compared to other related methods, our work has four major advantages. First, the proposed three-stage training method can reduce the GPU memory requirement during training. Second, the network can produce and take advantage of the context constraint information to help segment the brain tumor regions with the obscure contours. Third, the proposed multi-class segmentation loss function can utilize the hierarchical structure of the brain tumor to avoid the false prediction in the adjacent tumor regions. Finally, the proposed attention mechanism based fusion strategy can learn the complementary feature information across different modalities and extract the most useful features related to target regions.

Table 1 :

 1 Segmentation results of fusion network, bold results show the best score for each tumor region, backbone refers to the four-encoder based network without new loss and context constrain, Net refers non-enhancing tumor, Ncr refers necrotic tumor. And all the dice score of the other tumor regions are also further improved.

	Method		Dice	
		Enhancing Tumor Edema Net&Ncr
	Backbone	64.58	68.58	58.31
	+ New loss	66.18	72.00	60.09
	+ New loss + Context constrain	68.70	75.28 61.42
	2.			

Table 2 :

 2 The choice of the coefficient α in the new loss function.

	α	0	0.05 0.1	0.5	1	2
	Dice 64.58 64.41 66.18 63.27 61.25 44.49
	(4) Isensee et al. [21] modified the U-Net for 3D brain tumor segmentation,
	which used both context and location pathways to learn the complex feature
	representation, a dice loss to cope with class imbalances, and extensive data
	augmentation to prevent over-fitting problem.		

Table 3 :

 3 Results of our method on BraTS 2017 dataset, bold results show the best score for each tumor region, stage 1 refers to initial segmentation network, stage 2 refers to fusion network and stage 3 refers to final segmentation network.

	Method		Dice	
	WT	TC	ET	ED Net&Ncr
	Stage 1 86.84 75.88 69.40 72.02	58.28
	Stage 2 N/A N/A 68.70 75.28	61.42
	Stage 3 89.40 81.64 73.00 75.59 64.63

Table 4 :

 4 Comparison of our proposed method and other related methods on Brats 2017, bold results show the best score for each tumor region, and underline results refer the second best results.

	Method	Dice	Hausdorff Distance
		WT TC ET WT TC	ET
	Ronneberger et al. [35] 79.1 49.9 8.0 18.80 21.10 38.00
	Pereira et al. [36]	86.6 76.6 69.8 8.48 10.51 6.13
	Isensee et al. [21]	89.5 82.8 70.7 6.04 6.95 6.24
	Jesson et al. [37]	88.6 78.9 68.2 6.58 7.11 8.11
	Our method	89.4 81.6 73.0 5.73 6.79 7.68
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