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An efficient numerical approach is proposed on the crust formation of an isothermal drying spherical colloidal droplet in a stagnant gas, where the heat and mass transfer were governed by the Stefan flow.

A purely diffusive mechanism with a moving boundary was considered. The droplet shrinking induced an accumulation of particles, in the vicinity of the droplet interface, up to the onset of a crust formation known as the locking point. The latter was used as a control parameter of the numerical procedure global behaviour. The performances of the present numerical scheme compared to classical methods, showed a rapid convergence with a drastic reduction in the number of nodes, at least two-hundred fold less. Furthermore, the accuracy and speed of the proposed method allowed to carry out an extensive study with respect to the PÃľclet number, thus enabling to point out three drying regimes.

Introduction

The evaporation of colloidal drops is a subject of great interest with respect to its fundamental aspect involving diffusion with moving front and for its practical aspect in many technological fields such as spray drying [START_REF] Mezhericher | Spray drying modelling based on advanced droplet drying kinetics[END_REF][START_REF] Poozesh | On the particle formation in spray drying process for bio-pharmaceutical applications: Interrogating a new model via computational fluid dynamics[END_REF][START_REF] Ziaee | Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches[END_REF][START_REF] Jaskulski | Predictive cfd modeling of whey protein denaturation in skim milk spray drying powder production[END_REF][START_REF] Jaskulski | Cfd simulations of droplet and particle agglomeration in an industrial counter-current spray dryer[END_REF], spray pyrolysis [START_REF] Taniguchi | Synthesis of spherical limn2o4 microparticles by a combination of spray pyrolysis and drying method[END_REF], fluidized bed drying [START_REF] Ghijs | Modeling of semicontinuous fluid bed drying of pharmaceutical granules with respect to granule size[END_REF], freeze-drying [START_REF] Mujumdar | Handbook of industrial drying[END_REF]. A colloid droplet evaporation process is generallly subdivided into three stages : crust formation, crust growth and drying of the resulting wet particle. During the first phase, which is of particular interest to the present study, the evaporation of the liquid, constituting the colloid, causes a shrinking of the drop, consequently particles accumulates in vicinity of the droplet interface. The first stage ends with the formation of a first crust layer, which occurs when the volume fraction at the interface reaches the close packing range. This critical instant is commonly known as the "locking point". The crust formation is the common step between all mathematical models describing this process [START_REF] Pandey | Review of transport processes and particle self-assembly in acoustically levitated nanofluid droplets[END_REF][START_REF] Mezhericher | Modelling the morphological evolution of nanosuspension droplet in constant-rate drying stage[END_REF][START_REF] Sobac | Mathematical modeling of the drying of a spherical colloidal drop[END_REF][START_REF] Wu | Modeling and simulation of solid-containing droplet drying and different-structure particle formation[END_REF], and most of them considered its determination important in the understanding of the drying process, to predict, sometimes, the total drying time and the final size of the dried particle [START_REF] Yarin | Drying of acoustically levitated droplets of liquid-solid suspensions: Evaporation and crust formation[END_REF][START_REF] Shamaei | Drying behavior and locking point of single droplets containing functional oil[END_REF][START_REF] Tran | Enhanced methods for experimental investigation of single droplet drying kinetics and application to lactose/water[END_REF][START_REF] Gopireddy | Numerical simulation of evaporation and drying of a bi-component droplet[END_REF].

The problem complexity includes a moving boundary whose location, in general, is a priori unknown, in addition of the particles concentration field whose knolewdge in particularely of interest in the vicinity of the interface. The interface movement is governed by a mass balance equation coupling the particule transport and the liquid evaporation. This equation, which contains all information with respect to the agglomeration of particles at the interface, is nonlinear and similar to the well known Stefan's condition [START_REF] Crank | Free and moving boundary problems[END_REF]. Consequently, analytical solutions are often difficult to implement.

The lack of exact analytical solutions for Stefan's like problem, similar to this one, leads usually to semi-analytical or numerical methods. Semi-analytical methods are generally integral methods based on energy or mass balance [START_REF] Goodman | The heat balance integral and its application to problems involving change of phase[END_REF][START_REF] Mitchell | Heat balance integral method for one-dimensional finite ablation[END_REF][START_REF] Myers | A cubic heat balance integral method for one-dimensional melting of a finite thickness layer[END_REF][START_REF] Sadoun | On the refined integral method for the one-phase stefan problem with time-dependent boundary conditions[END_REF][START_REF] Sadoun | On the goodman heat-balance integral method for stefan likeproblems: further considerations and refinements[END_REF][START_REF] Myers | Optimizing the exponent in the heat balance and refined integral methods[END_REF]. These inexpensive methods would provide explicit, though not very accurate, approximate analytical solutions. However, one should note such methods would work better in cartesian coordinates were several approaches exist [START_REF] Ribera | Optimising the heat balance integral method in spherical and cylindrical stefan problems[END_REF]. More accurate solutions can be obtained through numerical methods associated with interface localization techniques. Two techniques, commonly used, are the variable space grid method (VSGM) and the boundary immobilization method (BIM) respectively developed by Murray and Landis [START_REF] Murray | Numerical and machine solutions of transient heat conduction problems involving phase change[END_REF] and Crank [START_REF] Crank | Two methods for the numerical solution of moving-boundary problems in diffusion and heat flow[END_REF]. These two methods were used for solving Stefan's problem [START_REF] Gupta | A modified variable time step method for the one-dimensional stefan problem[END_REF][START_REF] Kutluay | The numerical solution of one-phase classical stefan problem[END_REF][START_REF] Kutluay | Numerical schemes for one-dimensional stefan-like problems with a forcing term[END_REF][START_REF] Caldwell | Starting solutions for the boundary immobilization method[END_REF][START_REF] Caldwell | Numerical methods for one-dimensional stefan problems[END_REF][START_REF] Mitchell | Finite-difference methods with increased accuracy and correct initialization for onedimensional stefan problems[END_REF][START_REF] Savović | Finite difference solution of one-dimensional stefan problem with periodic boundary conditions[END_REF][START_REF] Yigit | One-dimensional solidification of pure materials with a time periodically oscillating temperature boundary condition[END_REF][START_REF] Liu | A computationally efficient solution technique for moving-boundary problems in finite media[END_REF][START_REF] Ivanovic | Numerical solution of stefan problem with variable space grid method based on mixed finite element/finite difference approach[END_REF][START_REF] Font | A one-phase stefan problem with size-dependent thermal conductivity[END_REF][START_REF] Safdari | A semi-analytical solution for time-varying latent heat thermal energy storage problems[END_REF], as well as for droplet evaporation [START_REF] Mitchell | An accurate numerical solution for the transient heating of an evaporating spherical droplet[END_REF]. Nevertheless, Sadoun et al. [START_REF] Sadoun | On the boundary immobilization and variable space grid methods for transient heat conduction problems with phase change: Discussion and refinement[END_REF] showed that despite differences in the approach, both techniques lead to the same numerical scheme. The numerical procedure adopted hereafter is based on the boundary immobilization method (BIM).

Up to our knowledge, the use of finite volume methods, highly appreciated for the treatment of transfer problems due to its conservative properties, is not possible by the boundary immobilization.

The methods, available for solving this type of problems, are the finite-difference [27-29, 33, 34, 41, 42] and finite element methods [START_REF] Liu | A computationally efficient solution technique for moving-boundary problems in finite media[END_REF]. These methods have a low order accuracy, often linear and rarely quadratic namely through the use of a finite difference Keller Box scheme [START_REF] Mitchell | Finite-difference methods with increased accuracy and correct initialization for onedimensional stefan problems[END_REF][START_REF] Mitchell | An accurate numerical solution for the transient heating of an evaporating spherical droplet[END_REF][START_REF] Vynnycky | On the numerical solution of a stefan problem with finite extinction time[END_REF].

The spectral collocations method is a numerical method for solving a wide variety of PDEs in physics.

Its high convergence rate allows achieving a great accuracy with a reduced number of nodes. Its performance makes it a valuable method to solve transfer phenomena problems including radiative heat transfer [START_REF] Ma | Analysis of radiative transfer in a one-dimensional nonlinear anisotropic scattering medium with space-dependent scattering coefficient using spectral collocation method[END_REF][START_REF] Ma | Thermal radiation heat transfer in one-and two-dimensional enclosures using the spectral collocation method with full spectrum k-distribution model[END_REF][START_REF] Ma | Spectral collocation method for transient thermal analysis of coupled conductive, convective and radiative heat transfer in the moving plate with temperature dependent properties and heat generation[END_REF][START_REF] Zhou | Chebyshev collocation spectral method to solve radiative transfer equation in one-dimensional cylindrical medium[END_REF][START_REF] Chen | Chebyshev collocation spectral method for solving radiative transfer with the modified discrete ordinates formulations[END_REF][START_REF] Sun | Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity[END_REF], magnetohydrodynamics and computational fluid dynamics [START_REF] Zhang | A combined method for solving 2d incompressible flow and heat transfer by spectral collocation method and artificial compressibility method[END_REF][START_REF] Chen | Spectral collocation method for natural convection in a square porous cavity with local thermal equilibrium and non-equilibrium models[END_REF]. In case of moving boundary problems, this method showed its ability to deal with Stefan's problem in cartesian coordinates [START_REF] Spall | Spectral collocation methods for one-dimensional phase-change problems[END_REF][START_REF] Ray | An exponentially accurate spectral reconstruction technique for the single-phase onedimensional stefan problem with constant coefficients[END_REF] and radial coordinates [START_REF] Dehghan | Numerical solution of a non-classical two-phase stefan problem via radial basis function (rbf) collocation methods[END_REF], with high accuracy and convergence rate, compared to those obtained by finite difference methods.

A first mathematical model, describing the drying of a colloidal drop, was proposed [START_REF] Pabst | Characterization of particles and particle systems[END_REF] on the bases of heat and mass balances. This model, with the objective of improving the fundamental understandings on the evaporation process of a colloidal drop, was then enhanced by identifying the governing key parameters, in particular the PÃľclet number P e [START_REF] Sobac | Mathematical modeling of the drying of a spherical colloidal drop[END_REF]. The authors discussed the existence of two drying phases of the drop. The first phase includes concentration of particles, at the interface, up to a maximum value, corresponding to the formation of the first skin of the crust, while the growth and consolidation of the crust define the second phase. The durations of these two phases will be used to identify the drying regimes of the drop. Nevertheless, the numerical resolution was done by classical finite difference method whose convergence and precision constraints, mentioned before, are particularly felt for fast drying, due to strong gradients at the interface.

In order to overcome the reduced accuracy of the finite difference method [START_REF] Sobac | Mathematical modeling of the drying of a spherical colloidal drop[END_REF] and to include the moving boundary, a numerical approach has been developed on the basis of a spectral collocation method, for the determination of the onset locking point of a drying colloidal drop. Similarly to the suggestion of Mitchell et al. [START_REF] Mitchell | An accurate numerical solution for the transient heating of an evaporating spherical droplet[END_REF], on the complete evaporation time of pure liquid droplet, the resulting error on the locking point was used as an indicator of the overall behaviour on the numerical scheme for a large range of PÃľclet numbers.

Problem statement

The drying of a colloidal drop of initial radius R0 , consisting of a suspension of solid particles in a pure liquid, was considered. The drop was suspended in a medium, made of air and vapour of the drop's liquid (Figure 1) maintained, far from the drop, at a constant temperature T∞ and molar fraction X ∞ .

Evaporation of the liquid constituting the colloid causes a decrease of the drop radius R over time t resulting in an accumulation of particles in the neighbourhood of the inner drop boundary. The crust onset is defined as the instant ts when the volume fraction of the particles φ reaches its maximum value φ s = 0.6, corresponding to a random stacking geometry of rigid spheres. The maximum volume fraction of the particles depends on their nature and the type of spatial arrangement. For monodisperse spherical particles arranged in an ordered way, Pabst and Gregorova [START_REF] Pabst | Characterization of particles and particle systems[END_REF] proposed the value of φ s = 0.74. Keita et al. [START_REF] Keita | Mri evidence for a receding-front effect in drying porous media[END_REF] experimentally obtains 60%, for monodisperse rigid spheres arranged randomly. In practice, droplet drying applications such as spray drying, the arrangement of the particles cannot be ordered, so the maximum volume fraction value of 0.6 was chosen in our case to be more realistic.

The drop was assumed to be placed in a very low Reynolds number flow (Re << 1) to allow spherical symmetry at any time, and the transport of heat and vapour, in the gas, to be modeled by Stefan's flow equations. 

Mathematical formulation

The interface of the drop delimits two physical domains : the volume of the drop (0 ≤ r ≤ R( t)) and the gas mixture surrounding it (r ≥ R( t)) (Figure 1 ).

The transport of particle within the drop (0 ≤ r ≤ R( t)) was assumed to be governed by a transient, purely diffusive, mechanism. The simplifying assumptions were discussed in detail by Sobac et al. [START_REF] Sobac | Mathematical modeling of the drying of a spherical colloidal drop[END_REF].

The particles diffusion equation is given by :

∂φ ∂ t = D r2 ∂ ∂ r r2 ∂φ ∂ r , 0 < r < R( t), 0 ≤ t ≤ ts (1) 
where r and φ are respectively the radial coordinates and the local volume fraction. The particle diffusion coefficient D is estimated by the Stokes-Einstein formula :

D = K B T 6πµr p (2)
where r p is the radius of the solid particles and T is the temperature of the drop. K B and µ are the Boltzmann constant and the dynamic viscosity of the liquid, respectively.

Equation [START_REF] Mezhericher | Spray drying modelling based on advanced droplet drying kinetics[END_REF], is subjected to the following boundary conditions at r = 0 and r = R( t).

∂φ ∂ r r=0 = 0 (3) D ∂φ ∂ r r= R = -φ I d R d t (4) 
with φ I (t) = φ(r = R, t) being the volume fraction at the interface. The initial condition associated to equation (1) assumed a uniform distribution of particles volume fraction, that is:

φ r, t = 0 = φ 0 (5) 
The first boundary condition was obtained at r = 0 by taking into account the drop's spherical symmetry. The second boundary condition was derived from the conservation of the total volume of particles. This condition expresses the flux of particles at the interface as a function of the drop radius decreasing rate as well as the local volume fraction of the solid particles. Equation ( 4) is well known, in moving boundary problems, as Stefan condition. In case of classical Stefan problem, this condition expresses the flux in terms of the interface velocity. However, in the present case this boundary condition depends also on the volume fraction at the interface φ I (t), adding then a complexity to the classical Stefan condition.

The shrinking rate equation of the interface (6) constitutes the mathematical closure of the problem.

This equation can be deduced from the relation between the radius variation and the reduced liquid evaporation rate at the interface JR = J * R throught the global the liquid mass balace as follow :

d R d t = - J * C l (6)
where C l is the molar density of the liquid, and the initial condition reads as follows :

R t = 0 = R0 [START_REF] Ghijs | Modeling of semicontinuous fluid bed drying of pharmaceutical granules with respect to granule size[END_REF] The reduced evaporation rate is estimated JR from the model of Sobac et al. [START_REF] Sobac | A comprehensive analysis of the evaporation of a liquid spherical drop[END_REF]. The latter assuming a quasi-stationary evaporation, of pure spherical liquid drop, led to a system of three nonlinear algebraic equations relating values, at the interface, of the vapour molar fraction, X i , the temperature, Ti , and the reduced evaporation rate JR .

X i = exp - L * R 1 Ti - 1 Tb (8) Ti = T∞ - M g M v L * c * p,g exp M v M g c * p,g JR λ g -1 (9) JR = -C g D va ln 1 -X i 1 -X ∞ ( 10 
)
where L * is the molar latent evaporation heat, R is the ideal gas constant, Tb is the boiling temperature, M v and M g are the molar masses of the vapour and gas, respectively, c * p,g is the molar heat capacity of the gas, C g is the molar density of the gas, D va is the diffusion coefficient of the vapour in the air. It is worthy to mention that the interface properties (X i , Ti , JR ) are independent of the drop radius and consequently of time.

Dimensionless formulation :

Noting that the time of complete evaporation of pure liquid droplet having an initial radius R 0 represent the characteristic scales of time and space respectively, the following dimensionless variables were introduced : [START_REF] Sobac | Mathematical modeling of the drying of a spherical colloidal drop[END_REF] t and r refer to the dimensionless time and radial coordinate, while T and J R stand for the dimensionless temperature and evaporation flux. Consequently, the dimensionless mathematical formulation in the inner region (0 ≤ r ≤ R(t)) reads as follows :

t = 1 2 t C g D va C l R 2 0 1 ln 1-X∞ 1-Xi , r = r R0 , T = T Tb , J * = R0 J * C g D va
∂φ ∂t = 1 P e r 2 ∂ ∂r r 2 ∂φ ∂r 0 < r < R(t), 0 < t < t s ( 12 
)
with initial condition :

φ (r, t = 0) = φ 0 0 ≤ r ≤ R ( 13 
)
and boundary conditions :

∂φ ∂r r=0 = 0 (14) 
1

P e ∂φ ∂r r=R

= -φ I dR dt [START_REF] Tran | Enhanced methods for experimental investigation of single droplet drying kinetics and application to lactose/water[END_REF] where P e is the PÃľclet number, representing the ratio of the characteristic evaporation time to the particles diffusion time, provided by :

P e = 2 C g D va C l D ln 1 -X ∞ 1 -X i ( 16 
)
The dimensionless form of equation ( 6), describing the evolution of the drop radius reads as follows :

dR dt = - 1 2R (17) 
with

R(t = 0) = 1 ( 18 
)
to give :

R(t) = √ 1 -t ⇒ R(t) 2 = 1 -t ( 19 
)
Outside the drop (r > R(t)), the dimensionless mathematical formulation is :

X i = exp -L 1 T i -1 (20) 
T i = T ∞ - 1 
M vg Ste g exp M vg J R Le -1 (21) J R = -ln 1 -X i 1 -X ∞ (22) 
where

L = L * R Tb
is the reduced latent heat, M vg is the vapour-to-gas molar mass ratio, Ste g is the Stefan number, Le is the Lewis number.

The dimensionless number P e is a key parameter controlling drying and particle distribution within the drop. It depends on the properties of the interface of the drop as well as the diffusion coefficient of the colloids D. It also takes into account the properties of the surrounding environment (X ∞ , T ∞ ) through the heat and mass transport equations, described by equations [START_REF] Mujumdar | Handbook of industrial drying[END_REF][START_REF] Pandey | Review of transport processes and particle self-assembly in acoustically levitated nanofluid droplets[END_REF][START_REF] Mezhericher | Modelling the morphological evolution of nanosuspension droplet in constant-rate drying stage[END_REF]. The PÃľclet number could be seen as the ratio between particles diffusion coefficient, which tends to homogenize the gradient of concentration within the drop, and the shrinking rate of the drop, which tends to generate a gradient at the interface. The PÃľclet number determines the degree of homogeneity of the concentration field. At low values of P e, diffusion dominates the interface movement and consequently, the concentration field remains almost uniform throughout the process. On the other hand, for high P e values, the high speed of the interface does not give time to diffusion to homogenize the concentration gradients of the particles within the drop. To illustrate the behavior of the mathematical model, this parameter is evaluated for typical operating conditions. In practice, taking into account that the fluid constituting the suspension is frequently water, the particle radius that will determine the Pe number, ranges from 1 to 10 4 nm. Indeed, in the practical case of spray drying including food and pharmaceutical applications [3âĂŞ5],where the drying temperature varies in the range (T ∞ = 373 -473K), P e will take values within the range [1; 10 5 ].

The identification of the drop drying regimes, as well as the comparison of the model with the drying limiting cases, were carried out in this range of P e (see figure 7,8).

Numerical methods :

The solution was approached by two numerical methods : a spectral collocation method and a finite difference method. In order to solve this problem, BIM technique was used. The Landau variable η = r R [START_REF] Landau | Heat conduction in a melting solid[END_REF] was introduced into the inner region equations, setting the spatial variable from 0 to 1. Equation ( 12) and its boundary conditions [START_REF] Shamaei | Drying behavior and locking point of single droplets containing functional oil[END_REF][START_REF] Tran | Enhanced methods for experimental investigation of single droplet drying kinetics and application to lactose/water[END_REF] read as :

∂φ ∂t - η R ∂φ ∂η dR dt = 1 P e 1 R 2 η 2 ∂ ∂η η 2 ∂φ ∂η ( 23 
)
∂φ ∂η η=0 = 0 ( 24 
)
1

P e ∂φ ∂η η=1 = -φ I R dR dt (25) 
Substituting the drop radius ( 19) into [START_REF] Myers | Optimizing the exponent in the heat balance and refined integral methods[END_REF][START_REF] Ribera | Optimising the heat balance integral method in spherical and cylindrical stefan problems[END_REF][START_REF] Murray | Numerical and machine solutions of transient heat conduction problems involving phase change[END_REF] leads to :

∂φ ∂t = 1 1 -t 1 P e η 2 ∂ ∂η η 2 ∂φ ∂η - η 2 ∂φ ∂η ( 26 
)
where the initial condition (13) holds and the following boundary conditions :

∂φ ∂η η=0 = 0 ( 27 
)
∂φ ∂η η=1 = P e 2 φ I (28) 
we could observe that the substitution of the analytical expression of droplet allowed to eliminate the unkown velocity dR/dt from the equation of transport of particles [START_REF] Myers | Optimizing the exponent in the heat balance and refined integral methods[END_REF] and the Stefan equation ( 25)

Spectral collocation method:

The spectral method of collocations, sometimes called the pseudo-spectral method, is based on the expansion of the dependent variable in terms of the Lagrange elementary polynomials evaluated at Chebyshev-Gauss-Lobatto collocation points (CGL). It is worthy to note, as mentionned by Ma et al. [START_REF] Ma | Spectral collocation method for transient thermal analysis of coupled conductive, convective and radiative heat transfer in the moving plate with temperature dependent properties and heat generation[END_REF], two other kinds of Chebyshev collocation points were adopted in the literature for non-periodic problem, Chebyshev Gauss and Chebyshev Gauss Radau collocation points. However, the use of Chebyshev Gauss Lobatto collocation points results in smaller mesh size, in the vicinity of the interface compared to the latters. The positions of the (N + 1) CGL nodal points are expressed by :

η j = 1 2 (1 + ζ j ) (29) 
where ζ j stand for the Chebyshev Gauss Lobatto collocation points expressed as :

ζ j = -cos j π N , j = 0, N (30) 
Let ψ j (ζ), being the Lagrange polynomial of order N associated to ζ j , given by :

ψ j (ζ k ) = δ j,k , ∀j, k = 0, ..., N (31) 
The polynomial interpolation of the function φ (ζ) defined in the interval ζ ∈ [-1, 1], at the Chebyshev-Gauss-Lobatto collocation points is provided by:

φ (ζ) = N j=0 φ j ψ j (ζ) (32) 
where

φ j = φ (ζ j ).
The derivatives of φ (ζ) at the collocation points were approximated by the exact derivatives of its interpolation polynomial given by equation( 32):

         ∂φ ∂ζ ζ=ζj = N m=0 D j,m φ m ∂ 2 φ ∂ζ 2 ζ=ζj = N m=0 F j,m φ m ( 33 
)
where the components of differentiation matrix D j,m and F j,m are given by:

               D j,m = b j (-1) j+m b m (ζ j -ζ m ) , if j = m D j,j = - ζ j 2(1 -ζ 2 j ) , if j = m D 0,0 = -D N,N = 2N 2 +1 6 ( 34 
)
where b 0 = b N = 2 and b i = 1 for i = 1, ..., N -1.

F j,m = D j,k D k,m (35) 
The domain of definition of equation ( 23) differs from that of Chebyshev's polynomials [START_REF] Mitchell | Finite-difference methods with increased accuracy and correct initialization for onedimensional stefan problems[END_REF]. For that pupose, to express the derivatives in terms of the independent variable η, the following substitution

ζ = 2η -1 is used leading to :          ∂φ ∂η η=ηj = 2 N m=0 D j,m φ m ∂ 2 φ ∂η 2 η=ηj = 4 N m=0 F j,m φ m ( 36 
)
The discretization of the equations [START_REF] Crank | Two methods for the numerical solution of moving-boundary problems in diffusion and heat flow[END_REF][START_REF] Gupta | A modified variable time step method for the one-dimensional stefan problem[END_REF][START_REF] Kutluay | The numerical solution of one-phase classical stefan problem[END_REF] by the spectral collocation method is obtained by making use of [START_REF] Ivanovic | Numerical solution of stefan problem with variable space grid method based on mixed finite element/finite difference approach[END_REF] :

dφ j dt = 1 1 -t 4 P e N m=0 F j,m φ m + D j,m η j φ m -η j N m=0 D j,m φ m (37) N m=0 D 0,m φ m = 0 (38) 2 N m=0 D N,m φ m = P e 2 φ N (39) 
The integration [START_REF] Font | A one-phase stefan problem with size-dependent thermal conductivity[END_REF] with the boundary conditions [START_REF] Safdari | A semi-analytical solution for time-varying latent heat thermal energy storage problems[END_REF][START_REF] Mitchell | An accurate numerical solution for the transient heating of an evaporating spherical droplet[END_REF] and the initial condition (13) will provide the solution of the problem.

Finite difference method

In order to assess the performance of the spectral collocation method, the results are compared to those obtained by a finite-difference scheme [START_REF] Sobac | Mathematical modeling of the drying of a spherical colloidal drop[END_REF]. The spatial domain η ∈ [0.1] was subdivided into N segments of uniform width ∆η. To each grid point η j = j∆η corresponds a value of the unknown φ j ( j = 0, ..., N ) . The pseudo-advective term of equation ( 23) was discretized by first-order upwind scheme, while the diffusive term was done by a second-order centred difference. The boundary conditions [START_REF] Ribera | Optimising the heat balance integral method in spherical and cylindrical stefan problems[END_REF][START_REF] Murray | Numerical and machine solutions of transient heat conduction problems involving phase change[END_REF] were discretized by a second order progressive and regressive differences respectively. 40)

dφ j dt = 1 1 -t 1 P e φ j+1 + φ j-1 -2φ j ∆η 2 + 2 j∆η φ j+1 -φ j-1 2∆η - j∆η 2 φ j+1 -φ j ∆η j = 1, .., N -1 (
φ 0 = 4φ 1 -φ 2 3 ( 41 
) 3φ N -4φ N -1 + φ N -2 2∆η = P e 2 φ N ( 42 
)
The integration with respect to time of the ordinary differential equations [START_REF] Crank | Free and moving boundary problems[END_REF][START_REF] Sadoun | On the boundary immobilization and variable space grid methods for transient heat conduction problems with phase change: Discussion and refinement[END_REF] with the boundary conditions [START_REF] Savović | Numerical solution of stefan problem with time-dependent boundary conditions by variable space grid method[END_REF][START_REF] Caldwell | Nodal integral and finite difference solution of one-dimensional stefan problem[END_REF] and the initial condition [START_REF] Yarin | Drying of acoustically levitated droplets of liquid-solid suspensions: Evaporation and crust formation[END_REF] gives the solution of the problem.

Numerical results

The spectral collocation method provides a set of ODEs, for the evolution of the particle volume fraction field evaluated at CGL points, solved by a variable time step solver based on Adams predictorcorrector method for the non-stiff differential equations and the Gear method for the stiff equations.

To show the convergence properties of this numerical method, the system of equations was integrated with respect to time up to the crust onset : t s (φ I reaching its maximum value φ s = 0.6). In the numerical study of transient heating of an evaporating drop Mitchell et al. [START_REF] Mitchell | An accurate numerical solution for the transient heating of an evaporating spherical droplet[END_REF], proposed to use the error on the evaluation of the evaporation time of a pure liquid drop as a global measure of numerical solution accuracy. Similarly, in the present work, the instant of crust formation was used as an indicator in terms of convergence and accuracy of the proposed scheme. This is due to the fact that the latter is affected by the numerical errors built up at the interface throughout the drying process, knowing that the interface is the most sensitive point of the spatial domain (large gradient).

In order to check the consistency of the proposed numerical scheme, a systematic evaluation of t s over the whole range of dimensionless parameter P e was performed for an increasing number of nodes N . Figure 2 shows the evolution of t s as a function of the selected number of nodes N . Both numerical schemes converge to the same values of t s , which is a consistency and convergence arguments in favour of the present approach. However, it should be observed that the finite difference method doesn't give any solution as long as the number of nodes didn't reach a value consistent with the scheme stability. On the other hand the spectral collocation method is more stable and the solution is reached with a drastic reduction in the number of nodes.

(a) P e = 1 To quantify the convergence rate of both methods, the evolution of the error on t s as a function of the number of nodes was performed. A rigorous evaluation of this error was not possible since the problem considered has no analytical solution. So the error on t s was approximated by the difference between the value obtained and a reference value t ref reached with a precision of 10 -7 . As shown in table 1, the resulting error, on the locking point evaluation for both methods (SCM and FDM), was quantified for P e = 1, 10, 100 and various number of nodes. For P e = 1, the spectral method has at least an error of two digits lesser than the finite difference method. However, for such value of PÃľclet number the FDM provides adequate results and recalling to such complex method (SCM) is not necessary unless a high level of accuracy is required. As P e increases (P e = 100), which is more realistic for practical applications (spray drying), the gap between both methods increases to an average value of 10 3 due to the inability of the finite difference method to describe accurately the intense gradients at the interface. For high PÃľclet values and because of stability problems, the finite difference method failed to solve the problem unless a great number of nodes were used. For instance at P e = 10, to achieve the same order of accuracy t ref for both methods, the finite difference method requires 10 4 nodes, while the spectral method needs only 50 nodes, that is 200 fold smaller. The difference in performances between this methods increases with P e (Table 1). For that purpose, the SCM seems to be more adapted in case of practical applications including spray drying,

where P e > 10. The finite-difference scheme [START_REF] Sobac | Mathematical modeling of the drying of a spherical colloidal drop[END_REF] shows in second-order power law convergence. The estimated error on t s (crust onset) can be majorated by :

|t s (N ) -t ref | ≤ K 0 1 N p0 ( 43 
)
where p 0 and K 0 are respectively the convergence order and convergence factor.

On the other hand, an exponential convergence law (hypergeometric) was observed by the numerical scheme developed on the basis of the spectral collocation method. The estimated error on the crust onset time can be majored according to :

|t s (N ) -t ref | ≤ K 1 exp (-p 1 N ) ( 44 
)
where p 1 and K 1 are arbitrary convergence parameters. Similar behaviour, as described by equation [START_REF] Ma | Analysis of radiative transfer in a one-dimensional nonlinear anisotropic scattering medium with space-dependent scattering coefficient using spectral collocation method[END_REF], was observed in solving the transient thermal transport with heat generation in a moving plate with temperature dependent properties [START_REF] Ma | Spectral collocation method for transient thermal analysis of coupled conductive, convective and radiative heat transfer in the moving plate with temperature dependent properties and heat generation[END_REF]. Similarly, the present numerical results indicate that the spectral collocation method can lead to a very high accurate solution even with few nodes.

Another parameter that can be used to highlight the behaviour of these numerical schemes is conservativity. Conservative numerical schemes are highly appreciated, in solving heat and mass transfer problems, for their ability to provide acceptable solutions even at low accuracy. However, in the present problem, BIM makes the use of finite volume schemes impossible, which are known to satisfy the conservativity. The hypothesis that solid particles are confined by the interface, of the shrinking drop, leads to a strict conservation of the total volume occupied by the particles; that is :

φ 0 = 3R 3 1 0 η 2 φdη ( 45 
)
A non-conservative scheme would, therefore, lead to a default volume quantifiable as follows : Following equation [START_REF] Ma | Thermal radiation heat transfer in one-and two-dimensional enclosures using the spectral collocation method with full spectrum k-distribution model[END_REF], figure [START_REF] Jaskulski | Predictive cfd modeling of whey protein denaturation in skim milk spray drying powder production[END_REF] shows that both FDM and SCM leads to non-conservative schemes.

δV V = 1 - 3R(t) 3 1 0 η 2 φdη φ 0 (46) 
An error accumulation of the particle volume as function of time was recorded. Such results would affect the accuracy in evaluating of the instant t s as well as the final particle dried size. A significant error at the end of integration could reach 5% for FDM (P e = 100, N = 100), and 0.8% for SCM (P e = 100, N = 15).

Such error value was considered too high for a strict global mass balance as in this case. This figure

shows also that despite the low number of nodes used in SCM (about 7 times less than FDM), particle volume misevaluation 6 fold smaller was obtained. To compare rigorously the conservation of particle volume by both methods the evolution of δV /V at time t = t s as a function of N for several values of P e is reported in Figure [START_REF] Jaskulski | Cfd simulations of droplet and particle agglomeration in an industrial counter-current spray dryer[END_REF]. The latter shows similar features to those observed in figure [START_REF] Ziaee | Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches[END_REF]. The volume misevaluation resulting from SCM decreases rapidly with increasing the number of nodes to reach the roundoff plateau at N = 9, 15, 40 for P e = 1, 10, 100, respectively. However, in case of FDM the decrease was much solwer and a great number of nodes was required before reaching a roundoff plateau. For instance, at P e = 1 figure (5a) shows, N = 9 for SCM while N = 2000 for FDM.

The volume error caused by FDM also decreases with an increasing number of nodes, but much more slowly. For P e = 1, the figure (5a) shows that SCM reaches the roundoff plateau at N = 9, while N = 2000 was required by FDM.

(a) P e = 1 Obviously the spectral method converges faster than the finite difference method. Nevertheless, since the major concern in practice is computational time, this comparison is insufficient, because for a given N the spectral method would take more time compared to the finite difference method, as it requires the evaluation of high order polynomials. For that purpose it was, necessary to compare the computational times required for a given precision. The curves in Figure [START_REF] Taniguchi | Synthesis of spherical limn2o4 microparticles by a combination of spray pyrolysis and drying method[END_REF], showed that the spectral method, in all cases considered in this work, required less CPU time than FDM. 

Asymptotic behavior and validation

A validation of the results with experiments is unfortunately not possible since, up to our knowledge, no experimental data, that can be used as a reference, is available in the literature. However, it is possible to carry a validation by comparison with the asymptotic behavior of the time of the crust onset ts, with respect to P e. The first limiting solution corresponds to the case without diffusion of particles (D = 0 ⇒ P e → ∞), where the crust appears instantaneously (t s = 0). The second asymptotic solution corresponds to the case where the diffusion is dominant (P e << 1), in such case, the maximum value of concentration is reached simultaneously at any point of the drop, and the time of the crust onset t s corresponds exactly to the consolidation time t c . In the ideal case, when the consolidation front reaches the center of the drop, the global balance of total particle volume at t = t c is written :

φ s 4π 3 R 3 c = φ 0 4π 3 ( 47 
)
where R c is the drop radius at t = t c . Equation (47) yields :

R c = φ 0 φ s 1 3 (48) 
The integration of equation ( 17) from t = 0 until complete consolidation t = t c gives :

t c = 1 - φ 0 φ s 2 3
(49) The comparison of the considered model with the two limiting cases is depicted in figure 7. The results of the numerical model show adequate asymptotic behavior concerning P e.

Dynamics of crust formation

In order to characterize the drying regime of the drop, the ratio of crust formation duration to the consolidation time χ = t s /t c was introduced. This allows a priori knowledge of the mechanisms involved, in the drying process, and gives access to some simplifying assumptions in the limiting case, according to the magnitude of χ. Indeed, for values of χ 1 (t s close to t c ), diffusion process dominated while for small values of χ << 1, the advection, induced by the evaporation process, is the main transport phenomena. For intermediate values, the transport is controlled by both diffusion and advection. • Slow drying rate χ ∼ 1, for P e << P e t . The densification phase is ephemeral, since the maximum concentration is reached simultaneously at any point of the drop.

• Moderate drying rate χ ∼ 0.5, for P e ∼ P e t . The phasic duration is comparable.

• High drying rate χ << 0.5, for P e >> P e t , densification phase is longer than the crust preformation phase. The high speed of the interface induces an instantaneous first layer of the crust.

The volume fraction of particles field within the drop evolves differently according to the drying regime, as shown in figures [START_REF] Pandey | Review of transport processes and particle self-assembly in acoustically levitated nanofluid droplets[END_REF].

(a) P e = 1 For slow drying regime, the advection of particles at the interface induced by evaporation was small compared to the diffusion of the latters. for P e = 1, figure 9a shows that the concentration field within the drop remained almost uniform throughout the drying process. For such regime, the model could be simplified, neglecting the concentration gradient in the drop. For moderate drying rate, the evaporation and diffusion were comparable. At P e = 10, figure (9b) shows that the concentration gradient at the interface was important compared to that observed in slow drying regime. However, the information spreads to the center of the drop. This type of regime requires the use of the particle diffusion model.

For high drying rate regime (P e = 100), the evaporation rate was so important that the crust was fastened before the diffusion front reached the center of the drop. The figure (9c) shows that the concentration gradient was very important near the interface, but remained zero in the rest of the drop.

Conclusion

The spectral collocation method was applied for the determination of a crust onset, of a drying isothermal colloidal droplet. The mathematical model describing this process was based on mass diffusion equation with moving boundary. The treatment of the latter by the BIM technique led to a system of a PDE and an ODE characterizing the evolution the concentration field within the drop and the droplet radius.

The spectral collocation method using Chebyshev-Gauss-Lobatto points was proposed to solve this problem. The locking point was used as a parameter to assess the global performance of the numerical scheme. It was shown that the finite difference method, induced an accumulation of error over time on the strict global balance of particles, leading to an important misevaluation of the total volume of particles compared to a negligible value recorded by SCM. The error built-up can be detrimental to the accuracy of the scheme and the final properties evaluation of the dried particle, especially for high Pe.

In terms of computational cost, the present method reduced the cost, at least by a factor of 2, for the same accuracy. The performance of the proposed numerical scheme was compared to a reference scheme [START_REF] Sobac | Mathematical modeling of the drying of a spherical colloidal drop[END_REF]. The spectral collocation method showed a rapid convergence with an exponential law, while the reference scheme led to a second-order power-law convergence. It should be pointed out that the spectral method allowed to investigate on possible drying regimes. Three types of drying have been identified

based on the ratio χ and the PÃľclet number.

Furthermore, the SCM requires fewer grid points compared to the FDM (at least 200 times lesser).

It provides a credible alternative for implementation in more complex models involving a large number of droplets, such as those used to describe sprays [START_REF] Mezhericher | Spray drying modelling based on advanced droplet drying kinetics[END_REF][START_REF] Poozesh | On the particle formation in spray drying process for bio-pharmaceutical applications: Interrogating a new model via computational fluid dynamics[END_REF][START_REF] Ziaee | Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches[END_REF][START_REF] Jaskulski | Predictive cfd modeling of whey protein denaturation in skim milk spray drying powder production[END_REF][START_REF] Jaskulski | Cfd simulations of droplet and particle agglomeration in an industrial counter-current spray dryer[END_REF], where the computational cost may constitute the main obstacle. It is also possible to adapt this method to other drying applications, such as drying of a stagnant colloidal film [START_REF] Yoo | Practical drying model for horizontal colloidal films in rapid evaporation processes[END_REF].

More generally, heat and mass transfer problems are often associated with strong gradients at the boundaries. Conventional numerical methods fail to provide adequate solutions, especially when these gradients include moving boundaries. It has been shown in this work that the spectral collocation method, in such a situation, is an appropriate tool. 

Nomenclature

Figure 1 :

 1 Figure 1: Schematic representation of the physical problem

Figures 3

 3 Figures 3 highlights the influence of the nodes number on the estimated error induced by both methods for various PÃľclet numbers (P e = 1, 10, 100, 1000). The finite difference and the spectral schemes have, globaly, quadratic and spectral convergences, respectively.

Figure 3 :

 3 Figure 3: Estimated error on the crust onset time (locking point), ts, with respect to the leading reference time, t ref , for different values of the PÃľclet number, as given by finite difference and spectral collocation.

Figure 4 :

 4 Figure 4: Particle relative volume misevaluation resulting from SCM and FDM for : P e = 100 and φ 0 = 0.1.

Figure 5 :

 5 Figure 5: Evolution particle relative volume misevaluation resulting from SCM and FDM with respect to the nodes number N for P e = 1, 10, 100.

Figure 6 :

 6 Figure 6: CPU time as function of the reached precision on ts for P e = 100, 1000 and φ 0 = 0.1.

2 3Figure 7 :

 27 Figure 7: Comparison of the asymptotic behaviour of the numerical model with the analytical solutions for the two limiting cases P e << 1 and P e → ∞ (the numerical solution was obtained by SCM for N = 60 and φ 0 = 0.1).

3 Figure 8 :

 38 Figure 8: Evolution of the ratio between the densification time, and the crust onset time as a function of P e for φ 0 = 0.1, 0.2, 0.3.

Figure 8

 8 Figure 8 depicts the evolution of χ as a function of P e. The sigmoidal shape of the curve allows to easily point out the transition zone between slow and high drying rates for P e values in the range [1 -10 3 ], with a slight dependence on the initial concentration of particles. The transition zone can be located more rigorously by defining a threshold PÃľclet value associated to the inflection point of the sigmoid at χ = 0.5, leading to P e t 6, 10, 25 for φ 0 = 0.3, 0.2, 0.1 respectively. Therefore according to the values of χ, we distinguish three different drying dynamics:

Figure 9 :

 9 Figure 9: Evolution of the concentration field within the drop and the droplet radius for P e = 1, 10, 100 and φ 0 = 0.1.
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 3 diffusion coefficient, m 2 /s F second order Chebyshev differetiation matrix j * molar evaporation flux, mol/(m 2 s) mole fraction of vapour in the gas phase, -

Table 1 :

 1 Estimated absolute error on the locking point given by finite difference and spectral collocation methods for three values of PÃľclet number (P e = 1, 10, 100) and for different meshe size.

		P e = 1		P e = 10		P e = 100
	N	|ts -t ref | SCM	|ts -t ref | FDM	|ts -t ref | SCM	|ts -t ref | FDM	|ts -t ref | SCM	|ts -t ref | FDM
	5	1.90 × 10 -4	1.48 × 10 -2	4.28 × 10 -2	3.7 × 10 -1	-	-
	10	5.27 × 10 -7	4.01 × 10 -3	4.22 × 10 -5	1.15 × 10 -1	8.75 × 10 -2	-
	20	5.42 × 10 -7	1.05 × 10 -3	3.74 × 10 -7	3.35 × 10 -2	4.07 × 10 -4	-
	50	6.40 × 10 -7	1.72 × 10 -4	2.56 × 10 -7	6.06 × 10 -3	9.32 × 10 -7	1.05 × 10 -1
	100	6.59 × 10 -7	4.33 × 10 -5	3.51 × 10 -7	1.59 × 10 -3	9.31 × 10 -7	4.12 × 10 -2
	t ref	0.6767266	0.5013241	0.1319719
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