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Introduction

In building thermal engineering, heating demand is well understood and easily computable by dynamic building energy simulation software like TRNSYS, Energy Plus, Design Builder or Pléiades-COMFIE for example. However, the study of new decentralised or distributed power production systems (micro wind turbines, photovoltaic systems (PV) or micro combined heat and power systems (µCHP) (electrical power < 5 kW) coupled with a building requires a sufficiently precise knowledge of the building specific electricity demand (without heating or DHW electrical loads), in order to assess the global energy balances and the power importation and exportation rates. This knowledge is also crucial to improve the environmental and economic relevance of µCHP or PV systems coupled with dwellings, particularly in terms of self-consumption, self-sufficiency and coverage rates of electricity demand. In particular, µCHP systems can require the specific electricity demand of each appliance in order to develop innovative control strategies allowing producing power during peak demands. Besides, PV systems can require postponing some specific electricity demand during a solar production period. The study of this electricity distributed self-production systems (mainly µCHP) coupled to building requires relevant and high resolution electricity load curves to supply realistic results in terms of energy performance [1,2]. However, the electricity demand of dwellings is marked by important unsteadiness (power peaks, power steps, etc.) due to multiple consumption appliances and occupant behaviors. Therefore, the optimization of distributed power production systems coupling with dwellings requires realistic data on electricity demand Eel, which could be obtained by both high temporal definition and a high level of details (high number of appliances). The major lock to the realistic determination of specific electricity demand lies in the simulation of the real behavior of the users that is translated to variable and random load curves. Several strategies can be carried out to build these electricity load curves: experimental strategies [3], statistical (and / or normative) strategies [4][5][6][7][8][9], stochastic strategies [10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26] or black box models [10] (artificial neural network [27,28] or multi agent systems). However, there is a lack of data on yearly high resolution electricity load curves in the literature [10] and more precisely in the European context. Besides, many authors gathered appliances in groups [26,28,29], or only considered the global electricity demand [3,6,7,27,29] or consider a limited number of appliances [3,9,14,15,16,17]. The new tool tries to be realistic and to implement the most appliances as possible at a low time step. Each appliance load curve has to be reachable to give the possibility to apply smart control strategies between distributed power system (µCHP or PV) and building demands.

Electrical power

could be easily determined by the knowledge of elementary physical quantities like intensity, voltage and power factor (or cos φ). Currently, this electricity demand for each time step Eel is obtained by aggregating all the unitary electrical loads , of each electrical appliance "i" (see eq. 1, 2 and 3). This unitary load can be likened to a step or piecewise steps characterized by a power level , , an occurrence (triggering time) and an operation time . The unitary energy consumed , over a time step of simulation Δtsim (with Δtsim< ) follows (Eq. 1):

, = , (1) 
Then, the electrical consumption , for each simulation time step is obtained by aggregating each unitary load (Eq. 2):

= , = (2) 
Finally, the annual specific electrical consumption Eel is obtained by summing each consumption over each time step (Eq. 3):

= , = (3) 
The simplicity of this formulation does not reflect the difficulties of its calculation and in particular the determination of occurrences or start/triggering times. In contrast to heating loads marked by a good predictability (external temperature dependence), the profile of electricity demand is dictated by the random behavior of the occupants: the main lock therefore resides in the characterization of this random dynamic [10]. Indeed, an electricity demand often occurs punctually, quickly and variably. Determination methods attempt to simulate or measure these variables and random profiles. In this paper, at first a state of the art about specific electricity demand load curve reconstitution methods will be presented before to present the development of a new tool adapted to our requirements. The aim is to well identify the existing methods, identify the lacks and propose a new tool which generates high resolution electricity load curves (minute order) for µCHP systems coupled to buildings applications. The existing methods will then be used to compare and validate the new tool. This tool has to be suitable to carry out realistic µCHP (mainly) or PV coupled to buildings energy simulations. This suitability will be studied by a sensitivity analysis on a single family building coupled to a gas Stirling engine.

State of the art

The aim of this section is to identify all the methods used in the literature on µCHP coupled to building energy studies.

Experimental methods

Experimental methods consist in instrumenting buildings in order to obtain the load curve by in situ measurements with a given time step: range from 1 min [1,3] to 1 h [1,3,29]. There are electrical demand data banks for countries in North America and Europe (Germany and Italy) [3] specifically dedicated to µCHP or micro generation studies [30,31]. But these are still scarce and often propose global electricity demand. The most detailed 1 min resolution experimental data only distinguish freezer, washing machine, dishwasher and pump and fan electricity loads. Also, it is difficult to obtain a yearly demand file without discontinuities related to technical problems. In several countries there are hourly meter data monitored by grid operators, and measurement campaigns for residential power demand but the data for entire years are not available (or not easily) and are limited in terms of buildings diversity (single family, single person, couple,…). Several authors point out the weakness and this lack of work on the domestic electrical load curves [1,26,30,31,32]. The advantages are therefore the accuracy and the natural inclusion of the real behavior of the occupants. The main disadvantages being the specificity of the measurements to a given building and the uniqueness of the measurement (overall power) that does not match our need to get each load appliance.

Statistical methods

Normative statistical methods also exist to characterize the dwellings specific electricity demand. These are widespread methods used in the literature in numerical studies of µCHP coupled with buildings [14,15,16,29,33,34,35] Barbieri et al. [7,8] and Bianchi et al. [9] give the details of their statistical methods used for decentralized power production studies. These profiles show well the hourly variation with morning and evening power peaks but do not reflect the reality of a versatile electricity demand load curve (see. Fig. 2). Also, this typology of method has the disadvantage of lack of diversity by daily repeating a single profile with a proportionality factor close, to smooth the power peaks without taking into account the punctual and variable phenomenon of a unitary withdrawal.

Stochastic methods

Stochastic methods allow the simulation of the real occupants behavior to be taken into account by implementing statistical and probabilistic methods that aim at determining trigger or start times (occurrences), operating periods and random power levels per appliance, depending on the time, the day and the season and according to the level and the energy quality of the electrical appliances. Grandjean et al.

[10] have made a complete state of the art of methods and numerical models for reconstructing the load curve of a residential building. About the specific electricity demand (excluding heating, electrical heat and air conditioning) they quote three methods: the so-called "top-down" method, the so-called "bottom-up" method (see Fig. 1) and the hybrid method: combination of the two previous methods. "Top-down" method consists of using global electrical load curves (mainly the national load curve) from measurements or energy producers and "going back down" to the individual load curve of a building on the basis of statistical and probabilistic tools. The principle is to "disaggregate" a load curve [37]. The advantage of this method is the low number of required parameters (load curves, level of equipment, average operating times, etc.). The major disadvantages being a low temporal resolution (time steps from 15 minutes to 1 hour) and the non-distinction of the unitary load of each electrical appliance. This method allows to predict changes in consumption levels and uses in a demographic, technological and climatic changing context. Gähler et al. [11] and Matics et al. [32] use this "Top-down" typology for µCHP applications. "Bottom-up" method consists of aggregating the loads of each electrical appliance identified and stochastically determined in order to "reconstruct" the load curve of a building. The advantage of this method is the accuracy, with low time steps and a high level of details (number of electrical appliances). They also make it possible to "go back" from the microscopic scale (1 dwelling) to the desired scale (collective building, neighborhood, etc.) by multiple aggregations. The major disadvantage is the techno-explicit nature of the method which involves a complex parameterization: each device must be statistically characterized (daily behavior, weekly behavior, yearly frequencies, yearly consumption, nominal power, average duration, etc.). Only a few authors use this "Bottom-up" typology for µCHP applications: Boait et al. . These "Bottom-Up" methods will be described in more detail in section 3. 
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Summary on specific electricity demand determination methods

Statistical methods at the hourly time step are easy to implement and requires few computer resources and data but tend to smooth load curves. These smoothing effects do not allow a fine analysis of the buildings/µCHP interactions. In addition, most of the time, no distinction is made on unitary appliance load and the same profile is repeated for each day of the year. Experimental methods are easy to implement (data files) and reflect the real behavior of any building. However, this realistic files strongly depends on the measurement time step used which can be variable (from 1 min to 1 h). Currently, consumption by appliance is not distinguished. Finally, the complete databases are too specific and too few or nonexistent at low time (<5 min) to be able to enrich a diversified and representative database. Lastly, stochastic methods make it possible to be closer to a real behavior of buildings load curves.

The time steps can be very low (1 min) and they make it possible to determine the unity load of each appliance: something which the "top-down" methods do not allow. Table 1 synthesizes the typologies and their features for determining the specific electricity demand of residential buildings by making the link with the state of the art on the numerical studies applied to µCHP:

Tab.1-Synthesis of the determination of specific electricity demand used in µCHP studies.

(+++ : very suitable; ++ : well suitable; + : suitable; -: poorly suitable; --not suitable ; ---: impossible). 

Specifications and model typology choice

Specific electricity demand data are important input data for µCHP (or PV) coupled to building simulations and must be consistent with the level of µCHP modeling in terms of dynamics and realism. This electricity demand must therefore be determined accurately, at low time step (<5 min) and must be representative of a real behavior of electrical consumption of a dwelling. Also, µCHP coupled to building simulations likely integrates energy management strategies to control the production and/or the electrical loads. The management of the loads can consist of postponing some elementary loads known as "schiftable" loads to a more "favorable" period (during a period of operation of the µCHP, for example). This constraint requires the load knowledge of the devices individually. Finally, a compromise must be found between the accuracy, the complexity (parameterization of the model), the genericity of the methods used and the computation time which must be reasonable for a yearly dynamic energy simulation. A "Bottom-up" stochastic method is the most adapted to the criteria of precision, realism and level of detail. In addition, its technoexplicit feature makes it possible to design it to the European context (or any other). Finally, this method supplies the unitary load of each appliance making possible to implement a smart control.

State of the art of "Bottom-up" generators

Among the "Bottom-up" typology, several models have been developed. Grandjean [43] works on a stochastic algorithm based on probabilistic modeling and realistic occurrences of each device (trigger and stop time). He distinguishes three statistical variants in a growing degree of complexity and realism: random models, empirical probabilistic models and scripted probabilistic models (Time Of Use TOU). Random models use random numbers without probabilistic basis which is representative of a real operation (equiprobability fields of occurrence). Empirical probabilistic methods attempt to establish probabilistic procedures representative of real behavior: for example, domestic kitchen appliances have a higher probability of operating during mealtimes. Finally, the "Time Of Use" concept, originally introduced by Pratt et al. [44], consists in using occurrence/operating probability fields from a given device from experimental device studies and occupant behavioral studies. Strategies called "scripting" can be added by transition probabilities (Markov chain) or hourly-seasonal coefficients to refine the modeling of user behavior (chronological and logical operation of some devices or modulation coefficients for lighting depending on the season or for refrigeration depending on the season and the periods of intense use). Yao et al.

[45] and Stokes et al.

[13] developed a random and probabilistic method with time steps less than 1 h. The first have implemented a random and statistical model for the study of the decentralized production of PV electricity. The time steps are from 1 to 30 minutes and they include about 15 domestic electrical appliances. However, no probability of specific occurrence has been established: the occurrence is determined randomly with an equiprobability fields. Also, five presence scenario are considered (full-time work, unemployment or 3 variants of part-time work). Then Stokes et al.

[13] introduce semi-empirical probabilities fields from behavioral probing and in situ measurements on 9 domestic appliances distributed over four categories (cold, cooking, washing/drying and lighting). They use statistics on average cycle time, use frequencies and power levels per device. Originally the model is semi-hourly and the authors try to adapt the model to the 1 minute step. Then, they use numerical artefacts which aim, for example, to adapt the power levels of the appliance cycles so that the target energy is covered on a semi-hourly pitch. Also, each probability of occurrence of devices has specificities that make this model empirical and difficult to generalize. Among the most realistic "Time Of Use" models with time steps of less than 1 hour, Walker and Pokoski [46] developed electrical load curves at 15 min time step. They first used the concepts of "availability" and "propensity" by introducing active presence scenarii (as opposed to passive presence during sleep, for example) and probability of occurrence fields based on statistical data. In particular, they distinguish different behaviors according to social status and introduce a uniform density of probability of exceptional absence (leisure, shopping, holidays, etc.). Capasso et al. [47] took over the work of Walker and Pokoski and overlapped these last works with various experimental studies, they generalized fields of probability by "family" (cooking, household tasks, hobbies and hygiene) which makes it possible to obtain times of triggering of devices by a stochastic method of Monte-Carlo. The triggering are conditioned by frequency thresholds (number of occurrences per day limited). However, the authors did not implement weekly-seasonal dependence on probability fields or power levels. Next, Armstrong et al.

[26] created a model at 5 min time step on the basis of previous works. By lack of data on the probability of occurrence fields, they based their model on the work of Pratt et al. [44] without updating and without weekly-seasonal modulation (except for lighting). This model was developed specifically for the study of µCHP coupled with buildings in Canada via the Annex 42 of the IEA [30]. In particular, they distinguished three levels of equipment and three levels of energy performance of appliances by distinguishing eight appliances (lighting, fridge, freezer, oven, dishwasher, washing machine, dryer and others). They do not distinguish particular cycles for the washing machines (heating, spinning, drying, etc.) nor variations in duration except for lighting (variable duration between 5 and 120 min). Also, they model the standby power while considering a fixed power of 65 W. Paradoxically to these simplified hypotheses, the authors implement in an original way defrosting cycles on cold appliances that randomly appear and a "Markov chain" by linking the triggering of the dryer to a stop of a cycle of the washing machine (between 30 and 120 minutes later). More recently, Widen et al.

[48] developed a "Time Of Use" model with updated occurrence probability fields adapted to the Swedish context. They adapt this method by generating an electrical load per occupant: individual loads they aggregate according to the number of occupants. In particular, they distinguish 9 domestic appliances, 2 types of building (house and apartment), daily probabilities fields (week day/week end) and a correlation between natural light and the level of lighting power. The important contribution of the authors is the implementation of "Markov chains" in their model by using transition probabilities between each of the nine activities taken into account (absence, sleep, kitchen, dishwasher, washing machine/dryer, TV, computer, audio and others). These transitions enrich the modeling of realistic behavior. Finally, have developed a very precise "Time Of Use" algorithm at a time step of 1 min integrating 33 electrical devices. They combine binary active presence scenario [19][20][21] with probability fields of occurrences from in situ measurements and a large survey campaign in the British context (1000 people at 10 min time step). In particular, the authors distinguish five fields of probability of occurrence by activity and not by appliance (cooking, television, drying clothes, washing, ironing and cleaning). These fields are based on the number of active occupants (from 1 to 5) and the type of day (week day/week end). Table 2 synthesizes the "Bottom-up" models for the determination of specific electricity demands (time step <1 h) by making the link with the state of the art on the numerical studies on µCHP coupled to buildings.

Tab. 2 -«Bottom-up» methods on the specific electrical load curve reconstitution.

Approach

Mathematic random

Probabilistic empirical Scripted probabilistic

or cycles for specific devices (washing, drying, etc.) or diversity in the operating time of the devices. Armstrong et al. [26] only include 8 household appliances (including an item which represents a grouping of small appliances) which is not very representative of the actual equipment level. No seasonal variation is taken into account (except for lighting) and the operating times are fixed. Widen et al. [48] include only 9 devices and do not consider seasonal variation. Also, their lighting model correlated with the level of natural light turns out to be too complex to implement. ), specific equipment and specific energy performance levels. In comparison, the Canadian and British contexts show much higher levels of consumption (approximately 1.5 and 2 to 3, respectively) [15]. Also, the multiplication of electrical and electronic appliances generates an electricity demand increase; which is never integrated into the presented models. This observation motivates the development of a new stochastic generator of specific electricity demand adapted to the diversity of the current French context in terms of equipment level and energy performance in particular. It attempts to synthesize and to improve the different strategies implemented in the 5 models identified (see Table 2). Compared to existing approaches, this tool goes beyond in several points and especially it aggregates functions which are only partially present in each generator. No generators include all the following features (see Table 2):

• Hourly and weekly-seasonal variations of the probability fields of occurrences,

• a probability of active presence,

• transition probabilities (Markov chains),

• a comprehensive and updatable list of household electrical appliances (39),

• a realistic consideration of standby consumption,

• a diversity of the equipment level based on statistics (low, medium high),

• a diversity of energy performances based on statistics and standards (in reference to "energy labels" see appendix A), • a realistic and individual modeling of each device (steps, predefined cycles),

• a device random operation, • a hourly and weekly-seasonal variation of fields of occurrence (mainly for lighting and refrigeration).

Development of a stochastic specific electricity demand generator

The model is based on both the large statistical study carried out in the framework of the European project named REMODECE [50] and the deep measurement campaigns carried out in France by the Enertech consultancy firm [51] which are the reference on European and French statistics about specific electrical consumption levels and consumption habits. The tool is therefore well adapted to the French context but also to the European context because the majority of the measured data come from several European countries. To adapt the tool to a specific context, it would be necessary to update the time of use curves and the appliance list and appliances ownership rates according to the country. These projects provides a basis of 10 M data on domestic electrical appliances (more than 1500 appliances tested in 11 buildings (dwellings and collective buildings) which has been spread others some weeks for some appliances and over a year for appliances which present a seasonal sensitivity (fridge, lighting). A schematic overview is given in Figure 7 and a didactic diagram is proposed in Appendix F. At first, the tool requires to choose the equipment level of the families that creates a combination of appliances according to the social level of the family. Then, each appliance is represented by a load profile (operating cycles) the user has to set with parameters (nominal power, stand by power, duration,…). Then, probabilities fields (based on experimental Time Of Use curves) and Monte Carlo method (random generation of points below or above the probability fields curves) are used to allow an appliance to trigger or not for a given day and at which time. Figure 7 describes the load curve generation approach.

Equipment level

The stochastic generator therefore integrates 39 devices detailed in the appendix F which refer to the REMODECE project [50]. The devices can appear several times (television, loader, computers, etc.). For example, a main TV can be present in the living room and several TV can be in the bedrooms or the kitchen that leads to get potentially more than 39 appliances. In particular, the main and secondary character is distinguished for lighting (living and other), for TV and for computers (the TV in the living room will be considered as main TV because it will be used more often). Six categories of household appliances are considered: cold, cooking, washing, cleaning, hifi, computer and others. The statistics on household electrical equipment rates (household possession rate) show 3 levels of equipment (equipment combination present in the dwelling) reflecting the socio-economic level of the inhabitants. These 3 levels (low, medium and high) are detailed in the appendix F which gives the number of devices present (0, 1 or more) depending on the level. The choice of the appliance sets has been made mainly according to the statistics supplied by the REMODECE project [50] on the mean appliance ownership rates in the Europe context (see Annex F). Some other arbitrary choices were made by lack of information. But the tool allows to choose the appliances and its number to generate new load curves for any appliance set. For example, for the low level, the minimum set of appliance has been fixed to ensure: internet access, TV access, food conservation access, lighting access, cooking access and clothes washing access. Nothing can be qualified as unnecessary (like dryer machine or dish washers) for this level.

3.2.Characterization of the operating cycles

Four typologies of operating cycles are distinguished: continuous operation, steps operation (separation of operating and standby power), cyclic continuous operation (refrigeration units) and operation according to a predefined cycle (for the dishwasher, washing machine and dryer). An operating cycle is characterized by its power level in operation and in standby; these are derived from the REMODECE measurement campaign of Enertech [50-51] and the state of the art previously presented. In particular, a modulation coefficient is applied according to three levels of energy performance (A, B and C) of electrical appliances (see Appendix F) and to measurement campaigns [51] (see figure 8). These are adapted from the "Energy Labels" issued by the Council of Europe directives for each device (see Appendix A). Also, monthly coefficients from the measurements campaign [51] are assigned to the lighting and refrigeration (see. Table 3). Indeed, the nominal power of the lighting is affected by an additional monthly factor to take into account the seasonal variation of the contributions in natural light: the lighting loads are weaker in summer because of longer and sunnier days. The cycle time of the refrigeration equipment is corrected by a monthly factor to take into account the variation of the temperature of the indoor environment (mainly the kitchen) which influences the coefficient of performance of the thermodynamic cycle. These monthly coefficients equal 1 on average over the year.

Tab. 3 -Monthly coefficients to adjust the lighting and refrigeration power [51].

January February March April May June

July August September October November December Lighting 1,5 1,3 1,1 0,8 0,7 0,55 0,5 0,45 0,85 1,25 1,45 1,55 Refrigeration 0,92 0,9 0,94 0,94 0,94 1,06 1,320 1,190 0,95 0,95 0,97 0,91

Only for refrigeration appliances, the hourly operation of the compressor is cyclic. This cycle is characterized by its nominal ON/OFF frequency of 50% and its nominal duration which is fixed at 1 h [18,26,[50][51][52]. In addition, hourly correction coefficients are used to represent the variation of intensity of use of refrigeration systems: more intense use during morning, noon and evening meals (see Fig. 3). Indeed, the compressor is more stressed during meal times. These daily scheme is the same for each day and for each simulation. Finally, the temperature of the indoor environment, varying from 18 to 26 °C depending on the season, influences the coefficient of performance of the thermodynamic cycle. These last two coefficients are provided thanks to experimental studies [51]. All data relating to the characterization of cycles of household electrical appliances are presented in the Appendix F. The washing machines (washing machine and dishwasher) are predefined by three cycles each (respectively: 30, 60 and 90°C and ECO, normal and intensive) as well as frequencies of occurrence for each cycle [50][51]. The occurrence of each of these cycles is randomly distributed over the year according to these frequencies and the number of cycles per year.

(see Table 4). The cycles are defined in terms of power in Figure 4 and Table 4: 

Fig. 1 -

 1 Fig. 1 -« top-down » and « bottom-up » methods principle.

  [12] use the model of Stokes et al. [13]. Dorer et al. [14] and Ribberink et al. [15] use stochastic profiles from the work of Armstrong et al. [20], Rosato et al. [16] and Marasso et al. [17] use the models of Richardson et al. and Thomson et al. [18-22]: model truncated from 33 to 8 devices only for the first authors (see Fig. 2), and appliances electricity demand aggregated for the second. Fischer et al. [23] who implemented their own model synPRO [24]

Fig. 2 -

 2 Fig. 2 -Electricity demand derived from « bottom-up » stochastic [14-16].

Fig. 3 -

 3 Fig. 3 -Hourly coefficients applied for refrigeration power modulation [51].

  

  Richardson et al. [18] did not implement transition probabilities (Markov chains) or diversity in energy performance and operating time of the devices. It should be noted that onlyWiden et al. [48], Fischer and al. [24] and to a lesser extent Armstrong et al.[26] incorporate transition probabilities in their model. Also, despite the exhaustive list of 33 devices, only 5 probability fields are used byRichardson et al. [18].Fischer et al. [24] only considers 10 devices types and hourly time steps in a German context. Finally, no model refers to the French context, which shows specific consumption levels (2 800 kWhel/year[49]

Among the state of the art on the "Bottom-up" models, the so-called "scripted probabilistic" methods are the best adapted to the previously defined specifications, particularly in terms of precision and realism. However, the 6 identified models (see